1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2004 The FreeBSD Foundation
5 * Copyright (c) 2004-2008 Robert N. M. Watson
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33 */
34
35/*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn().  Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn().  Socket layer private.
43 *
44 * pru_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation.  This is called
46 * from socreate() and sonewconn().  Socket layer private.
47 *
48 * pru_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pru_attach() has
50 * been successfully called.  If pru_attach() returned an error,
51 * pru_detach() will not be called.  Socket layer private.
52 *
53 * pru_abort() and pru_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection.  Historically, pru_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state.  This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state.  This is a
64 * public interface  that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected).  This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required.  Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation.  This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed.  This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment.  For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 *
96 * NOTE: With regard to VNETs the general rule is that callers do not set
97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98 * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99 * and sorflush(), which are usually called from a pre-set VNET context.
100 * sopoll() currently does not need a VNET context to be set.
101 */
102
103#include <sys/cdefs.h>
104__FBSDID("$FreeBSD: releng/11.0/sys/kern/uipc_socket.c 300419 2016-05-22 13:10:48Z bapt $");
105
106#include "opt_inet.h"
107#include "opt_inet6.h"
108#include "opt_compat.h"
109
110#include <sys/param.h>
111#include <sys/systm.h>
112#include <sys/fcntl.h>
113#include <sys/limits.h>
114#include <sys/lock.h>
115#include <sys/mac.h>
116#include <sys/malloc.h>
117#include <sys/mbuf.h>
118#include <sys/mutex.h>
119#include <sys/domain.h>
120#include <sys/file.h>			/* for struct knote */
121#include <sys/hhook.h>
122#include <sys/kernel.h>
123#include <sys/khelp.h>
124#include <sys/event.h>
125#include <sys/eventhandler.h>
126#include <sys/poll.h>
127#include <sys/proc.h>
128#include <sys/protosw.h>
129#include <sys/socket.h>
130#include <sys/socketvar.h>
131#include <sys/resourcevar.h>
132#include <net/route.h>
133#include <sys/signalvar.h>
134#include <sys/stat.h>
135#include <sys/sx.h>
136#include <sys/sysctl.h>
137#include <sys/taskqueue.h>
138#include <sys/uio.h>
139#include <sys/jail.h>
140#include <sys/syslog.h>
141#include <netinet/in.h>
142
143#include <net/vnet.h>
144
145#include <security/mac/mac_framework.h>
146
147#include <vm/uma.h>
148
149#ifdef COMPAT_FREEBSD32
150#include <sys/mount.h>
151#include <sys/sysent.h>
152#include <compat/freebsd32/freebsd32.h>
153#endif
154
155static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
156		    int flags);
157
158static void	filt_sordetach(struct knote *kn);
159static int	filt_soread(struct knote *kn, long hint);
160static void	filt_sowdetach(struct knote *kn);
161static int	filt_sowrite(struct knote *kn, long hint);
162static int	filt_solisten(struct knote *kn, long hint);
163static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
164fo_kqfilter_t	soo_kqfilter;
165
166static struct filterops solisten_filtops = {
167	.f_isfd = 1,
168	.f_detach = filt_sordetach,
169	.f_event = filt_solisten,
170};
171static struct filterops soread_filtops = {
172	.f_isfd = 1,
173	.f_detach = filt_sordetach,
174	.f_event = filt_soread,
175};
176static struct filterops sowrite_filtops = {
177	.f_isfd = 1,
178	.f_detach = filt_sowdetach,
179	.f_event = filt_sowrite,
180};
181
182so_gen_t	so_gencnt;	/* generation count for sockets */
183
184MALLOC_DEFINE(M_SONAME, "soname", "socket name");
185MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
186
187#define	VNET_SO_ASSERT(so)						\
188	VNET_ASSERT(curvnet != NULL,					\
189	    ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
190
191VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
192#define	V_socket_hhh		VNET(socket_hhh)
193
194/*
195 * Limit on the number of connections in the listen queue waiting
196 * for accept(2).
197 * NB: The original sysctl somaxconn is still available but hidden
198 * to prevent confusion about the actual purpose of this number.
199 */
200static u_int somaxconn = SOMAXCONN;
201
202static int
203sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
204{
205	int error;
206	int val;
207
208	val = somaxconn;
209	error = sysctl_handle_int(oidp, &val, 0, req);
210	if (error || !req->newptr )
211		return (error);
212
213	/*
214	 * The purpose of the UINT_MAX / 3 limit, is so that the formula
215	 *   3 * so_qlimit / 2
216	 * below, will not overflow.
217         */
218
219	if (val < 1 || val > UINT_MAX / 3)
220		return (EINVAL);
221
222	somaxconn = val;
223	return (0);
224}
225SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
226    0, sizeof(int), sysctl_somaxconn, "I",
227    "Maximum listen socket pending connection accept queue size");
228SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
229    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
230    0, sizeof(int), sysctl_somaxconn, "I",
231    "Maximum listen socket pending connection accept queue size (compat)");
232
233static int numopensockets;
234SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
235    &numopensockets, 0, "Number of open sockets");
236
237/*
238 * accept_mtx locks down per-socket fields relating to accept queues.  See
239 * socketvar.h for an annotation of the protected fields of struct socket.
240 */
241struct mtx accept_mtx;
242MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
243
244/*
245 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
246 * so_gencnt field.
247 */
248static struct mtx so_global_mtx;
249MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
250
251/*
252 * General IPC sysctl name space, used by sockets and a variety of other IPC
253 * types.
254 */
255SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
256
257/*
258 * Initialize the socket subsystem and set up the socket
259 * memory allocator.
260 */
261static uma_zone_t socket_zone;
262int	maxsockets;
263
264static void
265socket_zone_change(void *tag)
266{
267
268	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
269}
270
271static void
272socket_hhook_register(int subtype)
273{
274
275	if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
276	    &V_socket_hhh[subtype],
277	    HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
278		printf("%s: WARNING: unable to register hook\n", __func__);
279}
280
281static void
282socket_hhook_deregister(int subtype)
283{
284
285	if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
286		printf("%s: WARNING: unable to deregister hook\n", __func__);
287}
288
289static void
290socket_init(void *tag)
291{
292
293	socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
294	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
295	maxsockets = uma_zone_set_max(socket_zone, maxsockets);
296	uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
297	EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
298	    EVENTHANDLER_PRI_FIRST);
299}
300SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
301
302static void
303socket_vnet_init(const void *unused __unused)
304{
305	int i;
306
307	/* We expect a contiguous range */
308	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
309		socket_hhook_register(i);
310}
311VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
312    socket_vnet_init, NULL);
313
314static void
315socket_vnet_uninit(const void *unused __unused)
316{
317	int i;
318
319	for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
320		socket_hhook_deregister(i);
321}
322VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
323    socket_vnet_uninit, NULL);
324
325/*
326 * Initialise maxsockets.  This SYSINIT must be run after
327 * tunable_mbinit().
328 */
329static void
330init_maxsockets(void *ignored)
331{
332
333	TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
334	maxsockets = imax(maxsockets, maxfiles);
335}
336SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
337
338/*
339 * Sysctl to get and set the maximum global sockets limit.  Notify protocols
340 * of the change so that they can update their dependent limits as required.
341 */
342static int
343sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
344{
345	int error, newmaxsockets;
346
347	newmaxsockets = maxsockets;
348	error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
349	if (error == 0 && req->newptr) {
350		if (newmaxsockets > maxsockets &&
351		    newmaxsockets <= maxfiles) {
352			maxsockets = newmaxsockets;
353			EVENTHANDLER_INVOKE(maxsockets_change);
354		} else
355			error = EINVAL;
356	}
357	return (error);
358}
359SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
360    &maxsockets, 0, sysctl_maxsockets, "IU",
361    "Maximum number of sockets available");
362
363/*
364 * Socket operation routines.  These routines are called by the routines in
365 * sys_socket.c or from a system process, and implement the semantics of
366 * socket operations by switching out to the protocol specific routines.
367 */
368
369/*
370 * Get a socket structure from our zone, and initialize it.  Note that it
371 * would probably be better to allocate socket and PCB at the same time, but
372 * I'm not convinced that all the protocols can be easily modified to do
373 * this.
374 *
375 * soalloc() returns a socket with a ref count of 0.
376 */
377static struct socket *
378soalloc(struct vnet *vnet)
379{
380	struct socket *so;
381
382	so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
383	if (so == NULL)
384		return (NULL);
385#ifdef MAC
386	if (mac_socket_init(so, M_NOWAIT) != 0) {
387		uma_zfree(socket_zone, so);
388		return (NULL);
389	}
390#endif
391	if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
392		uma_zfree(socket_zone, so);
393		return (NULL);
394	}
395
396	SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
397	SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
398	sx_init(&so->so_snd.sb_sx, "so_snd_sx");
399	sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
400	TAILQ_INIT(&so->so_snd.sb_aiojobq);
401	TAILQ_INIT(&so->so_rcv.sb_aiojobq);
402	TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
403	TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
404#ifdef VIMAGE
405	VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
406	    __func__, __LINE__, so));
407	so->so_vnet = vnet;
408#endif
409	/* We shouldn't need the so_global_mtx */
410	if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
411		/* Do we need more comprehensive error returns? */
412		uma_zfree(socket_zone, so);
413		return (NULL);
414	}
415	mtx_lock(&so_global_mtx);
416	so->so_gencnt = ++so_gencnt;
417	++numopensockets;
418#ifdef VIMAGE
419	vnet->vnet_sockcnt++;
420#endif
421	mtx_unlock(&so_global_mtx);
422
423	return (so);
424}
425
426/*
427 * Free the storage associated with a socket at the socket layer, tear down
428 * locks, labels, etc.  All protocol state is assumed already to have been
429 * torn down (and possibly never set up) by the caller.
430 */
431static void
432sodealloc(struct socket *so)
433{
434
435	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
436	KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
437
438	mtx_lock(&so_global_mtx);
439	so->so_gencnt = ++so_gencnt;
440	--numopensockets;	/* Could be below, but faster here. */
441#ifdef VIMAGE
442	VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
443	    __func__, __LINE__, so));
444	so->so_vnet->vnet_sockcnt--;
445#endif
446	mtx_unlock(&so_global_mtx);
447	if (so->so_rcv.sb_hiwat)
448		(void)chgsbsize(so->so_cred->cr_uidinfo,
449		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
450	if (so->so_snd.sb_hiwat)
451		(void)chgsbsize(so->so_cred->cr_uidinfo,
452		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
453	/* remove accept filter if one is present. */
454	if (so->so_accf != NULL)
455		do_setopt_accept_filter(so, NULL);
456#ifdef MAC
457	mac_socket_destroy(so);
458#endif
459	hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
460
461	crfree(so->so_cred);
462	khelp_destroy_osd(&so->osd);
463	sx_destroy(&so->so_snd.sb_sx);
464	sx_destroy(&so->so_rcv.sb_sx);
465	SOCKBUF_LOCK_DESTROY(&so->so_snd);
466	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
467	uma_zfree(socket_zone, so);
468}
469
470/*
471 * socreate returns a socket with a ref count of 1.  The socket should be
472 * closed with soclose().
473 */
474int
475socreate(int dom, struct socket **aso, int type, int proto,
476    struct ucred *cred, struct thread *td)
477{
478	struct protosw *prp;
479	struct socket *so;
480	int error;
481
482	if (proto)
483		prp = pffindproto(dom, proto, type);
484	else
485		prp = pffindtype(dom, type);
486
487	if (prp == NULL) {
488		/* No support for domain. */
489		if (pffinddomain(dom) == NULL)
490			return (EAFNOSUPPORT);
491		/* No support for socket type. */
492		if (proto == 0 && type != 0)
493			return (EPROTOTYPE);
494		return (EPROTONOSUPPORT);
495	}
496	if (prp->pr_usrreqs->pru_attach == NULL ||
497	    prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
498		return (EPROTONOSUPPORT);
499
500	if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
501		return (EPROTONOSUPPORT);
502
503	if (prp->pr_type != type)
504		return (EPROTOTYPE);
505	so = soalloc(CRED_TO_VNET(cred));
506	if (so == NULL)
507		return (ENOBUFS);
508
509	TAILQ_INIT(&so->so_incomp);
510	TAILQ_INIT(&so->so_comp);
511	so->so_type = type;
512	so->so_cred = crhold(cred);
513	if ((prp->pr_domain->dom_family == PF_INET) ||
514	    (prp->pr_domain->dom_family == PF_INET6) ||
515	    (prp->pr_domain->dom_family == PF_ROUTE))
516		so->so_fibnum = td->td_proc->p_fibnum;
517	else
518		so->so_fibnum = 0;
519	so->so_proto = prp;
520#ifdef MAC
521	mac_socket_create(cred, so);
522#endif
523	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
524	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
525	so->so_count = 1;
526	/*
527	 * Auto-sizing of socket buffers is managed by the protocols and
528	 * the appropriate flags must be set in the pru_attach function.
529	 */
530	CURVNET_SET(so->so_vnet);
531	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
532	CURVNET_RESTORE();
533	if (error) {
534		KASSERT(so->so_count == 1, ("socreate: so_count %d",
535		    so->so_count));
536		so->so_count = 0;
537		sodealloc(so);
538		return (error);
539	}
540	*aso = so;
541	return (0);
542}
543
544#ifdef REGRESSION
545static int regression_sonewconn_earlytest = 1;
546SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
547    &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
548#endif
549
550/*
551 * When an attempt at a new connection is noted on a socket which accepts
552 * connections, sonewconn is called.  If the connection is possible (subject
553 * to space constraints, etc.) then we allocate a new structure, properly
554 * linked into the data structure of the original socket, and return this.
555 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
556 *
557 * Note: the ref count on the socket is 0 on return.
