1/*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * Copyright (c) 2011-2015 LSI Corp.
4 * Copyright (c) 2013-2016 Avago Technologies
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29 *
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: releng/11.0/sys/dev/mpr/mpr.c 303029 2016-07-19 16:46:27Z slm $");
34
35/* Communications core for Avago Technologies (LSI) MPT3 */
36
37/* TODO Move headers to mprvar */
38#include <sys/types.h>
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/selinfo.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/module.h>
46#include <sys/bus.h>
47#include <sys/conf.h>
48#include <sys/bio.h>
49#include <sys/malloc.h>
50#include <sys/uio.h>
51#include <sys/sysctl.h>
52#include <sys/queue.h>
53#include <sys/kthread.h>
54#include <sys/taskqueue.h>
55#include <sys/endian.h>
56#include <sys/eventhandler.h>
57
58#include <machine/bus.h>
59#include <machine/resource.h>
60#include <sys/rman.h>
61#include <sys/proc.h>
62
63#include <dev/pci/pcivar.h>
64
65#include <cam/cam.h>
66#include <cam/scsi/scsi_all.h>
67
68#include <dev/mpr/mpi/mpi2_type.h>
69#include <dev/mpr/mpi/mpi2.h>
70#include <dev/mpr/mpi/mpi2_ioc.h>
71#include <dev/mpr/mpi/mpi2_sas.h>
72#include <dev/mpr/mpi/mpi2_cnfg.h>
73#include <dev/mpr/mpi/mpi2_init.h>
74#include <dev/mpr/mpi/mpi2_tool.h>
75#include <dev/mpr/mpr_ioctl.h>
76#include <dev/mpr/mprvar.h>
77#include <dev/mpr/mpr_table.h>
78
79static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
80static int mpr_init_queues(struct mpr_softc *sc);
81static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
82static int mpr_transition_operational(struct mpr_softc *sc);
83static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
84static void mpr_iocfacts_free(struct mpr_softc *sc);
85static void mpr_startup(void *arg);
86static int mpr_send_iocinit(struct mpr_softc *sc);
87static int mpr_alloc_queues(struct mpr_softc *sc);
88static int mpr_alloc_replies(struct mpr_softc *sc);
89static int mpr_alloc_requests(struct mpr_softc *sc);
90static int mpr_attach_log(struct mpr_softc *sc);
91static __inline void mpr_complete_command(struct mpr_softc *sc,
92    struct mpr_command *cm);
93static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
94    MPI2_EVENT_NOTIFICATION_REPLY *reply);
95static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
96static void mpr_periodic(void *);
97static int mpr_reregister_events(struct mpr_softc *sc);
98static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
99static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
100static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
101SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
102
103MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
104
105/*
106 * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
107 * any state and back to its initialization state machine.
108 */
109static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
110
111/*
112 * Added this union to smoothly convert le64toh cm->cm_desc.Words.
113 * Compiler only supports unint64_t to be passed as an argument.
114 * Otherwise it will through this error:
115 * "aggregate value used where an integer was expected"
116 */
117typedef union _reply_descriptor {
118        u64 word;
119        struct {
120                u32 low;
121                u32 high;
122        } u;
123}reply_descriptor,address_descriptor;
124
125/* Rate limit chain-fail messages to 1 per minute */
126static struct timeval mpr_chainfail_interval = { 60, 0 };
127
128/*
129 * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
130 * If this function is called from process context, it can sleep
131 * and there is no harm to sleep, in case if this fuction is called
132 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
133 * based on sleep flags driver will call either msleep, pause or DELAY.
134 * msleep and pause are of same variant, but pause is used when mpr_mtx
135 * is not hold by driver.
136 */
137static int
138mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
139{
140	uint32_t reg;
141	int i, error, tries = 0;
142	uint8_t first_wait_done = FALSE;
143
144	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
145
146	/* Clear any pending interrupts */
147	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
148
149	/*
150	 * Force NO_SLEEP for threads prohibited to sleep
151 	 * e.a Thread from interrupt handler are prohibited to sleep.
