1/*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice immediately at the beginning of the file, without modification,
11 *    this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 *    John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 *    are met.
19 */
20
21/*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28/*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode.  The small write mode acts like conventional pipes with
31 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side.  In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer.  Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 *     New pipes are given 16K of memory backing, pipes may dynamically
63 *     grow to as large as 64K where needed.
64 * 50% - 75%:
65 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 *     existing pipes may NOT grow.
67 * 75% - 100%:
68 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 *     existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72 * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules:  There are two locks present here:  A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82 * the flag, as mutexes can not persist over uiomove.  The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism.  Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92#include "opt_compat.h"
93
94#include <sys/cdefs.h>
95__FBSDID("$FreeBSD: releng/11.0/sys/kern/sys_pipe.c 302095 2016-06-22 21:18:19Z brooks $");
96
97#include <sys/param.h>
98#include <sys/systm.h>
99#include <sys/conf.h>
100#include <sys/fcntl.h>
101#include <sys/file.h>
102#include <sys/filedesc.h>
103#include <sys/filio.h>
104#include <sys/kernel.h>
105#include <sys/lock.h>
106#include <sys/mutex.h>
107#include <sys/ttycom.h>
108#include <sys/stat.h>
109#include <sys/malloc.h>
110#include <sys/poll.h>
111#include <sys/selinfo.h>
112#include <sys/signalvar.h>
113#include <sys/syscallsubr.h>
114#include <sys/sysctl.h>
115#include <sys/sysproto.h>
116#include <sys/pipe.h>
117#include <sys/proc.h>
118#include <sys/vnode.h>
119#include <sys/uio.h>
120#include <sys/user.h>
121#include <sys/event.h>
122
123#include <security/mac/mac_framework.h>
124
125#include <vm/vm.h>
126#include <vm/vm_param.h>
127#include <vm/vm_object.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_extern.h>
130#include <vm/pmap.h>
131#include <vm/vm_map.h>
132#include <vm/vm_page.h>
133#include <vm/uma.h>
134
135/*
136 * Use this define if you want to disable *fancy* VM things.  Expect an
137 * approx 30% decrease in transfer rate.  This could be useful for
138 * NetBSD or OpenBSD.
139 */
140/* #define PIPE_NODIRECT */
141
142#define PIPE_PEER(pipe)	\
143	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144
145/*
146 * interfaces to the outside world
147 */
148static fo_rdwr_t	pipe_read;
149static fo_rdwr_t	pipe_write;
150static fo_truncate_t	pipe_truncate;
151static fo_ioctl_t	pipe_ioctl;
152static fo_poll_t	pipe_poll;
153static fo_kqfilter_t	pipe_kqfilter;
154static fo_stat_t	pipe_stat;
155static fo_close_t	pipe_close;
156static fo_chmod_t	pipe_chmod;
157static fo_chown_t	pipe_chown;
158static fo_fill_kinfo_t	pipe_fill_kinfo;
159
160struct fileops pipeops = {
161	.fo_read = pipe_read,
162	.fo_write = pipe_write,
163	.fo_truncate = pipe_truncate,
164	.fo_ioctl = pipe_ioctl,
165	.fo_poll = pipe_poll,
166	.fo_kqfilter = pipe_kqfilter,
167	.fo_stat = pipe_stat,
168	.fo_close = pipe_close,
169	.fo_chmod = pipe_chmod,
170	.fo_chown = pipe_chown,
171	.fo_sendfile = invfo_sendfile,
172	.fo_fill_kinfo = pipe_fill_kinfo,
173	.fo_flags = DFLAG_PASSABLE
174};
175
176static void	filt_pipedetach(struct knote *kn);
177static void	filt_pipedetach_notsup(struct knote *kn);
178static int	filt_pipenotsup(struct knote *kn, long hint);
179static int	filt_piperead(struct knote *kn, long hint);
180static int	filt_pipewrite(struct knote *kn, long hint);
181
182static struct filterops pipe_nfiltops = {
183	.f_isfd = 1,
184	.f_detach = filt_pipedetach_notsup,
185	.f_event = filt_pipenotsup
186};
187static struct filterops pipe_rfiltops = {
188	.f_isfd = 1,
189	.f_detach = filt_pipedetach,
190	.f_event = filt_piperead
191};
192static struct filterops pipe_wfiltops = {
193	.f_isfd = 1,
194	.f_detach = filt_pipedetach,
195	.f_event = filt_pipewrite
196};
197
198/*
199 * Default pipe buffer size(s), this can be kind-of large now because pipe
200 * space is pageable.  The pipe code will try to maintain locality of
201 * reference for performance reasons, so small amounts of outstanding I/O
202 * will not wipe the cache.
203 */
204#define MINPIPESIZE (PIPE_SIZE/3)
205#define MAXPIPESIZE (2*PIPE_SIZE/3)
206
207static long amountpipekva;
208static int pipefragretry;
209static int pipeallocfail;
210static int piperesizefail;
211static int piperesizeallowed = 1;
212
213SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214	   &maxpipekva, 0, "Pipe KVA limit");
215SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216	   &amountpipekva, 0, "Pipe KVA usage");
217SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220	  &pipeallocfail, 0, "Pipe allocation failures");
221SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222	  &piperesizefail, 0, "Pipe resize failures");
223SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224	  &piperesizeallowed, 0, "Pipe resizing allowed");
225
226static void pipeinit(void *dummy __unused);
227static void pipeclose(struct pipe *cpipe);
228static void pipe_free_kmem(struct pipe *cpipe);
229static void pipe_create(struct pipe *pipe, int backing);
230static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231static __inline int pipelock(struct pipe *cpipe, int catch);
232static __inline void pipeunlock(struct pipe *cpipe);
233#ifndef PIPE_NODIRECT
234static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235static void pipe_destroy_write_buffer(struct pipe *wpipe);
236static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237static void pipe_clone_write_buffer(struct pipe *wpipe);
238#endif
239static int pipespace(struct pipe *cpipe, int size);
240static int pipespace_new(struct pipe *cpipe, int size);
241
242static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
243static int	pipe_zone_init(void *mem, int size, int flags);
244static void	pipe_zone_fini(void *mem, int size);
245
246static uma_zone_t pipe_zone;
247static struct unrhdr *pipeino_unr;
248static dev_t pipedev_ino;
249
250SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
251
252static void
253pipeinit(void *dummy __unused)
254{
255
256	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
257	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
258	    UMA_ALIGN_PTR, 0);
259	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
260	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
261	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
262	pipedev_ino = devfs_alloc_cdp_inode();
263	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
264}
265
266static int
267pipe_zone_ctor(void *mem, int size, void *arg, int flags)
268{
269	struct pipepair *pp;
270	struct pipe *rpipe, *wpipe;
271
272	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
273
274	pp = (struct pipepair *)mem;
275
276	/*
277	 * We zero both pipe endpoints to make sure all the kmem pointers
278	 * are NULL, flag fields are zero'd, etc.  We timestamp both
279	 * endpoints with the same time.
