1/*-
2 * Copyright (c) 2008 Isilon Systems, Inc.
3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4 * Copyright (c) 1998 Berkeley Software Design, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Berkeley Software Design Inc's name may not be used to endorse or
16 *    promote products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33 */
34
35/*
36 * Implementation of the `witness' lock verifier.  Originally implemented for
37 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38 * classes in FreeBSD.
39 */
40
41/*
42 *	Main Entry: witness
43 *	Pronunciation: 'wit-n&s
44 *	Function: noun
45 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46 *	    testimony, witness, from 2wit
47 *	Date: before 12th century
48 *	1 : attestation of a fact or event : TESTIMONY
49 *	2 : one that gives evidence; specifically : one who testifies in
50 *	    a cause or before a judicial tribunal
51 *	3 : one asked to be present at a transaction so as to be able to
52 *	    testify to its having taken place
53 *	4 : one who has personal knowledge of something
54 *	5 a : something serving as evidence or proof : SIGN
55 *	  b : public affirmation by word or example of usually
56 *	      religious faith or conviction <the heroic witness to divine
57 *	      life -- Pilot>
58 *	6 capitalized : a member of the Jehovah's Witnesses
59 */
60
61/*
62 * Special rules concerning Giant and lock orders:
63 *
64 * 1) Giant must be acquired before any other mutexes.  Stated another way,
65 *    no other mutex may be held when Giant is acquired.
66 *
67 * 2) Giant must be released when blocking on a sleepable lock.
68 *
69 * This rule is less obvious, but is a result of Giant providing the same
70 * semantics as spl().  Basically, when a thread sleeps, it must release
71 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72 * 2).
73 *
74 * 3) Giant may be acquired before or after sleepable locks.
75 *
76 * This rule is also not quite as obvious.  Giant may be acquired after
77 * a sleepable lock because it is a non-sleepable lock and non-sleepable
78 * locks may always be acquired while holding a sleepable lock.  The second
79 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83 * execute.  Thus, acquiring Giant both before and after a sleepable lock
84 * will not result in a lock order reversal.
85 */
86
87#include <sys/cdefs.h>
88__FBSDID("$FreeBSD: releng/11.0/sys/kern/subr_witness.c 298819 2016-04-29 22:15:33Z pfg $");
89
90#include "opt_ddb.h"
91#include "opt_hwpmc_hooks.h"
92#include "opt_stack.h"
93#include "opt_witness.h"
94
95#include <sys/param.h>
96#include <sys/bus.h>
97#include <sys/kdb.h>
98#include <sys/kernel.h>
99#include <sys/ktr.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mutex.h>
103#include <sys/priv.h>
104#include <sys/proc.h>
105#include <sys/sbuf.h>
106#include <sys/sched.h>
107#include <sys/stack.h>
108#include <sys/sysctl.h>
109#include <sys/syslog.h>
110#include <sys/systm.h>
111
112#ifdef DDB
113#include <ddb/ddb.h>
114#endif
115
116#include <machine/stdarg.h>
117
118#if !defined(DDB) && !defined(STACK)
119#error "DDB or STACK options are required for WITNESS"
120#endif
121
122/* Note that these traces do not work with KTR_ALQ. */
123#if 0
124#define	KTR_WITNESS	KTR_SUBSYS
125#else
126#define	KTR_WITNESS	0
127#endif
128
129#define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
130#define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
131#define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
132
133/* Define this to check for blessed mutexes */
134#undef BLESSING
135
136#ifndef WITNESS_COUNT
137#define	WITNESS_COUNT 		1536
138#endif
139#define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
140#define	WITNESS_PENDLIST	(1024 + MAXCPU)
141
142/* Allocate 256 KB of stack data space */
143#define	WITNESS_LO_DATA_COUNT	2048
144
145/* Prime, gives load factor of ~2 at full load */
146#define	WITNESS_LO_HASH_SIZE	1021
147
148/*
149 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150 * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151 * probably be safe for the most part, but it's still a SWAG.
152 */
153#define	LOCK_NCHILDREN	5
154#define	LOCK_CHILDCOUNT	2048
155
156#define	MAX_W_NAME	64
157
158#define	FULLGRAPH_SBUF_SIZE	512
159
160/*
161 * These flags go in the witness relationship matrix and describe the
162 * relationship between any two struct witness objects.
163 */
164#define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
165#define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166#define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167#define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168#define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169#define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170#define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171#define	WITNESS_RELATED_MASK						\
172	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173#define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174					  * observed. */
175#define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176#define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177#define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178
179/* Descendant to ancestor flags */
180#define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
181
182/* Ancestor to descendant flags */
183#define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
184
185#define	WITNESS_INDEX_ASSERT(i)						\
186	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187
188static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189
190/*
191 * Lock instances.  A lock instance is the data associated with a lock while
192 * it is held by witness.  For example, a lock instance will hold the
193 * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194 * are held in a per-cpu list while sleep locks are held in per-thread list.
195 */
196struct lock_instance {
197	struct lock_object	*li_lock;
198	const char		*li_file;
199	int			li_line;
200	u_int			li_flags;
201};
202
203/*
204 * A simple list type used to build the list of locks held by a thread
205 * or CPU.  We can't simply embed the list in struct lock_object since a
206 * lock may be held by more than one thread if it is a shared lock.  Locks
207 * are added to the head of the list, so we fill up each list entry from
208 * "the back" logically.  To ease some of the arithmetic, we actually fill
209 * in each list entry the normal way (children[0] then children[1], etc.) but
210 * when we traverse the list we read children[count-1] as the first entry
211 * down to children[0] as the final entry.
212 */
213struct lock_list_entry {
214	struct lock_list_entry	*ll_next;
215	struct lock_instance	ll_children[LOCK_NCHILDREN];
216	u_int			ll_count;
217};
218
219/*
220 * The main witness structure. One of these per named lock type in the system
221 * (for example, "vnode interlock").
222 */
223struct witness {
224	char  			w_name[MAX_W_NAME];
225	uint32_t 		w_index;  /* Index in the relationship matrix */
226	struct lock_class	*w_class;
227	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
228	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
229	struct witness		*w_hash_next; /* Linked list in hash buckets. */
230	const char		*w_file; /* File where last acquired */
231	uint32_t 		w_line; /* Line where last acquired */
232	uint32_t 		w_refcount;
233	uint16_t 		w_num_ancestors; /* direct/indirect
234						  * ancestor count */
235	uint16_t 		w_num_descendants; /* direct/indirect
236						    * descendant count */
237	int16_t 		w_ddb_level;
238	unsigned		w_displayed:1;
239	unsigned		w_reversed:1;
240};
241
242STAILQ_HEAD(witness_list, witness);
243
244/*
245 * The witness hash table. Keys are witness names (const char *), elements are
246 * witness objects (struct witness *).
247 */
248struct witness_hash {
249	struct witness	*wh_array[WITNESS_HASH_SIZE];
250	uint32_t	wh_size;
251	uint32_t	wh_count;
252};
253
254/*
255 * Key type for the lock order data hash table.
256 */
257struct witness_lock_order_key {
258	uint16_t	from;
259	uint16_t	to;
260};
261
262struct witness_lock_order_data {
263	struct stack			wlod_stack;
264	struct witness_lock_order_key	wlod_key;
265	struct witness_lock_order_data	*wlod_next;
266};
267
268/*
269 * The witness lock order data hash table. Keys are witness index tuples
270 * (struct witness_lock_order_key), elements are lock order data objects
271 * (struct witness_lock_order_data).
272 */
273struct witness_lock_order_hash {
274	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
275	u_int	wloh_size;
276	u_int	wloh_count;
277};
278
279#ifdef BLESSING
280struct witness_blessed {
281	const char	*b_lock1;
282	const char	*b_lock2;
283};
284#endif
285
286struct witness_pendhelp {
287	const char		*wh_type;
288	struct lock_object	*wh_lock;
289};
290
291struct witness_order_list_entry {
292	const char		*w_name;
293	struct lock_class	*w_class;
294};
295
296/*
297 * Returns 0 if one of the locks is a spin lock and the other is not.
298 * Returns 1 otherwise.
299 */
300static __inline int
301witness_lock_type_equal(struct witness *w1, struct witness *w2)
302{
303
304	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
305		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
306}
307
308static __inline int
309witness_lock_order_key_equal(const struct witness_lock_order_key *a,
310    const struct witness_lock_order_key *b)
311{
312
313	return (a->from == b->from && a->to == b->to);
314}
315
316static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
317		    const char *fname);
318static void	adopt(struct witness *parent, struct witness *child);
319#ifdef BLESSING
320static int	blessed(struct witness *, struct witness *);
321#endif
322static void	depart(struct witness *w);
323static struct witness	*enroll(const char *description,
324			    struct lock_class *lock_class);
325static struct lock_instance	*find_instance(struct lock_list_entry *list,
326				    const struct lock_object *lock);
327static int	isitmychild(struct witness *parent, struct witness *child);
328static int	isitmydescendant(struct witness *parent, struct witness *child);
329static void	itismychild(struct witness *parent, struct witness *child);
330static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
331static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
332static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
333static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
334static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
335#ifdef DDB
336static void	witness_ddb_compute_levels(void);
337static void	witness_ddb_display(int(*)(const char *fmt, ...));
338static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
339		    struct witness *, int indent);
340static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
341		    struct witness_list *list);
342static void	witness_ddb_level_descendants(struct witness *parent, int l);
343static void	witness_ddb_list(struct thread *td);
344#endif
345static void	witness_debugger(int cond, const char *msg);
346static void	witness_free(struct witness *m);
347static struct witness	*witness_get(void);
348static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
349static struct witness	*witness_hash_get(const char *key);
350static void	witness_hash_put(struct witness *w);
351static void	witness_init_hash_tables(void);
352static void	witness_increment_graph_generation(void);
353static void	witness_lock_list_free(struct lock_list_entry *lle);
354static struct lock_list_entry	*witness_lock_list_get(void);
355static int	witness_lock_order_add(struct witness *parent,
356		    struct witness *child);
357static int	witness_lock_order_check(struct witness *parent,
358		    struct witness *child);
359static struct witness_lock_order_data	*witness_lock_order_get(
360					    struct witness *parent,
361					    struct witness *child);
362static void	witness_list_lock(struct lock_instance *instance,
363		    int (*prnt)(const char *fmt, ...));
364static int	witness_output(const char *fmt, ...) __printflike(1, 2);
365static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
366static void	witness_setflag(struct lock_object *lock, int flag, int set);
367
368static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
369    "Witness Locking");
370
371/*
372 * If set to 0, lock order checking is disabled.  If set to -1,
373 * witness is completely disabled.  Otherwise witness performs full
374 * lock order checking for all locks.  At runtime, lock order checking
375 * may be toggled.  However, witness cannot be reenabled once it is
376 * completely disabled.
377 */
378static int witness_watch = 1;
379SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
380    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
381
382#ifdef KDB
383/*
384 * When KDB is enabled and witness_kdb is 1, it will cause the system
385 * to drop into kdebug() when:
386 *	- a lock hierarchy violation occurs
387 *	- locks are held when going to sleep.
388 */
389#ifdef WITNESS_KDB
390int	witness_kdb = 1;
391#else
392int	witness_kdb = 0;
393#endif
394SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
395#endif /* KDB */
396
397#if defined(DDB) || defined(KDB)
398/*
399 * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
400 * to print a stack trace:
401 *	- a lock hierarchy violation occurs
402 *	- locks are held when going to sleep.