152 	 */
153#if __FreeBSD_version >= 1000029
154	if (curthread->td_no_sleeping)
155#else //__FreeBSD_version < 1000029
156	if (curthread->td_pflags & TDP_NOSLEEPING)
157#endif //__FreeBSD_version >= 1000029
158		sleep_flag = NO_SLEEP;
159
160	/* Push the magic sequence */
161	error = ETIMEDOUT;
162	while (tries++ < 20) {
163		for (i = 0; i < sizeof(mpt2_reset_magic); i++)
164			mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
165			    mpt2_reset_magic[i]);
166
167		/* wait 100 msec */
168		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
169			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
170			    "mprdiag", hz/10);
171		else if (sleep_flag == CAN_SLEEP)
172			pause("mprdiag", hz/10);
173		else
174			DELAY(100 * 1000);
175
176		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
177		if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
178			error = 0;
179			break;
180		}
181	}
182	if (error)
183		return (error);
184
185	/* Send the actual reset.  XXX need to refresh the reg? */
186	mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
187	    reg | MPI2_DIAG_RESET_ADAPTER);
188
189	/* Wait up to 300 seconds in 50ms intervals */
190	error = ETIMEDOUT;
191	for (i = 0; i < 6000; i++) {
192		/*
193		 * Wait 50 msec. If this is the first time through, wait 256
194		 * msec to satisfy Diag Reset timing requirements.
195		 */
196		if (first_wait_done) {
197			if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
198				msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
199				    "mprdiag", hz/20);
200			else if (sleep_flag == CAN_SLEEP)
201				pause("mprdiag", hz/20);
202			else
203				DELAY(50 * 1000);
204		} else {
205			DELAY(256 * 1000);
206			first_wait_done = TRUE;
207		}
208		/*
209		 * Check for the RESET_ADAPTER bit to be cleared first, then
210		 * wait for the RESET state to be cleared, which takes a little
211		 * longer.
212		 */
213		reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
214		if (reg & MPI2_DIAG_RESET_ADAPTER) {
215			continue;
216		}
217		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
218		if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
219			error = 0;
220			break;
221		}
222	}
223	if (error)
224		return (error);
225
226	mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
227
228	return (0);
229}
230
231static int
232mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
233{
234
235	MPR_FUNCTRACE(sc);
236
237	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
238	    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
239	    MPI2_DOORBELL_FUNCTION_SHIFT);
240
241	if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
242		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed : <%s>\n",
243				__func__);
244		return (ETIMEDOUT);
245	}
246
247	return (0);
248}
249
250static int
251mpr_transition_ready(struct mpr_softc *sc)
252{
253	uint32_t reg, state;
254	int error, tries = 0;
255	int sleep_flags;
256
257	MPR_FUNCTRACE(sc);
258	/* If we are in attach call, do not sleep */
259	sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
260	    ? CAN_SLEEP : NO_SLEEP;
261
262	error = 0;
263	while (tries++ < 1200) {
264		reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
265		mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
266
267		/*
268		 * Ensure the IOC is ready to talk.  If it's not, try
269		 * resetting it.
270		 */
271		if (reg & MPI2_DOORBELL_USED) {
272			mpr_diag_reset(sc, sleep_flags);
273			DELAY(50000);
274			continue;
275		}
276
277		/* Is the adapter owned by another peer? */
278		if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
279		    (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
280			device_printf(sc->mpr_dev, "IOC is under the control "
281			    "of another peer host, aborting initialization.\n");
282			return (ENXIO);
283		}
284
285		state = reg & MPI2_IOC_STATE_MASK;
286		if (state == MPI2_IOC_STATE_READY) {
287			/* Ready to go! */
288			error = 0;
289			break;
290		} else if (state == MPI2_IOC_STATE_FAULT) {
291			mpr_dprint(sc, MPR_FAULT, "IOC in fault state 0x%x\n",
292			    state & MPI2_DOORBELL_FAULT_CODE_MASK);
293			mpr_diag_reset(sc, sleep_flags);
294		} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
295			/* Need to take ownership */
296			mpr_message_unit_reset(sc, sleep_flags);
297		} else if (state == MPI2_IOC_STATE_RESET) {
298			/* Wait a bit, IOC might be in transition */
299			mpr_dprint(sc, MPR_FAULT,
300			    "IOC in unexpected reset state\n");
301		} else {
302			mpr_dprint(sc, MPR_FAULT,
303			    "IOC in unknown state 0x%x\n", state);
304			error = EINVAL;
305			break;
306		}
307
308		/* Wait 50ms for things to settle down. */
309		DELAY(50000);
310	}
311
312	if (error)
313		device_printf(sc->mpr_dev, "Cannot transition IOC to ready\n");
314
315	return (error);
316}
317
318static int
319mpr_transition_operational(struct mpr_softc *sc)
320{
321	uint32_t reg, state;
322	int error;
323
324	MPR_FUNCTRACE(sc);
325
326	error = 0;
327	reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
328	mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
329
330	state = reg & MPI2_IOC_STATE_MASK;
331	if (state != MPI2_IOC_STATE_READY) {
332		if ((error = mpr_transition_ready(sc)) != 0) {
333			mpr_dprint(sc, MPR_FAULT,
334			    "%s failed to transition ready\n", __func__);
335			return (error);
336		}
337	}
338
339	error = mpr_send_iocinit(sc);
340	return (error);
341}
342
343/*
344 * This is called during attach and when re-initializing due to a Diag Reset.