280	 */
281	rpipe = &pp->pp_rpipe;
282	bzero(rpipe, sizeof(*rpipe));
283	vfs_timestamp(&rpipe->pipe_ctime);
284	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
285
286	wpipe = &pp->pp_wpipe;
287	bzero(wpipe, sizeof(*wpipe));
288	wpipe->pipe_ctime = rpipe->pipe_ctime;
289	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
290
291	rpipe->pipe_peer = wpipe;
292	rpipe->pipe_pair = pp;
293	wpipe->pipe_peer = rpipe;
294	wpipe->pipe_pair = pp;
295
296	/*
297	 * Mark both endpoints as present; they will later get free'd
298	 * one at a time.  When both are free'd, then the whole pair
299	 * is released.
300	 */
301	rpipe->pipe_present = PIPE_ACTIVE;
302	wpipe->pipe_present = PIPE_ACTIVE;
303
304	/*
305	 * Eventually, the MAC Framework may initialize the label
306	 * in ctor or init, but for now we do it elswhere to avoid
307	 * blocking in ctor or init.
308	 */
309	pp->pp_label = NULL;
310
311	return (0);
312}
313
314static int
315pipe_zone_init(void *mem, int size, int flags)
316{
317	struct pipepair *pp;
318
319	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
320
321	pp = (struct pipepair *)mem;
322
323	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
324	return (0);
325}
326
327static void
328pipe_zone_fini(void *mem, int size)
329{
330	struct pipepair *pp;
331
332	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
333
334	pp = (struct pipepair *)mem;
335
336	mtx_destroy(&pp->pp_mtx);
337}
338
339static void
340pipe_paircreate(struct thread *td, struct pipepair **p_pp)
341{
342	struct pipepair *pp;
343	struct pipe *rpipe, *wpipe;
344
345	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
346#ifdef MAC
347	/*
348	 * The MAC label is shared between the connected endpoints.  As a
349	 * result mac_pipe_init() and mac_pipe_create() are called once
350	 * for the pair, and not on the endpoints.
351	 */
352	mac_pipe_init(pp);
353	mac_pipe_create(td->td_ucred, pp);
354#endif
355	rpipe = &pp->pp_rpipe;
356	wpipe = &pp->pp_wpipe;
357
358	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
359	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
360
361	/* Only the forward direction pipe is backed by default */
362	pipe_create(rpipe, 1);
363	pipe_create(wpipe, 0);
364
365	rpipe->pipe_state |= PIPE_DIRECTOK;
366	wpipe->pipe_state |= PIPE_DIRECTOK;
367}
368
369void
370pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371{
372	struct pipepair *pp;
373
374	pipe_paircreate(td, &pp);
375	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
376	*ppipe = &pp->pp_rpipe;
377}
378
379void
380pipe_dtor(struct pipe *dpipe)
381{
382	struct pipe *peer;
383	ino_t ino;
384
385	ino = dpipe->pipe_ino;
386	peer = (dpipe->pipe_state & PIPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
387	funsetown(&dpipe->pipe_sigio);
388	pipeclose(dpipe);
389	if (peer != NULL) {
390		funsetown(&peer->pipe_sigio);
391		pipeclose(peer);
392	}
393	if (ino != 0 && ino != (ino_t)-1)
394		free_unr(pipeino_unr, ino);
395}
396
397/*
398 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
399 * the zone pick up the pieces via pipeclose().
400 */
401int
402kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
403    struct filecaps *fcaps2)
404{
405	struct file *rf, *wf;
406	struct pipe *rpipe, *wpipe;
407	struct pipepair *pp;
408	int fd, fflags, error;
409
410	pipe_paircreate(td, &pp);
411	rpipe = &pp->pp_rpipe;
412	wpipe = &pp->pp_wpipe;
413	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
414	if (error) {
415		pipeclose(rpipe);
416		pipeclose(wpipe);
417		return (error);
418	}
419	/* An extra reference on `rf' has been held for us by falloc_caps(). */
420	fildes[0] = fd;
421
422	fflags = FREAD | FWRITE;
423	if ((flags & O_NONBLOCK) != 0)
424		fflags |= FNONBLOCK;
425
426	/*
427	 * Warning: once we've gotten past allocation of the fd for the
428	 * read-side, we can only drop the read side via fdrop() in order
429	 * to avoid races against processes which manage to dup() the read
430	 * side while we are blocked trying to allocate the write side.
431	 */
432	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
433	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
434	if (error) {
435		fdclose(td, rf, fildes[0]);
436		fdrop(rf, td);
437		/* rpipe has been closed by fdrop(). */
438		pipeclose(wpipe);
439		return (error);
440	}
441	/* An extra reference on `wf' has been held for us by falloc_caps(). */
442	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
443	fdrop(wf, td);
444	fildes[1] = fd;
445	fdrop(rf, td);
446
447	return (0);
448}
449
450#ifdef COMPAT_FREEBSD10
451/* ARGSUSED */
452int
453freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
454{
455	int error;
456	int fildes[2];
457
458	error = kern_pipe(td, fildes, 0, NULL, NULL);
459	if (error)
460		return (error);
461
462	td->td_retval[0] = fildes[0];
463	td->td_retval[1] = fildes[1];
464
465	return (0);
466}
467#endif
468
469int
470sys_pipe2(struct thread *td, struct pipe2_args *uap)
471{
472	int error, fildes[2];
473
474	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
475		return (EINVAL);
476	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
477	if (error)
478		return (error);
479	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
480	if (error) {
481		(void)kern_close(td, fildes[0]);
482		(void)kern_close(td, fildes[1]);
483	}
484	return (error);
485}
486
487/*
488 * Allocate kva for pipe circular buffer, the space is pageable
489 * This routine will 'realloc' the size of a pipe safely, if it fails
490 * it will retain the old buffer.
491 * If it fails it will return ENOMEM.