558 */
559struct socket *
560sonewconn(struct socket *head, int connstatus)
561{
562	static struct timeval lastover;
563	static struct timeval overinterval = { 60, 0 };
564	static int overcount;
565
566	struct socket *so;
567	int over;
568
569	ACCEPT_LOCK();
570	over = (head->so_qlen > 3 * head->so_qlimit / 2);
571	ACCEPT_UNLOCK();
572#ifdef REGRESSION
573	if (regression_sonewconn_earlytest && over) {
574#else
575	if (over) {
576#endif
577		overcount++;
578
579		if (ratecheck(&lastover, &overinterval)) {
580			log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
581			    "%i already in queue awaiting acceptance "
582			    "(%d occurrences)\n",
583			    __func__, head->so_pcb, head->so_qlen, overcount);
584
585			overcount = 0;
586		}
587
588		return (NULL);
589	}
590	VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
591	    __func__, __LINE__, head));
592	so = soalloc(head->so_vnet);
593	if (so == NULL) {
594		log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
595		    "limit reached or out of memory\n",
596		    __func__, head->so_pcb);
597		return (NULL);
598	}
599	if ((head->so_options & SO_ACCEPTFILTER) != 0)
600		connstatus = 0;
601	so->so_head = head;
602	so->so_type = head->so_type;
603	so->so_options = head->so_options &~ SO_ACCEPTCONN;
604	so->so_linger = head->so_linger;
605	so->so_state = head->so_state | SS_NOFDREF;
606	so->so_fibnum = head->so_fibnum;
607	so->so_proto = head->so_proto;
608	so->so_cred = crhold(head->so_cred);
609#ifdef MAC
610	mac_socket_newconn(head, so);
611#endif
612	knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
613	knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
614	VNET_SO_ASSERT(head);
615	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
616		sodealloc(so);
617		log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
618		    __func__, head->so_pcb);
619		return (NULL);
620	}
621	if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
622		sodealloc(so);
623		log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
624		    __func__, head->so_pcb);
625		return (NULL);
626	}
627	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
628	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
629	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
630	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
631	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
632	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
633	so->so_state |= connstatus;
634	ACCEPT_LOCK();
635	/*
636	 * The accept socket may be tearing down but we just
637	 * won a race on the ACCEPT_LOCK.
638	 * However, if sctp_peeloff() is called on a 1-to-many
639	 * style socket, the SO_ACCEPTCONN doesn't need to be set.
640	 */
641	if (!(head->so_options & SO_ACCEPTCONN) &&
642	    ((head->so_proto->pr_protocol != IPPROTO_SCTP) ||
643	     (head->so_type != SOCK_SEQPACKET))) {
644		SOCK_LOCK(so);
645		so->so_head = NULL;
646		sofree(so);		/* NB: returns ACCEPT_UNLOCK'ed. */
647		return (NULL);
648	}
649	if (connstatus) {
650		TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
651		so->so_qstate |= SQ_COMP;
652		head->so_qlen++;
653	} else {
654		/*
655		 * Keep removing sockets from the head until there's room for
656		 * us to insert on the tail.  In pre-locking revisions, this
657		 * was a simple if(), but as we could be racing with other
658		 * threads and soabort() requires dropping locks, we must
659		 * loop waiting for the condition to be true.
660		 */
661		while (head->so_incqlen > head->so_qlimit) {
662			struct socket *sp;
663			sp = TAILQ_FIRST(&head->so_incomp);
664			TAILQ_REMOVE(&head->so_incomp, sp, so_list);
665			head->so_incqlen--;
666			sp->so_qstate &= ~SQ_INCOMP;
667			sp->so_head = NULL;
668			ACCEPT_UNLOCK();
669			soabort(sp);
670			ACCEPT_LOCK();
671		}
672		TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
673		so->so_qstate |= SQ_INCOMP;
674		head->so_incqlen++;
675	}
676	ACCEPT_UNLOCK();
677	if (connstatus) {
678		sorwakeup(head);
679		wakeup_one(&head->so_timeo);
680	}
681	return (so);
682}
683
684int
685sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
686{
687	int error;
688
689	CURVNET_SET(so->so_vnet);
690	error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
691	CURVNET_RESTORE();
692	return (error);
693}
694
695int
696sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
697{
698	int error;
699
700	CURVNET_SET(so->so_vnet);
701	error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
702	CURVNET_RESTORE();
703	return (error);
704}
705
706/*
707 * solisten() transitions a socket from a non-listening state to a listening
708 * state, but can also be used to update the listen queue depth on an
709 * existing listen socket.  The protocol will call back into the sockets
710 * layer using solisten_proto_check() and solisten_proto() to check and set
711 * socket-layer listen state.  Call backs are used so that the protocol can
712 * acquire both protocol and socket layer locks in whatever order is required
713 * by the protocol.
714 *
715 * Protocol implementors are advised to hold the socket lock across the
716 * socket-layer test and set to avoid races at the socket layer.
717 */
718int
719solisten(struct socket *so, int backlog, struct thread *td)
720{
721	int error;
722
723	CURVNET_SET(so->so_vnet);
724	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
725	CURVNET_RESTORE();
726	return (error);
727}
728
729int
730solisten_proto_check(struct socket *so)
731{
732
733	SOCK_LOCK_ASSERT(so);
734
735	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
736	    SS_ISDISCONNECTING))
737		return (EINVAL);
738	return (0);
739}
740
741void
742solisten_proto(struct socket *so, int backlog)
743{
744
745	SOCK_LOCK_ASSERT(so);
746
747	if (backlog < 0 || backlog > somaxconn)
748		backlog = somaxconn;
749	so->so_qlimit = backlog;
750	so->so_options |= SO_ACCEPTCONN;
751}
752
753/*
754 * Evaluate the reference count and named references on a socket; if no
755 * references remain, free it.  This should be called whenever a reference is
756 * released, such as in sorele(), but also when named reference flags are
757 * cleared in socket or protocol code.
758 *
759 * sofree() will free the socket if:
760 *
761 * - There are no outstanding file descriptor references or related consumers
762 *   (so_count == 0).
763 *
764 * - The socket has been closed by user space, if ever open (SS_NOFDREF).
765 *
766 * - The protocol does not have an outstanding strong reference on the socket
767 *   (SS_PROTOREF).
768 *
769 * - The socket is not in a completed connection queue, so a process has been
770 *   notified that it is present.  If it is removed, the user process may
771 *   block in accept() despite select() saying the socket was ready.
772 */
773void
774sofree(struct socket *so)
775{
776	struct protosw *pr = so->so_proto;
777	struct socket *head;
778
779	ACCEPT_LOCK_ASSERT();
780	SOCK_LOCK_ASSERT(so);
781
782	if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
783	    (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
784		SOCK_UNLOCK(so);
785		ACCEPT_UNLOCK();
786		return;
787	}
788
789	head = so->so_head;
790	if (head != NULL) {
791		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
792		    (so->so_qstate & SQ_INCOMP) != 0,
793		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
794		    "SQ_INCOMP"));
795		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
796		    (so->so_qstate & SQ_INCOMP) == 0,
797		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
798		TAILQ_REMOVE(&head->so_incomp, so, so_list);
799		head->so_incqlen--;
800		so->so_qstate &= ~SQ_INCOMP;
801		so->so_head = NULL;
802	}
803	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
804	    (so->so_qstate & SQ_INCOMP) == 0,
805	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
806	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
807	if (so->so_options & SO_ACCEPTCONN) {
808		KASSERT((TAILQ_EMPTY(&so->so_comp)),
809		    ("sofree: so_comp populated"));
810		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
811		    ("sofree: so_incomp populated"));
812	}
813	SOCK_UNLOCK(so);
814	ACCEPT_UNLOCK();
815
816	VNET_SO_ASSERT(so);
817	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
818		(*pr->pr_domain->dom_dispose)(so);
819	if (pr->pr_usrreqs->pru_detach != NULL)
820		(*pr->pr_usrreqs->pru_detach)(so);
821
822	/*
823	 * From this point on, we assume that no other references to this
824	 * socket exist anywhere else in the stack.  Therefore, no locks need
825	 * to be acquired or held.
826	 *
827	 * We used to do a lot of socket buffer and socket locking here, as
828	 * well as invoke sorflush() and perform wakeups.  The direct call to
829	 * dom_dispose() and sbrelease_internal() are an inlining of what was
830	 * necessary from sorflush().
831	 *
832	 * Notice that the socket buffer and kqueue state are torn down
833	 * before calling pru_detach.  This means that protocols shold not
834	 * assume they can perform socket wakeups, etc, in their detach code.
835	 */
836	sbdestroy(&so->so_snd, so);
837	sbdestroy(&so->so_rcv, so);
838	seldrain(&so->so_snd.sb_sel);
839	seldrain(&so->so_rcv.sb_sel);
840	knlist_destroy(&so->so_rcv.sb_sel.si_note);
841	knlist_destroy(&so->so_snd.sb_sel.si_note);
842	sodealloc(so);
843}
844
845/*
846 * Close a socket on last file table reference removal.  Initiate disconnect
847 * if connected.  Free socket when disconnect complete.
848 *
849 * This function will sorele() the socket.  Note that soclose() may be called
850 * prior to the ref count reaching zero.  The actual socket structure will
851 * not be freed until the ref count reaches zero.
852 */
853int
854soclose(struct socket *so)
855{
856	int error = 0;
857
858	KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
859
860	CURVNET_SET(so->so_vnet);
861	funsetown(&so->so_sigio);
862	if (so->so_state & SS_ISCONNECTED) {
863		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
864			error = sodisconnect(so);
865			if (error) {
866				if (error == ENOTCONN)
867					error = 0;
868				goto drop;
869			}
870		}
871		if (so->so_options & SO_LINGER) {
872			if ((so->so_state & SS_ISDISCONNECTING) &&
873			    (so->so_state & SS_NBIO))
874				goto drop;
875			while (so->so_state & SS_ISCONNECTED) {
876				error = tsleep(&so->so_timeo,
877				    PSOCK | PCATCH, "soclos",
878				    so->so_linger * hz);
879				if (error)
880					break;
881			}
882		}
883	}
884
885drop:
886	if (so->so_proto->pr_usrreqs->pru_close != NULL)
887		(*so->so_proto->pr_usrreqs->pru_close)(so);
888	ACCEPT_LOCK();
889	if (so->so_options & SO_ACCEPTCONN) {
890		struct socket *sp;
891		/*
892		 * Prevent new additions to the accept queues due
893		 * to ACCEPT_LOCK races while we are draining them.
894		 */
895		so->so_options &= ~SO_ACCEPTCONN;
896		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
897			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
898			so->so_incqlen--;
899			sp->so_qstate &= ~SQ_INCOMP;
900			sp->so_head = NULL;
901			ACCEPT_UNLOCK();
902			soabort(sp);
903			ACCEPT_LOCK();
904		}
905		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
906			TAILQ_REMOVE(&so->so_comp, sp, so_list);
907			so->so_qlen--;
908			sp->so_qstate &= ~SQ_COMP;
909			sp->so_head = NULL;
910			ACCEPT_UNLOCK();
911			soabort(sp);
912			ACCEPT_LOCK();
913		}
914		KASSERT((TAILQ_EMPTY(&so->so_comp)),
915		    ("%s: so_comp populated", __func__));
916		KASSERT((TAILQ_EMPTY(&so->so_incomp)),
917		    ("%s: so_incomp populated", __func__));
918	}
919	SOCK_LOCK(so);
920	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
921	so->so_state |= SS_NOFDREF;
922	sorele(so);			/* NB: Returns with ACCEPT_UNLOCK(). */
923	CURVNET_RESTORE();
924	return (error);
925}
926
927/*
928 * soabort() is used to abruptly tear down a connection, such as when a
929 * resource limit is reached (listen queue depth exceeded), or if a listen
930 * socket is closed while there are sockets waiting to be accepted.
931 *
932 * This interface is tricky, because it is called on an unreferenced socket,
933 * and must be called only by a thread that has actually removed the socket
934 * from the listen queue it was on, or races with other threads are risked.
935 *
936 * This interface will call into the protocol code, so must not be called
937 * with any socket locks held.  Protocols do call it while holding their own
938 * recursible protocol mutexes, but this is something that should be subject
939 * to review in the future.
940 */
941void
942soabort(struct socket *so)
943{
944
945	/*
946	 * In as much as is possible, assert that no references to this
947	 * socket are held.  This is not quite the same as asserting that the
948	 * current thread is responsible for arranging for no references, but
949	 * is as close as we can get for now.
950	 */
951	KASSERT(so->so_count == 0, ("soabort: so_count"));
952	KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
953	KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
954	KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
955	KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
956	VNET_SO_ASSERT(so);
957
958	if (so->so_proto->pr_usrreqs->pru_abort != NULL)
959		(*so->so_proto->pr_usrreqs->pru_abort)(so);
960	ACCEPT_LOCK();
961	SOCK_LOCK(so);
962	sofree(so);
963}
964
965int
966soaccept(struct socket *so, struct sockaddr **nam)
967{
968	int error;
969
970	SOCK_LOCK(so);
971	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
972	so->so_state &= ~SS_NOFDREF;
973	SOCK_UNLOCK(so);
974
975	CURVNET_SET(so->so_vnet);
976	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
977	CURVNET_RESTORE();
978	return (error);
979}
980
981int
982soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
983{
984
985	return (soconnectat(AT_FDCWD, so, nam, td));
986}
987
988int
989soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
990{
991	int error;
992
993	if (so->so_options & SO_ACCEPTCONN)
994		return (EOPNOTSUPP);
995
996	CURVNET_SET(so->so_vnet);
997	/*
998	 * If protocol is connection-based, can only connect once.
999	 * Otherwise, if connected, try to disconnect first.  This allows
1000	 * user to disconnect by connecting to, e.g., a null address.
1001	 */
1002	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
1003	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
1004	    (error = sodisconnect(so)))) {
1005		error = EISCONN;
1006	} else {
1007		/*
1008		 * Prevent accumulated error from previous connection from
1009		 * biting us.