345 * IOC Facts is used to allocate many of the structures needed by the driver.
346 * If called from attach, de-allocation is not required because the driver has
347 * not allocated any structures yet, but if called from a Diag Reset, previously
348 * allocated structures based on IOC Facts will need to be freed and re-
349 * allocated bases on the latest IOC Facts.
350 */
351static int
352mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
353{
354	int error;
355	Mpi2IOCFactsReply_t saved_facts;
356	uint8_t saved_mode, reallocating;
357
358	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
359
360	/* Save old IOC Facts and then only reallocate if Facts have changed */
361	if (!attaching) {
362		bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
363	}
364
365	/*
366	 * Get IOC Facts.  In all cases throughout this function, panic if doing
367	 * a re-initialization and only return the error if attaching so the OS
368	 * can handle it.
369	 */
370	if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
371		if (attaching) {
372			mpr_dprint(sc, MPR_FAULT, "%s failed to get IOC Facts "
373			    "with error %d\n", __func__, error);
374			return (error);
375		} else {
376			panic("%s failed to get IOC Facts with error %d\n",
377			    __func__, error);
378		}
379	}
380
381	mpr_print_iocfacts(sc, sc->facts);
382
383	snprintf(sc->fw_version, sizeof(sc->fw_version),
384	    "%02d.%02d.%02d.%02d",
385	    sc->facts->FWVersion.Struct.Major,
386	    sc->facts->FWVersion.Struct.Minor,
387	    sc->facts->FWVersion.Struct.Unit,
388	    sc->facts->FWVersion.Struct.Dev);
389
390	mpr_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
391	    MPR_DRIVER_VERSION);
392	mpr_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
393	    "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
394	    "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
395	    "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
396
397	/*
398	 * If the chip doesn't support event replay then a hard reset will be
399	 * required to trigger a full discovery.  Do the reset here then
400	 * retransition to Ready.  A hard reset might have already been done,
401	 * but it doesn't hurt to do it again.  Only do this if attaching, not
402	 * for a Diag Reset.
403	 */
404	if (attaching) {
405		if ((sc->facts->IOCCapabilities &
406		    MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
407			mpr_diag_reset(sc, NO_SLEEP);
408			if ((error = mpr_transition_ready(sc)) != 0) {
409				mpr_dprint(sc, MPR_FAULT, "%s failed to "
410				    "transition to ready with error %d\n",
411				    __func__, error);
412				return (error);
413			}
414		}
415	}
416
417	/*
418	 * Set flag if IR Firmware is loaded.  If the RAID Capability has
419	 * changed from the previous IOC Facts, log a warning, but only if
420	 * checking this after a Diag Reset and not during attach.
421	 */
422	saved_mode = sc->ir_firmware;
423	if (sc->facts->IOCCapabilities &
424	    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
425		sc->ir_firmware = 1;
426	if (!attaching) {
427		if (sc->ir_firmware != saved_mode) {
428			mpr_dprint(sc, MPR_FAULT, "%s new IR/IT mode in IOC "
429			    "Facts does not match previous mode\n", __func__);
430		}
431	}
432
433	/* Only deallocate and reallocate if relevant IOC Facts have changed */
434	reallocating = FALSE;
435	if ((!attaching) &&
436	    ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
437	    (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
438	    (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
439	    (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
440	    (saved_facts.ProductID != sc->facts->ProductID) ||
441	    (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
442	    (saved_facts.IOCRequestFrameSize !=
443	    sc->facts->IOCRequestFrameSize) ||
444	    (saved_facts.IOCMaxChainSegmentSize !=
445	    sc->facts->IOCMaxChainSegmentSize) ||
446	    (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
447	    (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
448	    (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
449	    (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
450	    (saved_facts.MaxReplyDescriptorPostQueueDepth !=
451	    sc->facts->MaxReplyDescriptorPostQueueDepth) ||
452	    (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
453	    (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
454	    (saved_facts.MaxPersistentEntries !=
455	    sc->facts->MaxPersistentEntries))) {
456		reallocating = TRUE;
457	}
458
459	/*
460	 * Some things should be done if attaching or re-allocating after a Diag
461	 * Reset, but are not needed after a Diag Reset if the FW has not
462	 * changed.
463	 */
464	if (attaching || reallocating) {
465		/*
466		 * Check if controller supports FW diag buffers and set flag to
467		 * enable each type.