492 */
493static int
494pipespace_new(cpipe, size)
495	struct pipe *cpipe;
496	int size;
497{
498	caddr_t buffer;
499	int error, cnt, firstseg;
500	static int curfail = 0;
501	static struct timeval lastfail;
502
503	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
504	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
505		("pipespace: resize of direct writes not allowed"));
506retry:
507	cnt = cpipe->pipe_buffer.cnt;
508	if (cnt > size)
509		size = cnt;
510
511	size = round_page(size);
512	buffer = (caddr_t) vm_map_min(pipe_map);
513
514	error = vm_map_find(pipe_map, NULL, 0,
515		(vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
516		VM_PROT_ALL, VM_PROT_ALL, 0);
517	if (error != KERN_SUCCESS) {
518		if ((cpipe->pipe_buffer.buffer == NULL) &&
519			(size > SMALL_PIPE_SIZE)) {
520			size = SMALL_PIPE_SIZE;
521			pipefragretry++;
522			goto retry;
523		}
524		if (cpipe->pipe_buffer.buffer == NULL) {
525			pipeallocfail++;
526			if (ppsratecheck(&lastfail, &curfail, 1))
527				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
528		} else {
529			piperesizefail++;
530		}
531		return (ENOMEM);
532	}
533
534	/* copy data, then free old resources if we're resizing */
535	if (cnt > 0) {
536		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
537			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
538			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
539				buffer, firstseg);
540			if ((cnt - firstseg) > 0)
541				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
542					cpipe->pipe_buffer.in);
543		} else {
544			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
545				buffer, cnt);
546		}
547	}
548	pipe_free_kmem(cpipe);
549	cpipe->pipe_buffer.buffer = buffer;
550	cpipe->pipe_buffer.size = size;
551	cpipe->pipe_buffer.in = cnt;
552	cpipe->pipe_buffer.out = 0;
553	cpipe->pipe_buffer.cnt = cnt;
554	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
555	return (0);
556}
557
558/*
559 * Wrapper for pipespace_new() that performs locking assertions.
560 */
561static int
562pipespace(cpipe, size)
563	struct pipe *cpipe;
564	int size;
565{
566
567	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
568		("Unlocked pipe passed to pipespace"));
569	return (pipespace_new(cpipe, size));
570}
571
572/*
573 * lock a pipe for I/O, blocking other access
574 */
575static __inline int
576pipelock(cpipe, catch)
577	struct pipe *cpipe;
578	int catch;
579{
580	int error;
581
582	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
583	while (cpipe->pipe_state & PIPE_LOCKFL) {
584		cpipe->pipe_state |= PIPE_LWANT;
585		error = msleep(cpipe, PIPE_MTX(cpipe),
586		    catch ? (PRIBIO | PCATCH) : PRIBIO,
587		    "pipelk", 0);
588		if (error != 0)
589			return (error);
590	}
591	cpipe->pipe_state |= PIPE_LOCKFL;
592	return (0);
593}
594
595/*
596 * unlock a pipe I/O lock
597 */
598static __inline void
599pipeunlock(cpipe)
600	struct pipe *cpipe;
601{
602
603	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
604	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
605		("Unlocked pipe passed to pipeunlock"));
606	cpipe->pipe_state &= ~PIPE_LOCKFL;
607	if (cpipe->pipe_state & PIPE_LWANT) {
608		cpipe->pipe_state &= ~PIPE_LWANT;
609		wakeup(cpipe);
610	}
611}
612
613void
614pipeselwakeup(cpipe)
615	struct pipe *cpipe;
616{
617
618	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
619	if (cpipe->pipe_state & PIPE_SEL) {
620		selwakeuppri(&cpipe->pipe_sel, PSOCK);
621		if (!SEL_WAITING(&cpipe->pipe_sel))
622			cpipe->pipe_state &= ~PIPE_SEL;
623	}
624	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
625		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
626	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
627}
628
629/*
630 * Initialize and allocate VM and memory for pipe.  The structure
631 * will start out zero'd from the ctor, so we just manage the kmem.
632 */
633static void
634pipe_create(pipe, backing)
635	struct pipe *pipe;
636	int backing;
637{
638
639	if (backing) {
640		/*
641		 * Note that these functions can fail if pipe map is exhausted
642		 * (as a result of too many pipes created), but we ignore the
643		 * error as it is not fatal and could be provoked by
644		 * unprivileged users. The only consequence is worse performance
645		 * with given pipe.
646		 */
647		if (amountpipekva > maxpipekva / 2)
648			(void)pipespace_new(pipe, SMALL_PIPE_SIZE);
649		else
650			(void)pipespace_new(pipe, PIPE_SIZE);
651	}
652
653	pipe->pipe_ino = -1;
654}
655
656/* ARGSUSED */
657static int
658pipe_read(fp, uio, active_cred, flags, td)
659	struct file *fp;
660	struct uio *uio;
661	struct ucred *active_cred;
662	struct thread *td;
663	int flags;
664{
665	struct pipe *rpipe;
666	int error;
667	int nread = 0;
668	int size;
669
670	rpipe = fp->f_data;
671	PIPE_LOCK(rpipe);
672	++rpipe->pipe_busy;
673	error = pipelock(rpipe, 1);
674	if (error)
675		goto unlocked_error;
676
677#ifdef MAC
678	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
679	if (error)
680		goto locked_error;
681#endif
682	if (amountpipekva > (3 * maxpipekva) / 4) {
683		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
684			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
685			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
686			(piperesizeallowed == 1)) {
687			PIPE_UNLOCK(rpipe);
688			pipespace(rpipe, SMALL_PIPE_SIZE);
689			PIPE_LOCK(rpipe);
690		}
691	}
692
693	while (uio->uio_resid) {
694		/*
695		 * normal pipe buffer receive
696		 */
697		if (rpipe->pipe_buffer.cnt > 0) {
698			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
699			if (size > rpipe->pipe_buffer.cnt)
700				size = rpipe->pipe_buffer.cnt;
701			if (size > uio->uio_resid)
702				size = uio->uio_resid;
703
704			PIPE_UNLOCK(rpipe);
705			error = uiomove(
706			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
707			    size, uio);
708			PIPE_LOCK(rpipe);
709			if (error)
710				break;
711
712			rpipe->pipe_buffer.out += size;
713			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
714				rpipe->pipe_buffer.out = 0;
715
716			rpipe->pipe_buffer.cnt -= size;
717
718			/*
719			 * If there is no more to read in the pipe, reset
720			 * its pointers to the beginning.  This improves
721			 * cache hit stats.
722			 */
723			if (rpipe->pipe_buffer.cnt == 0) {
724				rpipe->pipe_buffer.in = 0;
725				rpipe->pipe_buffer.out = 0;
726			}
727			nread += size;
728#ifndef PIPE_NODIRECT
729		/*
730		 * Direct copy, bypassing a kernel buffer.
731		 */
732		} else if ((size = rpipe->pipe_map.cnt) &&
733			   (rpipe->pipe_state & PIPE_DIRECTW)) {
734			if (size > uio->uio_resid)
735				size = (u_int) uio->uio_resid;
736
737			PIPE_UNLOCK(rpipe);
738			error = uiomove_fromphys(rpipe->pipe_map.ms,
739			    rpipe->pipe_map.pos, size, uio);
740			PIPE_LOCK(rpipe);
741			if (error)
742				break;
743			nread += size;
744			rpipe->pipe_map.pos += size;
745			rpipe->pipe_map.cnt -= size;
746			if (rpipe->pipe_map.cnt == 0) {
747				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
748				wakeup(rpipe);
749			}
750#endif
751		} else {
752			/*
753			 * detect EOF condition
754			 * read returns 0 on EOF, no need to set error
755			 */
756			if (rpipe->pipe_state & PIPE_EOF)
757				break;
758
759			/*
760			 * If the "write-side" has been blocked, wake it up now.