403 */
404int	witness_trace = 1;
405SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
406#endif /* DDB || KDB */
407
408#ifdef WITNESS_SKIPSPIN
409int	witness_skipspin = 1;
410#else
411int	witness_skipspin = 0;
412#endif
413SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
414
415int badstack_sbuf_size;
416
417int witness_count = WITNESS_COUNT;
418SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
419    &witness_count, 0, "");
420
421/*
422 * Output channel for witness messages.  By default we print to the console.
423 */
424enum witness_channel {
425	WITNESS_CONSOLE,
426	WITNESS_LOG,
427	WITNESS_NONE,
428};
429
430static enum witness_channel witness_channel = WITNESS_CONSOLE;
431SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
432    CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
433    "Output channel for warnings");
434
435/*
436 * Call this to print out the relations between locks.
437 */
438SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
439    NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
440
441/*
442 * Call this to print out the witness faulty stacks.
443 */
444SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
445    NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
446
447static struct mtx w_mtx;
448
449/* w_list */
450static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
451static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
452
453/* w_typelist */
454static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
455static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
456
457/* lock list */
458static struct lock_list_entry *w_lock_list_free = NULL;
459static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
460static u_int pending_cnt;
461
462static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
463SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
464SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
465SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
466    "");
467
468static struct witness *w_data;
469static uint8_t **w_rmatrix;
470static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
471static struct witness_hash w_hash;	/* The witness hash table. */
472
473/* The lock order data hash */
474static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
475static struct witness_lock_order_data *w_lofree = NULL;
476static struct witness_lock_order_hash w_lohash;
477static int w_max_used_index = 0;
478static unsigned int w_generation = 0;
479static const char w_notrunning[] = "Witness not running\n";
480static const char w_stillcold[] = "Witness is still cold\n";
481
482
483static struct witness_order_list_entry order_lists[] = {
484	/*
485	 * sx locks
486	 */
487	{ "proctree", &lock_class_sx },
488	{ "allproc", &lock_class_sx },
489	{ "allprison", &lock_class_sx },
490	{ NULL, NULL },
491	/*
492	 * Various mutexes
493	 */
494	{ "Giant", &lock_class_mtx_sleep },
495	{ "pipe mutex", &lock_class_mtx_sleep },
496	{ "sigio lock", &lock_class_mtx_sleep },
497	{ "process group", &lock_class_mtx_sleep },
498	{ "process lock", &lock_class_mtx_sleep },
499	{ "session", &lock_class_mtx_sleep },
500	{ "uidinfo hash", &lock_class_rw },
501#ifdef	HWPMC_HOOKS
502	{ "pmc-sleep", &lock_class_mtx_sleep },
503#endif
504	{ "time lock", &lock_class_mtx_sleep },
505	{ NULL, NULL },
506	/*
507	 * umtx
508	 */
509	{ "umtx lock", &lock_class_mtx_sleep },
510	{ NULL, NULL },
511	/*
512	 * Sockets
513	 */
514	{ "accept", &lock_class_mtx_sleep },
515	{ "so_snd", &lock_class_mtx_sleep },
516	{ "so_rcv", &lock_class_mtx_sleep },
517	{ "sellck", &lock_class_mtx_sleep },
518	{ NULL, NULL },
519	/*
520	 * Routing
521	 */
522	{ "so_rcv", &lock_class_mtx_sleep },
523	{ "radix node head", &lock_class_rw },
524	{ "rtentry", &lock_class_mtx_sleep },
525	{ "ifaddr", &lock_class_mtx_sleep },
526	{ NULL, NULL },
527	/*
528	 * IPv4 multicast:
529	 * protocol locks before interface locks, after UDP locks.
530	 */
531	{ "udpinp", &lock_class_rw },
532	{ "in_multi_mtx", &lock_class_mtx_sleep },
533	{ "igmp_mtx", &lock_class_mtx_sleep },
534	{ "if_addr_lock", &lock_class_rw },
535	{ NULL, NULL },
536	/*
537	 * IPv6 multicast:
538	 * protocol locks before interface locks, after UDP locks.
539	 */
540	{ "udpinp", &lock_class_rw },
541	{ "in6_multi_mtx", &lock_class_mtx_sleep },
542	{ "mld_mtx", &lock_class_mtx_sleep },
543	{ "if_addr_lock", &lock_class_rw },
544	{ NULL, NULL },
545	/*
546	 * UNIX Domain Sockets
547	 */
548	{ "unp_link_rwlock", &lock_class_rw },
549	{ "unp_list_lock", &lock_class_mtx_sleep },
550	{ "unp", &lock_class_mtx_sleep },
551	{ "so_snd", &lock_class_mtx_sleep },
552	{ NULL, NULL },
553	/*
554	 * UDP/IP
555	 */
556	{ "udp", &lock_class_rw },
557	{ "udpinp", &lock_class_rw },
558	{ "so_snd", &lock_class_mtx_sleep },
559	{ NULL, NULL },
560	/*
561	 * TCP/IP
562	 */
563	{ "tcp", &lock_class_rw },
564	{ "tcpinp", &lock_class_rw },
565	{ "so_snd", &lock_class_mtx_sleep },
566	{ NULL, NULL },
567	/*
568	 * BPF
569	 */
570	{ "bpf global lock", &lock_class_mtx_sleep },
571	{ "bpf interface lock", &lock_class_rw },
572	{ "bpf cdev lock", &lock_class_mtx_sleep },
573	{ NULL, NULL },
574	/*
575	 * NFS server
576	 */
577	{ "nfsd_mtx", &lock_class_mtx_sleep },
578	{ "so_snd", &lock_class_mtx_sleep },
579	{ NULL, NULL },
580
581	/*
582	 * IEEE 802.11
583	 */
584	{ "802.11 com lock", &lock_class_mtx_sleep},
585	{ NULL, NULL },
586	/*
587	 * Network drivers
588	 */
589	{ "network driver", &lock_class_mtx_sleep},
590	{ NULL, NULL },
591
592	/*
593	 * Netgraph
594	 */
595	{ "ng_node", &lock_class_mtx_sleep },
596	{ "ng_worklist", &lock_class_mtx_sleep },
597	{ NULL, NULL },
598	/*
599	 * CDEV
600	 */
601	{ "vm map (system)", &lock_class_mtx_sleep },
602	{ "vm page queue", &lock_class_mtx_sleep },
603	{ "vnode interlock", &lock_class_mtx_sleep },
604	{ "cdev", &lock_class_mtx_sleep },
605	{ NULL, NULL },
606	/*
607	 * VM
608	 */
609	{ "vm map (user)", &lock_class_sx },
610	{ "vm object", &lock_class_rw },
611	{ "vm page", &lock_class_mtx_sleep },
612	{ "vm page queue", &lock_class_mtx_sleep },
613	{ "pmap pv global", &lock_class_rw },
614	{ "pmap", &lock_class_mtx_sleep },
615	{ "pmap pv list", &lock_class_rw },
616	{ "vm page free queue", &lock_class_mtx_sleep },
617	{ NULL, NULL },
618	/*
619	 * kqueue/VFS interaction
620	 */
621	{ "kqueue", &lock_class_mtx_sleep },
622	{ "struct mount mtx", &lock_class_mtx_sleep },
623	{ "vnode interlock", &lock_class_mtx_sleep },
624	{ NULL, NULL },
625	/*
626	 * ZFS locking
627	 */
628	{ "dn->dn_mtx", &lock_class_sx },
629	{ "dr->dt.di.dr_mtx", &lock_class_sx },
630	{ "db->db_mtx", &lock_class_sx },
631	{ NULL, NULL },
632	/*
633	 * spin locks
634	 */
635#ifdef SMP
636	{ "ap boot", &lock_class_mtx_spin },
637#endif
638	{ "rm.mutex_mtx", &lock_class_mtx_spin },
639	{ "sio", &lock_class_mtx_spin },
640	{ "scrlock", &lock_class_mtx_spin },
641#ifdef __i386__
642	{ "cy", &lock_class_mtx_spin },
643#endif
644#ifdef __sparc64__
645	{ "pcib_mtx", &lock_class_mtx_spin },
646	{ "rtc_mtx", &lock_class_mtx_spin },
647#endif
648	{ "scc_hwmtx", &lock_class_mtx_spin },
649	{ "uart_hwmtx", &lock_class_mtx_spin },
650	{ "fast_taskqueue", &lock_class_mtx_spin },
651	{ "intr table", &lock_class_mtx_spin },
652#ifdef	HWPMC_HOOKS
653	{ "pmc-per-proc", &lock_class_mtx_spin },
654#endif
655	{ "process slock", &lock_class_mtx_spin },
656	{ "sleepq chain", &lock_class_mtx_spin },
657	{ "rm_spinlock", &lock_class_mtx_spin },
658	{ "turnstile chain", &lock_class_mtx_spin },
659	{ "turnstile lock", &lock_class_mtx_spin },
660	{ "sched lock", &lock_class_mtx_spin },
661	{ "td_contested", &lock_class_mtx_spin },
662	{ "callout", &lock_class_mtx_spin },
663	{ "entropy harvest mutex", &lock_class_mtx_spin },
664	{ "syscons video lock", &lock_class_mtx_spin },
665#ifdef SMP
666	{ "smp rendezvous", &lock_class_mtx_spin },
667#endif
668#ifdef __powerpc__
669	{ "tlb0", &lock_class_mtx_spin },
670#endif
671	/*
672	 * leaf locks
673	 */
674	{ "intrcnt", &lock_class_mtx_spin },
675	{ "icu", &lock_class_mtx_spin },
676#if defined(SMP) && defined(__sparc64__)
677	{ "ipi", &lock_class_mtx_spin },
678#endif
679#ifdef __i386__
680	{ "allpmaps", &lock_class_mtx_spin },
681	{ "descriptor tables", &lock_class_mtx_spin },
682#endif
683	{ "clk", &lock_class_mtx_spin },
684	{ "cpuset", &lock_class_mtx_spin },
685	{ "mprof lock", &lock_class_mtx_spin },
686	{ "zombie lock", &lock_class_mtx_spin },
687	{ "ALD Queue", &lock_class_mtx_spin },
688#if defined(__i386__) || defined(__amd64__)
689	{ "pcicfg", &lock_class_mtx_spin },
690	{ "NDIS thread lock", &lock_class_mtx_spin },
691#endif
692	{ "tw_osl_io_lock", &lock_class_mtx_spin },
693	{ "tw_osl_q_lock", &lock_class_mtx_spin },
694	{ "tw_cl_io_lock", &lock_class_mtx_spin },
695	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
696	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
697#ifdef	HWPMC_HOOKS
698	{ "pmc-leaf", &lock_class_mtx_spin },
699#endif
700	{ "blocked lock", &lock_class_mtx_spin },
701	{ NULL, NULL },
702	{ NULL, NULL }
703};
704
705#ifdef BLESSING
706/*
707 * Pairs of locks which have been blessed
708 * Don't complain about order problems with blessed locks
709 */
710static struct witness_blessed blessed_list[] = {
711};
712#endif
713
714/*
715 * This global is set to 0 once it becomes safe to use the witness code.
716 */
717static int witness_cold = 1;
718
719/*
720 * This global is set to 1 once the static lock orders have been enrolled
721 * so that a warning can be issued for any spin locks enrolled later.