1010		 */
1011		so->so_error = 0;
1012		if (fd == AT_FDCWD) {
1013			error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
1014			    nam, td);
1015		} else {
1016			error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
1017			    so, nam, td);
1018		}
1019	}
1020	CURVNET_RESTORE();
1021
1022	return (error);
1023}
1024
1025int
1026soconnect2(struct socket *so1, struct socket *so2)
1027{
1028	int error;
1029
1030	CURVNET_SET(so1->so_vnet);
1031	error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
1032	CURVNET_RESTORE();
1033	return (error);
1034}
1035
1036int
1037sodisconnect(struct socket *so)
1038{
1039	int error;
1040
1041	if ((so->so_state & SS_ISCONNECTED) == 0)
1042		return (ENOTCONN);
1043	if (so->so_state & SS_ISDISCONNECTING)
1044		return (EALREADY);
1045	VNET_SO_ASSERT(so);
1046	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
1047	return (error);
1048}
1049
1050#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1051
1052int
1053sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1054    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1055{
1056	long space;
1057	ssize_t resid;
1058	int clen = 0, error, dontroute;
1059
1060	KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
1061	KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1062	    ("sosend_dgram: !PR_ATOMIC"));
1063
1064	if (uio != NULL)
1065		resid = uio->uio_resid;
1066	else
1067		resid = top->m_pkthdr.len;
1068	/*
1069	 * In theory resid should be unsigned.  However, space must be
1070	 * signed, as it might be less than 0 if we over-committed, and we
1071	 * must use a signed comparison of space and resid.  On the other
1072	 * hand, a negative resid causes us to loop sending 0-length
1073	 * segments to the protocol.
1074	 */
1075	if (resid < 0) {
1076		error = EINVAL;
1077		goto out;
1078	}
1079
1080	dontroute =
1081	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1082	if (td != NULL)
1083		td->td_ru.ru_msgsnd++;
1084	if (control != NULL)
1085		clen = control->m_len;
1086
1087	SOCKBUF_LOCK(&so->so_snd);
1088	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1089		SOCKBUF_UNLOCK(&so->so_snd);
1090		error = EPIPE;
1091		goto out;
1092	}
1093	if (so->so_error) {
1094		error = so->so_error;
1095		so->so_error = 0;
1096		SOCKBUF_UNLOCK(&so->so_snd);
1097		goto out;
1098	}
1099	if ((so->so_state & SS_ISCONNECTED) == 0) {
1100		/*
1101		 * `sendto' and `sendmsg' is allowed on a connection-based
1102		 * socket if it supports implied connect.  Return ENOTCONN if
1103		 * not connected and no address is supplied.
1104		 */
1105		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1106		    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1107			if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1108			    !(resid == 0 && clen != 0)) {
1109				SOCKBUF_UNLOCK(&so->so_snd);
1110				error = ENOTCONN;
1111				goto out;
1112			}
1113		} else if (addr == NULL) {
1114			if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1115				error = ENOTCONN;
1116			else
1117				error = EDESTADDRREQ;
1118			SOCKBUF_UNLOCK(&so->so_snd);
1119			goto out;
1120		}
1121	}
1122
1123	/*
1124	 * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
1125	 * problem and need fixing.
1126	 */
1127	space = sbspace(&so->so_snd);
1128	if (flags & MSG_OOB)
1129		space += 1024;
1130	space -= clen;
1131	SOCKBUF_UNLOCK(&so->so_snd);
1132	if (resid > space) {
1133		error = EMSGSIZE;
1134		goto out;
1135	}
1136	if (uio == NULL) {
1137		resid = 0;
1138		if (flags & MSG_EOR)
1139			top->m_flags |= M_EOR;
1140	} else {
1141		/*
1142		 * Copy the data from userland into a mbuf chain.
1143		 * If no data is to be copied in, a single empty mbuf
1144		 * is returned.
1145		 */
1146		top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1147		    (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1148		if (top == NULL) {
1149			error = EFAULT;	/* only possible error */
1150			goto out;
1151		}
1152		space -= resid - uio->uio_resid;
1153		resid = uio->uio_resid;
1154	}
1155	KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1156	/*
1157	 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1158	 * than with.
1159	 */
1160	if (dontroute) {
1161		SOCK_LOCK(so);
1162		so->so_options |= SO_DONTROUTE;
1163		SOCK_UNLOCK(so);
1164	}
1165	/*
1166	 * XXX all the SBS_CANTSENDMORE checks previously done could be out
1167	 * of date.  We could have received a reset packet in an interrupt or
1168	 * maybe we slept while doing page faults in uiomove() etc.  We could
1169	 * probably recheck again inside the locking protection here, but
1170	 * there are probably other places that this also happens.  We must
1171	 * rethink this.
1172	 */
1173	VNET_SO_ASSERT(so);
1174	error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1175	    (flags & MSG_OOB) ? PRUS_OOB :
1176	/*
1177	 * If the user set MSG_EOF, the protocol understands this flag and
1178	 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1179	 */
1180	    ((flags & MSG_EOF) &&
1181	     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1182	     (resid <= 0)) ?
1183		PRUS_EOF :
1184		/* If there is more to send set PRUS_MORETOCOME */
1185		(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1186		top, addr, control, td);
1187	if (dontroute) {
1188		SOCK_LOCK(so);
1189		so->so_options &= ~SO_DONTROUTE;
1190		SOCK_UNLOCK(so);
1191	}
1192	clen = 0;
1193	control = NULL;
1194	top = NULL;
1195out:
1196	if (top != NULL)
1197		m_freem(top);
1198	if (control != NULL)
1199		m_freem(control);
1200	return (error);
1201}
1202
1203/*
1204 * Send on a socket.  If send must go all at once and message is larger than
1205 * send buffering, then hard error.  Lock against other senders.  If must go
1206 * all at once and not enough room now, then inform user that this would
1207 * block and do nothing.  Otherwise, if nonblocking, send as much as
1208 * possible.  The data to be sent is described by "uio" if nonzero, otherwise
1209 * by the mbuf chain "top" (which must be null if uio is not).  Data provided
1210 * in mbuf chain must be small enough to send all at once.
1211 *
1212 * Returns nonzero on error, timeout or signal; callers must check for short
1213 * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
1214 * on return.
1215 */
1216int
1217sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1218    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1219{
1220	long space;
1221	ssize_t resid;
1222	int clen = 0, error, dontroute;
1223	int atomic = sosendallatonce(so) || top;
1224
1225	if (uio != NULL)
1226		resid = uio->uio_resid;
1227	else
1228		resid = top->m_pkthdr.len;
1229	/*
1230	 * In theory resid should be unsigned.  However, space must be
1231	 * signed, as it might be less than 0 if we over-committed, and we
1232	 * must use a signed comparison of space and resid.  On the other
1233	 * hand, a negative resid causes us to loop sending 0-length
1234	 * segments to the protocol.
1235	 *
1236	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1237	 * type sockets since that's an error.
1238	 */
1239	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1240		error = EINVAL;
1241		goto out;
1242	}
1243
1244	dontroute =
1245	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1246	    (so->so_proto->pr_flags & PR_ATOMIC);
1247	if (td != NULL)
1248		td->td_ru.ru_msgsnd++;
1249	if (control != NULL)
1250		clen = control->m_len;
1251
1252	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1253	if (error)
1254		goto out;
1255
1256restart:
1257	do {
1258		SOCKBUF_LOCK(&so->so_snd);
1259		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1260			SOCKBUF_UNLOCK(&so->so_snd);
1261			error = EPIPE;
1262			goto release;
1263		}
1264		if (so->so_error) {
1265			error = so->so_error;
1266			so->so_error = 0;
1267			SOCKBUF_UNLOCK(&so->so_snd);
1268			goto release;
1269		}
1270		if ((so->so_state & SS_ISCONNECTED) == 0) {
1271			/*
1272			 * `sendto' and `sendmsg' is allowed on a connection-
1273			 * based socket if it supports implied connect.
1274			 * Return ENOTCONN if not connected and no address is
1275			 * supplied.
1276			 */
1277			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1278			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1279				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1280				    !(resid == 0 && clen != 0)) {
1281					SOCKBUF_UNLOCK(&so->so_snd);
1282					error = ENOTCONN;
1283					goto release;
1284				}
1285			} else if (addr == NULL) {
1286				SOCKBUF_UNLOCK(&so->so_snd);
1287				if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1288					error = ENOTCONN;
1289				else
1290					error = EDESTADDRREQ;
1291				goto release;
1292			}
1293		}
1294		space = sbspace(&so->so_snd);
1295		if (flags & MSG_OOB)
1296			space += 1024;
1297		if ((atomic && resid > so->so_snd.sb_hiwat) ||
1298		    clen > so->so_snd.sb_hiwat) {
1299			SOCKBUF_UNLOCK(&so->so_snd);
1300			error = EMSGSIZE;
1301			goto release;
1302		}
1303		if (space < resid + clen &&
1304		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1305			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1306				SOCKBUF_UNLOCK(&so->so_snd);
1307				error = EWOULDBLOCK;
1308				goto release;
1309			}
1310			error = sbwait(&so->so_snd);
1311			SOCKBUF_UNLOCK(&so->so_snd);
1312			if (error)
1313				goto release;
1314			goto restart;
1315		}
1316		SOCKBUF_UNLOCK(&so->so_snd);
1317		space -= clen;
1318		do {
1319			if (uio == NULL) {
1320				resid = 0;
1321				if (flags & MSG_EOR)
1322					top->m_flags |= M_EOR;
1323			} else {
1324				/*
1325				 * Copy the data from userland into a mbuf
1326				 * chain.  If resid is 0, which can happen
1327				 * only if we have control to send, then
1328				 * a single empty mbuf is returned.  This
1329				 * is a workaround to prevent protocol send
1330				 * methods to panic.
1331				 */
1332				top = m_uiotombuf(uio, M_WAITOK, space,
1333				    (atomic ? max_hdr : 0),
1334				    (atomic ? M_PKTHDR : 0) |
1335				    ((flags & MSG_EOR) ? M_EOR : 0));
1336				if (top == NULL) {
1337					error = EFAULT; /* only possible error */
1338					goto release;
1339				}
1340				space -= resid - uio->uio_resid;
1341				resid = uio->uio_resid;
1342			}
1343			if (dontroute) {
1344				SOCK_LOCK(so);
1345				so->so_options |= SO_DONTROUTE;
1346				SOCK_UNLOCK(so);
1347			}
1348			/*
1349			 * XXX all the SBS_CANTSENDMORE checks previously
1350			 * done could be out of date.  We could have received
1351			 * a reset packet in an interrupt or maybe we slept
1352			 * while doing page faults in uiomove() etc.  We
1353			 * could probably recheck again inside the locking
1354			 * protection here, but there are probably other
1355			 * places that this also happens.  We must rethink
1356			 * this.
1357			 */
1358			VNET_SO_ASSERT(so);
1359			error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1360			    (flags & MSG_OOB) ? PRUS_OOB :
1361			/*
1362			 * If the user set MSG_EOF, the protocol understands
1363			 * this flag and nothing left to send then use
1364			 * PRU_SEND_EOF instead of PRU_SEND.
1365			 */
1366			    ((flags & MSG_EOF) &&
1367			     (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1368			     (resid <= 0)) ?
1369				PRUS_EOF :
1370			/* If there is more to send set PRUS_MORETOCOME. */
1371			    (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1372			    top, addr, control, td);
1373			if (dontroute) {
1374				SOCK_LOCK(so);
1375				so->so_options &= ~SO_DONTROUTE;
1376				SOCK_UNLOCK(so);
1377			}
1378			clen = 0;
1379			control = NULL;
1380			top = NULL;
1381			if (error)
1382				goto release;
1383		} while (resid && space > 0);
1384	} while (resid);
1385
1386release:
1387	sbunlock(&so->so_snd);
1388out:
1389	if (top != NULL)
1390		m_freem(top);
1391	if (control != NULL)
1392		m_freem(control);
1393	return (error);
1394}
1395
1396int
1397sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1398    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1399{
1400	int error;
1401
1402	CURVNET_SET(so->so_vnet);
1403	error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1404	    control, flags, td);
1405	CURVNET_RESTORE();
1406	return (error);
1407}
1408
1409/*
1410 * The part of soreceive() that implements reading non-inline out-of-band
1411 * data from a socket.  For more complete comments, see soreceive(), from
1412 * which this code originated.
1413 *
1414 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1415 * unable to return an mbuf chain to the caller.
1416 */
1417static int
1418soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1419{
1420	struct protosw *pr = so->so_proto;
1421	struct mbuf *m;
1422	int error;
1423
1424	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1425	VNET_SO_ASSERT(so);
1426
1427	m = m_get(M_WAITOK, MT_DATA);
1428	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1429	if (error)
1430		goto bad;
1431	do {
1432		error = uiomove(mtod(m, void *),
1433		    (int) min(uio->uio_resid, m->m_len), uio);
1434		m = m_free(m);
1435	} while (uio->uio_resid && error == 0 && m);
1436bad:
1437	if (m != NULL)
1438		m_freem(m);
1439	return (error);
1440}
1441
1442/*
1443 * Following replacement or removal of the first mbuf on the first mbuf chain
1444 * of a socket buffer, push necessary state changes back into the socket
1445 * buffer so that other consumers see the values consistently.  'nextrecord'
1446 * is the callers locally stored value of the original value of
1447 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1448 * NOTE: 'nextrecord' may be NULL.
1449 */
1450static __inline void
1451sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1452{
1453
1454	SOCKBUF_LOCK_ASSERT(sb);
1455	/*
1456	 * First, update for the new value of nextrecord.  If necessary, make
1457	 * it the first record.
1458	 */
1459	if (sb->sb_mb != NULL)
1460		sb->sb_mb->m_nextpkt = nextrecord;
1461	else
1462		sb->sb_mb = nextrecord;
1463
1464	/*
1465	 * Now update any dependent socket buffer fields to reflect the new
1466	 * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
1467	 * addition of a second clause that takes care of the case where
1468	 * sb_mb has been updated, but remains the last record.