761			 */
762			if (rpipe->pipe_state & PIPE_WANTW) {
763				rpipe->pipe_state &= ~PIPE_WANTW;
764				wakeup(rpipe);
765			}
766
767			/*
768			 * Break if some data was read.
769			 */
770			if (nread > 0)
771				break;
772
773			/*
774			 * Unlock the pipe buffer for our remaining processing.
775			 * We will either break out with an error or we will
776			 * sleep and relock to loop.
777			 */
778			pipeunlock(rpipe);
779
780			/*
781			 * Handle non-blocking mode operation or
782			 * wait for more data.
783			 */
784			if (fp->f_flag & FNONBLOCK) {
785				error = EAGAIN;
786			} else {
787				rpipe->pipe_state |= PIPE_WANTR;
788				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
789				    PRIBIO | PCATCH,
790				    "piperd", 0)) == 0)
791					error = pipelock(rpipe, 1);
792			}
793			if (error)
794				goto unlocked_error;
795		}
796	}
797#ifdef MAC
798locked_error:
799#endif
800	pipeunlock(rpipe);
801
802	/* XXX: should probably do this before getting any locks. */
803	if (error == 0)
804		vfs_timestamp(&rpipe->pipe_atime);
805unlocked_error:
806	--rpipe->pipe_busy;
807
808	/*
809	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
810	 */
811	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
812		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
813		wakeup(rpipe);
814	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
815		/*
816		 * Handle write blocking hysteresis.
817		 */
818		if (rpipe->pipe_state & PIPE_WANTW) {
819			rpipe->pipe_state &= ~PIPE_WANTW;
820			wakeup(rpipe);
821		}
822	}
823
824	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
825		pipeselwakeup(rpipe);
826
827	PIPE_UNLOCK(rpipe);
828	return (error);
829}
830
831#ifndef PIPE_NODIRECT
832/*
833 * Map the sending processes' buffer into kernel space and wire it.
834 * This is similar to a physical write operation.
835 */
836static int
837pipe_build_write_buffer(wpipe, uio)
838	struct pipe *wpipe;
839	struct uio *uio;
840{
841	u_int size;
842	int i;
843
844	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
845	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
846		("Clone attempt on non-direct write pipe!"));
847
848	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
849                size = wpipe->pipe_buffer.size;
850	else
851                size = uio->uio_iov->iov_len;
852
853	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
854	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
855	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
856		return (EFAULT);
857
858/*
859 * set up the control block
860 */
861	wpipe->pipe_map.npages = i;
862	wpipe->pipe_map.pos =
863	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
864	wpipe->pipe_map.cnt = size;
865
866/*
867 * and update the uio data
868 */
869
870	uio->uio_iov->iov_len -= size;
871	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
872	if (uio->uio_iov->iov_len == 0)
873		uio->uio_iov++;
874	uio->uio_resid -= size;
875	uio->uio_offset += size;
876	return (0);
877}
878
879/*
880 * unmap and unwire the process buffer
881 */
882static void
883pipe_destroy_write_buffer(wpipe)
884	struct pipe *wpipe;
885{
886
887	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
888	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
889	wpipe->pipe_map.npages = 0;
890}
891
892/*
893 * In the case of a signal, the writing process might go away.  This
894 * code copies the data into the circular buffer so that the source
895 * pages can be freed without loss of data.
896 */
897static void
898pipe_clone_write_buffer(wpipe)
899	struct pipe *wpipe;
900{
901	struct uio uio;
902	struct iovec iov;
903	int size;
904	int pos;
905
906	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
907	size = wpipe->pipe_map.cnt;
908	pos = wpipe->pipe_map.pos;
909
910	wpipe->pipe_buffer.in = size;
911	wpipe->pipe_buffer.out = 0;
912	wpipe->pipe_buffer.cnt = size;
913	wpipe->pipe_state &= ~PIPE_DIRECTW;
914
915	PIPE_UNLOCK(wpipe);
916	iov.iov_base = wpipe->pipe_buffer.buffer;
917	iov.iov_len = size;
918	uio.uio_iov = &iov;
919	uio.uio_iovcnt = 1;
920	uio.uio_offset = 0;
921	uio.uio_resid = size;
922	uio.uio_segflg = UIO_SYSSPACE;
923	uio.uio_rw = UIO_READ;
924	uio.uio_td = curthread;
925	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
926	PIPE_LOCK(wpipe);
927	pipe_destroy_write_buffer(wpipe);
928}
929
930/*
931 * This implements the pipe buffer write mechanism.  Note that only
932 * a direct write OR a normal pipe write can be pending at any given time.
933 * If there are any characters in the pipe buffer, the direct write will
934 * be deferred until the receiving process grabs all of the bytes from
935 * the pipe buffer.  Then the direct mapping write is set-up.
936 */
937static int
938pipe_direct_write(wpipe, uio)
939	struct pipe *wpipe;
940	struct uio *uio;
941{
942	int error;
943
944retry:
945	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
946	error = pipelock(wpipe, 1);
947	if (error != 0)
948		goto error1;
949	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
950		error = EPIPE;
951		pipeunlock(wpipe);
952		goto error1;
953	}
954	while (wpipe->pipe_state & PIPE_DIRECTW) {
955		if (wpipe->pipe_state & PIPE_WANTR) {
956			wpipe->pipe_state &= ~PIPE_WANTR;
957			wakeup(wpipe);
958		}
959		pipeselwakeup(wpipe);
960		wpipe->pipe_state |= PIPE_WANTW;
961		pipeunlock(wpipe);
962		error = msleep(wpipe, PIPE_MTX(wpipe),
963		    PRIBIO | PCATCH, "pipdww", 0);
964		if (error)
965			goto error1;
966		else
967			goto retry;
968	}
969	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
970	if (wpipe->pipe_buffer.cnt > 0) {
971		if (wpipe->pipe_state & PIPE_WANTR) {
972			wpipe->pipe_state &= ~PIPE_WANTR;
973			wakeup(wpipe);
974		}
975		pipeselwakeup(wpipe);
976		wpipe->pipe_state |= PIPE_WANTW;
977		pipeunlock(wpipe);
978		error = msleep(wpipe, PIPE_MTX(wpipe),
979		    PRIBIO | PCATCH, "pipdwc", 0);
980		if (error)
981			goto error1;
982		else
983			goto retry;
984	}
985
986	wpipe->pipe_state |= PIPE_DIRECTW;
987
988	PIPE_UNLOCK(wpipe);
989	error = pipe_build_write_buffer(wpipe, uio);
990	PIPE_LOCK(wpipe);
991	if (error) {
992		wpipe->pipe_state &= ~PIPE_DIRECTW;
993		pipeunlock(wpipe);
994		goto error1;
995	}
996
997	error = 0;
998	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
999		if (wpipe->pipe_state & PIPE_EOF) {
1000			pipe_destroy_write_buffer(wpipe);
1001			pipeselwakeup(wpipe);
1002			pipeunlock(wpipe);
1003			error = EPIPE;
1004			goto error1;
1005		}
1006		if (wpipe->pipe_state & PIPE_WANTR) {
1007			wpipe->pipe_state &= ~PIPE_WANTR;
1008			wakeup(wpipe);
1009		}
1010		pipeselwakeup(wpipe);
1011		wpipe->pipe_state |= PIPE_WANTW;
1012		pipeunlock(wpipe);
1013		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1014		    "pipdwt", 0);
1015		pipelock(wpipe, 0);
1016	}
1017
1018	if (wpipe->pipe_state & PIPE_EOF)
1019		error = EPIPE;
1020	if (wpipe->pipe_state & PIPE_DIRECTW) {
1021		/*
1022		 * this bit of trickery substitutes a kernel buffer for
1023		 * the process that might be going away.