722 */
723static int witness_spin_warn = 0;
724
725/* Trim useless garbage from filenames. */
726static const char *
727fixup_filename(const char *file)
728{
729
730	if (file == NULL)
731		return (NULL);
732	while (strncmp(file, "../", 3) == 0)
733		file += 3;
734	return (file);
735}
736
737/*
738 * The WITNESS-enabled diagnostic code.  Note that the witness code does
739 * assume that the early boot is single-threaded at least until after this
740 * routine is completed.
741 */
742static void
743witness_initialize(void *dummy __unused)
744{
745	struct lock_object *lock;
746	struct witness_order_list_entry *order;
747	struct witness *w, *w1;
748	int i;
749
750	w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS,
751	    M_WAITOK | M_ZERO);
752
753	w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1),
754	    M_WITNESS, M_WAITOK | M_ZERO);
755
756	for (i = 0; i < witness_count + 1; i++) {
757		w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) *
758		    (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO);
759	}
760	badstack_sbuf_size = witness_count * 256;
761
762	/*
763	 * We have to release Giant before initializing its witness
764	 * structure so that WITNESS doesn't get confused.
765	 */
766	mtx_unlock(&Giant);
767	mtx_assert(&Giant, MA_NOTOWNED);
768
769	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
770	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
771	    MTX_NOWITNESS | MTX_NOPROFILE);
772	for (i = witness_count - 1; i >= 0; i--) {
773		w = &w_data[i];
774		memset(w, 0, sizeof(*w));
775		w_data[i].w_index = i;	/* Witness index never changes. */
776		witness_free(w);
777	}
778	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
779	    ("%s: Invalid list of free witness objects", __func__));
780
781	/* Witness with index 0 is not used to aid in debugging. */
782	STAILQ_REMOVE_HEAD(&w_free, w_list);
783	w_free_cnt--;
784
785	for (i = 0; i < witness_count; i++) {
786		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
787		    (witness_count + 1));
788	}
789
790	for (i = 0; i < LOCK_CHILDCOUNT; i++)
791		witness_lock_list_free(&w_locklistdata[i]);
792	witness_init_hash_tables();
793
794	/* First add in all the specified order lists. */
795	for (order = order_lists; order->w_name != NULL; order++) {
796		w = enroll(order->w_name, order->w_class);
797		if (w == NULL)
798			continue;
799		w->w_file = "order list";
800		for (order++; order->w_name != NULL; order++) {
801			w1 = enroll(order->w_name, order->w_class);
802			if (w1 == NULL)
803				continue;
804			w1->w_file = "order list";
805			itismychild(w, w1);
806			w = w1;
807		}
808	}
809	witness_spin_warn = 1;
810
811	/* Iterate through all locks and add them to witness. */
812	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
813		lock = pending_locks[i].wh_lock;
814		KASSERT(lock->lo_flags & LO_WITNESS,
815		    ("%s: lock %s is on pending list but not LO_WITNESS",
816		    __func__, lock->lo_name));
817		lock->lo_witness = enroll(pending_locks[i].wh_type,
818		    LOCK_CLASS(lock));
819	}
820
821	/* Mark the witness code as being ready for use. */
822	witness_cold = 0;
823
824	mtx_lock(&Giant);
825}
826SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
827    NULL);
828
829void
830witness_init(struct lock_object *lock, const char *type)
831{
832	struct lock_class *class;
833
834	/* Various sanity checks. */
835	class = LOCK_CLASS(lock);
836	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
837	    (class->lc_flags & LC_RECURSABLE) == 0)
838		kassert_panic("%s: lock (%s) %s can not be recursable",
839		    __func__, class->lc_name, lock->lo_name);
840	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
841	    (class->lc_flags & LC_SLEEPABLE) == 0)
842		kassert_panic("%s: lock (%s) %s can not be sleepable",
843		    __func__, class->lc_name, lock->lo_name);
844	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
845	    (class->lc_flags & LC_UPGRADABLE) == 0)
846		kassert_panic("%s: lock (%s) %s can not be upgradable",
847		    __func__, class->lc_name, lock->lo_name);
848
849	/*
850	 * If we shouldn't watch this lock, then just clear lo_witness.
851	 * Otherwise, if witness_cold is set, then it is too early to
852	 * enroll this lock, so defer it to witness_initialize() by adding
853	 * it to the pending_locks list.  If it is not too early, then enroll
854	 * the lock now.
855	 */
856	if (witness_watch < 1 || panicstr != NULL ||
857	    (lock->lo_flags & LO_WITNESS) == 0)
858		lock->lo_witness = NULL;
859	else if (witness_cold) {
860		pending_locks[pending_cnt].wh_lock = lock;
861		pending_locks[pending_cnt++].wh_type = type;
862		if (pending_cnt > WITNESS_PENDLIST)
863			panic("%s: pending locks list is too small, "
864			    "increase WITNESS_PENDLIST\n",
865			    __func__);
866	} else
867		lock->lo_witness = enroll(type, class);
868}
869
870void
871witness_destroy(struct lock_object *lock)
872{
873	struct lock_class *class;
874	struct witness *w;
875
876	class = LOCK_CLASS(lock);
877
878	if (witness_cold)
879		panic("lock (%s) %s destroyed while witness_cold",
880		    class->lc_name, lock->lo_name);
881
882	/* XXX: need to verify that no one holds the lock */
883	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
884		return;
885	w = lock->lo_witness;
886
887	mtx_lock_spin(&w_mtx);
888	MPASS(w->w_refcount > 0);
889	w->w_refcount--;
890
891	if (w->w_refcount == 0)
892		depart(w);
893	mtx_unlock_spin(&w_mtx);
894}
895
896#ifdef DDB
897static void
898witness_ddb_compute_levels(void)
899{
900	struct witness *w;
901
902	/*
903	 * First clear all levels.
904	 */
905	STAILQ_FOREACH(w, &w_all, w_list)
906		w->w_ddb_level = -1;
907
908	/*
909	 * Look for locks with no parents and level all their descendants.
910	 */
911	STAILQ_FOREACH(w, &w_all, w_list) {
912
913		/* If the witness has ancestors (is not a root), skip it. */
914		if (w->w_num_ancestors > 0)
915			continue;
916		witness_ddb_level_descendants(w, 0);
917	}
918}
919
920static void
921witness_ddb_level_descendants(struct witness *w, int l)
922{
923	int i;
924
925	if (w->w_ddb_level >= l)
926		return;
927
928	w->w_ddb_level = l;
929	l++;
930
931	for (i = 1; i <= w_max_used_index; i++) {
932		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
933			witness_ddb_level_descendants(&w_data[i], l);
934	}
935}
936
937static void
938witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
939    struct witness *w, int indent)
940{
941	int i;
942
943 	for (i = 0; i < indent; i++)
944 		prnt(" ");
945	prnt("%s (type: %s, depth: %d, active refs: %d)",
946	     w->w_name, w->w_class->lc_name,
947	     w->w_ddb_level, w->w_refcount);
948 	if (w->w_displayed) {
949 		prnt(" -- (already displayed)\n");
950 		return;
951 	}
952 	w->w_displayed = 1;
953	if (w->w_file != NULL && w->w_line != 0)
954		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
955		    w->w_line);
956	else
957		prnt(" -- never acquired\n");
958	indent++;
959	WITNESS_INDEX_ASSERT(w->w_index);
960	for (i = 1; i <= w_max_used_index; i++) {
961		if (db_pager_quit)
962			return;
963		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
964			witness_ddb_display_descendants(prnt, &w_data[i],
965			    indent);
966	}
967}
968
969static void
970witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
971    struct witness_list *list)
972{
973	struct witness *w;
974
975	STAILQ_FOREACH(w, list, w_typelist) {
976		if (w->w_file == NULL || w->w_ddb_level > 0)
977			continue;
978
979		/* This lock has no anscestors - display its descendants. */
980		witness_ddb_display_descendants(prnt, w, 0);
981		if (db_pager_quit)
982			return;
983	}
984}
985
986static void
987witness_ddb_display(int(*prnt)(const char *fmt, ...))
988{
989	struct witness *w;
990
991	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
992	witness_ddb_compute_levels();
993
994	/* Clear all the displayed flags. */
995	STAILQ_FOREACH(w, &w_all, w_list)
996		w->w_displayed = 0;
997
998	/*
999	 * First, handle sleep locks which have been acquired at least
1000	 * once.
1001	 */
1002	prnt("Sleep locks:\n");
1003	witness_ddb_display_list(prnt, &w_sleep);
1004	if (db_pager_quit)
1005		return;
1006
1007	/*
1008	 * Now do spin locks which have been acquired at least once.
1009	 */
1010	prnt("\nSpin locks:\n");
1011	witness_ddb_display_list(prnt, &w_spin);
1012	if (db_pager_quit)
1013		return;
1014
1015	/*
1016	 * Finally, any locks which have not been acquired yet.
1017	 */
1018	prnt("\nLocks which were never acquired:\n");
1019	STAILQ_FOREACH(w, &w_all, w_list) {
1020		if (w->w_file != NULL || w->w_refcount == 0)
1021			continue;
1022		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1023		    w->w_class->lc_name, w->w_ddb_level);
1024		if (db_pager_quit)
1025			return;
1026	}
1027}
1028#endif /* DDB */
1029
1030int
1031witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1032{
1033
1034	if (witness_watch == -1 || panicstr != NULL)
1035		return (0);
1036
1037	/* Require locks that witness knows about. */
1038	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1039	    lock2->lo_witness == NULL)
1040		return (EINVAL);
1041
1042	mtx_assert(&w_mtx, MA_NOTOWNED);
1043	mtx_lock_spin(&w_mtx);
1044
1045	/*
1046	 * If we already have either an explicit or implied lock order that
1047	 * is the other way around, then return an error.
1048	 */
1049	if (witness_watch &&
1050	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1051		mtx_unlock_spin(&w_mtx);
1052		return (EDOOFUS);
1053	}
1054
1055	/* Try to add the new order. */
1056	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1057	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1058	itismychild(lock1->lo_witness, lock2->lo_witness);
1059	mtx_unlock_spin(&w_mtx);
1060	return (0);
1061}
1062
1063void
1064witness_checkorder(struct lock_object *lock, int flags, const char *file,
1065    int line, struct lock_object *interlock)
1066{
1067	struct lock_list_entry *lock_list, *lle;
1068	struct lock_instance *lock1, *lock2, *plock;
1069	struct lock_class *class, *iclass;
1070	struct witness *w, *w1;
1071	struct thread *td;
1072	int i, j;
1073
1074	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1075	    panicstr != NULL)
1076		return;
1077
1078	w = lock->lo_witness;
1079	class = LOCK_CLASS(lock);
1080	td = curthread;
1081
1082	if (class->lc_flags & LC_SLEEPLOCK) {
1083
1084		/*
1085		 * Since spin locks include a critical section, this check
1086		 * implicitly enforces a lock order of all sleep locks before
1087		 * all spin locks.
1088		 */
1089		if (td->td_critnest != 0 && !kdb_active)
1090			kassert_panic("acquiring blockable sleep lock with "
1091			    "spinlock or critical section held (%s) %s @ %s:%d",
1092			    class->lc_name, lock->lo_name,
1093			    fixup_filename(file), line);
1094
1095		/*
1096		 * If this is the first lock acquired then just return as
1097		 * no order checking is needed.