1469	 */
1470	if (sb->sb_mb == NULL) {
1471		sb->sb_mbtail = NULL;
1472		sb->sb_lastrecord = NULL;
1473	} else if (sb->sb_mb->m_nextpkt == NULL)
1474		sb->sb_lastrecord = sb->sb_mb;
1475}
1476
1477/*
1478 * Implement receive operations on a socket.  We depend on the way that
1479 * records are added to the sockbuf by sbappend.  In particular, each record
1480 * (mbufs linked through m_next) must begin with an address if the protocol
1481 * so specifies, followed by an optional mbuf or mbufs containing ancillary
1482 * data, and then zero or more mbufs of data.  In order to allow parallelism
1483 * between network receive and copying to user space, as well as avoid
1484 * sleeping with a mutex held, we release the socket buffer mutex during the
1485 * user space copy.  Although the sockbuf is locked, new data may still be
1486 * appended, and thus we must maintain consistency of the sockbuf during that
1487 * time.
1488 *
1489 * The caller may receive the data as a single mbuf chain by supplying an
1490 * mbuf **mp0 for use in returning the chain.  The uio is then used only for
1491 * the count in uio_resid.
1492 */
1493int
1494soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1495    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1496{
1497	struct mbuf *m, **mp;
1498	int flags, error, offset;
1499	ssize_t len;
1500	struct protosw *pr = so->so_proto;
1501	struct mbuf *nextrecord;
1502	int moff, type = 0;
1503	ssize_t orig_resid = uio->uio_resid;
1504
1505	mp = mp0;
1506	if (psa != NULL)
1507		*psa = NULL;
1508	if (controlp != NULL)
1509		*controlp = NULL;
1510	if (flagsp != NULL)
1511		flags = *flagsp &~ MSG_EOR;
1512	else
1513		flags = 0;
1514	if (flags & MSG_OOB)
1515		return (soreceive_rcvoob(so, uio, flags));
1516	if (mp != NULL)
1517		*mp = NULL;
1518	if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1519	    && uio->uio_resid) {
1520		VNET_SO_ASSERT(so);
1521		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
1522	}
1523
1524	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1525	if (error)
1526		return (error);
1527
1528restart:
1529	SOCKBUF_LOCK(&so->so_rcv);
1530	m = so->so_rcv.sb_mb;
1531	/*
1532	 * If we have less data than requested, block awaiting more (subject
1533	 * to any timeout) if:
1534	 *   1. the current count is less than the low water mark, or
1535	 *   2. MSG_DONTWAIT is not set
1536	 */
1537	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1538	    sbavail(&so->so_rcv) < uio->uio_resid) &&
1539	    sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
1540	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1541		KASSERT(m != NULL || !sbavail(&so->so_rcv),
1542		    ("receive: m == %p sbavail == %u",
1543		    m, sbavail(&so->so_rcv)));
1544		if (so->so_error) {
1545			if (m != NULL)
1546				goto dontblock;
1547			error = so->so_error;
1548			if ((flags & MSG_PEEK) == 0)
1549				so->so_error = 0;
1550			SOCKBUF_UNLOCK(&so->so_rcv);
1551			goto release;
1552		}
1553		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1554		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1555			if (m == NULL) {
1556				SOCKBUF_UNLOCK(&so->so_rcv);
1557				goto release;
1558			} else
1559				goto dontblock;
1560		}
1561		for (; m != NULL; m = m->m_next)
1562			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1563				m = so->so_rcv.sb_mb;
1564				goto dontblock;
1565			}
1566		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1567		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1568			SOCKBUF_UNLOCK(&so->so_rcv);
1569			error = ENOTCONN;
1570			goto release;
1571		}
1572		if (uio->uio_resid == 0) {
1573			SOCKBUF_UNLOCK(&so->so_rcv);
1574			goto release;
1575		}
1576		if ((so->so_state & SS_NBIO) ||
1577		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1578			SOCKBUF_UNLOCK(&so->so_rcv);
1579			error = EWOULDBLOCK;
1580			goto release;
1581		}
1582		SBLASTRECORDCHK(&so->so_rcv);
1583		SBLASTMBUFCHK(&so->so_rcv);
1584		error = sbwait(&so->so_rcv);
1585		SOCKBUF_UNLOCK(&so->so_rcv);
1586		if (error)
1587			goto release;
1588		goto restart;
1589	}
1590dontblock:
1591	/*
1592	 * From this point onward, we maintain 'nextrecord' as a cache of the
1593	 * pointer to the next record in the socket buffer.  We must keep the
1594	 * various socket buffer pointers and local stack versions of the
1595	 * pointers in sync, pushing out modifications before dropping the
1596	 * socket buffer mutex, and re-reading them when picking it up.
1597	 *
1598	 * Otherwise, we will race with the network stack appending new data
1599	 * or records onto the socket buffer by using inconsistent/stale
1600	 * versions of the field, possibly resulting in socket buffer
1601	 * corruption.
1602	 *
1603	 * By holding the high-level sblock(), we prevent simultaneous
1604	 * readers from pulling off the front of the socket buffer.
1605	 */
1606	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1607	if (uio->uio_td)
1608		uio->uio_td->td_ru.ru_msgrcv++;
1609	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1610	SBLASTRECORDCHK(&so->so_rcv);
1611	SBLASTMBUFCHK(&so->so_rcv);
1612	nextrecord = m->m_nextpkt;
1613	if (pr->pr_flags & PR_ADDR) {
1614		KASSERT(m->m_type == MT_SONAME,
1615		    ("m->m_type == %d", m->m_type));
1616		orig_resid = 0;
1617		if (psa != NULL)
1618			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1619			    M_NOWAIT);
1620		if (flags & MSG_PEEK) {
1621			m = m->m_next;
1622		} else {
1623			sbfree(&so->so_rcv, m);
1624			so->so_rcv.sb_mb = m_free(m);
1625			m = so->so_rcv.sb_mb;
1626			sockbuf_pushsync(&so->so_rcv, nextrecord);
1627		}
1628	}
1629
1630	/*
1631	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1632	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1633	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1634	 * perform externalization (or freeing if controlp == NULL).
1635	 */
1636	if (m != NULL && m->m_type == MT_CONTROL) {
1637		struct mbuf *cm = NULL, *cmn;
1638		struct mbuf **cme = &cm;
1639
1640		do {
1641			if (flags & MSG_PEEK) {
1642				if (controlp != NULL) {
1643					*controlp = m_copy(m, 0, m->m_len);
1644					controlp = &(*controlp)->m_next;
1645				}
1646				m = m->m_next;
1647			} else {
1648				sbfree(&so->so_rcv, m);
1649				so->so_rcv.sb_mb = m->m_next;
1650				m->m_next = NULL;
1651				*cme = m;
1652				cme = &(*cme)->m_next;
1653				m = so->so_rcv.sb_mb;
1654			}
1655		} while (m != NULL && m->m_type == MT_CONTROL);
1656		if ((flags & MSG_PEEK) == 0)
1657			sockbuf_pushsync(&so->so_rcv, nextrecord);
1658		while (cm != NULL) {
1659			cmn = cm->m_next;
1660			cm->m_next = NULL;
1661			if (pr->pr_domain->dom_externalize != NULL) {
1662				SOCKBUF_UNLOCK(&so->so_rcv);
1663				VNET_SO_ASSERT(so);
1664				error = (*pr->pr_domain->dom_externalize)
1665				    (cm, controlp, flags);
1666				SOCKBUF_LOCK(&so->so_rcv);
1667			} else if (controlp != NULL)
1668				*controlp = cm;
1669			else
1670				m_freem(cm);
1671			if (controlp != NULL) {
1672				orig_resid = 0;
1673				while (*controlp != NULL)
1674					controlp = &(*controlp)->m_next;
1675			}
1676			cm = cmn;
1677		}
1678		if (m != NULL)
1679			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1680		else
1681			nextrecord = so->so_rcv.sb_mb;
1682		orig_resid = 0;
1683	}
1684	if (m != NULL) {
1685		if ((flags & MSG_PEEK) == 0) {
1686			KASSERT(m->m_nextpkt == nextrecord,
1687			    ("soreceive: post-control, nextrecord !sync"));
1688			if (nextrecord == NULL) {
1689				KASSERT(so->so_rcv.sb_mb == m,
1690				    ("soreceive: post-control, sb_mb!=m"));
1691				KASSERT(so->so_rcv.sb_lastrecord == m,
1692				    ("soreceive: post-control, lastrecord!=m"));
1693			}
1694		}
1695		type = m->m_type;
1696		if (type == MT_OOBDATA)
1697			flags |= MSG_OOB;
1698	} else {
1699		if ((flags & MSG_PEEK) == 0) {
1700			KASSERT(so->so_rcv.sb_mb == nextrecord,
1701			    ("soreceive: sb_mb != nextrecord"));
1702			if (so->so_rcv.sb_mb == NULL) {
1703				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1704				    ("soreceive: sb_lastercord != NULL"));
1705			}
1706		}
1707	}
1708	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1709	SBLASTRECORDCHK(&so->so_rcv);
1710	SBLASTMBUFCHK(&so->so_rcv);
1711
1712	/*
1713	 * Now continue to read any data mbufs off of the head of the socket
1714	 * buffer until the read request is satisfied.  Note that 'type' is
1715	 * used to store the type of any mbuf reads that have happened so far
1716	 * such that soreceive() can stop reading if the type changes, which
1717	 * causes soreceive() to return only one of regular data and inline
1718	 * out-of-band data in a single socket receive operation.
1719	 */
1720	moff = 0;
1721	offset = 0;
1722	while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
1723	    && error == 0) {
1724		/*
1725		 * If the type of mbuf has changed since the last mbuf
1726		 * examined ('type'), end the receive operation.
1727		 */
1728		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1729		if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1730			if (type != m->m_type)
1731				break;
1732		} else if (type == MT_OOBDATA)
1733			break;
1734		else
1735		    KASSERT(m->m_type == MT_DATA,
1736			("m->m_type == %d", m->m_type));
1737		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1738		len = uio->uio_resid;
1739		if (so->so_oobmark && len > so->so_oobmark - offset)
1740			len = so->so_oobmark - offset;
1741		if (len > m->m_len - moff)
1742			len = m->m_len - moff;
1743		/*
1744		 * If mp is set, just pass back the mbufs.  Otherwise copy
1745		 * them out via the uio, then free.  Sockbuf must be
1746		 * consistent here (points to current mbuf, it points to next
1747		 * record) when we drop priority; we must note any additions
1748		 * to the sockbuf when we block interrupts again.
1749		 */
1750		if (mp == NULL) {
1751			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1752			SBLASTRECORDCHK(&so->so_rcv);
1753			SBLASTMBUFCHK(&so->so_rcv);
1754			SOCKBUF_UNLOCK(&so->so_rcv);
1755			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1756			SOCKBUF_LOCK(&so->so_rcv);
1757			if (error) {
1758				/*
1759				 * The MT_SONAME mbuf has already been removed
1760				 * from the record, so it is necessary to
1761				 * remove the data mbufs, if any, to preserve
1762				 * the invariant in the case of PR_ADDR that
1763				 * requires MT_SONAME mbufs at the head of
1764				 * each record.
1765				 */
1766				if (m && pr->pr_flags & PR_ATOMIC &&
1767				    ((flags & MSG_PEEK) == 0))
1768					(void)sbdroprecord_locked(&so->so_rcv);
1769				SOCKBUF_UNLOCK(&so->so_rcv);
1770				goto release;
1771			}
1772		} else
1773			uio->uio_resid -= len;
1774		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1775		if (len == m->m_len - moff) {
1776			if (m->m_flags & M_EOR)
1777				flags |= MSG_EOR;
1778			if (flags & MSG_PEEK) {
1779				m = m->m_next;
1780				moff = 0;
1781			} else {
1782				nextrecord = m->m_nextpkt;
1783				sbfree(&so->so_rcv, m);
1784				if (mp != NULL) {
1785					m->m_nextpkt = NULL;
1786					*mp = m;
1787					mp = &m->m_next;
1788					so->so_rcv.sb_mb = m = m->m_next;
1789					*mp = NULL;
1790				} else {
1791					so->so_rcv.sb_mb = m_free(m);
1792					m = so->so_rcv.sb_mb;
1793				}
1794				sockbuf_pushsync(&so->so_rcv, nextrecord);
1795				SBLASTRECORDCHK(&so->so_rcv);
1796				SBLASTMBUFCHK(&so->so_rcv);
1797			}
1798		} else {
1799			if (flags & MSG_PEEK)
1800				moff += len;
1801			else {
1802				if (mp != NULL) {
1803					if (flags & MSG_DONTWAIT) {
1804						*mp = m_copym(m, 0, len,
1805						    M_NOWAIT);
1806						if (*mp == NULL) {
1807							/*
1808							 * m_copym() couldn't
1809							 * allocate an mbuf.
1810							 * Adjust uio_resid back
1811							 * (it was adjusted
1812							 * down by len bytes,
1813							 * which we didn't end
1814							 * up "copying" over).
1815							 */
1816							uio->uio_resid += len;
1817							break;
1818						}
1819					} else {
1820						SOCKBUF_UNLOCK(&so->so_rcv);
1821						*mp = m_copym(m, 0, len,
1822						    M_WAITOK);
1823						SOCKBUF_LOCK(&so->so_rcv);
1824					}
1825				}
1826				sbcut_locked(&so->so_rcv, len);
1827			}
1828		}
1829		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1830		if (so->so_oobmark) {
1831			if ((flags & MSG_PEEK) == 0) {
1832				so->so_oobmark -= len;
1833				if (so->so_oobmark == 0) {
1834					so->so_rcv.sb_state |= SBS_RCVATMARK;
1835					break;
1836				}
1837			} else {
1838				offset += len;
1839				if (offset == so->so_oobmark)
1840					break;
1841			}
1842		}
1843		if (flags & MSG_EOR)
1844			break;
1845		/*
1846		 * If the MSG_WAITALL flag is set (for non-atomic socket), we
1847		 * must not quit until "uio->uio_resid == 0" or an error
1848		 * termination.  If a signal/timeout occurs, return with a
1849		 * short count but without error.  Keep sockbuf locked
1850		 * against other readers.
