1/*-
2 * Copyright (c) 2003 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include "opt_platform.h"
28#include "opt_uart.h"
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: releng/11.0/sys/dev/uart/uart_dev_ns8250.c 298955 2016-05-03 03:41:25Z pfg $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/conf.h>
37#include <sys/kernel.h>
38#include <sys/sysctl.h>
39#include <machine/bus.h>
40
41#ifdef FDT
42#include <dev/fdt/fdt_common.h>
43#include <dev/ofw/ofw_bus.h>
44#include <dev/ofw/ofw_bus_subr.h>
45#endif
46
47#include <dev/uart/uart.h>
48#include <dev/uart/uart_cpu.h>
49#ifdef FDT
50#include <dev/uart/uart_cpu_fdt.h>
51#endif
52#include <dev/uart/uart_bus.h>
53#include <dev/uart/uart_dev_ns8250.h>
54#include <dev/uart/uart_ppstypes.h>
55
56#include <dev/ic/ns16550.h>
57
58#include "uart_if.h"
59
60#define	DEFAULT_RCLK	1843200
61
62/*
63 * Set the default baudrate tolerance to 3.0%.
64 *
65 * Some embedded boards have odd reference clocks (eg 25MHz)
66 * and we need to handle higher variances in the target baud rate.
67 */
68#ifndef	UART_DEV_TOLERANCE_PCT
69#define	UART_DEV_TOLERANCE_PCT	30
70#endif	/* UART_DEV_TOLERANCE_PCT */
71
72static int broken_txfifo = 0;
73SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
74	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
75
76/*
77 * Clear pending interrupts. THRE is cleared by reading IIR. Data
78 * that may have been received gets lost here.
79 */
80static void
81ns8250_clrint(struct uart_bas *bas)
82{
83	uint8_t iir, lsr;
84
85	iir = uart_getreg(bas, REG_IIR);
86	while ((iir & IIR_NOPEND) == 0) {
87		iir &= IIR_IMASK;
88		if (iir == IIR_RLS) {
89			lsr = uart_getreg(bas, REG_LSR);
90			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
91				(void)uart_getreg(bas, REG_DATA);
92		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
93			(void)uart_getreg(bas, REG_DATA);
94		else if (iir == IIR_MLSC)
95			(void)uart_getreg(bas, REG_MSR);
96		uart_barrier(bas);
97		iir = uart_getreg(bas, REG_IIR);
98	}
99}
100
101static int
102ns8250_delay(struct uart_bas *bas)
103{
104	int divisor;
105	u_char lcr;
106
107	lcr = uart_getreg(bas, REG_LCR);
108	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
109	uart_barrier(bas);
110	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
111	uart_barrier(bas);
112	uart_setreg(bas, REG_LCR, lcr);
113	uart_barrier(bas);
114
115	/* 1/10th the time to transmit 1 character (estimate). */
116	if (divisor <= 134)
117		return (16000000 * divisor / bas->rclk);
118	return (16000 * divisor / (bas->rclk / 1000));
119}
120
121static int
122ns8250_divisor(int rclk, int baudrate)
123{
124	int actual_baud, divisor;
125	int error;
126
127	if (baudrate == 0)
128		return (0);
129
130	divisor = (rclk / (baudrate << 3) + 1) >> 1;
131	if (divisor == 0 || divisor >= 65536)
132		return (0);
133	actual_baud = rclk / (divisor << 4);
134
135	/* 10 times error in percent: */
136	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
137
138	/* enforce maximum error tolerance: */
139	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
140		return (0);
141
142	return (divisor);
143}
144
145static int
146ns8250_drain(struct uart_bas *bas, int what)
147{
148	int delay, limit;
149
150	delay = ns8250_delay(bas);
151
152	if (what & UART_DRAIN_TRANSMITTER) {
153		/*
154		 * Pick an arbitrary high limit to avoid getting stuck in
155		 * an infinite loop when the hardware is broken. Make the
156		 * limit high enough to handle large FIFOs.
157		 */
158		limit = 10*1024;
159		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
160			DELAY(delay);
161		if (limit == 0) {
162			/* printf("ns8250: transmitter appears stuck... "); */
163			return (EIO);
164		}
165	}
166
167	if (what & UART_DRAIN_RECEIVER) {
168		/*
169		 * Pick an arbitrary high limit to avoid getting stuck in
170		 * an infinite loop when the hardware is broken. Make the
171		 * limit high enough to handle large FIFOs and integrated
172		 * UARTs. The HP rx2600 for example has 3 UARTs on the
173		 * management board that tend to get a lot of data send
174		 * to it when the UART is first activated.