1098		 */
1099		lock_list = td->td_sleeplocks;
1100		if (lock_list == NULL || lock_list->ll_count == 0)
1101			return;
1102	} else {
1103
1104		/*
1105		 * If this is the first lock, just return as no order
1106		 * checking is needed.  Avoid problems with thread
1107		 * migration pinning the thread while checking if
1108		 * spinlocks are held.  If at least one spinlock is held
1109		 * the thread is in a safe path and it is allowed to
1110		 * unpin it.
1111		 */
1112		sched_pin();
1113		lock_list = PCPU_GET(spinlocks);
1114		if (lock_list == NULL || lock_list->ll_count == 0) {
1115			sched_unpin();
1116			return;
1117		}
1118		sched_unpin();
1119	}
1120
1121	/*
1122	 * Check to see if we are recursing on a lock we already own.  If
1123	 * so, make sure that we don't mismatch exclusive and shared lock
1124	 * acquires.
1125	 */
1126	lock1 = find_instance(lock_list, lock);
1127	if (lock1 != NULL) {
1128		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1129		    (flags & LOP_EXCLUSIVE) == 0) {
1130			witness_output("shared lock of (%s) %s @ %s:%d\n",
1131			    class->lc_name, lock->lo_name,
1132			    fixup_filename(file), line);
1133			witness_output("while exclusively locked from %s:%d\n",
1134			    fixup_filename(lock1->li_file), lock1->li_line);
1135			kassert_panic("excl->share");
1136		}
1137		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1138		    (flags & LOP_EXCLUSIVE) != 0) {
1139			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1140			    class->lc_name, lock->lo_name,
1141			    fixup_filename(file), line);
1142			witness_output("while share locked from %s:%d\n",
1143			    fixup_filename(lock1->li_file), lock1->li_line);
1144			kassert_panic("share->excl");
1145		}
1146		return;
1147	}
1148
1149	/* Warn if the interlock is not locked exactly once. */
1150	if (interlock != NULL) {
1151		iclass = LOCK_CLASS(interlock);
1152		lock1 = find_instance(lock_list, interlock);
1153		if (lock1 == NULL)
1154			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1155			    iclass->lc_name, interlock->lo_name,
1156			    fixup_filename(file), line);
1157		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1158			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1159			    iclass->lc_name, interlock->lo_name,
1160			    fixup_filename(file), line);
1161	}
1162
1163	/*
1164	 * Find the previously acquired lock, but ignore interlocks.
1165	 */
1166	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1167	if (interlock != NULL && plock->li_lock == interlock) {
1168		if (lock_list->ll_count > 1)
1169			plock =
1170			    &lock_list->ll_children[lock_list->ll_count - 2];
1171		else {
1172			lle = lock_list->ll_next;
1173
1174			/*
1175			 * The interlock is the only lock we hold, so
1176			 * simply return.
1177			 */
1178			if (lle == NULL)
1179				return;
1180			plock = &lle->ll_children[lle->ll_count - 1];
1181		}
1182	}
1183
1184	/*
1185	 * Try to perform most checks without a lock.  If this succeeds we
1186	 * can skip acquiring the lock and return success.  Otherwise we redo
1187	 * the check with the lock held to handle races with concurrent updates.
1188	 */
1189	w1 = plock->li_lock->lo_witness;
1190	if (witness_lock_order_check(w1, w))
1191		return;
1192
1193	mtx_lock_spin(&w_mtx);
1194	if (witness_lock_order_check(w1, w)) {
1195		mtx_unlock_spin(&w_mtx);
1196		return;
1197	}
1198	witness_lock_order_add(w1, w);
1199
1200	/*
1201	 * Check for duplicate locks of the same type.  Note that we only
1202	 * have to check for this on the last lock we just acquired.  Any
1203	 * other cases will be caught as lock order violations.
1204	 */
1205	if (w1 == w) {
1206		i = w->w_index;
1207		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1208		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1209		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1210			w->w_reversed = 1;
1211			mtx_unlock_spin(&w_mtx);
1212			witness_output(
1213			    "acquiring duplicate lock of same type: \"%s\"\n",
1214			    w->w_name);
1215			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1216			    fixup_filename(plock->li_file), plock->li_line);
1217			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1218			    fixup_filename(file), line);
1219			witness_debugger(1, __func__);
1220		} else
1221			mtx_unlock_spin(&w_mtx);
1222		return;
1223	}
1224	mtx_assert(&w_mtx, MA_OWNED);
1225
1226	/*
1227	 * If we know that the lock we are acquiring comes after
1228	 * the lock we most recently acquired in the lock order tree,
1229	 * then there is no need for any further checks.
1230	 */
1231	if (isitmychild(w1, w))
1232		goto out;
1233
1234	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1235		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1236
1237			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1238			lock1 = &lle->ll_children[i];
1239
1240			/*
1241			 * Ignore the interlock.
1242			 */
1243			if (interlock == lock1->li_lock)
1244				continue;
1245
1246			/*
1247			 * If this lock doesn't undergo witness checking,
1248			 * then skip it.
1249			 */
1250			w1 = lock1->li_lock->lo_witness;
1251			if (w1 == NULL) {
1252				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1253				    ("lock missing witness structure"));
1254				continue;
1255			}
1256
1257			/*
1258			 * If we are locking Giant and this is a sleepable
1259			 * lock, then skip it.
1260			 */
1261			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1262			    lock == &Giant.lock_object)
1263				continue;
1264
1265			/*
1266			 * If we are locking a sleepable lock and this lock
1267			 * is Giant, then skip it.
1268			 */
1269			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1270			    lock1->li_lock == &Giant.lock_object)
1271				continue;
1272
1273			/*
1274			 * If we are locking a sleepable lock and this lock
1275			 * isn't sleepable, we want to treat it as a lock
1276			 * order violation to enfore a general lock order of
1277			 * sleepable locks before non-sleepable locks.
1278			 */
1279			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1280			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1281				goto reversal;
1282
1283			/*
1284			 * If we are locking Giant and this is a non-sleepable
1285			 * lock, then treat it as a reversal.
1286			 */
1287			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1288			    lock == &Giant.lock_object)
1289				goto reversal;
1290
1291			/*
1292			 * Check the lock order hierarchy for a reveresal.
1293			 */
1294			if (!isitmydescendant(w, w1))
1295				continue;
1296		reversal:
1297
1298			/*
1299			 * We have a lock order violation, check to see if it
1300			 * is allowed or has already been yelled about.
1301			 */
1302#ifdef BLESSING
1303
1304			/*
1305			 * If the lock order is blessed, just bail.  We don't
1306			 * look for other lock order violations though, which
1307			 * may be a bug.
1308			 */
1309			if (blessed(w, w1))
1310				goto out;
1311#endif
1312
1313			/* Bail if this violation is known */
1314			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1315				goto out;
1316
1317			/* Record this as a violation */
1318			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1319			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1320			w->w_reversed = w1->w_reversed = 1;
1321			witness_increment_graph_generation();
1322			mtx_unlock_spin(&w_mtx);
1323
1324#ifdef WITNESS_NO_VNODE
1325			/*
1326			 * There are known LORs between VNODE locks. They are
1327			 * not an indication of a bug. VNODE locks are flagged
1328			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1329			 * is between 2 VNODE locks.
1330			 */
1331			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1332			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1333				return;
1334#endif
1335
1336			/*
1337			 * Ok, yell about it.
1338			 */
1339			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1340			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1341				witness_output(
1342		"lock order reversal: (sleepable after non-sleepable)\n");
1343			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1344			    && lock == &Giant.lock_object)
1345				witness_output(
1346		"lock order reversal: (Giant after non-sleepable)\n");
1347			else
1348				witness_output("lock order reversal:\n");
1349
1350			/*
1351			 * Try to locate an earlier lock with
1352			 * witness w in our list.
1353			 */
1354			do {
1355				lock2 = &lle->ll_children[i];
1356				MPASS(lock2->li_lock != NULL);
1357				if (lock2->li_lock->lo_witness == w)
1358					break;
1359				if (i == 0 && lle->ll_next != NULL) {
1360					lle = lle->ll_next;
1361					i = lle->ll_count - 1;
1362					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1363				} else
1364					i--;
1365			} while (i >= 0);
1366			if (i < 0) {
1367				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1368				    lock1->li_lock, lock1->li_lock->lo_name,
1369				    w1->w_name, fixup_filename(lock1->li_file),
1370				    lock1->li_line);
1371				witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1372				    lock->lo_name, w->w_name,
1373				    fixup_filename(file), line);
1374			} else {
1375				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1376				    lock2->li_lock, lock2->li_lock->lo_name,
1377				    lock2->li_lock->lo_witness->w_name,
1378				    fixup_filename(lock2->li_file),
1379				    lock2->li_line);
1380				witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1381				    lock1->li_lock, lock1->li_lock->lo_name,
1382				    w1->w_name, fixup_filename(lock1->li_file),
1383				    lock1->li_line);
1384				witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1385				    lock->lo_name, w->w_name,
1386				    fixup_filename(file), line);
1387			}
1388			witness_debugger(1, __func__);
1389			return;
1390		}
1391	}
1392
1393	/*
1394	 * If requested, build a new lock order.  However, don't build a new
1395	 * relationship between a sleepable lock and Giant if it is in the
1396	 * wrong direction.  The correct lock order is that sleepable locks
1397	 * always come before Giant.