468		 */
469		if (sc->facts->IOCCapabilities &
470		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
471			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
472			    enabled = TRUE;
473		if (sc->facts->IOCCapabilities &
474		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
475			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
476			    enabled = TRUE;
477		if (sc->facts->IOCCapabilities &
478		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
479			sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
480			    enabled = TRUE;
481
482		/*
483		 * Set flag if EEDP is supported and if TLR is supported.
484		 */
485		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
486			sc->eedp_enabled = TRUE;
487		if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
488			sc->control_TLR = TRUE;
489
490		/*
491		 * Size the queues. Since the reply queues always need one free
492		 * entry, we'll just deduct one reply message here.
493		 */
494		sc->num_reqs = MIN(MPR_REQ_FRAMES, sc->facts->RequestCredit);
495		sc->num_replies = MIN(MPR_REPLY_FRAMES + MPR_EVT_REPLY_FRAMES,
496		    sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
497
498		/*
499		 * Initialize all Tail Queues
500		 */
501		TAILQ_INIT(&sc->req_list);
502		TAILQ_INIT(&sc->high_priority_req_list);
503		TAILQ_INIT(&sc->chain_list);
504		TAILQ_INIT(&sc->tm_list);
505	}
506
507	/*
508	 * If doing a Diag Reset and the FW is significantly different
509	 * (reallocating will be set above in IOC Facts comparison), then all
510	 * buffers based on the IOC Facts will need to be freed before they are
511	 * reallocated.
512	 */
513	if (reallocating) {
514		mpr_iocfacts_free(sc);
515		mprsas_realloc_targets(sc, saved_facts.MaxTargets);
516	}
517
518	/*
519	 * Any deallocation has been completed.  Now start reallocating
520	 * if needed.  Will only need to reallocate if attaching or if the new
521	 * IOC Facts are different from the previous IOC Facts after a Diag
522	 * Reset. Targets have already been allocated above if needed.
523	 */
524	if (attaching || reallocating) {
525		if (((error = mpr_alloc_queues(sc)) != 0) ||
526		    ((error = mpr_alloc_replies(sc)) != 0) ||
527		    ((error = mpr_alloc_requests(sc)) != 0)) {
528			if (attaching ) {
529				mpr_dprint(sc, MPR_FAULT, "%s failed to alloc "
530				    "queues with error %d\n", __func__, error);
531				mpr_free(sc);
532				return (error);
533			} else {
534				panic("%s failed to alloc queues with error "
535				    "%d\n", __func__, error);
536			}
537		}
538	}
539
540	/* Always initialize the queues */
541	bzero(sc->free_queue, sc->fqdepth * 4);
542	mpr_init_queues(sc);
543
544	/*
545	 * Always get the chip out of the reset state, but only panic if not
546	 * attaching.  If attaching and there is an error, that is handled by
547	 * the OS.
548	 */
549	error = mpr_transition_operational(sc);
550	if (error != 0) {
551		if (attaching) {
552			mpr_printf(sc, "%s failed to transition to operational "
553			    "with error %d\n", __func__, error);
554			mpr_free(sc);
555			return (error);
556		} else {
557			panic("%s failed to transition to operational with "
558			    "error %d\n", __func__, error);
559		}
560	}
561
562	/*
563	 * Finish the queue initialization.
564	 * These are set here instead of in mpr_init_queues() because the
565	 * IOC resets these values during the state transition in
566	 * mpr_transition_operational().  The free index is set to 1
567	 * because the corresponding index in the IOC is set to 0, and the
568	 * IOC treats the queues as full if both are set to the same value.
569	 * Hence the reason that the queue can't hold all of the possible
570	 * replies.
571	 */
572	sc->replypostindex = 0;
573	mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
574	mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
575
576	/*
577	 * Attach the subsystems so they can prepare their event masks.
578	 */
579	/* XXX Should be dynamic so that IM/IR and user modules can attach */
580	if (attaching) {
581		if (((error = mpr_attach_log(sc)) != 0) ||
582		    ((error = mpr_attach_sas(sc)) != 0) ||
583		    ((error = mpr_attach_user(sc)) != 0)) {
584			mpr_printf(sc, "%s failed to attach all subsystems: "
585			    "error %d\n", __func__, error);
586			mpr_free(sc);
587			return (error);
588		}
589
590		if ((error = mpr_pci_setup_interrupts(sc)) != 0) {
591			mpr_printf(sc, "%s failed to setup interrupts\n",
592			    __func__);
593			mpr_free(sc);
594			return (error);
595		}
596	}
597
598	return (error);
599}
600
601/*
602 * This is called if memory is being free (during detach for example) and when
603 * buffers need to be reallocated due to a Diag Reset.