175		 */
176		limit=10*4096;
177		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
178			(void)uart_getreg(bas, REG_DATA);
179			uart_barrier(bas);
180			DELAY(delay << 2);
181		}
182		if (limit == 0) {
183			/* printf("ns8250: receiver appears broken... "); */
184			return (EIO);
185		}
186	}
187
188	return (0);
189}
190
191/*
192 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
193 * drained. WARNING: this function clobbers the FIFO setting!
194 */
195static void
196ns8250_flush(struct uart_bas *bas, int what)
197{
198	uint8_t fcr;
199
200	fcr = FCR_ENABLE;
201	if (what & UART_FLUSH_TRANSMITTER)
202		fcr |= FCR_XMT_RST;
203	if (what & UART_FLUSH_RECEIVER)
204		fcr |= FCR_RCV_RST;
205	uart_setreg(bas, REG_FCR, fcr);
206	uart_barrier(bas);
207}
208
209static int
210ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
211    int parity)
212{
213	int divisor;
214	uint8_t lcr;
215
216	lcr = 0;
217	if (databits >= 8)
218		lcr |= LCR_8BITS;
219	else if (databits == 7)
220		lcr |= LCR_7BITS;
221	else if (databits == 6)
222		lcr |= LCR_6BITS;
223	else
224		lcr |= LCR_5BITS;
225	if (stopbits > 1)
226		lcr |= LCR_STOPB;
227	lcr |= parity << 3;
228
229	/* Set baudrate. */
230	if (baudrate > 0) {
231		divisor = ns8250_divisor(bas->rclk, baudrate);
232		if (divisor == 0)
233			return (EINVAL);
234		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
235		uart_barrier(bas);
236		uart_setreg(bas, REG_DLL, divisor & 0xff);
237		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
238		uart_barrier(bas);
239	}
240
241	/* Set LCR and clear DLAB. */
242	uart_setreg(bas, REG_LCR, lcr);
243	uart_barrier(bas);
244	return (0);
245}
246
247/*
248 * Low-level UART interface.
249 */
250static int ns8250_probe(struct uart_bas *bas);
251static void ns8250_init(struct uart_bas *bas, int, int, int, int);
252static void ns8250_term(struct uart_bas *bas);
253static void ns8250_putc(struct uart_bas *bas, int);
254static int ns8250_rxready(struct uart_bas *bas);
255static int ns8250_getc(struct uart_bas *bas, struct mtx *);
256
257struct uart_ops uart_ns8250_ops = {
258	.probe = ns8250_probe,
259	.init = ns8250_init,
260	.term = ns8250_term,
261	.putc = ns8250_putc,
262	.rxready = ns8250_rxready,
263	.getc = ns8250_getc,
264};
265
266static int
267ns8250_probe(struct uart_bas *bas)
268{
269	u_char val;
270
271	/* Check known 0 bits that don't depend on DLAB. */
272	val = uart_getreg(bas, REG_IIR);
273	if (val & 0x30)
274		return (ENXIO);
275	/*
276	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
277	 * chip, but otherwise doesn't seem to have a function. In
278	 * other words, uart(4) works regardless. Ignore that bit so
279	 * the probe succeeds.