1398	 */
1399	if (flags & LOP_NEWORDER &&
1400	    !(plock->li_lock == &Giant.lock_object &&
1401	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1402		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1403		    w->w_name, plock->li_lock->lo_witness->w_name);
1404		itismychild(plock->li_lock->lo_witness, w);
1405	}
1406out:
1407	mtx_unlock_spin(&w_mtx);
1408}
1409
1410void
1411witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1412{
1413	struct lock_list_entry **lock_list, *lle;
1414	struct lock_instance *instance;
1415	struct witness *w;
1416	struct thread *td;
1417
1418	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1419	    panicstr != NULL)
1420		return;
1421	w = lock->lo_witness;
1422	td = curthread;
1423
1424	/* Determine lock list for this lock. */
1425	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1426		lock_list = &td->td_sleeplocks;
1427	else
1428		lock_list = PCPU_PTR(spinlocks);
1429
1430	/* Check to see if we are recursing on a lock we already own. */
1431	instance = find_instance(*lock_list, lock);
1432	if (instance != NULL) {
1433		instance->li_flags++;
1434		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1435		    td->td_proc->p_pid, lock->lo_name,
1436		    instance->li_flags & LI_RECURSEMASK);
1437		instance->li_file = file;
1438		instance->li_line = line;
1439		return;
1440	}
1441
1442	/* Update per-witness last file and line acquire. */
1443	w->w_file = file;
1444	w->w_line = line;
1445
1446	/* Find the next open lock instance in the list and fill it. */
1447	lle = *lock_list;
1448	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1449		lle = witness_lock_list_get();
1450		if (lle == NULL)
1451			return;
1452		lle->ll_next = *lock_list;
1453		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1454		    td->td_proc->p_pid, lle);
1455		*lock_list = lle;
1456	}
1457	instance = &lle->ll_children[lle->ll_count++];
1458	instance->li_lock = lock;
1459	instance->li_line = line;
1460	instance->li_file = file;
1461	if ((flags & LOP_EXCLUSIVE) != 0)
1462		instance->li_flags = LI_EXCLUSIVE;
1463	else
1464		instance->li_flags = 0;
1465	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1466	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1467}
1468
1469void
1470witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1471{
1472	struct lock_instance *instance;
1473	struct lock_class *class;
1474
1475	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1476	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1477		return;
1478	class = LOCK_CLASS(lock);
1479	if (witness_watch) {
1480		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1481			kassert_panic(
1482			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1483			    class->lc_name, lock->lo_name,
1484			    fixup_filename(file), line);
1485		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1486			kassert_panic(
1487			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1488			    class->lc_name, lock->lo_name,
1489			    fixup_filename(file), line);
1490	}
1491	instance = find_instance(curthread->td_sleeplocks, lock);
1492	if (instance == NULL) {
1493		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1494		    class->lc_name, lock->lo_name,
1495		    fixup_filename(file), line);
1496		return;
1497	}
1498	if (witness_watch) {
1499		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1500			kassert_panic(
1501			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1502			    class->lc_name, lock->lo_name,
1503			    fixup_filename(file), line);
1504		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1505			kassert_panic(
1506			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1507			    class->lc_name, lock->lo_name,
1508			    instance->li_flags & LI_RECURSEMASK,
1509			    fixup_filename(file), line);
1510	}
1511	instance->li_flags |= LI_EXCLUSIVE;
1512}
1513
1514void
1515witness_downgrade(struct lock_object *lock, int flags, const char *file,
1516    int line)
1517{
1518	struct lock_instance *instance;
1519	struct lock_class *class;
1520
1521	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1522	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1523		return;
1524	class = LOCK_CLASS(lock);
1525	if (witness_watch) {
1526		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1527			kassert_panic(
1528			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1529			    class->lc_name, lock->lo_name,
1530			    fixup_filename(file), line);
1531		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1532			kassert_panic(
1533			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1534			    class->lc_name, lock->lo_name,
1535			    fixup_filename(file), line);
1536	}
1537	instance = find_instance(curthread->td_sleeplocks, lock);
1538	if (instance == NULL) {
1539		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1540		    class->lc_name, lock->lo_name,
1541		    fixup_filename(file), line);
1542		return;
1543	}
1544	if (witness_watch) {
1545		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1546			kassert_panic(
1547			    "downgrade of shared lock (%s) %s @ %s:%d",
1548			    class->lc_name, lock->lo_name,
1549			    fixup_filename(file), line);
1550		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1551			kassert_panic(
1552			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1553			    class->lc_name, lock->lo_name,
1554			    instance->li_flags & LI_RECURSEMASK,
1555			    fixup_filename(file), line);
1556	}
1557	instance->li_flags &= ~LI_EXCLUSIVE;
1558}
1559
1560void
1561witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1562{
1563	struct lock_list_entry **lock_list, *lle;
1564	struct lock_instance *instance;
1565	struct lock_class *class;
1566	struct thread *td;
1567	register_t s;
1568	int i, j;
1569
1570	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1571		return;
1572	td = curthread;
1573	class = LOCK_CLASS(lock);
1574
1575	/* Find lock instance associated with this lock. */
1576	if (class->lc_flags & LC_SLEEPLOCK)
1577		lock_list = &td->td_sleeplocks;
1578	else
1579		lock_list = PCPU_PTR(spinlocks);
1580	lle = *lock_list;
1581	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1582		for (i = 0; i < (*lock_list)->ll_count; i++) {
1583			instance = &(*lock_list)->ll_children[i];
1584			if (instance->li_lock == lock)
1585				goto found;
1586		}
1587
1588	/*
1589	 * When disabling WITNESS through witness_watch we could end up in
1590	 * having registered locks in the td_sleeplocks queue.
1591	 * We have to make sure we flush these queues, so just search for
1592	 * eventual register locks and remove them.
1593	 */
1594	if (witness_watch > 0) {
1595		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1596		    lock->lo_name, fixup_filename(file), line);
1597		return;
1598	} else {
1599		return;
1600	}
1601found:
1602
1603	/* First, check for shared/exclusive mismatches. */
1604	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1605	    (flags & LOP_EXCLUSIVE) == 0) {
1606		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1607		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1608		witness_output("while exclusively locked from %s:%d\n",
1609		    fixup_filename(instance->li_file), instance->li_line);
1610		kassert_panic("excl->ushare");
1611	}
1612	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1613	    (flags & LOP_EXCLUSIVE) != 0) {
1614		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1615		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1616		witness_output("while share locked from %s:%d\n",
1617		    fixup_filename(instance->li_file),
1618		    instance->li_line);
1619		kassert_panic("share->uexcl");
1620	}
1621	/* If we are recursed, unrecurse. */
1622	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1623		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1624		    td->td_proc->p_pid, instance->li_lock->lo_name,
1625		    instance->li_flags);
1626		instance->li_flags--;
1627		return;
1628	}
1629	/* The lock is now being dropped, check for NORELEASE flag */
1630	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1631		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1632		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1633		kassert_panic("lock marked norelease");
1634	}
1635
1636	/* Otherwise, remove this item from the list. */
1637	s = intr_disable();
1638	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1639	    td->td_proc->p_pid, instance->li_lock->lo_name,
1640	    (*lock_list)->ll_count - 1);
1641	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1642		(*lock_list)->ll_children[j] =
1643		    (*lock_list)->ll_children[j + 1];
1644	(*lock_list)->ll_count--;
1645	intr_restore(s);
1646
1647	/*
1648	 * In order to reduce contention on w_mtx, we want to keep always an
1649	 * head object into lists so that frequent allocation from the
1650	 * free witness pool (and subsequent locking) is avoided.
1651	 * In order to maintain the current code simple, when the head
1652	 * object is totally unloaded it means also that we do not have
1653	 * further objects in the list, so the list ownership needs to be
1654	 * hand over to another object if the current head needs to be freed.
1655	 */
1656	if ((*lock_list)->ll_count == 0) {
1657		if (*lock_list == lle) {
1658			if (lle->ll_next == NULL)
1659				return;
1660		} else
1661			lle = *lock_list;
1662		*lock_list = lle->ll_next;
1663		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1664		    td->td_proc->p_pid, lle);
1665		witness_lock_list_free(lle);
1666	}
1667}
1668
1669void
1670witness_thread_exit(struct thread *td)
1671{
1672	struct lock_list_entry *lle;
1673	int i, n;
1674
1675	lle = td->td_sleeplocks;
1676	if (lle == NULL || panicstr != NULL)
1677		return;
1678	if (lle->ll_count != 0) {
1679		for (n = 0; lle != NULL; lle = lle->ll_next)
1680			for (i = lle->ll_count - 1; i >= 0; i--) {
1681				if (n == 0)
1682					witness_output(
1683		    "Thread %p exiting with the following locks held:\n", td);
1684				n++;
1685				witness_list_lock(&lle->ll_children[i],
1686				    witness_output);
1687
1688			}
1689		kassert_panic(
1690		    "Thread %p cannot exit while holding sleeplocks\n", td);
1691	}
1692	witness_lock_list_free(lle);
1693}
1694
1695/*
1696 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1697 * exempt Giant and sleepable locks from the checks as well.  If any
1698 * non-exempt locks are held, then a supplied message is printed to the
1699 * output channel along with a list of the offending locks.  If indicated in the
1700 * flags then a failure results in a panic as well.
1701 */
1702int
1703witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1704{
1705	struct lock_list_entry *lock_list, *lle;
1706	struct lock_instance *lock1;
1707	struct thread *td;
1708	va_list ap;
1709	int i, n;
1710
1711	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1712		return (0);
1713	n = 0;
1714	td = curthread;
1715	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1716		for (i = lle->ll_count - 1; i >= 0; i--) {
1717			lock1 = &lle->ll_children[i];
1718			if (lock1->li_lock == lock)
1719				continue;
1720			if (flags & WARN_GIANTOK &&
1721			    lock1->li_lock == &Giant.lock_object)
1722				continue;
1723			if (flags & WARN_SLEEPOK &&
1724			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1725				continue;
1726			if (n == 0) {
1727				va_start(ap, fmt);
1728				witness_voutput(fmt, ap);
1729				va_end(ap);
1730				witness_output(
1731				    " with the following %slocks held:\n",
1732				    (flags & WARN_SLEEPOK) != 0 ?
1733				    "non-sleepable " : "");
1734			}
1735			n++;
1736			witness_list_lock(lock1, witness_output);
1737		}
1738
1739	/*
1740	 * Pin the thread in order to avoid problems with thread migration.
1741	 * Once that all verifies are passed about spinlocks ownership,
1742	 * the thread is in a safe path and it can be unpinned.
1743	 */
1744	sched_pin();
1745	lock_list = PCPU_GET(spinlocks);
1746	if (lock_list != NULL && lock_list->ll_count != 0) {
1747		sched_unpin();
1748
1749		/*
1750		 * We should only have one spinlock and as long as
1751		 * the flags cannot match for this locks class,
1752		 * check if the first spinlock is the one curthread
1753		 * should hold.
1754		 */
1755		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1756		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1757		    lock1->li_lock == lock && n == 0)
1758			return (0);
1759
1760		va_start(ap, fmt);
1761		witness_voutput(fmt, ap);
1762		va_end(ap);
1763		witness_output(" with the following %slocks held:\n",
1764		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1765		n += witness_list_locks(&lock_list, witness_output);
1766	} else
1767		sched_unpin();
1768	if (flags & WARN_PANIC && n)
1769		kassert_panic("%s", __func__);
1770	else
1771		witness_debugger(n, __func__);
1772	return (n);
1773}
1774
1775const char *
1776witness_file(struct lock_object *lock)
1777{
1778	struct witness *w;
1779
1780	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1781		return ("?");
1782	w = lock->lo_witness;
1783	return (w->w_file);
1784}
1785
1786int
1787witness_line(struct lock_object *lock)
1788{
1789	struct witness *w;
1790
1791	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1792		return (0);
1793	w = lock->lo_witness;
1794	return (w->w_line);
1795}
1796
1797static struct witness *
1798enroll(const char *description, struct lock_class *lock_class)
1799{
1800	struct witness *w;
1801	struct witness_list *typelist;
1802
1803	MPASS(description != NULL);
1804
1805	if (witness_watch == -1 || panicstr != NULL)
1806		return (NULL);
1807	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1808		if (witness_skipspin)
1809			return (NULL);
1810		else
1811			typelist = &w_spin;
1812	} else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1813		typelist = &w_sleep;
1814	} else {
1815		kassert_panic("lock class %s is not sleep or spin",
1816		    lock_class->lc_name);
1817		return (NULL);
1818	}
1819
1820	mtx_lock_spin(&w_mtx);
1821	w = witness_hash_get(description);
1822	if (w)
1823		goto found;
1824	if ((w = witness_get()) == NULL)
1825		return (NULL);
1826	MPASS(strlen(description) < MAX_W_NAME);
1827	strcpy(w->w_name, description);
1828	w->w_class = lock_class;
1829	w->w_refcount = 1;
1830	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1831	if (lock_class->lc_flags & LC_SPINLOCK) {
1832		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1833		w_spin_cnt++;
1834	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1835		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1836		w_sleep_cnt++;
1837	}
1838
1839	/* Insert new witness into the hash */
1840	witness_hash_put(w);
1841	witness_increment_graph_generation();
1842	mtx_unlock_spin(&w_mtx);
1843	return (w);
1844found:
1845	w->w_refcount++;
1846	mtx_unlock_spin(&w_mtx);
1847	if (lock_class != w->w_class)
1848		kassert_panic(
1849			"lock (%s) %s does not match earlier (%s) lock",
1850			description, lock_class->lc_name,
1851			w->w_class->lc_name);
1852	return (w);
1853}
1854
1855static void
1856depart(struct witness *w)
1857{
1858	struct witness_list *list;
1859
1860	MPASS(w->w_refcount == 0);
1861	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1862		list = &w_sleep;
1863		w_sleep_cnt--;
1864	} else {
1865		list = &w_spin;
1866		w_spin_cnt--;
1867	}
1868	/*
1869	 * Set file to NULL as it may point into a loadable module.