1851		 */
1852		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1853		    !sosendallatonce(so) && nextrecord == NULL) {
1854			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1855			if (so->so_error ||
1856			    so->so_rcv.sb_state & SBS_CANTRCVMORE)
1857				break;
1858			/*
1859			 * Notify the protocol that some data has been
1860			 * drained before blocking.
1861			 */
1862			if (pr->pr_flags & PR_WANTRCVD) {
1863				SOCKBUF_UNLOCK(&so->so_rcv);
1864				VNET_SO_ASSERT(so);
1865				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1866				SOCKBUF_LOCK(&so->so_rcv);
1867			}
1868			SBLASTRECORDCHK(&so->so_rcv);
1869			SBLASTMBUFCHK(&so->so_rcv);
1870			/*
1871			 * We could receive some data while was notifying
1872			 * the protocol. Skip blocking in this case.
1873			 */
1874			if (so->so_rcv.sb_mb == NULL) {
1875				error = sbwait(&so->so_rcv);
1876				if (error) {
1877					SOCKBUF_UNLOCK(&so->so_rcv);
1878					goto release;
1879				}
1880			}
1881			m = so->so_rcv.sb_mb;
1882			if (m != NULL)
1883				nextrecord = m->m_nextpkt;
1884		}
1885	}
1886
1887	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1888	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1889		flags |= MSG_TRUNC;
1890		if ((flags & MSG_PEEK) == 0)
1891			(void) sbdroprecord_locked(&so->so_rcv);
1892	}
1893	if ((flags & MSG_PEEK) == 0) {
1894		if (m == NULL) {
1895			/*
1896			 * First part is an inline SB_EMPTY_FIXUP().  Second
1897			 * part makes sure sb_lastrecord is up-to-date if
1898			 * there is still data in the socket buffer.
1899			 */
1900			so->so_rcv.sb_mb = nextrecord;
1901			if (so->so_rcv.sb_mb == NULL) {
1902				so->so_rcv.sb_mbtail = NULL;
1903				so->so_rcv.sb_lastrecord = NULL;
1904			} else if (nextrecord->m_nextpkt == NULL)
1905				so->so_rcv.sb_lastrecord = nextrecord;
1906		}
1907		SBLASTRECORDCHK(&so->so_rcv);
1908		SBLASTMBUFCHK(&so->so_rcv);
1909		/*
1910		 * If soreceive() is being done from the socket callback,
1911		 * then don't need to generate ACK to peer to update window,
1912		 * since ACK will be generated on return to TCP.
1913		 */
1914		if (!(flags & MSG_SOCALLBCK) &&
1915		    (pr->pr_flags & PR_WANTRCVD)) {
1916			SOCKBUF_UNLOCK(&so->so_rcv);
1917			VNET_SO_ASSERT(so);
1918			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1919			SOCKBUF_LOCK(&so->so_rcv);
1920		}
1921	}
1922	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1923	if (orig_resid == uio->uio_resid && orig_resid &&
1924	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1925		SOCKBUF_UNLOCK(&so->so_rcv);
1926		goto restart;
1927	}
1928	SOCKBUF_UNLOCK(&so->so_rcv);
1929
1930	if (flagsp != NULL)
1931		*flagsp |= flags;
1932release:
1933	sbunlock(&so->so_rcv);
1934	return (error);
1935}
1936
1937/*
1938 * Optimized version of soreceive() for stream (TCP) sockets.
1939 * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
1940 */
1941int
1942soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
1943    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1944{
1945	int len = 0, error = 0, flags, oresid;
1946	struct sockbuf *sb;
1947	struct mbuf *m, *n = NULL;
1948
1949	/* We only do stream sockets. */
1950	if (so->so_type != SOCK_STREAM)
1951		return (EINVAL);
1952	if (psa != NULL)
1953		*psa = NULL;
1954	if (controlp != NULL)
1955		return (EINVAL);
1956	if (flagsp != NULL)
1957		flags = *flagsp &~ MSG_EOR;
1958	else
1959		flags = 0;
1960	if (flags & MSG_OOB)
1961		return (soreceive_rcvoob(so, uio, flags));
1962	if (mp0 != NULL)
1963		*mp0 = NULL;
1964
1965	sb = &so->so_rcv;
1966
1967	/* Prevent other readers from entering the socket. */
1968	error = sblock(sb, SBLOCKWAIT(flags));
1969	if (error)
1970		goto out;
1971	SOCKBUF_LOCK(sb);
1972
1973	/* Easy one, no space to copyout anything. */
1974	if (uio->uio_resid == 0) {
1975		error = EINVAL;
1976		goto out;
1977	}
1978	oresid = uio->uio_resid;
1979
1980	/* We will never ever get anything unless we are or were connected. */
1981	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1982		error = ENOTCONN;
1983		goto out;
1984	}
1985
1986restart:
1987	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1988
1989	/* Abort if socket has reported problems. */
1990	if (so->so_error) {
1991		if (sbavail(sb) > 0)
1992			goto deliver;
1993		if (oresid > uio->uio_resid)
1994			goto out;
1995		error = so->so_error;
1996		if (!(flags & MSG_PEEK))
1997			so->so_error = 0;
1998		goto out;
1999	}
2000
2001	/* Door is closed.  Deliver what is left, if any. */
2002	if (sb->sb_state & SBS_CANTRCVMORE) {
2003		if (sbavail(sb) > 0)
2004			goto deliver;
2005		else
2006			goto out;
2007	}
2008
2009	/* Socket buffer is empty and we shall not block. */
2010	if (sbavail(sb) == 0 &&
2011	    ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2012		error = EAGAIN;
2013		goto out;
2014	}
2015
2016	/* Socket buffer got some data that we shall deliver now. */
2017	if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
2018	    ((so->so_state & SS_NBIO) ||
2019	     (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2020	     sbavail(sb) >= sb->sb_lowat ||
2021	     sbavail(sb) >= uio->uio_resid ||
2022	     sbavail(sb) >= sb->sb_hiwat) ) {
2023		goto deliver;
2024	}
2025
2026	/* On MSG_WAITALL we must wait until all data or error arrives. */
2027	if ((flags & MSG_WAITALL) &&
2028	    (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
2029		goto deliver;
2030
2031	/*
2032	 * Wait and block until (more) data comes in.
2033	 * NB: Drops the sockbuf lock during wait.
2034	 */
2035	error = sbwait(sb);
2036	if (error)
2037		goto out;
2038	goto restart;
2039
2040deliver:
2041	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2042	KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
2043	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2044
2045	/* Statistics. */
2046	if (uio->uio_td)
2047		uio->uio_td->td_ru.ru_msgrcv++;
2048
2049	/* Fill uio until full or current end of socket buffer is reached. */
2050	len = min(uio->uio_resid, sbavail(sb));
2051	if (mp0 != NULL) {
2052		/* Dequeue as many mbufs as possible. */
2053		if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2054			if (*mp0 == NULL)
2055				*mp0 = sb->sb_mb;
2056			else
2057				m_cat(*mp0, sb->sb_mb);
2058			for (m = sb->sb_mb;
2059			     m != NULL && m->m_len <= len;
2060			     m = m->m_next) {
2061				KASSERT(!(m->m_flags & M_NOTAVAIL),
2062				    ("%s: m %p not available", __func__, m));
2063				len -= m->m_len;
2064				uio->uio_resid -= m->m_len;
2065				sbfree(sb, m);
2066				n = m;
2067			}
2068			n->m_next = NULL;
2069			sb->sb_mb = m;
2070			sb->sb_lastrecord = sb->sb_mb;
2071			if (sb->sb_mb == NULL)
2072				SB_EMPTY_FIXUP(sb);
2073		}
2074		/* Copy the remainder. */
2075		if (len > 0) {
2076			KASSERT(sb->sb_mb != NULL,
2077			    ("%s: len > 0 && sb->sb_mb empty", __func__));
2078
2079			m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
2080			if (m == NULL)
2081				len = 0;	/* Don't flush data from sockbuf. */
2082			else
2083				uio->uio_resid -= len;
2084			if (*mp0 != NULL)
2085				m_cat(*mp0, m);
2086			else
2087				*mp0 = m;
2088			if (*mp0 == NULL) {
2089				error = ENOBUFS;
2090				goto out;
2091			}
2092		}
2093	} else {
2094		/* NB: Must unlock socket buffer as uiomove may sleep. */
2095		SOCKBUF_UNLOCK(sb);
2096		error = m_mbuftouio(uio, sb->sb_mb, len);
2097		SOCKBUF_LOCK(sb);
2098		if (error)
2099			goto out;
2100	}
2101	SBLASTRECORDCHK(sb);
2102	SBLASTMBUFCHK(sb);
2103
2104	/*
2105	 * Remove the delivered data from the socket buffer unless we
2106	 * were only peeking.
2107	 */
2108	if (!(flags & MSG_PEEK)) {
2109		if (len > 0)
2110			sbdrop_locked(sb, len);
2111
2112		/* Notify protocol that we drained some data. */
2113		if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2114		    (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2115		     !(flags & MSG_SOCALLBCK))) {
2116			SOCKBUF_UNLOCK(sb);
2117			VNET_SO_ASSERT(so);
2118			(*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2119			SOCKBUF_LOCK(sb);
2120		}
2121	}
2122
2123	/*
2124	 * For MSG_WAITALL we may have to loop again and wait for
2125	 * more data to come in.
2126	 */
2127	if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2128		goto restart;
2129out:
2130	SOCKBUF_LOCK_ASSERT(sb);
2131	SBLASTRECORDCHK(sb);
2132	SBLASTMBUFCHK(sb);
2133	SOCKBUF_UNLOCK(sb);
2134	sbunlock(sb);
2135	return (error);
2136}
2137
2138/*
2139 * Optimized version of soreceive() for simple datagram cases from userspace.
2140 * Unlike in the stream case, we're able to drop a datagram if copyout()
2141 * fails, and because we handle datagrams atomically, we don't need to use a
2142 * sleep lock to prevent I/O interlacing.
2143 */
2144int
2145soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2146    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2147{
2148	struct mbuf *m, *m2;
2149	int flags, error;
2150	ssize_t len;
2151	struct protosw *pr = so->so_proto;
2152	struct mbuf *nextrecord;
2153
2154	if (psa != NULL)
2155		*psa = NULL;
2156	if (controlp != NULL)
2157		*controlp = NULL;
2158	if (flagsp != NULL)
2159		flags = *flagsp &~ MSG_EOR;
2160	else
2161		flags = 0;
2162
2163	/*
2164	 * For any complicated cases, fall back to the full
2165	 * soreceive_generic().
2166	 */
2167	if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2168		return (soreceive_generic(so, psa, uio, mp0, controlp,
2169		    flagsp));
2170
2171	/*
2172	 * Enforce restrictions on use.
2173	 */
2174	KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2175	    ("soreceive_dgram: wantrcvd"));
2176	KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2177	KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2178	    ("soreceive_dgram: SBS_RCVATMARK"));
2179	KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2180	    ("soreceive_dgram: P_CONNREQUIRED"));
2181
2182	/*
2183	 * Loop blocking while waiting for a datagram.
2184	 */
2185	SOCKBUF_LOCK(&so->so_rcv);
2186	while ((m = so->so_rcv.sb_mb) == NULL) {
2187		KASSERT(sbavail(&so->so_rcv) == 0,
2188		    ("soreceive_dgram: sb_mb NULL but sbavail %u",
2189		    sbavail(&so->so_rcv)));
2190		if (so->so_error) {
2191			error = so->so_error;
2192			so->so_error = 0;
2193			SOCKBUF_UNLOCK(&so->so_rcv);
2194			return (error);
2195		}
2196		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2197		    uio->uio_resid == 0) {
2198			SOCKBUF_UNLOCK(&so->so_rcv);
2199			return (0);
2200		}
2201		if ((so->so_state & SS_NBIO) ||
2202		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2203			SOCKBUF_UNLOCK(&so->so_rcv);
2204			return (EWOULDBLOCK);
2205		}
2206		SBLASTRECORDCHK(&so->so_rcv);
2207		SBLASTMBUFCHK(&so->so_rcv);
2208		error = sbwait(&so->so_rcv);
2209		if (error) {
2210			SOCKBUF_UNLOCK(&so->so_rcv);
2211			return (error);
2212		}
2213	}
2214	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2215
2216	if (uio->uio_td)
2217		uio->uio_td->td_ru.ru_msgrcv++;
2218	SBLASTRECORDCHK(&so->so_rcv);
2219	SBLASTMBUFCHK(&so->so_rcv);
2220	nextrecord = m->m_nextpkt;
2221	if (nextrecord == NULL) {
2222		KASSERT(so->so_rcv.sb_lastrecord == m,
2223		    ("soreceive_dgram: lastrecord != m"));
2224	}
2225
2226	KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2227	    ("soreceive_dgram: m_nextpkt != nextrecord"));
2228
2229	/*
2230	 * Pull 'm' and its chain off the front of the packet queue.
2231	 */
2232	so->so_rcv.sb_mb = NULL;
2233	sockbuf_pushsync(&so->so_rcv, nextrecord);
2234
2235	/*
2236	 * Walk 'm's chain and free that many bytes from the socket buffer.
2237	 */
2238	for (m2 = m; m2 != NULL; m2 = m2->m_next)
2239		sbfree(&so->so_rcv, m2);
2240
2241	/*
2242	 * Do a few last checks before we let go of the lock.
2243	 */
2244	SBLASTRECORDCHK(&so->so_rcv);
2245	SBLASTMBUFCHK(&so->so_rcv);
2246	SOCKBUF_UNLOCK(&so->so_rcv);
2247
2248	if (pr->pr_flags & PR_ADDR) {
2249		KASSERT(m->m_type == MT_SONAME,
2250		    ("m->m_type == %d", m->m_type));
2251		if (psa != NULL)
2252			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
2253			    M_NOWAIT);
2254		m = m_free(m);
2255	}
2256	if (m == NULL) {
2257		/* XXXRW: Can this happen? */
2258		return (0);
2259	}
2260
2261	/*
2262	 * Packet to copyout() is now in 'm' and it is disconnected from the
2263	 * queue.