280	 */
281	val = uart_getreg(bas, REG_MCR);
282	if (val & 0xa0)
283		return (ENXIO);
284
285	return (0);
286}
287
288static void
289ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
290    int parity)
291{
292	u_char	ier;
293
294	if (bas->rclk == 0)
295		bas->rclk = DEFAULT_RCLK;
296	ns8250_param(bas, baudrate, databits, stopbits, parity);
297
298	/* Disable all interrupt sources. */
299	/*
300	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
301	 * UARTs split the receive time-out interrupt bit out separately as
302	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
303	 */
304	ier = uart_getreg(bas, REG_IER) & 0xe0;
305	uart_setreg(bas, REG_IER, ier);
306	uart_barrier(bas);
307
308	/* Disable the FIFO (if present). */
309	uart_setreg(bas, REG_FCR, 0);
310	uart_barrier(bas);
311
312	/* Set RTS & DTR. */
313	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
314	uart_barrier(bas);
315
316	ns8250_clrint(bas);
317}
318
319static void
320ns8250_term(struct uart_bas *bas)
321{
322
323	/* Clear RTS & DTR. */
324	uart_setreg(bas, REG_MCR, MCR_IE);
325	uart_barrier(bas);
326}
327
328static void
329ns8250_putc(struct uart_bas *bas, int c)
330{
331	int limit;
332
333	limit = 250000;
334	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
335		DELAY(4);
336	uart_setreg(bas, REG_DATA, c);
337	uart_barrier(bas);
338	limit = 250000;
339	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
340		DELAY(4);
341}
342
343static int
344ns8250_rxready(struct uart_bas *bas)
345{
346
347	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
348}
349
350static int
351ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
352{
353	int c;
354
355	uart_lock(hwmtx);
356
357	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
358		uart_unlock(hwmtx);
359		DELAY(4);
360		uart_lock(hwmtx);
361	}
362
363	c = uart_getreg(bas, REG_DATA);
364
365	uart_unlock(hwmtx);
366
367	return (c);
368}
369
370static kobj_method_t ns8250_methods[] = {
371	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
372	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
373	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
374	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
375	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
376	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
377	KOBJMETHOD(uart_param,		ns8250_bus_param),
378	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
379	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
380	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
381	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
382	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
383	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
384	{ 0, 0 }
385};
386
387struct uart_class uart_ns8250_class = {
388	"ns8250",
389	ns8250_methods,
390	sizeof(struct ns8250_softc),
391	.uc_ops = &uart_ns8250_ops,
392	.uc_range = 8,
393	.uc_rclk = DEFAULT_RCLK,
394	.uc_rshift = 0
395};
396
397#ifdef FDT
398static struct ofw_compat_data compat_data[] = {
399	{"ns16550",		(uintptr_t)&uart_ns8250_class},
400	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
401	{NULL,			(uintptr_t)NULL},
402};
403UART_FDT_CLASS_AND_DEVICE(compat_data);
404#endif
405
406/* Use token-pasting to form SER_ and MSR_ named constants. */
407#define	SER(sig)	SER_##sig
408#define	SERD(sig)	SER_D##sig
409#define	MSR(sig)	MSR_##sig
410#define	MSRD(sig)	MSR_D##sig
411
412/*
413 * Detect signal changes using software delta detection.  The previous state of
414 * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
415 * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
416 * new state of both the signal and the delta bits.
417 */
418#define SIGCHGSW(var, msr, sig)					\
419	if ((msr) & MSR(sig)) {					\
420		if ((var & SER(sig)) == 0)			\
421			var |= SERD(sig) | SER(sig);		\
422	} else {						\
423		if ((var & SER(sig)) != 0)			\
424			var = SERD(sig) | (var & ~SER(sig));	\
425	}
426
427/*
428 * Detect signal changes using the hardware msr delta bits.  This is currently
429 * used only when PPS timing information is being captured using the "narrow
430 * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
431 * by time the interrupt handler is invoked.  The hardware will latch the fact
432 * that it changed in the delta bits.
433 */