604 */
605static void
606mpr_iocfacts_free(struct mpr_softc *sc)
607{
608	struct mpr_command *cm;
609	int i;
610
611	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
612
613	if (sc->free_busaddr != 0)
614		bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
615	if (sc->free_queue != NULL)
616		bus_dmamem_free(sc->queues_dmat, sc->free_queue,
617		    sc->queues_map);
618	if (sc->queues_dmat != NULL)
619		bus_dma_tag_destroy(sc->queues_dmat);
620
621	if (sc->chain_busaddr != 0)
622		bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
623	if (sc->chain_frames != NULL)
624		bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
625		    sc->chain_map);
626	if (sc->chain_dmat != NULL)
627		bus_dma_tag_destroy(sc->chain_dmat);
628
629	if (sc->sense_busaddr != 0)
630		bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
631	if (sc->sense_frames != NULL)
632		bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
633		    sc->sense_map);
634	if (sc->sense_dmat != NULL)
635		bus_dma_tag_destroy(sc->sense_dmat);
636
637	if (sc->reply_busaddr != 0)
638		bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
639	if (sc->reply_frames != NULL)
640		bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
641		    sc->reply_map);
642	if (sc->reply_dmat != NULL)
643		bus_dma_tag_destroy(sc->reply_dmat);
644
645	if (sc->req_busaddr != 0)
646		bus_dmamap_unload(sc->req_dmat, sc->req_map);
647	if (sc->req_frames != NULL)
648		bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
649	if (sc->req_dmat != NULL)
650		bus_dma_tag_destroy(sc->req_dmat);
651
652	if (sc->chains != NULL)
653		free(sc->chains, M_MPR);
654	if (sc->commands != NULL) {
655		for (i = 1; i < sc->num_reqs; i++) {
656			cm = &sc->commands[i];
657			bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
658		}
659		free(sc->commands, M_MPR);
660	}
661	if (sc->buffer_dmat != NULL)
662		bus_dma_tag_destroy(sc->buffer_dmat);
663}
664
665/*
666 * The terms diag reset and hard reset are used interchangeably in the MPI
667 * docs to mean resetting the controller chip.  In this code diag reset
668 * cleans everything up, and the hard reset function just sends the reset
669 * sequence to the chip.  This should probably be refactored so that every
670 * subsystem gets a reset notification of some sort, and can clean up
671 * appropriately.
672 */
673int
674mpr_reinit(struct mpr_softc *sc)
675{
676	int error;
677	struct mprsas_softc *sassc;
678
679	sassc = sc->sassc;
680
681	MPR_FUNCTRACE(sc);
682
683	mtx_assert(&sc->mpr_mtx, MA_OWNED);
684
685	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
686		mpr_dprint(sc, MPR_INIT, "%s reset already in progress\n",
687		    __func__);
688		return 0;
689	}
690
691	mpr_dprint(sc, MPR_INFO, "Reinitializing controller,\n");
692	/* make sure the completion callbacks can recognize they're getting
693	 * a NULL cm_reply due to a reset.
694	 */
695	sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
696
697	/*
698	 * Mask interrupts here.
699	 */
700	mpr_dprint(sc, MPR_INIT, "%s mask interrupts\n", __func__);
701	mpr_mask_intr(sc);
702
703	error = mpr_diag_reset(sc, CAN_SLEEP);
704	if (error != 0) {
705		panic("%s hard reset failed with error %d\n", __func__, error);
706	}
707
708	/* Restore the PCI state, including the MSI-X registers */
709	mpr_pci_restore(sc);
710
711	/* Give the I/O subsystem special priority to get itself prepared */
712	mprsas_handle_reinit(sc);
713
714	/*
715	 * Get IOC Facts and allocate all structures based on this information.
716	 * The attach function will also call mpr_iocfacts_allocate at startup.
717	 * If relevant values have changed in IOC Facts, this function will free
718	 * all of the memory based on IOC Facts and reallocate that memory.
719	 */
720	if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
721		panic("%s IOC Facts based allocation failed with error %d\n",
722		    __func__, error);
723	}
724
725	/*
726	 * Mapping structures will be re-allocated after getting IOC Page8, so
727	 * free these structures here.
728	 */
729	mpr_mapping_exit(sc);
730
731	/*
732	 * The static page function currently read is IOC Page8.  Others can be
733	 * added in future.  It's possible that the values in IOC Page8 have
734	 * changed after a Diag Reset due to user modification, so always read
735	 * these.  Interrupts are masked, so unmask them before getting config
736	 * pages.