1024		 */
1025		pipe_clone_write_buffer(wpipe);
1026	} else {
1027		pipe_destroy_write_buffer(wpipe);
1028	}
1029	pipeunlock(wpipe);
1030	return (error);
1031
1032error1:
1033	wakeup(wpipe);
1034	return (error);
1035}
1036#endif
1037
1038static int
1039pipe_write(fp, uio, active_cred, flags, td)
1040	struct file *fp;
1041	struct uio *uio;
1042	struct ucred *active_cred;
1043	struct thread *td;
1044	int flags;
1045{
1046	int error = 0;
1047	int desiredsize;
1048	ssize_t orig_resid;
1049	struct pipe *wpipe, *rpipe;
1050
1051	rpipe = fp->f_data;
1052	wpipe = PIPE_PEER(rpipe);
1053	PIPE_LOCK(rpipe);
1054	error = pipelock(wpipe, 1);
1055	if (error) {
1056		PIPE_UNLOCK(rpipe);
1057		return (error);
1058	}
1059	/*
1060	 * detect loss of pipe read side, issue SIGPIPE if lost.
1061	 */
1062	if (wpipe->pipe_present != PIPE_ACTIVE ||
1063	    (wpipe->pipe_state & PIPE_EOF)) {
1064		pipeunlock(wpipe);
1065		PIPE_UNLOCK(rpipe);
1066		return (EPIPE);
1067	}
1068#ifdef MAC
1069	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1070	if (error) {
1071		pipeunlock(wpipe);
1072		PIPE_UNLOCK(rpipe);
1073		return (error);
1074	}
1075#endif
1076	++wpipe->pipe_busy;
1077
1078	/* Choose a larger size if it's advantageous */
1079	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1080	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1081		if (piperesizeallowed != 1)
1082			break;
1083		if (amountpipekva > maxpipekva / 2)
1084			break;
1085		if (desiredsize == BIG_PIPE_SIZE)
1086			break;
1087		desiredsize = desiredsize * 2;
1088	}
1089
1090	/* Choose a smaller size if we're in a OOM situation */
1091	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1092		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1093		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1094		(piperesizeallowed == 1))
1095		desiredsize = SMALL_PIPE_SIZE;
1096
1097	/* Resize if the above determined that a new size was necessary */
1098	if ((desiredsize != wpipe->pipe_buffer.size) &&
1099		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1100		PIPE_UNLOCK(wpipe);
1101		pipespace(wpipe, desiredsize);
1102		PIPE_LOCK(wpipe);
1103	}
1104	if (wpipe->pipe_buffer.size == 0) {
1105		/*
1106		 * This can only happen for reverse direction use of pipes
1107		 * in a complete OOM situation.
1108		 */
1109		error = ENOMEM;
1110		--wpipe->pipe_busy;
1111		pipeunlock(wpipe);
1112		PIPE_UNLOCK(wpipe);
1113		return (error);
1114	}
1115
1116	pipeunlock(wpipe);
1117
1118	orig_resid = uio->uio_resid;
1119
1120	while (uio->uio_resid) {
1121		int space;
1122
1123		pipelock(wpipe, 0);
1124		if (wpipe->pipe_state & PIPE_EOF) {
1125			pipeunlock(wpipe);
1126			error = EPIPE;
1127			break;
1128		}
1129#ifndef PIPE_NODIRECT
1130		/*
1131		 * If the transfer is large, we can gain performance if
1132		 * we do process-to-process copies directly.
1133		 * If the write is non-blocking, we don't use the
1134		 * direct write mechanism.
1135		 *
1136		 * The direct write mechanism will detect the reader going
1137		 * away on us.
1138		 */
1139		if (uio->uio_segflg == UIO_USERSPACE &&
1140		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1141		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1142		    (fp->f_flag & FNONBLOCK) == 0) {
1143			pipeunlock(wpipe);
1144			error = pipe_direct_write(wpipe, uio);
1145			if (error)
1146				break;
1147			continue;
1148		}
1149#endif
1150
1151		/*
1152		 * Pipe buffered writes cannot be coincidental with
1153		 * direct writes.  We wait until the currently executing
1154		 * direct write is completed before we start filling the
1155		 * pipe buffer.  We break out if a signal occurs or the
1156		 * reader goes away.
1157		 */
1158		if (wpipe->pipe_state & PIPE_DIRECTW) {
1159			if (wpipe->pipe_state & PIPE_WANTR) {
1160				wpipe->pipe_state &= ~PIPE_WANTR;
1161				wakeup(wpipe);
1162			}
1163			pipeselwakeup(wpipe);
1164			wpipe->pipe_state |= PIPE_WANTW;
1165			pipeunlock(wpipe);
1166			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1167			    "pipbww", 0);
1168			if (error)
1169				break;
1170			else
1171				continue;
1172		}
1173
1174		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1175
1176		/* Writes of size <= PIPE_BUF must be atomic. */
1177		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1178			space = 0;
1179
1180		if (space > 0) {
1181			int size;	/* Transfer size */
1182			int segsize;	/* first segment to transfer */
1183
1184			/*
1185			 * Transfer size is minimum of uio transfer
1186			 * and free space in pipe buffer.
1187			 */
1188			if (space > uio->uio_resid)
1189				size = uio->uio_resid;
1190			else
1191				size = space;
1192			/*
1193			 * First segment to transfer is minimum of
1194			 * transfer size and contiguous space in
1195			 * pipe buffer.  If first segment to transfer
1196			 * is less than the transfer size, we've got
1197			 * a wraparound in the buffer.