434#define SIGCHGHW(var, msr, sig)					\
435	if ((msr) & MSRD(sig)) {				\
436		if (((msr) & MSR(sig)) != 0)			\
437			var |= SERD(sig) | SER(sig);		\
438		else						\
439			var = SERD(sig) | (var & ~SER(sig));	\
440	}
441
442int
443ns8250_bus_attach(struct uart_softc *sc)
444{
445	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
446	struct uart_bas *bas;
447	unsigned int ivar;
448#ifdef FDT
449	phandle_t node;
450	pcell_t cell;
451#endif
452
453#ifdef FDT
454	/* Check whether uart has a broken txfifo. */
455	node = ofw_bus_get_node(sc->sc_dev);
456	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
457		broken_txfifo =  cell ? 1 : 0;
458#endif
459
460	bas = &sc->sc_bas;
461
462	ns8250->mcr = uart_getreg(bas, REG_MCR);
463	ns8250->fcr = FCR_ENABLE;
464	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
465	    &ivar)) {
466		if (UART_FLAGS_FCR_RX_LOW(ivar))
467			ns8250->fcr |= FCR_RX_LOW;
468		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
469			ns8250->fcr |= FCR_RX_MEDL;
470		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
471			ns8250->fcr |= FCR_RX_HIGH;
472		else
473			ns8250->fcr |= FCR_RX_MEDH;
474	} else
475		ns8250->fcr |= FCR_RX_MEDH;
476
477	/* Get IER mask */
478	ivar = 0xf0;
479	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
480	    &ivar);
481	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
482
483	/* Get IER RX interrupt bits */
484	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
485	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
486	    &ivar);
487	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
488
489	uart_setreg(bas, REG_FCR, ns8250->fcr);
490	uart_barrier(bas);
491	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
492
493	if (ns8250->mcr & MCR_DTR)
494		sc->sc_hwsig |= SER_DTR;
495	if (ns8250->mcr & MCR_RTS)
496		sc->sc_hwsig |= SER_RTS;
497	ns8250_bus_getsig(sc);
498
499	ns8250_clrint(bas);
500	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
501	ns8250->ier |= ns8250->ier_rxbits;
502	uart_setreg(bas, REG_IER, ns8250->ier);
503	uart_barrier(bas);
504
505	/*
506	 * Timing of the H/W access was changed with r253161 of uart_core.c
507	 * It has been observed that an ITE IT8513E would signal a break
508	 * condition with pretty much every character it received, unless
509	 * it had enough time to settle between ns8250_bus_attach() and
510	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
511	 * It's not understood why the UART chip behaves this way and it
512	 * could very well be that the DELAY make the H/W work in the same
513	 * accidental manner as before. More analysis is warranted, but
514	 * at least now we fixed a known regression.
515	 */
516	DELAY(200);
517	return (0);
518}
519
520int
521ns8250_bus_detach(struct uart_softc *sc)
522{
523	struct ns8250_softc *ns8250;
524	struct uart_bas *bas;
525	u_char ier;
526
527	ns8250 = (struct ns8250_softc *)sc;
528	bas = &sc->sc_bas;
529	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
530	uart_setreg(bas, REG_IER, ier);
531	uart_barrier(bas);
532	ns8250_clrint(bas);
533	return (0);
534}
535
536int
537ns8250_bus_flush(struct uart_softc *sc, int what)
538{
539	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
540	struct uart_bas *bas;
541	int error;
542
543	bas = &sc->sc_bas;
544	uart_lock(sc->sc_hwmtx);
545	if (sc->sc_rxfifosz > 1) {
546		ns8250_flush(bas, what);
547		uart_setreg(bas, REG_FCR, ns8250->fcr);
548		uart_barrier(bas);
549		error = 0;
550	} else
551		error = ns8250_drain(bas, what);
552	uart_unlock(sc->sc_hwmtx);
553	return (error);
554}
555
556int
557ns8250_bus_getsig(struct uart_softc *sc)
558{
559	uint32_t old, sig;
560	uint8_t msr;
561
562	/*
563	 * The delta bits are reputed to be broken on some hardware, so use
564	 * software delta detection by default.  Use the hardware delta bits
565	 * when capturing PPS pulses which are too narrow for software detection
566	 * to see the edges.  Hardware delta for RI doesn't work like the
567	 * others, so always use software for it.  Other threads may be changing
568	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
569	 * update without other changes happening.  Note that the SIGCHGxx()
570	 * macros carefully preserve the delta bits when we have to loop several
571	 * times and a signal transitions between iterations.