1870	 */
1871	w->w_file = NULL;
1872	w->w_line = 0;
1873	witness_increment_graph_generation();
1874}
1875
1876
1877static void
1878adopt(struct witness *parent, struct witness *child)
1879{
1880	int pi, ci, i, j;
1881
1882	if (witness_cold == 0)
1883		mtx_assert(&w_mtx, MA_OWNED);
1884
1885	/* If the relationship is already known, there's no work to be done. */
1886	if (isitmychild(parent, child))
1887		return;
1888
1889	/* When the structure of the graph changes, bump up the generation. */
1890	witness_increment_graph_generation();
1891
1892	/*
1893	 * The hard part ... create the direct relationship, then propagate all
1894	 * indirect relationships.
1895	 */
1896	pi = parent->w_index;
1897	ci = child->w_index;
1898	WITNESS_INDEX_ASSERT(pi);
1899	WITNESS_INDEX_ASSERT(ci);
1900	MPASS(pi != ci);
1901	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1902	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1903
1904	/*
1905	 * If parent was not already an ancestor of child,
1906	 * then we increment the descendant and ancestor counters.
1907	 */
1908	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1909		parent->w_num_descendants++;
1910		child->w_num_ancestors++;
1911	}
1912
1913	/*
1914	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1915	 * an ancestor of 'pi' during this loop.
1916	 */
1917	for (i = 1; i <= w_max_used_index; i++) {
1918		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1919		    (i != pi))
1920			continue;
1921
1922		/* Find each descendant of 'i' and mark it as a descendant. */
1923		for (j = 1; j <= w_max_used_index; j++) {
1924
1925			/*
1926			 * Skip children that are already marked as
1927			 * descendants of 'i'.
1928			 */
1929			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1930				continue;
1931
1932			/*
1933			 * We are only interested in descendants of 'ci'. Note
1934			 * that 'ci' itself is counted as a descendant of 'ci'.
1935			 */
1936			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1937			    (j != ci))
1938				continue;
1939			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1940			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1941			w_data[i].w_num_descendants++;
1942			w_data[j].w_num_ancestors++;
1943
1944			/*
1945			 * Make sure we aren't marking a node as both an
1946			 * ancestor and descendant. We should have caught
1947			 * this as a lock order reversal earlier.
1948			 */
1949			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1950			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1951				printf("witness rmatrix paradox! [%d][%d]=%d "
1952				    "both ancestor and descendant\n",
1953				    i, j, w_rmatrix[i][j]);
1954				kdb_backtrace();
1955				printf("Witness disabled.\n");
1956				witness_watch = -1;
1957			}
1958			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1959			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1960				printf("witness rmatrix paradox! [%d][%d]=%d "
1961				    "both ancestor and descendant\n",
1962				    j, i, w_rmatrix[j][i]);
1963				kdb_backtrace();
1964				printf("Witness disabled.\n");
1965				witness_watch = -1;
1966			}
1967		}
1968	}
1969}
1970
1971static void
1972itismychild(struct witness *parent, struct witness *child)
1973{
1974	int unlocked;
1975
1976	MPASS(child != NULL && parent != NULL);
1977	if (witness_cold == 0)
1978		mtx_assert(&w_mtx, MA_OWNED);
1979
1980	if (!witness_lock_type_equal(parent, child)) {
1981		if (witness_cold == 0) {
1982			unlocked = 1;
1983			mtx_unlock_spin(&w_mtx);
1984		} else {
1985			unlocked = 0;
1986		}
1987		kassert_panic(
1988		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1989		    "the same lock type", __func__, parent->w_name,
1990		    parent->w_class->lc_name, child->w_name,
1991		    child->w_class->lc_name);
1992		if (unlocked)
1993			mtx_lock_spin(&w_mtx);
1994	}
1995	adopt(parent, child);
1996}
1997
1998/*
1999 * Generic code for the isitmy*() functions. The rmask parameter is the
2000 * expected relationship of w1 to w2.
2001 */
2002static int
2003_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2004{
2005	unsigned char r1, r2;
2006	int i1, i2;
2007
2008	i1 = w1->w_index;
2009	i2 = w2->w_index;
2010	WITNESS_INDEX_ASSERT(i1);
2011	WITNESS_INDEX_ASSERT(i2);
2012	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2013	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2014
2015	/* The flags on one better be the inverse of the flags on the other */
2016	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2017	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2018		/* Don't squawk if we're potentially racing with an update. */
2019		if (!mtx_owned(&w_mtx))
2020			return (0);
2021		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2022		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2023		    "w_rmatrix[%d][%d] == %hhx\n",
2024		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2025		    i2, i1, r2);
2026		kdb_backtrace();
2027		printf("Witness disabled.\n");
2028		witness_watch = -1;
2029	}
2030	return (r1 & rmask);
2031}
2032
2033/*
2034 * Checks if @child is a direct child of @parent.
2035 */
2036static int
2037isitmychild(struct witness *parent, struct witness *child)
2038{
2039
2040	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2041}
2042
2043/*
2044 * Checks if @descendant is a direct or inderect descendant of @ancestor.
2045 */
2046static int
2047isitmydescendant(struct witness *ancestor, struct witness *descendant)
2048{
2049
2050	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2051	    __func__));
2052}
2053
2054#ifdef BLESSING
2055static int
2056blessed(struct witness *w1, struct witness *w2)
2057{
2058	int i;
2059	struct witness_blessed *b;
2060
2061	for (i = 0; i < nitems(blessed_list); i++) {
2062		b = &blessed_list[i];
2063		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2064			if (strcmp(w2->w_name, b->b_lock2) == 0)
2065				return (1);
2066			continue;
2067		}
2068		if (strcmp(w1->w_name, b->b_lock2) == 0)
2069			if (strcmp(w2->w_name, b->b_lock1) == 0)
2070				return (1);
2071	}
2072	return (0);
2073}
2074#endif
2075
2076static struct witness *
2077witness_get(void)
2078{
2079	struct witness *w;
2080	int index;
2081
2082	if (witness_cold == 0)
2083		mtx_assert(&w_mtx, MA_OWNED);
2084
2085	if (witness_watch == -1) {
2086		mtx_unlock_spin(&w_mtx);
2087		return (NULL);
2088	}
2089	if (STAILQ_EMPTY(&w_free)) {
2090		witness_watch = -1;
2091		mtx_unlock_spin(&w_mtx);
2092		printf("WITNESS: unable to allocate a new witness object\n");
2093		return (NULL);
2094	}
2095	w = STAILQ_FIRST(&w_free);
2096	STAILQ_REMOVE_HEAD(&w_free, w_list);
2097	w_free_cnt--;
2098	index = w->w_index;
2099	MPASS(index > 0 && index == w_max_used_index+1 &&
2100	    index < witness_count);
2101	bzero(w, sizeof(*w));
2102	w->w_index = index;
2103	if (index > w_max_used_index)
2104		w_max_used_index = index;
2105	return (w);
2106}
2107
2108static void
2109witness_free(struct witness *w)
2110{
2111
2112	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2113	w_free_cnt++;
2114}
2115
2116static struct lock_list_entry *
2117witness_lock_list_get(void)
2118{
2119	struct lock_list_entry *lle;
2120
2121	if (witness_watch == -1)
2122		return (NULL);
2123	mtx_lock_spin(&w_mtx);
2124	lle = w_lock_list_free;
2125	if (lle == NULL) {
2126		witness_watch = -1;
2127		mtx_unlock_spin(&w_mtx);
2128		printf("%s: witness exhausted\n", __func__);
2129		return (NULL);
2130	}
2131	w_lock_list_free = lle->ll_next;
2132	mtx_unlock_spin(&w_mtx);
2133	bzero(lle, sizeof(*lle));
2134	return (lle);
2135}
2136
2137static void
2138witness_lock_list_free(struct lock_list_entry *lle)
2139{
2140
2141	mtx_lock_spin(&w_mtx);
2142	lle->ll_next = w_lock_list_free;
2143	w_lock_list_free = lle;
2144	mtx_unlock_spin(&w_mtx);
2145}
2146
2147static struct lock_instance *
2148find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2149{
2150	struct lock_list_entry *lle;
2151	struct lock_instance *instance;
2152	int i;
2153
2154	for (lle = list; lle != NULL; lle = lle->ll_next)
2155		for (i = lle->ll_count - 1; i >= 0; i--) {
2156			instance = &lle->ll_children[i];
2157			if (instance->li_lock == lock)
2158				return (instance);
2159		}
2160	return (NULL);
2161}
2162
2163static void
2164witness_list_lock(struct lock_instance *instance,
2165    int (*prnt)(const char *fmt, ...))
2166{
2167	struct lock_object *lock;
2168
2169	lock = instance->li_lock;
2170	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2171	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2172	if (lock->lo_witness->w_name != lock->lo_name)
2173		prnt(" (%s)", lock->lo_witness->w_name);
2174	prnt(" r = %d (%p) locked @ %s:%d\n",
2175	    instance->li_flags & LI_RECURSEMASK, lock,
2176	    fixup_filename(instance->li_file), instance->li_line);
2177}
2178
2179static int
2180witness_output(const char *fmt, ...)
2181{
2182	va_list ap;
2183	int ret;
2184
2185	va_start(ap, fmt);
2186	ret = witness_voutput(fmt, ap);
2187	va_end(ap);
2188	return (ret);
2189}
2190
2191static int
2192witness_voutput(const char *fmt, va_list ap)
2193{
2194	int ret;
2195
2196	ret = 0;
2197	switch (witness_channel) {
2198	case WITNESS_CONSOLE:
2199		ret = vprintf(fmt, ap);
2200		break;
2201	case WITNESS_LOG:
2202		vlog(LOG_NOTICE, fmt, ap);
2203		break;
2204	case WITNESS_NONE:
2205		break;
2206	}
2207	return (ret);
2208}
2209
2210#ifdef DDB
2211static int
2212witness_thread_has_locks(struct thread *td)
2213{
2214
2215	if (td->td_sleeplocks == NULL)
2216		return (0);
2217	return (td->td_sleeplocks->ll_count != 0);
2218}
2219
2220static int
2221witness_proc_has_locks(struct proc *p)
2222{
2223	struct thread *td;
2224
2225	FOREACH_THREAD_IN_PROC(p, td) {
2226		if (witness_thread_has_locks(td))
2227			return (1);
2228	}
2229	return (0);
2230}
2231#endif
2232
2233int
2234witness_list_locks(struct lock_list_entry **lock_list,
2235    int (*prnt)(const char *fmt, ...))