1198			 */
1199			segsize = wpipe->pipe_buffer.size -
1200				wpipe->pipe_buffer.in;
1201			if (segsize > size)
1202				segsize = size;
1203
1204			/* Transfer first segment */
1205
1206			PIPE_UNLOCK(rpipe);
1207			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1208					segsize, uio);
1209			PIPE_LOCK(rpipe);
1210
1211			if (error == 0 && segsize < size) {
1212				KASSERT(wpipe->pipe_buffer.in + segsize ==
1213					wpipe->pipe_buffer.size,
1214					("Pipe buffer wraparound disappeared"));
1215				/*
1216				 * Transfer remaining part now, to
1217				 * support atomic writes.  Wraparound
1218				 * happened.
1219				 */
1220
1221				PIPE_UNLOCK(rpipe);
1222				error = uiomove(
1223				    &wpipe->pipe_buffer.buffer[0],
1224				    size - segsize, uio);
1225				PIPE_LOCK(rpipe);
1226			}
1227			if (error == 0) {
1228				wpipe->pipe_buffer.in += size;
1229				if (wpipe->pipe_buffer.in >=
1230				    wpipe->pipe_buffer.size) {
1231					KASSERT(wpipe->pipe_buffer.in ==
1232						size - segsize +
1233						wpipe->pipe_buffer.size,
1234						("Expected wraparound bad"));
1235					wpipe->pipe_buffer.in = size - segsize;
1236				}
1237
1238				wpipe->pipe_buffer.cnt += size;
1239				KASSERT(wpipe->pipe_buffer.cnt <=
1240					wpipe->pipe_buffer.size,
1241					("Pipe buffer overflow"));
1242			}
1243			pipeunlock(wpipe);
1244			if (error != 0)
1245				break;
1246		} else {
1247			/*
1248			 * If the "read-side" has been blocked, wake it up now.
1249			 */
1250			if (wpipe->pipe_state & PIPE_WANTR) {
1251				wpipe->pipe_state &= ~PIPE_WANTR;
1252				wakeup(wpipe);
1253			}
1254
1255			/*
1256			 * don't block on non-blocking I/O
1257			 */
1258			if (fp->f_flag & FNONBLOCK) {
1259				error = EAGAIN;
1260				pipeunlock(wpipe);
1261				break;
1262			}
1263
1264			/*
1265			 * We have no more space and have something to offer,
1266			 * wake up select/poll.
1267			 */
1268			pipeselwakeup(wpipe);
1269
1270			wpipe->pipe_state |= PIPE_WANTW;
1271			pipeunlock(wpipe);
1272			error = msleep(wpipe, PIPE_MTX(rpipe),
1273			    PRIBIO | PCATCH, "pipewr", 0);
1274			if (error != 0)
1275				break;
1276		}
1277	}
1278
1279	pipelock(wpipe, 0);
1280	--wpipe->pipe_busy;
1281
1282	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1283		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1284		wakeup(wpipe);
1285	} else if (wpipe->pipe_buffer.cnt > 0) {
1286		/*
1287		 * If we have put any characters in the buffer, we wake up
1288		 * the reader.
1289		 */
1290		if (wpipe->pipe_state & PIPE_WANTR) {
1291			wpipe->pipe_state &= ~PIPE_WANTR;
1292			wakeup(wpipe);
1293		}
1294	}
1295
1296	/*
1297	 * Don't return EPIPE if any byte was written.
1298	 * EINTR and other interrupts are handled by generic I/O layer.
1299	 * Do not pretend that I/O succeeded for obvious user error
1300	 * like EFAULT.
1301	 */
1302	if (uio->uio_resid != orig_resid && error == EPIPE)
1303		error = 0;
1304
1305	if (error == 0)
1306		vfs_timestamp(&wpipe->pipe_mtime);
1307
1308	/*
1309	 * We have something to offer,
1310	 * wake up select/poll.
1311	 */
1312	if (wpipe->pipe_buffer.cnt)
1313		pipeselwakeup(wpipe);
1314
1315	pipeunlock(wpipe);
1316	PIPE_UNLOCK(rpipe);
1317	return (error);
1318}
1319
1320/* ARGSUSED */
1321static int
1322pipe_truncate(fp, length, active_cred, td)
1323	struct file *fp;
1324	off_t length;
1325	struct ucred *active_cred;
1326	struct thread *td;
1327{
1328	struct pipe *cpipe;
1329	int error;
1330
1331	cpipe = fp->f_data;
1332	if (cpipe->pipe_state & PIPE_NAMED)
1333		error = vnops.fo_truncate(fp, length, active_cred, td);
1334	else
1335		error = invfo_truncate(fp, length, active_cred, td);
1336	return (error);
1337}
1338
1339/*
1340 * we implement a very minimal set of ioctls for compatibility with sockets.