572	 */
573	do {
574		old = sc->sc_hwsig;
575		sig = old;
576		uart_lock(sc->sc_hwmtx);
577		msr = uart_getreg(&sc->sc_bas, REG_MSR);
578		uart_unlock(sc->sc_hwmtx);
579		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
580			SIGCHGHW(sig, msr, DSR);
581			SIGCHGHW(sig, msr, CTS);
582			SIGCHGHW(sig, msr, DCD);
583		} else {
584			SIGCHGSW(sig, msr, DSR);
585			SIGCHGSW(sig, msr, CTS);
586			SIGCHGSW(sig, msr, DCD);
587		}
588		SIGCHGSW(sig, msr, RI);
589	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
590	return (sig);
591}
592
593int
594ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
595{
596	struct uart_bas *bas;
597	int baudrate, divisor, error;
598	uint8_t efr, lcr;
599
600	bas = &sc->sc_bas;
601	error = 0;
602	uart_lock(sc->sc_hwmtx);
603	switch (request) {
604	case UART_IOCTL_BREAK:
605		lcr = uart_getreg(bas, REG_LCR);
606		if (data)
607			lcr |= LCR_SBREAK;
608		else
609			lcr &= ~LCR_SBREAK;
610		uart_setreg(bas, REG_LCR, lcr);
611		uart_barrier(bas);
612		break;
613	case UART_IOCTL_IFLOW:
614		lcr = uart_getreg(bas, REG_LCR);
615		uart_barrier(bas);
616		uart_setreg(bas, REG_LCR, 0xbf);
617		uart_barrier(bas);
618		efr = uart_getreg(bas, REG_EFR);
619		if (data)
620			efr |= EFR_RTS;
621		else
622			efr &= ~EFR_RTS;
623		uart_setreg(bas, REG_EFR, efr);
624		uart_barrier(bas);
625		uart_setreg(bas, REG_LCR, lcr);
626		uart_barrier(bas);
627		break;
628	case UART_IOCTL_OFLOW:
629		lcr = uart_getreg(bas, REG_LCR);
630		uart_barrier(bas);
631		uart_setreg(bas, REG_LCR, 0xbf);
632		uart_barrier(bas);
633		efr = uart_getreg(bas, REG_EFR);
634		if (data)
635			efr |= EFR_CTS;
636		else
637			efr &= ~EFR_CTS;
638		uart_setreg(bas, REG_EFR, efr);
639		uart_barrier(bas);
640		uart_setreg(bas, REG_LCR, lcr);
641		uart_barrier(bas);
642		break;
643	case UART_IOCTL_BAUD:
644		lcr = uart_getreg(bas, REG_LCR);
645		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
646		uart_barrier(bas);
647		divisor = uart_getreg(bas, REG_DLL) |
648		    (uart_getreg(bas, REG_DLH) << 8);
649		uart_barrier(bas);
650		uart_setreg(bas, REG_LCR, lcr);
651		uart_barrier(bas);
652		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
653		if (baudrate > 0)
654			*(int*)data = baudrate;
655		else
656			error = ENXIO;
657		break;
658	default:
659		error = EINVAL;
660		break;
661	}
662	uart_unlock(sc->sc_hwmtx);
663	return (error);
664}
665
666int
667ns8250_bus_ipend(struct uart_softc *sc)
668{
669	struct uart_bas *bas;
670	struct ns8250_softc *ns8250;
671	int ipend;
672	uint8_t iir, lsr;
673
674	ns8250 = (struct ns8250_softc *)sc;
675	bas = &sc->sc_bas;
676	uart_lock(sc->sc_hwmtx);
677	iir = uart_getreg(bas, REG_IIR);
678
679	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
680		(void)uart_getreg(bas, DW_REG_USR);
681		uart_unlock(sc->sc_hwmtx);
682		return (0);
683	}
684	if (iir & IIR_NOPEND) {
685		uart_unlock(sc->sc_hwmtx);
686		return (0);
687	}
688	ipend = 0;
689	if (iir & IIR_RXRDY) {
690		lsr = uart_getreg(bas, REG_LSR);
691		if (lsr & LSR_OE)
692			ipend |= SER_INT_OVERRUN;
693		if (lsr & LSR_BI)
694			ipend |= SER_INT_BREAK;
695		if (lsr & LSR_RXRDY)
696			ipend |= SER_INT_RXREADY;
697	} else {
698		if (iir & IIR_TXRDY) {
699			ipend |= SER_INT_TXIDLE;
700			uart_setreg(bas, REG_IER, ns8250->ier);
701			uart_barrier(bas);
702		} else
703			ipend |= SER_INT_SIGCHG;
704	}
705	if (ipend == 0)
706		ns8250_clrint(bas);
707	uart_unlock(sc->sc_hwmtx);
708	return (ipend);
709}
710
711int
712ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
713    int stopbits, int parity)
714{
715	struct ns8250_softc *ns8250;
716	struct uart_bas *bas;
717	int error, limit;
718
719	ns8250 = (struct ns8250_softc*)sc;
720	bas = &sc->sc_bas;
721	uart_lock(sc->sc_hwmtx);
722	/*
723	 * When using DW UART with BUSY detection it is necessary to wait
724	 * until all serial transfers are finished before manipulating the
725	 * line control. LCR will not be affected when UART is busy.
726	 */
727	if (ns8250->busy_detect != 0) {
728		/*
729		 * Pick an arbitrary high limit to avoid getting stuck in
730		 * an infinite loop in case when the hardware is broken.