2264	 *
2265	 * Process one or more MT_CONTROL mbufs present before any data mbufs
2266	 * in the first mbuf chain on the socket buffer.  We call into the
2267	 * protocol to perform externalization (or freeing if controlp ==
2268	 * NULL). In some cases there can be only MT_CONTROL mbufs without
2269	 * MT_DATA mbufs.
2270	 */
2271	if (m->m_type == MT_CONTROL) {
2272		struct mbuf *cm = NULL, *cmn;
2273		struct mbuf **cme = &cm;
2274
2275		do {
2276			m2 = m->m_next;
2277			m->m_next = NULL;
2278			*cme = m;
2279			cme = &(*cme)->m_next;
2280			m = m2;
2281		} while (m != NULL && m->m_type == MT_CONTROL);
2282		while (cm != NULL) {
2283			cmn = cm->m_next;
2284			cm->m_next = NULL;
2285			if (pr->pr_domain->dom_externalize != NULL) {
2286				error = (*pr->pr_domain->dom_externalize)
2287				    (cm, controlp, flags);
2288			} else if (controlp != NULL)
2289				*controlp = cm;
2290			else
2291				m_freem(cm);
2292			if (controlp != NULL) {
2293				while (*controlp != NULL)
2294					controlp = &(*controlp)->m_next;
2295			}
2296			cm = cmn;
2297		}
2298	}
2299	KASSERT(m == NULL || m->m_type == MT_DATA,
2300	    ("soreceive_dgram: !data"));
2301	while (m != NULL && uio->uio_resid > 0) {
2302		len = uio->uio_resid;
2303		if (len > m->m_len)
2304			len = m->m_len;
2305		error = uiomove(mtod(m, char *), (int)len, uio);
2306		if (error) {
2307			m_freem(m);
2308			return (error);
2309		}
2310		if (len == m->m_len)
2311			m = m_free(m);
2312		else {
2313			m->m_data += len;
2314			m->m_len -= len;
2315		}
2316	}
2317	if (m != NULL) {
2318		flags |= MSG_TRUNC;
2319		m_freem(m);
2320	}
2321	if (flagsp != NULL)
2322		*flagsp |= flags;
2323	return (0);
2324}
2325
2326int
2327soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2328    struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2329{
2330	int error;
2331
2332	CURVNET_SET(so->so_vnet);
2333	error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2334	    controlp, flagsp));
2335	CURVNET_RESTORE();
2336	return (error);
2337}
2338
2339int
2340soshutdown(struct socket *so, int how)
2341{
2342	struct protosw *pr = so->so_proto;
2343	int error;
2344
2345	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2346		return (EINVAL);
2347	if ((so->so_state &
2348	    (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0)
2349		return (ENOTCONN);
2350
2351	CURVNET_SET(so->so_vnet);
2352	if (pr->pr_usrreqs->pru_flush != NULL)
2353		(*pr->pr_usrreqs->pru_flush)(so, how);
2354	if (how != SHUT_WR)
2355		sorflush(so);
2356	if (how != SHUT_RD) {
2357		error = (*pr->pr_usrreqs->pru_shutdown)(so);
2358		wakeup(&so->so_timeo);
2359		CURVNET_RESTORE();
2360		return (error);
2361	}
2362	wakeup(&so->so_timeo);
2363	CURVNET_RESTORE();
2364	return (0);
2365}
2366
2367void
2368sorflush(struct socket *so)
2369{
2370	struct sockbuf *sb = &so->so_rcv;
2371	struct protosw *pr = so->so_proto;
2372	struct socket aso;
2373
2374	VNET_SO_ASSERT(so);
2375
2376	/*
2377	 * In order to avoid calling dom_dispose with the socket buffer mutex
2378	 * held, and in order to generally avoid holding the lock for a long
2379	 * time, we make a copy of the socket buffer and clear the original
2380	 * (except locks, state).  The new socket buffer copy won't have
2381	 * initialized locks so we can only call routines that won't use or
2382	 * assert those locks.
2383	 *
2384	 * Dislodge threads currently blocked in receive and wait to acquire
2385	 * a lock against other simultaneous readers before clearing the
2386	 * socket buffer.  Don't let our acquire be interrupted by a signal
2387	 * despite any existing socket disposition on interruptable waiting.
2388	 */
2389	socantrcvmore(so);
2390	(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2391
2392	/*
2393	 * Invalidate/clear most of the sockbuf structure, but leave selinfo
2394	 * and mutex data unchanged.
2395	 */
2396	SOCKBUF_LOCK(sb);
2397	bzero(&aso, sizeof(aso));
2398	aso.so_pcb = so->so_pcb;
2399	bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
2400	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2401	bzero(&sb->sb_startzero,
2402	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2403	SOCKBUF_UNLOCK(sb);
2404	sbunlock(sb);
2405
2406	/*
2407	 * Dispose of special rights and flush the copied socket.  Don't call
2408	 * any unsafe routines (that rely on locks being initialized) on aso.
2409	 */
2410	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2411		(*pr->pr_domain->dom_dispose)(&aso);
2412	sbrelease_internal(&aso.so_rcv, so);
2413}
2414
2415/*
2416 * Wrapper for Socket established helper hook.
2417 * Parameters: socket, context of the hook point, hook id.
2418 */
2419static int inline
2420hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
2421{
2422	struct socket_hhook_data hhook_data = {
2423		.so = so,
2424		.hctx = hctx,
2425		.m = NULL,
2426		.status = 0
2427	};
2428
2429	CURVNET_SET(so->so_vnet);
2430	HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
2431	CURVNET_RESTORE();
2432
2433	/* Ugly but needed, since hhooks return void for now */
2434	return (hhook_data.status);
2435}
2436
2437/*
2438 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2439 * additional variant to handle the case where the option value needs to be
2440 * some kind of integer, but not a specific size.  In addition to their use
2441 * here, these functions are also called by the protocol-level pr_ctloutput()
2442 * routines.
2443 */
2444int
2445sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2446{
2447	size_t	valsize;
2448
2449	/*
2450	 * If the user gives us more than we wanted, we ignore it, but if we
2451	 * don't get the minimum length the caller wants, we return EINVAL.
2452	 * On success, sopt->sopt_valsize is set to however much we actually
2453	 * retrieved.
2454	 */
2455	if ((valsize = sopt->sopt_valsize) < minlen)
2456		return EINVAL;
2457	if (valsize > len)
2458		sopt->sopt_valsize = valsize = len;
2459
2460	if (sopt->sopt_td != NULL)
2461		return (copyin(sopt->sopt_val, buf, valsize));
2462
2463	bcopy(sopt->sopt_val, buf, valsize);
2464	return (0);
2465}
2466
2467/*
2468 * Kernel version of setsockopt(2).
2469 *
2470 * XXX: optlen is size_t, not socklen_t
2471 */
2472int
2473so_setsockopt(struct socket *so, int level, int optname, void *optval,
2474    size_t optlen)
2475{
2476	struct sockopt sopt;
2477
2478	sopt.sopt_level = level;
2479	sopt.sopt_name = optname;
2480	sopt.sopt_dir = SOPT_SET;
2481	sopt.sopt_val = optval;
2482	sopt.sopt_valsize = optlen;
2483	sopt.sopt_td = NULL;
2484	return (sosetopt(so, &sopt));
2485}
2486
2487int
2488sosetopt(struct socket *so, struct sockopt *sopt)
2489{
2490	int	error, optval;
2491	struct	linger l;
2492	struct	timeval tv;
2493	sbintime_t val;
2494	uint32_t val32;
2495#ifdef MAC
2496	struct mac extmac;
2497#endif
2498
2499	CURVNET_SET(so->so_vnet);
2500	error = 0;
2501	if (sopt->sopt_level != SOL_SOCKET) {
2502		if (so->so_proto->pr_ctloutput != NULL) {
2503			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2504			CURVNET_RESTORE();
2505			return (error);
2506		}
2507		error = ENOPROTOOPT;
2508	} else {
2509		switch (sopt->sopt_name) {
2510		case SO_ACCEPTFILTER:
2511			error = do_setopt_accept_filter(so, sopt);
2512			if (error)
2513				goto bad;
2514			break;
2515
2516		case SO_LINGER:
2517			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2518			if (error)
2519				goto bad;
2520
2521			SOCK_LOCK(so);
2522			so->so_linger = l.l_linger;
2523			if (l.l_onoff)
2524				so->so_options |= SO_LINGER;
2525			else
2526				so->so_options &= ~SO_LINGER;
2527			SOCK_UNLOCK(so);
2528			break;
2529
2530		case SO_DEBUG:
2531		case SO_KEEPALIVE:
2532		case SO_DONTROUTE:
2533		case SO_USELOOPBACK:
2534		case SO_BROADCAST:
2535		case SO_REUSEADDR:
2536		case SO_REUSEPORT:
2537		case SO_OOBINLINE:
2538		case SO_TIMESTAMP:
2539		case SO_BINTIME:
2540		case SO_NOSIGPIPE:
2541		case SO_NO_DDP:
2542		case SO_NO_OFFLOAD:
2543			error = sooptcopyin(sopt, &optval, sizeof optval,
2544			    sizeof optval);
2545			if (error)
2546				goto bad;
2547			SOCK_LOCK(so);
2548			if (optval)
2549				so->so_options |= sopt->sopt_name;
2550			else
2551				so->so_options &= ~sopt->sopt_name;
2552			SOCK_UNLOCK(so);
2553			break;
2554
2555		case SO_SETFIB:
2556			error = sooptcopyin(sopt, &optval, sizeof optval,
2557			    sizeof optval);
2558			if (error)
2559				goto bad;
2560
2561			if (optval < 0 || optval >= rt_numfibs) {
2562				error = EINVAL;
2563				goto bad;
2564			}
2565			if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2566			   (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2567			   (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2568				so->so_fibnum = optval;
2569			else
2570				so->so_fibnum = 0;
2571			break;
2572
2573		case SO_USER_COOKIE:
2574			error = sooptcopyin(sopt, &val32, sizeof val32,
2575			    sizeof val32);
2576			if (error)
2577				goto bad;
2578			so->so_user_cookie = val32;
2579			break;
2580
2581		case SO_SNDBUF:
2582		case SO_RCVBUF:
2583		case SO_SNDLOWAT:
2584		case SO_RCVLOWAT:
2585			error = sooptcopyin(sopt, &optval, sizeof optval,
2586			    sizeof optval);
2587			if (error)
2588				goto bad;
2589
2590			/*
2591			 * Values < 1 make no sense for any of these options,
2592			 * so disallow them.
2593			 */
2594			if (optval < 1) {
2595				error = EINVAL;
2596				goto bad;
2597			}
2598
2599			switch (sopt->sopt_name) {
2600			case SO_SNDBUF:
2601			case SO_RCVBUF:
2602				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2603				    &so->so_snd : &so->so_rcv, (u_long)optval,
2604				    so, curthread) == 0) {
2605					error = ENOBUFS;
2606					goto bad;
2607				}
2608				(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2609				    &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2610				break;
2611
2612			/*
2613			 * Make sure the low-water is never greater than the
2614			 * high-water.
2615			 */
2616			case SO_SNDLOWAT:
2617				SOCKBUF_LOCK(&so->so_snd);
2618				so->so_snd.sb_lowat =
2619				    (optval > so->so_snd.sb_hiwat) ?
2620				    so->so_snd.sb_hiwat : optval;
2621				SOCKBUF_UNLOCK(&so->so_snd);
2622				break;
2623			case SO_RCVLOWAT:
2624				SOCKBUF_LOCK(&so->so_rcv);
2625				so->so_rcv.sb_lowat =
2626				    (optval > so->so_rcv.sb_hiwat) ?
2627				    so->so_rcv.sb_hiwat : optval;
2628				SOCKBUF_UNLOCK(&so->so_rcv);
2629				break;
2630			}
2631			break;
2632
2633		case SO_SNDTIMEO:
2634		case SO_RCVTIMEO:
2635#ifdef COMPAT_FREEBSD32
2636			if (SV_CURPROC_FLAG(SV_ILP32)) {
2637				struct timeval32 tv32;
2638
2639				error = sooptcopyin(sopt, &tv32, sizeof tv32,
2640				    sizeof tv32);
2641				CP(tv32, tv, tv_sec);
2642				CP(tv32, tv, tv_usec);
2643			} else
2644#endif
2645				error = sooptcopyin(sopt, &tv, sizeof tv,
2646				    sizeof tv);
2647			if (error)
2648				goto bad;
2649			if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
2650			    tv.tv_usec >= 1000000) {
2651				error = EDOM;
2652				goto bad;
2653			}
2654			if (tv.tv_sec > INT32_MAX)
2655				val = SBT_MAX;
2656			else
2657				val = tvtosbt(tv);
2658			switch (sopt->sopt_name) {
2659			case SO_SNDTIMEO:
2660				so->so_snd.sb_timeo = val;
2661				break;
2662			case SO_RCVTIMEO:
2663				so->so_rcv.sb_timeo = val;
2664				break;
2665			}
2666			break;
2667
2668		case SO_LABEL:
2669#ifdef MAC
2670			error = sooptcopyin(sopt, &extmac, sizeof extmac,
2671			    sizeof extmac);
2672			if (error)
2673				goto bad;
2674			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2675			    so, &extmac);
2676#else
2677			error = EOPNOTSUPP;
2678#endif
2679			break;
2680
2681		default:
2682			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2683				error = hhook_run_socket(so, sopt,
2684				    HHOOK_SOCKET_OPT);
2685			else
2686				error = ENOPROTOOPT;
2687			break;
2688		}
2689		if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2690			(void)(*so->so_proto->pr_ctloutput)(so, sopt);
2691	}
2692bad:
2693	CURVNET_RESTORE();
2694	return (error);
2695}
2696
2697/*
2698 * Helper routine for getsockopt.