737	 */
738	mpr_unmask_intr(sc);
739	sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
740	mpr_base_static_config_pages(sc);
741
742	/*
743	 * Some mapping info is based in IOC Page8 data, so re-initialize the
744	 * mapping tables.
745	 */
746	mpr_mapping_initialize(sc);
747
748	/*
749	 * Restart will reload the event masks clobbered by the reset, and
750	 * then enable the port.
751	 */
752	mpr_reregister_events(sc);
753
754	/* the end of discovery will release the simq, so we're done. */
755	mpr_dprint(sc, MPR_INFO, "%s finished sc %p post %u free %u\n",
756	    __func__, sc, sc->replypostindex, sc->replyfreeindex);
757	mprsas_release_simq_reinit(sassc);
758
759	return 0;
760}
761
762/* Wait for the chip to ACK a word that we've put into its FIFO
763 * Wait for <timeout> seconds. In single loop wait for busy loop
764 * for 500 microseconds.
765 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
766 * */
767static int
768mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
769{
770	u32 cntdn, count;
771	u32 int_status;
772	u32 doorbell;
773
774	count = 0;
775	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
776	do {
777		int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
778		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
779			mpr_dprint(sc, MPR_INIT, "%s: successful count(%d), "
780			    "timeout(%d)\n", __func__, count, timeout);
781			return 0;
782		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
783			doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
784			if ((doorbell & MPI2_IOC_STATE_MASK) ==
785			    MPI2_IOC_STATE_FAULT) {
786				mpr_dprint(sc, MPR_FAULT,
787				    "fault_state(0x%04x)!\n", doorbell);
788				return (EFAULT);
789			}
790		} else if (int_status == 0xFFFFFFFF)
791			goto out;
792
793		/*
794		 * If it can sleep, sleep for 1 milisecond, else busy loop for
795 		 * 0.5 milisecond
796		 */
797		if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
798			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
799			    hz/1000);
800		else if (sleep_flag == CAN_SLEEP)
801			pause("mprdba", hz/1000);
802		else
803			DELAY(500);
804		count++;
805	} while (--cntdn);
806
807	out:
808	mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
809		"int_status(%x)!\n", __func__, count, int_status);
810	return (ETIMEDOUT);
811}
812
813/* Wait for the chip to signal that the next word in its FIFO can be fetched */
814static int
815mpr_wait_db_int(struct mpr_softc *sc)
816{
817	int retry;
818
819	for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
820		if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
821		    MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
822			return (0);
823		DELAY(2000);
824	}
825	return (ETIMEDOUT);
826}
827
828/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
829static int
830mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
831    int req_sz, int reply_sz, int timeout)
832{
833	uint32_t *data32;
834	uint16_t *data16;
835	int i, count, ioc_sz, residual;
836	int sleep_flags = CAN_SLEEP;
837
838#if __FreeBSD_version >= 1000029
839	if (curthread->td_no_sleeping)
840#else //__FreeBSD_version < 1000029
841	if (curthread->td_pflags & TDP_NOSLEEPING)
842#endif //__FreeBSD_version >= 1000029
843		sleep_flags = NO_SLEEP;
844
845	/* Step 1 */
846	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
847
848	/* Step 2 */
849	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
850		return (EBUSY);
851
852	/* Step 3
853	 * Announce that a message is coming through the doorbell.  Messages
854	 * are pushed at 32bit words, so round up if needed.
855	 */
856	count = (req_sz + 3) / 4;
857	mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
858	    (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
859	    (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
860
861	/* Step 4 */
862	if (mpr_wait_db_int(sc) ||
863	    (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
864		mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
865		return (ENXIO);
866	}
867	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
868	if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
869		mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
870		return (ENXIO);
871	}
872
873	/* Step 5 */
874	/* Clock out the message data synchronously in 32-bit dwords*/
875	data32 = (uint32_t *)req;
876	for (i = 0; i < count; i++) {
877		mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
878		if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
879			mpr_dprint(sc, MPR_FAULT,
880			    "Timeout while writing doorbell\n");
881			return (ENXIO);
882		}
883	}
884
885	/* Step 6 */
886	/* Clock in the reply in 16-bit words.  The total length of the
887	 * message is always in the 4th byte, so clock out the first 2 words
888	 * manually, then loop the rest.
889	 */
890	data16 = (uint16_t *)reply;
891	if (mpr_wait_db_int(sc) != 0) {
892		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
893		return (ENXIO);
894	}
895	data16[0] =
896	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
897	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
898	if (mpr_wait_db_int(sc) != 0) {
899		mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
900		return (ENXIO);
901	}
902	data16[1] =
903	    mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
904	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
905
906	/* Number of 32bit words in the message */
907	ioc_sz = reply->MsgLength;
908
909	/*
910	 * Figure out how many 16bit words to clock in without overrunning.