1341 */
1342static int
1343pipe_ioctl(fp, cmd, data, active_cred, td)
1344	struct file *fp;
1345	u_long cmd;
1346	void *data;
1347	struct ucred *active_cred;
1348	struct thread *td;
1349{
1350	struct pipe *mpipe = fp->f_data;
1351	int error;
1352
1353	PIPE_LOCK(mpipe);
1354
1355#ifdef MAC
1356	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1357	if (error) {
1358		PIPE_UNLOCK(mpipe);
1359		return (error);
1360	}
1361#endif
1362
1363	error = 0;
1364	switch (cmd) {
1365
1366	case FIONBIO:
1367		break;
1368
1369	case FIOASYNC:
1370		if (*(int *)data) {
1371			mpipe->pipe_state |= PIPE_ASYNC;
1372		} else {
1373			mpipe->pipe_state &= ~PIPE_ASYNC;
1374		}
1375		break;
1376
1377	case FIONREAD:
1378		if (!(fp->f_flag & FREAD)) {
1379			*(int *)data = 0;
1380			PIPE_UNLOCK(mpipe);
1381			return (0);
1382		}
1383		if (mpipe->pipe_state & PIPE_DIRECTW)
1384			*(int *)data = mpipe->pipe_map.cnt;
1385		else
1386			*(int *)data = mpipe->pipe_buffer.cnt;
1387		break;
1388
1389	case FIOSETOWN:
1390		PIPE_UNLOCK(mpipe);
1391		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1392		goto out_unlocked;
1393
1394	case FIOGETOWN:
1395		*(int *)data = fgetown(&mpipe->pipe_sigio);
1396		break;
1397
1398	/* This is deprecated, FIOSETOWN should be used instead. */
1399	case TIOCSPGRP:
1400		PIPE_UNLOCK(mpipe);
1401		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1402		goto out_unlocked;
1403
1404	/* This is deprecated, FIOGETOWN should be used instead. */
1405	case TIOCGPGRP:
1406		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1407		break;
1408
1409	default:
1410		error = ENOTTY;
1411		break;
1412	}
1413	PIPE_UNLOCK(mpipe);
1414out_unlocked:
1415	return (error);
1416}
1417
1418static int
1419pipe_poll(fp, events, active_cred, td)
1420	struct file *fp;
1421	int events;
1422	struct ucred *active_cred;
1423	struct thread *td;
1424{
1425	struct pipe *rpipe;
1426	struct pipe *wpipe;
1427	int levents, revents;
1428#ifdef MAC
1429	int error;
1430#endif
1431
1432	revents = 0;
1433	rpipe = fp->f_data;
1434	wpipe = PIPE_PEER(rpipe);
1435	PIPE_LOCK(rpipe);
1436#ifdef MAC
1437	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1438	if (error)
1439		goto locked_error;
1440#endif
1441	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1442		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1443		    (rpipe->pipe_buffer.cnt > 0))
1444			revents |= events & (POLLIN | POLLRDNORM);
1445
1446	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1447		if (wpipe->pipe_present != PIPE_ACTIVE ||
1448		    (wpipe->pipe_state & PIPE_EOF) ||
1449		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1450		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1451			 wpipe->pipe_buffer.size == 0)))
1452			revents |= events & (POLLOUT | POLLWRNORM);
1453
1454	levents = events &
1455	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1456	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1457	    fp->f_seqcount == rpipe->pipe_wgen)
1458		events |= POLLINIGNEOF;
1459
1460	if ((events & POLLINIGNEOF) == 0) {
1461		if (rpipe->pipe_state & PIPE_EOF) {
1462			revents |= (events & (POLLIN | POLLRDNORM));
1463			if (wpipe->pipe_present != PIPE_ACTIVE ||
1464			    (wpipe->pipe_state & PIPE_EOF))
1465				revents |= POLLHUP;
1466		}
1467	}
1468
1469	if (revents == 0) {
1470		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1471			selrecord(td, &rpipe->pipe_sel);
1472			if (SEL_WAITING(&rpipe->pipe_sel))
1473				rpipe->pipe_state |= PIPE_SEL;
1474		}
1475
1476		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1477			selrecord(td, &wpipe->pipe_sel);
1478			if (SEL_WAITING(&wpipe->pipe_sel))
1479				wpipe->pipe_state |= PIPE_SEL;
1480		}
1481	}
1482#ifdef MAC
1483locked_error:
1484#endif
1485	PIPE_UNLOCK(rpipe);
1486
1487	return (revents);
1488}
1489
1490/*
1491 * We shouldn't need locks here as we're doing a read and this should
1492 * be a natural race.
1493 */
1494static int
1495pipe_stat(fp, ub, active_cred, td)
1496	struct file *fp;
1497	struct stat *ub;
1498	struct ucred *active_cred;
1499	struct thread *td;
1500{
1501	struct pipe *pipe;
1502	int new_unr;
1503#ifdef MAC
1504	int error;
1505#endif
1506
1507	pipe = fp->f_data;
1508	PIPE_LOCK(pipe);
1509#ifdef MAC
1510	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1511	if (error) {
1512		PIPE_UNLOCK(pipe);
1513		return (error);
1514	}
1515#endif
1516
1517	/* For named pipes ask the underlying filesystem. */
1518	if (pipe->pipe_state & PIPE_NAMED) {
1519		PIPE_UNLOCK(pipe);
1520		return (vnops.fo_stat(fp, ub, active_cred, td));
1521	}
1522
1523	/*
1524	 * Lazily allocate an inode number for the pipe.  Most pipe
1525	 * users do not call fstat(2) on the pipe, which means that
1526	 * postponing the inode allocation until it is must be
1527	 * returned to userland is useful.  If alloc_unr failed,
1528	 * assign st_ino zero instead of returning an error.
1529	 * Special pipe_ino values:
1530	 *  -1 - not yet initialized;
1531	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1532	 */
1533	if (pipe->pipe_ino == (ino_t)-1) {
1534		new_unr = alloc_unr(pipeino_unr);
1535		if (new_unr != -1)
1536			pipe->pipe_ino = new_unr;
1537		else
1538			pipe->pipe_ino = 0;
1539	}
1540	PIPE_UNLOCK(pipe);
1541
1542	bzero(ub, sizeof(*ub));
1543	ub->st_mode = S_IFIFO;
1544	ub->st_blksize = PAGE_SIZE;
1545	if (pipe->pipe_state & PIPE_DIRECTW)
1546		ub->st_size = pipe->pipe_map.cnt;
1547	else
1548		ub->st_size = pipe->pipe_buffer.cnt;
1549	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1550	ub->st_atim = pipe->pipe_atime;
1551	ub->st_mtim = pipe->pipe_mtime;
1552	ub->st_ctim = pipe->pipe_ctime;
1553	ub->st_uid = fp->f_cred->cr_uid;
1554	ub->st_gid = fp->f_cred->cr_gid;
1555	ub->st_dev = pipedev_ino;
1556	ub->st_ino = pipe->pipe_ino;
1557	/*
1558	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1559	 */
1560	return (0);
1561}
1562
1563/* ARGSUSED */
1564static int
1565pipe_close(fp, td)
1566	struct file *fp;
1567	struct thread *td;
1568{
1569
1570	if (fp->f_vnode != NULL)
1571		return vnops.fo_close(fp, td);
1572	fp->f_ops = &badfileops;
1573	pipe_dtor(fp->f_data);
1574	fp->f_data = NULL;
1575	return (0);
1576}
1577
1578static int
1579pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1580{
1581	struct pipe *cpipe;
1582	int error;
1583
1584	cpipe = fp->f_data;
1585	if (cpipe->pipe_state & PIPE_NAMED)
1586		error = vn_chmod(fp, mode, active_cred, td);
1587	else
1588		error = invfo_chmod(fp, mode, active_cred, td);
1589	return (error);
1590}
1591
1592static int
1593pipe_chown(fp, uid, gid, active_cred, td)
1594	struct file *fp;
1595	uid_t uid;
1596	gid_t gid;
1597	struct ucred *active_cred;
1598	struct thread *td;
1599{
1600	struct pipe *cpipe;
1601	int error;
1602
1603	cpipe = fp->f_data;
1604	if (cpipe->pipe_state & PIPE_NAMED)
1605		error = vn_chown(fp, uid, gid, active_cred, td);
1606	else
1607		error = invfo_chown(fp, uid, gid, active_cred, td);
1608	return (error);
1609}
1610
1611static int
1612pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1613{
1614	struct pipe *pi;
1615
1616	if (fp->f_type == DTYPE_FIFO)
1617		return (vn_fill_kinfo(fp, kif, fdp));
1618	kif->kf_type = KF_TYPE_PIPE;
1619	pi = fp->f_data;
1620	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1621	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1622	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1623	return (0);
1624}
1625
1626static void
1627pipe_free_kmem(cpipe)
1628	struct pipe *cpipe;
1629{
1630
1631	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1632	    ("pipe_free_kmem: pipe mutex locked"));
1633
1634	if (cpipe->pipe_buffer.buffer != NULL) {
1635		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1636		vm_map_remove(pipe_map,
1637		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1638		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1639		cpipe->pipe_buffer.buffer = NULL;
1640	}
1641#ifndef PIPE_NODIRECT
1642	{
1643		cpipe->pipe_map.cnt = 0;
1644		cpipe->pipe_map.pos = 0;
1645		cpipe->pipe_map.npages = 0;
1646	}
1647#endif
1648}
1649
1650/*
1651 * shutdown the pipe
1652 */
1653static void
1654pipeclose(cpipe)
1655	struct pipe *cpipe;
1656{
1657	struct pipepair *pp;
1658	struct pipe *ppipe;
1659
1660	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1661
1662	PIPE_LOCK(cpipe);
1663	pipelock(cpipe, 0);
1664	pp = cpipe->pipe_pair;
1665
1666	pipeselwakeup(cpipe);
1667
1668	/*
1669	 * If the other side is blocked, wake it up saying that
1670	 * we want to close it down.