2699 */
2700int
2701sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2702{
2703	int	error;
2704	size_t	valsize;
2705
2706	error = 0;
2707
2708	/*
2709	 * Documented get behavior is that we always return a value, possibly
2710	 * truncated to fit in the user's buffer.  Traditional behavior is
2711	 * that we always tell the user precisely how much we copied, rather
2712	 * than something useful like the total amount we had available for
2713	 * her.  Note that this interface is not idempotent; the entire
2714	 * answer must be generated ahead of time.
2715	 */
2716	valsize = min(len, sopt->sopt_valsize);
2717	sopt->sopt_valsize = valsize;
2718	if (sopt->sopt_val != NULL) {
2719		if (sopt->sopt_td != NULL)
2720			error = copyout(buf, sopt->sopt_val, valsize);
2721		else
2722			bcopy(buf, sopt->sopt_val, valsize);
2723	}
2724	return (error);
2725}
2726
2727int
2728sogetopt(struct socket *so, struct sockopt *sopt)
2729{
2730	int	error, optval;
2731	struct	linger l;
2732	struct	timeval tv;
2733#ifdef MAC
2734	struct mac extmac;
2735#endif
2736
2737	CURVNET_SET(so->so_vnet);
2738	error = 0;
2739	if (sopt->sopt_level != SOL_SOCKET) {
2740		if (so->so_proto->pr_ctloutput != NULL)
2741			error = (*so->so_proto->pr_ctloutput)(so, sopt);
2742		else
2743			error = ENOPROTOOPT;
2744		CURVNET_RESTORE();
2745		return (error);
2746	} else {
2747		switch (sopt->sopt_name) {
2748		case SO_ACCEPTFILTER:
2749			error = do_getopt_accept_filter(so, sopt);
2750			break;
2751
2752		case SO_LINGER:
2753			SOCK_LOCK(so);
2754			l.l_onoff = so->so_options & SO_LINGER;
2755			l.l_linger = so->so_linger;
2756			SOCK_UNLOCK(so);
2757			error = sooptcopyout(sopt, &l, sizeof l);
2758			break;
2759
2760		case SO_USELOOPBACK:
2761		case SO_DONTROUTE:
2762		case SO_DEBUG:
2763		case SO_KEEPALIVE:
2764		case SO_REUSEADDR:
2765		case SO_REUSEPORT:
2766		case SO_BROADCAST:
2767		case SO_OOBINLINE:
2768		case SO_ACCEPTCONN:
2769		case SO_TIMESTAMP:
2770		case SO_BINTIME:
2771		case SO_NOSIGPIPE:
2772			optval = so->so_options & sopt->sopt_name;
2773integer:
2774			error = sooptcopyout(sopt, &optval, sizeof optval);
2775			break;
2776
2777		case SO_TYPE:
2778			optval = so->so_type;
2779			goto integer;
2780
2781		case SO_PROTOCOL:
2782			optval = so->so_proto->pr_protocol;
2783			goto integer;
2784
2785		case SO_ERROR:
2786			SOCK_LOCK(so);
2787			optval = so->so_error;
2788			so->so_error = 0;
2789			SOCK_UNLOCK(so);
2790			goto integer;
2791
2792		case SO_SNDBUF:
2793			optval = so->so_snd.sb_hiwat;
2794			goto integer;
2795
2796		case SO_RCVBUF:
2797			optval = so->so_rcv.sb_hiwat;
2798			goto integer;
2799
2800		case SO_SNDLOWAT:
2801			optval = so->so_snd.sb_lowat;
2802			goto integer;
2803
2804		case SO_RCVLOWAT:
2805			optval = so->so_rcv.sb_lowat;
2806			goto integer;
2807
2808		case SO_SNDTIMEO:
2809		case SO_RCVTIMEO:
2810			tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
2811			    so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2812#ifdef COMPAT_FREEBSD32
2813			if (SV_CURPROC_FLAG(SV_ILP32)) {
2814				struct timeval32 tv32;
2815
2816				CP(tv, tv32, tv_sec);
2817				CP(tv, tv32, tv_usec);
2818				error = sooptcopyout(sopt, &tv32, sizeof tv32);
2819			} else
2820#endif
2821				error = sooptcopyout(sopt, &tv, sizeof tv);
2822			break;
2823
2824		case SO_LABEL:
2825#ifdef MAC
2826			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2827			    sizeof(extmac));
2828			if (error)
2829				goto bad;
2830			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2831			    so, &extmac);
2832			if (error)
2833				goto bad;
2834			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2835#else
2836			error = EOPNOTSUPP;
2837#endif
2838			break;
2839
2840		case SO_PEERLABEL:
2841#ifdef MAC
2842			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2843			    sizeof(extmac));
2844			if (error)
2845				goto bad;
2846			error = mac_getsockopt_peerlabel(
2847			    sopt->sopt_td->td_ucred, so, &extmac);
2848			if (error)
2849				goto bad;
2850			error = sooptcopyout(sopt, &extmac, sizeof extmac);
2851#else
2852			error = EOPNOTSUPP;
2853#endif
2854			break;
2855
2856		case SO_LISTENQLIMIT:
2857			optval = so->so_qlimit;
2858			goto integer;
2859
2860		case SO_LISTENQLEN:
2861			optval = so->so_qlen;
2862			goto integer;
2863
2864		case SO_LISTENINCQLEN:
2865			optval = so->so_incqlen;
2866			goto integer;
2867
2868		default:
2869			if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
2870				error = hhook_run_socket(so, sopt,
2871				    HHOOK_SOCKET_OPT);
2872			else
2873				error = ENOPROTOOPT;
2874			break;
2875		}
2876	}
2877#ifdef MAC
2878bad:
2879#endif
2880	CURVNET_RESTORE();
2881	return (error);
2882}
2883
2884int
2885soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2886{
2887	struct mbuf *m, *m_prev;
2888	int sopt_size = sopt->sopt_valsize;
2889
2890	MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2891	if (m == NULL)
2892		return ENOBUFS;
2893	if (sopt_size > MLEN) {
2894		MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
2895		if ((m->m_flags & M_EXT) == 0) {
2896			m_free(m);
2897			return ENOBUFS;
2898		}
2899		m->m_len = min(MCLBYTES, sopt_size);
2900	} else {
2901		m->m_len = min(MLEN, sopt_size);
2902	}
2903	sopt_size -= m->m_len;
2904	*mp = m;
2905	m_prev = m;
2906
2907	while (sopt_size) {
2908		MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
2909		if (m == NULL) {
2910			m_freem(*mp);
2911			return ENOBUFS;
2912		}
2913		if (sopt_size > MLEN) {
2914			MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
2915			    M_NOWAIT);
2916			if ((m->m_flags & M_EXT) == 0) {
2917				m_freem(m);
2918				m_freem(*mp);
2919				return ENOBUFS;
2920			}
2921			m->m_len = min(MCLBYTES, sopt_size);
2922		} else {
2923			m->m_len = min(MLEN, sopt_size);
2924		}
2925		sopt_size -= m->m_len;
2926		m_prev->m_next = m;
2927		m_prev = m;
2928	}
2929	return (0);
2930}
2931
2932int
2933soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2934{
2935	struct mbuf *m0 = m;
2936
2937	if (sopt->sopt_val == NULL)
2938		return (0);
2939	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2940		if (sopt->sopt_td != NULL) {
2941			int error;
2942
2943			error = copyin(sopt->sopt_val, mtod(m, char *),
2944			    m->m_len);
2945			if (error != 0) {
2946				m_freem(m0);
2947				return(error);
2948			}
2949		} else
2950			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2951		sopt->sopt_valsize -= m->m_len;
2952		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2953		m = m->m_next;
2954	}
2955	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2956		panic("ip6_sooptmcopyin");
2957	return (0);
2958}
2959
2960int
2961soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2962{
2963	struct mbuf *m0 = m;
2964	size_t valsize = 0;
2965
2966	if (sopt->sopt_val == NULL)
2967		return (0);
2968	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2969		if (sopt->sopt_td != NULL) {
2970			int error;
2971
2972			error = copyout(mtod(m, char *), sopt->sopt_val,
2973			    m->m_len);
2974			if (error != 0) {
2975				m_freem(m0);
2976				return(error);
2977			}
2978		} else
2979			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2980		sopt->sopt_valsize -= m->m_len;
2981		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2982		valsize += m->m_len;
2983		m = m->m_next;
2984	}
2985	if (m != NULL) {
2986		/* enough soopt buffer should be given from user-land */
2987		m_freem(m0);
2988		return(EINVAL);
2989	}
2990	sopt->sopt_valsize = valsize;
2991	return (0);
2992}
2993
2994/*
2995 * sohasoutofband(): protocol notifies socket layer of the arrival of new
2996 * out-of-band data, which will then notify socket consumers.
2997 */
2998void
2999sohasoutofband(struct socket *so)
3000{
3001
3002	if (so->so_sigio != NULL)
3003		pgsigio(&so->so_sigio, SIGURG, 0);
3004	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
3005}
3006
3007int
3008sopoll(struct socket *so, int events, struct ucred *active_cred,
3009    struct thread *td)
3010{
3011
3012	/*
3013	 * We do not need to set or assert curvnet as long as everyone uses
3014	 * sopoll_generic().
3015	 */
3016	return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3017	    td));
3018}
3019
3020int
3021sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3022    struct thread *td)
3023{
3024	int revents = 0;
3025
3026	SOCKBUF_LOCK(&so->so_snd);
3027	SOCKBUF_LOCK(&so->so_rcv);
3028	if (events & (POLLIN | POLLRDNORM))
3029		if (soreadabledata(so))
3030			revents |= events & (POLLIN | POLLRDNORM);
3031
3032	if (events & (POLLOUT | POLLWRNORM))
3033		if (sowriteable(so))
3034			revents |= events & (POLLOUT | POLLWRNORM);
3035
3036	if (events & (POLLPRI | POLLRDBAND))
3037		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
3038			revents |= events & (POLLPRI | POLLRDBAND);
3039
3040	if ((events & POLLINIGNEOF) == 0) {
3041		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3042			revents |= events & (POLLIN | POLLRDNORM);
3043			if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3044				revents |= POLLHUP;
3045		}
3046	}
3047
3048	if (revents == 0) {
3049		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3050			selrecord(td, &so->so_rcv.sb_sel);
3051			so->so_rcv.sb_flags |= SB_SEL;
3052		}
3053
3054		if (events & (POLLOUT | POLLWRNORM)) {
3055			selrecord(td, &so->so_snd.sb_sel);
3056			so->so_snd.sb_flags |= SB_SEL;
3057		}
3058	}
3059
3060	SOCKBUF_UNLOCK(&so->so_rcv);
3061	SOCKBUF_UNLOCK(&so->so_snd);
3062	return (revents);
3063}
3064
3065int
3066soo_kqfilter(struct file *fp, struct knote *kn)
3067{
3068	struct socket *so = kn->kn_fp->f_data;
3069	struct sockbuf *sb;
3070
3071	switch (kn->kn_filter) {
3072	case EVFILT_READ:
3073		if (so->so_options & SO_ACCEPTCONN)
3074			kn->kn_fop = &solisten_filtops;
3075		else
3076			kn->kn_fop = &soread_filtops;
3077		sb = &so->so_rcv;
3078		break;
3079	case EVFILT_WRITE:
3080		kn->kn_fop = &sowrite_filtops;
3081		sb = &so->so_snd;
3082		break;
3083	default:
3084		return (EINVAL);
3085	}
3086
3087	SOCKBUF_LOCK(sb);
3088	knlist_add(&sb->sb_sel.si_note, kn, 1);
3089	sb->sb_flags |= SB_KNOTE;
3090	SOCKBUF_UNLOCK(sb);
3091	return (0);
3092}
3093
3094/*
3095 * Some routines that return EOPNOTSUPP for entry points that are not
3096 * supported by a protocol.  Fill in as needed.
3097 */
3098int
3099pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3100{
3101
3102	return EOPNOTSUPP;
3103}
3104
3105int
3106pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
3107{
3108
3109	return EOPNOTSUPP;
3110}
3111
3112int
3113pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3114{
3115
3116	return EOPNOTSUPP;
3117}
3118
3119int
3120pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3121{
3122
3123	return EOPNOTSUPP;
3124}
3125
3126int
3127pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3128    struct thread *td)
3129{
3130
3131	return EOPNOTSUPP;
3132}
3133
3134int
3135pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3136{
3137
3138	return EOPNOTSUPP;
3139}
3140
3141int
3142pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
3143    struct thread *td)
3144{
3145
3146	return EOPNOTSUPP;
3147}
3148
3149int
3150pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3151{
3152
3153	return EOPNOTSUPP;
3154}
3155
3156int
3157pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3158    struct ifnet *ifp, struct thread *td)
3159{
3160
3161	return EOPNOTSUPP;
3162}
3163
3164int
3165pru_disconnect_notsupp(struct socket *so)
3166{
3167
3168	return EOPNOTSUPP;
3169}
3170
3171int
3172pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3173{
3174
3175	return EOPNOTSUPP;
3176}
3177
3178int
3179pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3180{
3181
3182	return EOPNOTSUPP;
3183}
3184
3185int
3186pru_rcvd_notsupp(struct socket *so, int flags)
3187{
3188
3189	return EOPNOTSUPP;
3190}
3191
3192int
3193pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3194{
3195
3196	return EOPNOTSUPP;
3197}
3198
3199int
3200pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3201    struct sockaddr *addr, struct mbuf *control, struct thread *td)
3202{
3203
3204	return EOPNOTSUPP;
3205}
3206
3207int
3208pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
3209{
3210
3211	return (EOPNOTSUPP);
3212}
3213
3214/*
3215 * This isn't really a ``null'' operation, but it's the default one and
3216 * doesn't do anything destructive.