911	 * The precision loss with dividing reply_sz can safely be
912	 * ignored because the messages can only be multiples of 32bits.
913	 */
914	residual = 0;
915	count = MIN((reply_sz / 4), ioc_sz) * 2;
916	if (count < ioc_sz * 2) {
917		residual = ioc_sz * 2 - count;
918		mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
919		    "residual message words\n", residual);
920	}
921
922	for (i = 2; i < count; i++) {
923		if (mpr_wait_db_int(sc) != 0) {
924			mpr_dprint(sc, MPR_FAULT,
925			    "Timeout reading doorbell %d\n", i);
926			return (ENXIO);
927		}
928		data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
929		    MPI2_DOORBELL_DATA_MASK;
930		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
931	}
932
933	/*
934	 * Pull out residual words that won't fit into the provided buffer.
935	 * This keeps the chip from hanging due to a driver programming
936	 * error.
937	 */
938	while (residual--) {
939		if (mpr_wait_db_int(sc) != 0) {
940			mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
941			return (ENXIO);
942		}
943		(void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
944		mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
945	}
946
947	/* Step 7 */
948	if (mpr_wait_db_int(sc) != 0) {
949		mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
950		return (ENXIO);
951	}
952	if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
953		mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
954	mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
955
956	return (0);
957}
958
959static void
960mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
961{
962	reply_descriptor rd;
963
964	MPR_FUNCTRACE(sc);
965	mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
966	    cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
967
968	if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
969	    MPR_FLAGS_SHUTDOWN))
970		mtx_assert(&sc->mpr_mtx, MA_OWNED);
971
972	if (++sc->io_cmds_active > sc->io_cmds_highwater)
973		sc->io_cmds_highwater++;
974
975	rd.u.low = cm->cm_desc.Words.Low;
976	rd.u.high = cm->cm_desc.Words.High;
977	rd.word = htole64(rd.word);
978	/* TODO-We may need to make below regwrite atomic */
979	mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
980	    rd.u.low);
981	mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
982	    rd.u.high);
983}
984
985/*
986 * Just the FACTS, ma'am.
987 */
988static int
989mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
990{
991	MPI2_DEFAULT_REPLY *reply;
992	MPI2_IOC_FACTS_REQUEST request;
993	int error, req_sz, reply_sz;
994
995	MPR_FUNCTRACE(sc);
996
997	req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
998	reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
999	reply = (MPI2_DEFAULT_REPLY *)facts;
1000
1001	bzero(&request, req_sz);
1002	request.Function = MPI2_FUNCTION_IOC_FACTS;
1003	error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1004
1005	return (error);
1006}
1007
1008static int
1009mpr_send_iocinit(struct mpr_softc *sc)
1010{
1011	MPI2_IOC_INIT_REQUEST	init;
1012	MPI2_DEFAULT_REPLY	reply;
1013	int req_sz, reply_sz, error;
1014	struct timeval now;
1015	uint64_t time_in_msec;
1016
1017	MPR_FUNCTRACE(sc);
1018
1019	req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1020	reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1021	bzero(&init, req_sz);
1022	bzero(&reply, reply_sz);
1023
1024	/*
1025	 * Fill in the init block.  Note that most addresses are
1026	 * deliberately in the lower 32bits of memory.  This is a micro-
1027	 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1028	 */
1029	init.Function = MPI2_FUNCTION_IOC_INIT;
1030	init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1031	init.MsgVersion = htole16(MPI2_VERSION);
1032	init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1033	init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1034	init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1035	init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1036	init.SenseBufferAddressHigh = 0;
1037	init.SystemReplyAddressHigh = 0;
1038	init.SystemRequestFrameBaseAddress.High = 0;
1039	init.SystemRequestFrameBaseAddress.Low =
1040	    htole32((uint32_t)sc->req_busaddr);
1041	init.ReplyDescriptorPostQueueAddress.High = 0;
1042	init.ReplyDescriptorPostQueueAddress.Low =
1043	    htole32((uint32_t)sc->post_busaddr);
1044	init.ReplyFreeQueueAddress.High = 0;
1045	init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1046	getmicrotime(&now);
1047	time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1048	init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1049	init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1050
1051	error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1052	if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1053		error = ENXIO;
1054
1055	mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1056	return (error);
1057}
1058
1059void
1060mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1061{
1062	bus_addr_t *addr;
1063
1064	addr = arg;
1065	*addr = segs[0].ds_addr;
1066}
1067
1068static int
1069mpr_alloc_queues(struct mpr_softc *sc)
1070{
1071	bus_addr_t queues_busaddr;
1072	uint8_t *queues;
1073	int qsize, fqsize, pqsize;
1074
1075	/*
1076	 * The reply free queue contains 4 byte entries in multiples of 16 and
1077	 * aligned on a 16 byte boundary. There must always be an unused entry.