1671	 */
1672	cpipe->pipe_state |= PIPE_EOF;
1673	while (cpipe->pipe_busy) {
1674		wakeup(cpipe);
1675		cpipe->pipe_state |= PIPE_WANT;
1676		pipeunlock(cpipe);
1677		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1678		pipelock(cpipe, 0);
1679	}
1680
1681
1682	/*
1683	 * Disconnect from peer, if any.
1684	 */
1685	ppipe = cpipe->pipe_peer;
1686	if (ppipe->pipe_present == PIPE_ACTIVE) {
1687		pipeselwakeup(ppipe);
1688
1689		ppipe->pipe_state |= PIPE_EOF;
1690		wakeup(ppipe);
1691		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1692	}
1693
1694	/*
1695	 * Mark this endpoint as free.  Release kmem resources.  We
1696	 * don't mark this endpoint as unused until we've finished
1697	 * doing that, or the pipe might disappear out from under
1698	 * us.
1699	 */
1700	PIPE_UNLOCK(cpipe);
1701	pipe_free_kmem(cpipe);
1702	PIPE_LOCK(cpipe);
1703	cpipe->pipe_present = PIPE_CLOSING;
1704	pipeunlock(cpipe);
1705
1706	/*
1707	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1708	 * PIPE_FINALIZED, that allows other end to free the
1709	 * pipe_pair, only after the knotes are completely dismantled.
1710	 */
1711	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1712	cpipe->pipe_present = PIPE_FINALIZED;
1713	seldrain(&cpipe->pipe_sel);
1714	knlist_destroy(&cpipe->pipe_sel.si_note);
1715
1716	/*
1717	 * If both endpoints are now closed, release the memory for the
1718	 * pipe pair.  If not, unlock.
1719	 */
1720	if (ppipe->pipe_present == PIPE_FINALIZED) {
1721		PIPE_UNLOCK(cpipe);
1722#ifdef MAC
1723		mac_pipe_destroy(pp);
1724#endif
1725		uma_zfree(pipe_zone, cpipe->pipe_pair);
1726	} else
1727		PIPE_UNLOCK(cpipe);
1728}
1729
1730/*ARGSUSED*/
1731static int
1732pipe_kqfilter(struct file *fp, struct knote *kn)
1733{
1734	struct pipe *cpipe;
1735
1736	/*
1737	 * If a filter is requested that is not supported by this file
1738	 * descriptor, don't return an error, but also don't ever generate an
1739	 * event.
1740	 */
1741	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1742		kn->kn_fop = &pipe_nfiltops;
1743		return (0);
1744	}
1745	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1746		kn->kn_fop = &pipe_nfiltops;
1747		return (0);
1748	}
1749	cpipe = fp->f_data;
1750	PIPE_LOCK(cpipe);
1751	switch (kn->kn_filter) {
1752	case EVFILT_READ:
1753		kn->kn_fop = &pipe_rfiltops;
1754		break;
1755	case EVFILT_WRITE:
1756		kn->kn_fop = &pipe_wfiltops;
1757		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1758			/* other end of pipe has been closed */
1759			PIPE_UNLOCK(cpipe);
1760			return (EPIPE);
1761		}
1762		cpipe = PIPE_PEER(cpipe);
1763		break;
1764	default:
1765		PIPE_UNLOCK(cpipe);
1766		return (EINVAL);
1767	}
1768
1769	kn->kn_hook = cpipe;
1770	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1771	PIPE_UNLOCK(cpipe);
1772	return (0);
1773}
1774
1775static void
1776filt_pipedetach(struct knote *kn)
1777{
1778	struct pipe *cpipe = kn->kn_hook;
1779
1780	PIPE_LOCK(cpipe);
1781	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1782	PIPE_UNLOCK(cpipe);
1783}
1784
1785/*ARGSUSED*/
1786static int
1787filt_piperead(struct knote *kn, long hint)
1788{
1789	struct pipe *rpipe = kn->kn_hook;
1790	struct pipe *wpipe = rpipe->pipe_peer;
1791	int ret;
1792
1793	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1794	kn->kn_data = rpipe->pipe_buffer.cnt;
1795	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1796		kn->kn_data = rpipe->pipe_map.cnt;
1797
1798	if ((rpipe->pipe_state & PIPE_EOF) ||
1799	    wpipe->pipe_present != PIPE_ACTIVE ||
1800	    (wpipe->pipe_state & PIPE_EOF)) {
1801		kn->kn_flags |= EV_EOF;
1802		return (1);
1803	}
1804	ret = kn->kn_data > 0;
1805	return ret;
1806}
1807
1808/*ARGSUSED*/
1809static int
1810filt_pipewrite(struct knote *kn, long hint)
1811{
1812	struct pipe *wpipe;
1813
1814	wpipe = kn->kn_hook;
1815	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1816	if (wpipe->pipe_present != PIPE_ACTIVE ||
1817	    (wpipe->pipe_state & PIPE_EOF)) {
1818		kn->kn_data = 0;
1819		kn->kn_flags |= EV_EOF;
1820		return (1);
1821	}
1822	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1823	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1824	if (wpipe->pipe_state & PIPE_DIRECTW)
1825		kn->kn_data = 0;
1826
1827	return (kn->kn_data >= PIPE_BUF);
1828}
1829
1830static void
1831filt_pipedetach_notsup(struct knote *kn)
1832{
1833
1834}
1835
1836static int
1837filt_pipenotsup(struct knote *kn, long hint)
1838{
1839
1840	return (0);
1841}
1842