731		 */
732		limit = 10 * 1024;
733		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
734		    --limit)
735			DELAY(4);
736
737		if (limit <= 0) {
738			/* UART appears to be stuck */
739			uart_unlock(sc->sc_hwmtx);
740			return (EIO);
741		}
742	}
743
744	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
745	uart_unlock(sc->sc_hwmtx);
746	return (error);
747}
748
749int
750ns8250_bus_probe(struct uart_softc *sc)
751{
752	struct ns8250_softc *ns8250;
753	struct uart_bas *bas;
754	int count, delay, error, limit;
755	uint8_t lsr, mcr, ier;
756
757	ns8250 = (struct ns8250_softc *)sc;
758	bas = &sc->sc_bas;
759
760	error = ns8250_probe(bas);
761	if (error)
762		return (error);
763
764	mcr = MCR_IE;
765	if (sc->sc_sysdev == NULL) {
766		/* By using ns8250_init() we also set DTR and RTS. */
767		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
768	} else
769		mcr |= MCR_DTR | MCR_RTS;
770
771	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
772	if (error)
773		return (error);
774
775	/*
776	 * Set loopback mode. This avoids having garbage on the wire and
777	 * also allows us send and receive data. We set DTR and RTS to
778	 * avoid the possibility that automatic flow-control prevents
779	 * any data from being sent.
780	 */
781	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
782	uart_barrier(bas);
783
784	/*
785	 * Enable FIFOs. And check that the UART has them. If not, we're
786	 * done. Since this is the first time we enable the FIFOs, we reset
787	 * them.
788	 */
789	uart_setreg(bas, REG_FCR, FCR_ENABLE);
790	uart_barrier(bas);
791	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
792		/*
793		 * NS16450 or INS8250. We don't bother to differentiate
794		 * between them. They're too old to be interesting.
795		 */
796		uart_setreg(bas, REG_MCR, mcr);
797		uart_barrier(bas);
798		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
799		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
800		return (0);
801	}
802
803	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
804	uart_barrier(bas);
805
806	count = 0;
807	delay = ns8250_delay(bas);
808
809	/* We have FIFOs. Drain the transmitter and receiver. */
810	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
811	if (error) {
812		uart_setreg(bas, REG_MCR, mcr);
813		uart_setreg(bas, REG_FCR, 0);
814		uart_barrier(bas);
815		goto describe;
816	}
817
818	/*
819	 * We should have a sufficiently clean "pipe" to determine the
820	 * size of the FIFOs. We send as much characters as is reasonable
821	 * and wait for the overflow bit in the LSR register to be
822	 * asserted, counting the characters as we send them. Based on
823	 * that count we know the FIFO size.
824	 */
825	do {
826		uart_setreg(bas, REG_DATA, 0);
827		uart_barrier(bas);
828		count++;
829
830		limit = 30;
831		lsr = 0;
832		/*
833		 * LSR bits are cleared upon read, so we must accumulate
834		 * them to be able to test LSR_OE below.
835		 */
836		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
837		    --limit)
838			DELAY(delay);
839		if (limit == 0) {
840			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
841			uart_setreg(bas, REG_IER, ier);
842			uart_setreg(bas, REG_MCR, mcr);
843			uart_setreg(bas, REG_FCR, 0);
844			uart_barrier(bas);
845			count = 0;
846			goto describe;
847		}
848	} while ((lsr & LSR_OE) == 0 && count < 130);
849	count--;
850
851	uart_setreg(bas, REG_MCR, mcr);
852
853	/* Reset FIFOs. */
854	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
855
856 describe:
857	if (count >= 14 && count <= 16) {
858		sc->sc_rxfifosz = 16;
859		device_set_desc(sc->sc_dev, "16550 or compatible");
860	} else if (count >= 28 && count <= 32) {
861		sc->sc_rxfifosz = 32;
862		device_set_desc(sc->sc_dev, "16650 or compatible");
863	} else if (count >= 56 && count <= 64) {
864		sc->sc_rxfifosz = 64;
865		device_set_desc(sc->sc_dev, "16750 or compatible");
866	} else if (count >= 112 && count <= 128) {
867		sc->sc_rxfifosz = 128;
868		device_set_desc(sc->sc_dev, "16950 or compatible");
869	} else {
870		sc->sc_rxfifosz = 16;
871		device_set_desc(sc->sc_dev,
872		    "Non-standard ns8250 class UART with FIFOs");
873	}
874
875	/*
876	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
877	 * Tx trigger. Also, we assume that all data has been sent when the
878	 * interrupt happens.