2236{
2237	struct lock_list_entry *lle;
2238	int i, nheld;
2239
2240	nheld = 0;
2241	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2242		for (i = lle->ll_count - 1; i >= 0; i--) {
2243			witness_list_lock(&lle->ll_children[i], prnt);
2244			nheld++;
2245		}
2246	return (nheld);
2247}
2248
2249/*
2250 * This is a bit risky at best.  We call this function when we have timed
2251 * out acquiring a spin lock, and we assume that the other CPU is stuck
2252 * with this lock held.  So, we go groveling around in the other CPU's
2253 * per-cpu data to try to find the lock instance for this spin lock to
2254 * see when it was last acquired.
2255 */
2256void
2257witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2258    int (*prnt)(const char *fmt, ...))
2259{
2260	struct lock_instance *instance;
2261	struct pcpu *pc;
2262
2263	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2264		return;
2265	pc = pcpu_find(owner->td_oncpu);
2266	instance = find_instance(pc->pc_spinlocks, lock);
2267	if (instance != NULL)
2268		witness_list_lock(instance, prnt);
2269}
2270
2271void
2272witness_save(struct lock_object *lock, const char **filep, int *linep)
2273{
2274	struct lock_list_entry *lock_list;
2275	struct lock_instance *instance;
2276	struct lock_class *class;
2277
2278	/*
2279	 * This function is used independently in locking code to deal with
2280	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2281	 * is gone.
2282	 */
2283	if (SCHEDULER_STOPPED())
2284		return;
2285	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2286	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2287		return;
2288	class = LOCK_CLASS(lock);
2289	if (class->lc_flags & LC_SLEEPLOCK)
2290		lock_list = curthread->td_sleeplocks;
2291	else {
2292		if (witness_skipspin)
2293			return;
2294		lock_list = PCPU_GET(spinlocks);
2295	}
2296	instance = find_instance(lock_list, lock);
2297	if (instance == NULL) {
2298		kassert_panic("%s: lock (%s) %s not locked", __func__,
2299		    class->lc_name, lock->lo_name);
2300		return;
2301	}
2302	*filep = instance->li_file;
2303	*linep = instance->li_line;
2304}
2305
2306void
2307witness_restore(struct lock_object *lock, const char *file, int line)
2308{
2309	struct lock_list_entry *lock_list;
2310	struct lock_instance *instance;
2311	struct lock_class *class;
2312
2313	/*
2314	 * This function is used independently in locking code to deal with
2315	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2316	 * is gone.
2317	 */
2318	if (SCHEDULER_STOPPED())
2319		return;
2320	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2321	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2322		return;
2323	class = LOCK_CLASS(lock);
2324	if (class->lc_flags & LC_SLEEPLOCK)
2325		lock_list = curthread->td_sleeplocks;
2326	else {
2327		if (witness_skipspin)
2328			return;
2329		lock_list = PCPU_GET(spinlocks);
2330	}
2331	instance = find_instance(lock_list, lock);
2332	if (instance == NULL)
2333		kassert_panic("%s: lock (%s) %s not locked", __func__,
2334		    class->lc_name, lock->lo_name);
2335	lock->lo_witness->w_file = file;
2336	lock->lo_witness->w_line = line;
2337	if (instance == NULL)
2338		return;
2339	instance->li_file = file;
2340	instance->li_line = line;
2341}
2342
2343void
2344witness_assert(const struct lock_object *lock, int flags, const char *file,
2345    int line)
2346{
2347#ifdef INVARIANT_SUPPORT
2348	struct lock_instance *instance;
2349	struct lock_class *class;
2350
2351	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2352		return;
2353	class = LOCK_CLASS(lock);
2354	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2355		instance = find_instance(curthread->td_sleeplocks, lock);
2356	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2357		instance = find_instance(PCPU_GET(spinlocks), lock);
2358	else {
2359		kassert_panic("Lock (%s) %s is not sleep or spin!",
2360		    class->lc_name, lock->lo_name);
2361		return;
2362	}
2363	switch (flags) {
2364	case LA_UNLOCKED:
2365		if (instance != NULL)
2366			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2367			    class->lc_name, lock->lo_name,
2368			    fixup_filename(file), line);
2369		break;
2370	case LA_LOCKED:
2371	case LA_LOCKED | LA_RECURSED:
2372	case LA_LOCKED | LA_NOTRECURSED:
2373	case LA_SLOCKED:
2374	case LA_SLOCKED | LA_RECURSED:
2375	case LA_SLOCKED | LA_NOTRECURSED:
2376	case LA_XLOCKED:
2377	case LA_XLOCKED | LA_RECURSED:
2378	case LA_XLOCKED | LA_NOTRECURSED:
2379		if (instance == NULL) {
2380			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2381			    class->lc_name, lock->lo_name,
2382			    fixup_filename(file), line);
2383			break;
2384		}
2385		if ((flags & LA_XLOCKED) != 0 &&
2386		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2387			kassert_panic(
2388			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2389			    class->lc_name, lock->lo_name,
2390			    fixup_filename(file), line);
2391		if ((flags & LA_SLOCKED) != 0 &&
2392		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2393			kassert_panic(
2394			    "Lock (%s) %s exclusively locked @ %s:%d.",
2395			    class->lc_name, lock->lo_name,
2396			    fixup_filename(file), line);
2397		if ((flags & LA_RECURSED) != 0 &&
2398		    (instance->li_flags & LI_RECURSEMASK) == 0)
2399			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2400			    class->lc_name, lock->lo_name,
2401			    fixup_filename(file), line);
2402		if ((flags & LA_NOTRECURSED) != 0 &&
2403		    (instance->li_flags & LI_RECURSEMASK) != 0)
2404			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2405			    class->lc_name, lock->lo_name,
2406			    fixup_filename(file), line);
2407		break;
2408	default:
2409		kassert_panic("Invalid lock assertion at %s:%d.",
2410		    fixup_filename(file), line);
2411
2412	}
2413#endif	/* INVARIANT_SUPPORT */
2414}
2415
2416static void
2417witness_setflag(struct lock_object *lock, int flag, int set)
2418{
2419	struct lock_list_entry *lock_list;
2420	struct lock_instance *instance;
2421	struct lock_class *class;
2422
2423	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2424		return;
2425	class = LOCK_CLASS(lock);
2426	if (class->lc_flags & LC_SLEEPLOCK)
2427		lock_list = curthread->td_sleeplocks;
2428	else {
2429		if (witness_skipspin)
2430			return;
2431		lock_list = PCPU_GET(spinlocks);
2432	}
2433	instance = find_instance(lock_list, lock);
2434	if (instance == NULL) {
2435		kassert_panic("%s: lock (%s) %s not locked", __func__,
2436		    class->lc_name, lock->lo_name);
2437		return;
2438	}
2439
2440	if (set)
2441		instance->li_flags |= flag;
2442	else
2443		instance->li_flags &= ~flag;
2444}
2445
2446void
2447witness_norelease(struct lock_object *lock)
2448{
2449
2450	witness_setflag(lock, LI_NORELEASE, 1);
2451}
2452
2453void
2454witness_releaseok(struct lock_object *lock)
2455{
2456
2457	witness_setflag(lock, LI_NORELEASE, 0);
2458}
2459
2460#ifdef DDB
2461static void
2462witness_ddb_list(struct thread *td)
2463{
2464
2465	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2466	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2467
2468	if (witness_watch < 1)
2469		return;
2470
2471	witness_list_locks(&td->td_sleeplocks, db_printf);
2472
2473	/*
2474	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2475	 * if td is currently executing on some other CPU and holds spin locks
2476	 * as we won't display those locks.  If we had a MI way of getting
2477	 * the per-cpu data for a given cpu then we could use
2478	 * td->td_oncpu to get the list of spinlocks for this thread
2479	 * and "fix" this.
2480	 *
2481	 * That still wouldn't really fix this unless we locked the scheduler
2482	 * lock or stopped the other CPU to make sure it wasn't changing the
2483	 * list out from under us.  It is probably best to just not try to
2484	 * handle threads on other CPU's for now.
2485	 */
2486	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2487		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2488}
2489
2490DB_SHOW_COMMAND(locks, db_witness_list)
2491{
2492	struct thread *td;
2493
2494	if (have_addr)
2495		td = db_lookup_thread(addr, true);
2496	else
2497		td = kdb_thread;
2498	witness_ddb_list(td);
2499}
2500
2501DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2502{
2503	struct thread *td;
2504	struct proc *p;
2505
2506	/*
2507	 * It would be nice to list only threads and processes that actually
2508	 * held sleep locks, but that information is currently not exported
2509	 * by WITNESS.
2510	 */
2511	FOREACH_PROC_IN_SYSTEM(p) {
2512		if (!witness_proc_has_locks(p))
2513			continue;
2514		FOREACH_THREAD_IN_PROC(p, td) {
2515			if (!witness_thread_has_locks(td))
2516				continue;
2517			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2518			    p->p_comm, td, td->td_tid);
2519			witness_ddb_list(td);
2520			if (db_pager_quit)
2521				return;
2522		}
2523	}
2524}
2525DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2526
2527DB_SHOW_COMMAND(witness, db_witness_display)
2528{
2529
2530	witness_ddb_display(db_printf);
2531}
2532#endif
2533
2534static int
2535sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2536{
2537	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2538	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2539	struct sbuf *sb;
2540	u_int w_rmatrix1, w_rmatrix2;
2541	int error, generation, i, j;
2542
2543	tmp_data1 = NULL;
2544	tmp_data2 = NULL;
2545	tmp_w1 = NULL;
2546	tmp_w2 = NULL;
2547	if (witness_watch < 1) {
2548		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2549		return (error);
2550	}
2551	if (witness_cold) {
2552		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2553		return (error);
2554	}
2555	error = 0;
2556	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2557	if (sb == NULL)
2558		return (ENOMEM);
2559
2560	/* Allocate and init temporary storage space. */
2561	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2562	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2563	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2564	    M_WAITOK | M_ZERO);
2565	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2566	    M_WAITOK | M_ZERO);
2567	stack_zero(&tmp_data1->wlod_stack);
2568	stack_zero(&tmp_data2->wlod_stack);
2569
2570restart:
2571	mtx_lock_spin(&w_mtx);
2572	generation = w_generation;
2573	mtx_unlock_spin(&w_mtx);
2574	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2575	    w_lohash.wloh_count);
2576	for (i = 1; i < w_max_used_index; i++) {
2577		mtx_lock_spin(&w_mtx);
2578		if (generation != w_generation) {
2579			mtx_unlock_spin(&w_mtx);
2580
2581			/* The graph has changed, try again. */
2582			req->oldidx = 0;
2583			sbuf_clear(sb);
2584			goto restart;
2585		}
2586
2587		w1 = &w_data[i];
2588		if (w1->w_reversed == 0) {
2589			mtx_unlock_spin(&w_mtx);
2590			continue;
2591		}
2592
2593		/* Copy w1 locally so we can release the spin lock. */
2594		*tmp_w1 = *w1;
2595		mtx_unlock_spin(&w_mtx);
2596
2597		if (tmp_w1->w_reversed == 0)
2598			continue;
2599		for (j = 1; j < w_max_used_index; j++) {
2600			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2601				continue;
2602
2603			mtx_lock_spin(&w_mtx);
2604			if (generation != w_generation) {
2605				mtx_unlock_spin(&w_mtx);
2606
2607				/* The graph has changed, try again. */
2608				req->oldidx = 0;
2609				sbuf_clear(sb);
2610				goto restart;
2611			}
2612
2613			w2 = &w_data[j];
2614			data1 = witness_lock_order_get(w1, w2);
2615			data2 = witness_lock_order_get(w2, w1);
2616
2617			/*
2618			 * Copy information locally so we can release the
2619			 * spin lock.