3217 */
3218int
3219pru_sense_null(struct socket *so, struct stat *sb)
3220{
3221
3222	sb->st_blksize = so->so_snd.sb_hiwat;
3223	return 0;
3224}
3225
3226int
3227pru_shutdown_notsupp(struct socket *so)
3228{
3229
3230	return EOPNOTSUPP;
3231}
3232
3233int
3234pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3235{
3236
3237	return EOPNOTSUPP;
3238}
3239
3240int
3241pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3242    struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3243{
3244
3245	return EOPNOTSUPP;
3246}
3247
3248int
3249pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3250    struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3251{
3252
3253	return EOPNOTSUPP;
3254}
3255
3256int
3257pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3258    struct thread *td)
3259{
3260
3261	return EOPNOTSUPP;
3262}
3263
3264static void
3265filt_sordetach(struct knote *kn)
3266{
3267	struct socket *so = kn->kn_fp->f_data;
3268
3269	SOCKBUF_LOCK(&so->so_rcv);
3270	knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
3271	if (knlist_empty(&so->so_rcv.sb_sel.si_note))
3272		so->so_rcv.sb_flags &= ~SB_KNOTE;
3273	SOCKBUF_UNLOCK(&so->so_rcv);
3274}
3275
3276/*ARGSUSED*/
3277static int
3278filt_soread(struct knote *kn, long hint)
3279{
3280	struct socket *so;
3281
3282	so = kn->kn_fp->f_data;
3283	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3284
3285	kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
3286	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3287		kn->kn_flags |= EV_EOF;
3288		kn->kn_fflags = so->so_error;
3289		return (1);
3290	} else if (so->so_error)	/* temporary udp error */
3291		return (1);
3292
3293	if (kn->kn_sfflags & NOTE_LOWAT) {
3294		if (kn->kn_data >= kn->kn_sdata)
3295			return 1;
3296	} else {
3297		if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
3298			return 1;
3299	}
3300
3301	/* This hook returning non-zero indicates an event, not error */
3302	return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
3303}
3304
3305static void
3306filt_sowdetach(struct knote *kn)
3307{
3308	struct socket *so = kn->kn_fp->f_data;
3309
3310	SOCKBUF_LOCK(&so->so_snd);
3311	knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
3312	if (knlist_empty(&so->so_snd.sb_sel.si_note))
3313		so->so_snd.sb_flags &= ~SB_KNOTE;
3314	SOCKBUF_UNLOCK(&so->so_snd);
3315}
3316
3317/*ARGSUSED*/
3318static int
3319filt_sowrite(struct knote *kn, long hint)
3320{
3321	struct socket *so;
3322
3323	so = kn->kn_fp->f_data;
3324	SOCKBUF_LOCK_ASSERT(&so->so_snd);
3325	kn->kn_data = sbspace(&so->so_snd);
3326
3327	hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
3328
3329	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3330		kn->kn_flags |= EV_EOF;
3331		kn->kn_fflags = so->so_error;
3332		return (1);
3333	} else if (so->so_error)	/* temporary udp error */
3334		return (1);
3335	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3336	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
3337		return (0);
3338	else if (kn->kn_sfflags & NOTE_LOWAT)
3339		return (kn->kn_data >= kn->kn_sdata);
3340	else
3341		return (kn->kn_data >= so->so_snd.sb_lowat);
3342}
3343
3344/*ARGSUSED*/
3345static int
3346filt_solisten(struct knote *kn, long hint)
3347{
3348	struct socket *so = kn->kn_fp->f_data;
3349
3350	kn->kn_data = so->so_qlen;
3351	return (!TAILQ_EMPTY(&so->so_comp));
3352}
3353
3354int
3355socheckuid(struct socket *so, uid_t uid)
3356{
3357
3358	if (so == NULL)
3359		return (EPERM);
3360	if (so->so_cred->cr_uid != uid)
3361		return (EPERM);
3362	return (0);
3363}
3364
3365/*
3366 * These functions are used by protocols to notify the socket layer (and its
3367 * consumers) of state changes in the sockets driven by protocol-side events.
3368 */
3369
3370/*
3371 * Procedures to manipulate state flags of socket and do appropriate wakeups.
3372 *
3373 * Normal sequence from the active (originating) side is that
3374 * soisconnecting() is called during processing of connect() call, resulting
3375 * in an eventual call to soisconnected() if/when the connection is
3376 * established.  When the connection is torn down soisdisconnecting() is
3377 * called during processing of disconnect() call, and soisdisconnected() is
3378 * called when the connection to the peer is totally severed.  The semantics
3379 * of these routines are such that connectionless protocols can call
3380 * soisconnected() and soisdisconnected() only, bypassing the in-progress
3381 * calls when setting up a ``connection'' takes no time.
3382 *
3383 * From the passive side, a socket is created with two queues of sockets:
3384 * so_incomp for connections in progress and so_comp for connections already
3385 * made and awaiting user acceptance.  As a protocol is preparing incoming
3386 * connections, it creates a socket structure queued on so_incomp by calling
3387 * sonewconn().  When the connection is established, soisconnected() is
3388 * called, and transfers the socket structure to so_comp, making it available
3389 * to accept().
3390 *
3391 * If a socket is closed with sockets on either so_incomp or so_comp, these
3392 * sockets are dropped.
3393 *
3394 * If higher-level protocols are implemented in the kernel, the wakeups done
3395 * here will sometimes cause software-interrupt process scheduling.
3396 */
3397void
3398soisconnecting(struct socket *so)
3399{
3400
3401	SOCK_LOCK(so);
3402	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3403	so->so_state |= SS_ISCONNECTING;
3404	SOCK_UNLOCK(so);
3405}
3406
3407void
3408soisconnected(struct socket *so)
3409{
3410	struct socket *head;
3411	int ret;
3412
3413restart:
3414	ACCEPT_LOCK();
3415	SOCK_LOCK(so);
3416	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3417	so->so_state |= SS_ISCONNECTED;
3418	head = so->so_head;
3419	if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3420		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3421			SOCK_UNLOCK(so);
3422			TAILQ_REMOVE(&head->so_incomp, so, so_list);
3423			head->so_incqlen--;
3424			so->so_qstate &= ~SQ_INCOMP;
3425			TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3426			head->so_qlen++;
3427			so->so_qstate |= SQ_COMP;
3428			ACCEPT_UNLOCK();
3429			sorwakeup(head);
3430			wakeup_one(&head->so_timeo);
3431		} else {
3432			ACCEPT_UNLOCK();
3433			soupcall_set(so, SO_RCV,
3434			    head->so_accf->so_accept_filter->accf_callback,
3435			    head->so_accf->so_accept_filter_arg);
3436			so->so_options &= ~SO_ACCEPTFILTER;
3437			ret = head->so_accf->so_accept_filter->accf_callback(so,
3438			    head->so_accf->so_accept_filter_arg, M_NOWAIT);
3439			if (ret == SU_ISCONNECTED)
3440				soupcall_clear(so, SO_RCV);
3441			SOCK_UNLOCK(so);
3442			if (ret == SU_ISCONNECTED)
3443				goto restart;
3444		}
3445		return;
3446	}
3447	SOCK_UNLOCK(so);
3448	ACCEPT_UNLOCK();
3449	wakeup(&so->so_timeo);
3450	sorwakeup(so);
3451	sowwakeup(so);
3452}
3453
3454void
3455soisdisconnecting(struct socket *so)
3456{
3457
3458	/*
3459	 * Note: This code assumes that SOCK_LOCK(so) and
3460	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3461	 */
3462	SOCKBUF_LOCK(&so->so_rcv);
3463	so->so_state &= ~SS_ISCONNECTING;
3464	so->so_state |= SS_ISDISCONNECTING;
3465	socantrcvmore_locked(so);
3466	SOCKBUF_LOCK(&so->so_snd);
3467	socantsendmore_locked(so);
3468	wakeup(&so->so_timeo);
3469}
3470
3471void
3472soisdisconnected(struct socket *so)
3473{
3474
3475	/*
3476	 * Note: This code assumes that SOCK_LOCK(so) and
3477	 * SOCKBUF_LOCK(&so->so_rcv) are the same.
3478	 */
3479	SOCKBUF_LOCK(&so->so_rcv);
3480	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3481	so->so_state |= SS_ISDISCONNECTED;
3482	socantrcvmore_locked(so);
3483	SOCKBUF_LOCK(&so->so_snd);
3484	sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
3485	socantsendmore_locked(so);
3486	wakeup(&so->so_timeo);
3487}
3488
3489/*
3490 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3491 */
3492struct sockaddr *
3493sodupsockaddr(const struct sockaddr *sa, int mflags)
3494{
3495	struct sockaddr *sa2;
3496
3497	sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3498	if (sa2)
3499		bcopy(sa, sa2, sa->sa_len);
3500	return sa2;
3501}
3502
3503/*
3504 * Register per-socket buffer upcalls.
3505 */
3506void
3507soupcall_set(struct socket *so, int which,
3508    int (*func)(struct socket *, void *, int), void *arg)
3509{
3510	struct sockbuf *sb;
3511
3512	switch (which) {
3513	case SO_RCV:
3514		sb = &so->so_rcv;
3515		break;
3516	case SO_SND:
3517		sb = &so->so_snd;
3518		break;
3519	default:
3520		panic("soupcall_set: bad which");
3521	}
3522	SOCKBUF_LOCK_ASSERT(sb);
3523#if 0
3524	/* XXX: accf_http actually wants to do this on purpose. */
3525	KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
3526#endif
3527	sb->sb_upcall = func;
3528	sb->sb_upcallarg = arg;
3529	sb->sb_flags |= SB_UPCALL;
3530}
3531
3532void
3533soupcall_clear(struct socket *so, int which)
3534{
3535	struct sockbuf *sb;
3536
3537	switch (which) {
3538	case SO_RCV:
3539		sb = &so->so_rcv;
3540		break;
3541	case SO_SND:
3542		sb = &so->so_snd;
3543		break;
3544	default:
3545		panic("soupcall_clear: bad which");
3546	}
3547	SOCKBUF_LOCK_ASSERT(sb);
3548	KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
3549	sb->sb_upcall = NULL;
3550	sb->sb_upcallarg = NULL;
3551	sb->sb_flags &= ~SB_UPCALL;
3552}
3553
3554/*
3555 * Create an external-format (``xsocket'') structure using the information in
3556 * the kernel-format socket structure pointed to by so.  This is done to
3557 * reduce the spew of irrelevant information over this interface, to isolate
3558 * user code from changes in the kernel structure, and potentially to provide
3559 * information-hiding if we decide that some of this information should be
3560 * hidden from users.
3561 */
3562void
3563sotoxsocket(struct socket *so, struct xsocket *xso)
3564{
3565
3566	xso->xso_len = sizeof *xso;
3567	xso->xso_so = so;
3568	xso->so_type = so->so_type;
3569	xso->so_options = so->so_options;
3570	xso->so_linger = so->so_linger;
3571	xso->so_state = so->so_state;
3572	xso->so_pcb = so->so_pcb;
3573	xso->xso_protocol = so->so_proto->pr_protocol;
3574	xso->xso_family = so->so_proto->pr_domain->dom_family;
3575	xso->so_qlen = so->so_qlen;
3576	xso->so_incqlen = so->so_incqlen;
3577	xso->so_qlimit = so->so_qlimit;
3578	xso->so_timeo = so->so_timeo;
3579	xso->so_error = so->so_error;
3580	xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3581	xso->so_oobmark = so->so_oobmark;
3582	sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3583	sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3584	xso->so_uid = so->so_cred->cr_uid;
3585}
3586
3587
3588/*
3589 * Socket accessor functions to provide external consumers with
3590 * a safe interface to socket state
3591 *
3592 */
3593
3594void
3595so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *),
3596    void *arg)
3597{
3598
3599	TAILQ_FOREACH(so, &so->so_comp, so_list)
3600		func(so, arg);
3601}
3602
3603struct sockbuf *
3604so_sockbuf_rcv(struct socket *so)
3605{
3606
3607	return (&so->so_rcv);
3608}
3609
3610struct sockbuf *
3611so_sockbuf_snd(struct socket *so)
3612{
3613
3614	return (&so->so_snd);
3615}
3616
3617int
3618so_state_get(const struct socket *so)
3619{
3620
3621	return (so->so_state);
3622}
3623
3624void
3625so_state_set(struct socket *so, int val)
3626{
3627
3628	so->so_state = val;
3629}
3630
3631int
3632so_options_get(const struct socket *so)
3633{
3634
3635	return (so->so_options);
3636}
3637
3638void
3639so_options_set(struct socket *so, int val)
3640{
3641
3642	so->so_options = val;
3643}
3644
3645int
3646so_error_get(const struct socket *so)
3647{
3648
3649	return (so->so_error);
3650}
3651
3652void
3653so_error_set(struct socket *so, int val)
3654{
3655
3656	so->so_error = val;
3657}
3658
3659int
3660so_linger_get(const struct socket *so)
3661{
3662
3663	return (so->so_linger);
3664}
3665
3666void
3667so_linger_set(struct socket *so, int val)
3668{
3669
3670	so->so_linger = val;
3671}
3672
3673struct protosw *
3674so_protosw_get(const struct socket *so)
3675{
3676
3677	return (so->so_proto);
3678}
3679
3680void
3681so_protosw_set(struct socket *so, struct protosw *val)
3682{
3683
3684	so->so_proto = val;
3685}
3686
3687void
3688so_sorwakeup(struct socket *so)
3689{
3690
3691	sorwakeup(so);
3692}
3693
3694void
3695so_sowwakeup(struct socket *so)
3696{
3697
3698	sowwakeup(so);
3699}
3700
3701void
3702so_sorwakeup_locked(struct socket *so)
3703{
3704
3705	sorwakeup_locked(so);
3706}
3707
3708void
3709so_sowwakeup_locked(struct socket *so)
3710{
3711
3712	sowwakeup_locked(so);
3713}
3714
3715void
3716so_lock(struct socket *so)
3717{
3718
3719	SOCK_LOCK(so);
3720}
3721
3722void
3723so_unlock(struct socket *so)
3724{
3725
3726	SOCK_UNLOCK(so);
3727}
3728