879	 */
880	sc->sc_txfifosz = 16;
881
882#if 0
883	/*
884	 * XXX there are some issues related to hardware flow control and
885	 * it's likely that uart(4) is the cause. This basically needs more
886	 * investigation, but we avoid using for hardware flow control
887	 * until then.
888	 */
889	/* 16650s or higher have automatic flow control. */
890	if (sc->sc_rxfifosz > 16) {
891		sc->sc_hwiflow = 1;
892		sc->sc_hwoflow = 1;
893	}
894#endif
895
896	return (0);
897}
898
899int
900ns8250_bus_receive(struct uart_softc *sc)
901{
902	struct uart_bas *bas;
903	int xc;
904	uint8_t lsr;
905
906	bas = &sc->sc_bas;
907	uart_lock(sc->sc_hwmtx);
908	lsr = uart_getreg(bas, REG_LSR);
909	while (lsr & LSR_RXRDY) {
910		if (uart_rx_full(sc)) {
911			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
912			break;
913		}
914		xc = uart_getreg(bas, REG_DATA);
915		if (lsr & LSR_FE)
916			xc |= UART_STAT_FRAMERR;
917		if (lsr & LSR_PE)
918			xc |= UART_STAT_PARERR;
919		uart_rx_put(sc, xc);
920		lsr = uart_getreg(bas, REG_LSR);
921	}
922	/* Discard everything left in the Rx FIFO. */
923	while (lsr & LSR_RXRDY) {
924		(void)uart_getreg(bas, REG_DATA);
925		uart_barrier(bas);
926		lsr = uart_getreg(bas, REG_LSR);
927	}
928	uart_unlock(sc->sc_hwmtx);
929 	return (0);
930}
931
932int
933ns8250_bus_setsig(struct uart_softc *sc, int sig)
934{
935	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
936	struct uart_bas *bas;
937	uint32_t new, old;
938
939	bas = &sc->sc_bas;
940	do {
941		old = sc->sc_hwsig;
942		new = old;
943		if (sig & SER_DDTR) {
944			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
945		}
946		if (sig & SER_DRTS) {
947			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
948		}
949	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
950	uart_lock(sc->sc_hwmtx);
951	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
952	if (new & SER_DTR)
953		ns8250->mcr |= MCR_DTR;
954	if (new & SER_RTS)
955		ns8250->mcr |= MCR_RTS;
956	uart_setreg(bas, REG_MCR, ns8250->mcr);
957	uart_barrier(bas);
958	uart_unlock(sc->sc_hwmtx);
959	return (0);
960}
961
962int
963ns8250_bus_transmit(struct uart_softc *sc)
964{
965	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
966	struct uart_bas *bas;
967	int i;
968
969	bas = &sc->sc_bas;
970	uart_lock(sc->sc_hwmtx);
971	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
972		;
973	for (i = 0; i < sc->sc_txdatasz; i++) {
974		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
975		uart_barrier(bas);
976	}
977	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
978	uart_barrier(bas);
979	if (broken_txfifo)
980		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
981	else
982		sc->sc_txbusy = 1;
983	uart_unlock(sc->sc_hwmtx);
984	if (broken_txfifo)
985		uart_sched_softih(sc, SER_INT_TXIDLE);
986	return (0);
987}
988
989void
990ns8250_bus_grab(struct uart_softc *sc)
991{
992	struct uart_bas *bas = &sc->sc_bas;
993	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
994	u_char ier;
995
996	/*
997	 * turn off all interrupts to enter polling mode. Leave the
998	 * saved mask alone. We'll restore whatever it was in ungrab.
999	 * All pending interrupt signals are reset when IER is set to 0.
1000	 */
1001	uart_lock(sc->sc_hwmtx);
1002	ier = uart_getreg(bas, REG_IER);
1003	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1004	uart_barrier(bas);
1005	uart_unlock(sc->sc_hwmtx);
1006}
1007
1008void
1009ns8250_bus_ungrab(struct uart_softc *sc)
1010{
1011	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1012	struct uart_bas *bas = &sc->sc_bas;
1013
1014	/*
1015	 * Restore previous interrupt mask
1016	 */
1017	uart_lock(sc->sc_hwmtx);
1018	uart_setreg(bas, REG_IER, ns8250->ier);
1019	uart_barrier(bas);
1020	uart_unlock(sc->sc_hwmtx);
1021}
1022