2620			 */
2621			*tmp_w2 = *w2;
2622			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2623			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2624
2625			if (data1) {
2626				stack_zero(&tmp_data1->wlod_stack);
2627				stack_copy(&data1->wlod_stack,
2628				    &tmp_data1->wlod_stack);
2629			}
2630			if (data2 && data2 != data1) {
2631				stack_zero(&tmp_data2->wlod_stack);
2632				stack_copy(&data2->wlod_stack,
2633				    &tmp_data2->wlod_stack);
2634			}
2635			mtx_unlock_spin(&w_mtx);
2636
2637			sbuf_printf(sb,
2638	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2639			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2640			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2641			if (data1) {
2642				sbuf_printf(sb,
2643			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2644				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2645				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2646				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2647				sbuf_printf(sb, "\n");
2648			}
2649			if (data2 && data2 != data1) {
2650				sbuf_printf(sb,
2651			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2652				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2653				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2654				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2655				sbuf_printf(sb, "\n");
2656			}
2657		}
2658	}
2659	mtx_lock_spin(&w_mtx);
2660	if (generation != w_generation) {
2661		mtx_unlock_spin(&w_mtx);
2662
2663		/*
2664		 * The graph changed while we were printing stack data,
2665		 * try again.
2666		 */
2667		req->oldidx = 0;
2668		sbuf_clear(sb);
2669		goto restart;
2670	}
2671	mtx_unlock_spin(&w_mtx);
2672
2673	/* Free temporary storage space. */
2674	free(tmp_data1, M_TEMP);
2675	free(tmp_data2, M_TEMP);
2676	free(tmp_w1, M_TEMP);
2677	free(tmp_w2, M_TEMP);
2678
2679	sbuf_finish(sb);
2680	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2681	sbuf_delete(sb);
2682
2683	return (error);
2684}
2685
2686static int
2687sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2688{
2689	static const struct {
2690		enum witness_channel channel;
2691		const char *name;
2692	} channels[] = {
2693		{ WITNESS_CONSOLE, "console" },
2694		{ WITNESS_LOG, "log" },
2695		{ WITNESS_NONE, "none" },
2696	};
2697	char buf[16];
2698	u_int i;
2699	int error;
2700
2701	buf[0] = '\0';
2702	for (i = 0; i < nitems(channels); i++)
2703		if (witness_channel == channels[i].channel) {
2704			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2705			break;
2706		}
2707
2708	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2709	if (error != 0 || req->newptr == NULL)
2710		return (error);
2711
2712	error = EINVAL;
2713	for (i = 0; i < nitems(channels); i++)
2714		if (strcmp(channels[i].name, buf) == 0) {
2715			witness_channel = channels[i].channel;
2716			error = 0;
2717			break;
2718		}
2719	return (error);
2720}
2721
2722static int
2723sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2724{
2725	struct witness *w;
2726	struct sbuf *sb;
2727	int error;
2728
2729	if (witness_watch < 1) {
2730		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2731		return (error);
2732	}
2733	if (witness_cold) {
2734		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2735		return (error);
2736	}
2737	error = 0;
2738
2739	error = sysctl_wire_old_buffer(req, 0);
2740	if (error != 0)
2741		return (error);
2742	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2743	if (sb == NULL)
2744		return (ENOMEM);
2745	sbuf_printf(sb, "\n");
2746
2747	mtx_lock_spin(&w_mtx);
2748	STAILQ_FOREACH(w, &w_all, w_list)
2749		w->w_displayed = 0;
2750	STAILQ_FOREACH(w, &w_all, w_list)
2751		witness_add_fullgraph(sb, w);
2752	mtx_unlock_spin(&w_mtx);
2753
2754	/*
2755	 * Close the sbuf and return to userland.
2756	 */
2757	error = sbuf_finish(sb);
2758	sbuf_delete(sb);
2759
2760	return (error);
2761}
2762
2763static int
2764sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2765{
2766	int error, value;
2767
2768	value = witness_watch;
2769	error = sysctl_handle_int(oidp, &value, 0, req);
2770	if (error != 0 || req->newptr == NULL)
2771		return (error);
2772	if (value > 1 || value < -1 ||
2773	    (witness_watch == -1 && value != witness_watch))
2774		return (EINVAL);
2775	witness_watch = value;
2776	return (0);
2777}
2778
2779static void
2780witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2781{
2782	int i;
2783
2784	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2785		return;
2786	w->w_displayed = 1;
2787
2788	WITNESS_INDEX_ASSERT(w->w_index);
2789	for (i = 1; i <= w_max_used_index; i++) {
2790		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2791			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2792			    w_data[i].w_name);
2793			witness_add_fullgraph(sb, &w_data[i]);
2794		}
2795	}
2796}
2797
2798/*
2799 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2800 * interprets the key as a string and reads until the null
2801 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2802 * hash value computed from the key.
2803 */
2804static uint32_t
2805witness_hash_djb2(const uint8_t *key, uint32_t size)
2806{
2807	unsigned int hash = 5381;
2808	int i;
2809
2810	/* hash = hash * 33 + key[i] */
2811	if (size)
2812		for (i = 0; i < size; i++)
2813			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2814	else
2815		for (i = 0; key[i] != 0; i++)
2816			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2817
2818	return (hash);
2819}
2820
2821
2822/*
2823 * Initializes the two witness hash tables. Called exactly once from
2824 * witness_initialize().
2825 */
2826static void
2827witness_init_hash_tables(void)
2828{
2829	int i;
2830
2831	MPASS(witness_cold);
2832
2833	/* Initialize the hash tables. */
2834	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2835		w_hash.wh_array[i] = NULL;
2836
2837	w_hash.wh_size = WITNESS_HASH_SIZE;
2838	w_hash.wh_count = 0;
2839
2840	/* Initialize the lock order data hash. */
2841	w_lofree = NULL;
2842	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2843		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2844		w_lodata[i].wlod_next = w_lofree;
2845		w_lofree = &w_lodata[i];
2846	}
2847	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2848	w_lohash.wloh_count = 0;
2849	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2850		w_lohash.wloh_array[i] = NULL;
2851}
2852
2853static struct witness *
2854witness_hash_get(const char *key)
2855{
2856	struct witness *w;
2857	uint32_t hash;
2858
2859	MPASS(key != NULL);
2860	if (witness_cold == 0)
2861		mtx_assert(&w_mtx, MA_OWNED);
2862	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2863	w = w_hash.wh_array[hash];
2864	while (w != NULL) {
2865		if (strcmp(w->w_name, key) == 0)
2866			goto out;
2867		w = w->w_hash_next;
2868	}
2869
2870out:
2871	return (w);
2872}
2873
2874static void
2875witness_hash_put(struct witness *w)
2876{
2877	uint32_t hash;
2878
2879	MPASS(w != NULL);
2880	MPASS(w->w_name != NULL);
2881	if (witness_cold == 0)
2882		mtx_assert(&w_mtx, MA_OWNED);
2883	KASSERT(witness_hash_get(w->w_name) == NULL,
2884	    ("%s: trying to add a hash entry that already exists!", __func__));
2885	KASSERT(w->w_hash_next == NULL,
2886	    ("%s: w->w_hash_next != NULL", __func__));
2887
2888	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2889	w->w_hash_next = w_hash.wh_array[hash];
2890	w_hash.wh_array[hash] = w;
2891	w_hash.wh_count++;
2892}
2893
2894
2895static struct witness_lock_order_data *
2896witness_lock_order_get(struct witness *parent, struct witness *child)
2897{
2898	struct witness_lock_order_data *data = NULL;
2899	struct witness_lock_order_key key;
2900	unsigned int hash;
2901
2902	MPASS(parent != NULL && child != NULL);
2903	key.from = parent->w_index;
2904	key.to = child->w_index;
2905	WITNESS_INDEX_ASSERT(key.from);
2906	WITNESS_INDEX_ASSERT(key.to);
2907	if ((w_rmatrix[parent->w_index][child->w_index]
2908	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2909		goto out;
2910
2911	hash = witness_hash_djb2((const char*)&key,
2912	    sizeof(key)) % w_lohash.wloh_size;
2913	data = w_lohash.wloh_array[hash];
2914	while (data != NULL) {
2915		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2916			break;
2917		data = data->wlod_next;
2918	}
2919
2920out:
2921	return (data);
2922}
2923
2924/*
2925 * Verify that parent and child have a known relationship, are not the same,
2926 * and child is actually a child of parent.  This is done without w_mtx
2927 * to avoid contention in the common case.
2928 */
2929static int
2930witness_lock_order_check(struct witness *parent, struct witness *child)
2931{
2932
2933	if (parent != child &&
2934	    w_rmatrix[parent->w_index][child->w_index]
2935	    & WITNESS_LOCK_ORDER_KNOWN &&
2936	    isitmychild(parent, child))
2937		return (1);
2938
2939	return (0);
2940}
2941
2942static int
2943witness_lock_order_add(struct witness *parent, struct witness *child)
2944{
2945	struct witness_lock_order_data *data = NULL;
2946	struct witness_lock_order_key key;
2947	unsigned int hash;
2948
2949	MPASS(parent != NULL && child != NULL);
2950	key.from = parent->w_index;
2951	key.to = child->w_index;
2952	WITNESS_INDEX_ASSERT(key.from);
2953	WITNESS_INDEX_ASSERT(key.to);
2954	if (w_rmatrix[parent->w_index][child->w_index]
2955	    & WITNESS_LOCK_ORDER_KNOWN)
2956		return (1);
2957
2958	hash = witness_hash_djb2((const char*)&key,
2959	    sizeof(key)) % w_lohash.wloh_size;
2960	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2961	data = w_lofree;
2962	if (data == NULL)
2963		return (0);
2964	w_lofree = data->wlod_next;
2965	data->wlod_next = w_lohash.wloh_array[hash];
2966	data->wlod_key = key;
2967	w_lohash.wloh_array[hash] = data;
2968	w_lohash.wloh_count++;
2969	stack_zero(&data->wlod_stack);
2970	stack_save(&data->wlod_stack);
2971	return (1);
2972}
2973
2974/* Call this whenever the structure of the witness graph changes. */
2975static void
2976witness_increment_graph_generation(void)
2977{
2978
2979	if (witness_cold == 0)
2980		mtx_assert(&w_mtx, MA_OWNED);
2981	w_generation++;
2982}
2983
2984static int
2985witness_output_drain(void *arg __unused, const char *data, int len)
2986{
2987
2988	witness_output("%.*s", len, data);
2989	return (len);
2990}
2991
2992static void
2993witness_debugger(int cond, const char *msg)
2994{
2995	char buf[32];
2996	struct sbuf sb;
2997	struct stack st;
2998
2999	if (!cond)
3000		return;
3001
3002	if (witness_trace) {
3003		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3004		sbuf_set_drain(&sb, witness_output_drain, NULL);
3005
3006		stack_zero(&st);
3007		stack_save(&st);
3008		witness_output("stack backtrace:\n");
3009		stack_sbuf_print_ddb(&sb, &st);
3010
3011		sbuf_finish(&sb);
3012	}
3013
3014#ifdef KDB
3015	if (witness_kdb)
3016		kdb_enter(KDB_WHY_WITNESS, msg);
3017#endif
3018}
3019