1078	 * This queue supplies fresh reply frames for the firmware to use.
1079	 *
1080	 * The reply descriptor post queue contains 8 byte entries in
1081	 * multiples of 16 and aligned on a 16 byte boundary.  This queue
1082	 * contains filled-in reply frames sent from the firmware to the host.
1083	 *
1084	 * These two queues are allocated together for simplicity.
1085	 */
1086	sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1087	sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1088	fqsize= sc->fqdepth * 4;
1089	pqsize = sc->pqdepth * 8;
1090	qsize = fqsize + pqsize;
1091
1092        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1093				16, 0,			/* algnmnt, boundary */
1094				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1095				BUS_SPACE_MAXADDR,	/* highaddr */
1096				NULL, NULL,		/* filter, filterarg */
1097                                qsize,			/* maxsize */
1098                                1,			/* nsegments */
1099                                qsize,			/* maxsegsize */
1100                                0,			/* flags */
1101                                NULL, NULL,		/* lockfunc, lockarg */
1102                                &sc->queues_dmat)) {
1103		device_printf(sc->mpr_dev, "Cannot allocate queues DMA tag\n");
1104		return (ENOMEM);
1105        }
1106        if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1107	    &sc->queues_map)) {
1108		device_printf(sc->mpr_dev, "Cannot allocate queues memory\n");
1109		return (ENOMEM);
1110        }
1111        bzero(queues, qsize);
1112        bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1113	    mpr_memaddr_cb, &queues_busaddr, 0);
1114
1115	sc->free_queue = (uint32_t *)queues;
1116	sc->free_busaddr = queues_busaddr;
1117	sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1118	sc->post_busaddr = queues_busaddr + fqsize;
1119
1120	return (0);
1121}
1122
1123static int
1124mpr_alloc_replies(struct mpr_softc *sc)
1125{
1126	int rsize, num_replies;
1127
1128	/*
1129	 * sc->num_replies should be one less than sc->fqdepth.  We need to
1130	 * allocate space for sc->fqdepth replies, but only sc->num_replies
1131	 * replies can be used at once.
1132	 */
1133	num_replies = max(sc->fqdepth, sc->num_replies);
1134
1135	rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1136        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1137				4, 0,			/* algnmnt, boundary */
1138				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1139				BUS_SPACE_MAXADDR,	/* highaddr */
1140				NULL, NULL,		/* filter, filterarg */
1141                                rsize,			/* maxsize */
1142                                1,			/* nsegments */
1143                                rsize,			/* maxsegsize */
1144                                0,			/* flags */
1145                                NULL, NULL,		/* lockfunc, lockarg */
1146                                &sc->reply_dmat)) {
1147		device_printf(sc->mpr_dev, "Cannot allocate replies DMA tag\n");
1148		return (ENOMEM);
1149        }
1150        if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1151	    BUS_DMA_NOWAIT, &sc->reply_map)) {
1152		device_printf(sc->mpr_dev, "Cannot allocate replies memory\n");
1153		return (ENOMEM);
1154        }
1155        bzero(sc->reply_frames, rsize);
1156        bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1157	    mpr_memaddr_cb, &sc->reply_busaddr, 0);
1158
1159	return (0);
1160}
1161
1162static int
1163mpr_alloc_requests(struct mpr_softc *sc)
1164{
1165	struct mpr_command *cm;
1166	struct mpr_chain *chain;
1167	int i, rsize, nsegs;
1168
1169	rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1170        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1171				16, 0,			/* algnmnt, boundary */
1172				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1173				BUS_SPACE_MAXADDR,	/* highaddr */
1174				NULL, NULL,		/* filter, filterarg */
1175                                rsize,			/* maxsize */
1176                                1,			/* nsegments */
1177                                rsize,			/* maxsegsize */
1178                                0,			/* flags */
1179                                NULL, NULL,		/* lockfunc, lockarg */
1180                                &sc->req_dmat)) {
1181		device_printf(sc->mpr_dev, "Cannot allocate request DMA tag\n");
1182		return (ENOMEM);
1183        }
1184        if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1185	    BUS_DMA_NOWAIT, &sc->req_map)) {
1186		device_printf(sc->mpr_dev, "Cannot allocate request memory\n");
1187		return (ENOMEM);
1188        }
1189        bzero(sc->req_frames, rsize);
1190        bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1191	    mpr_memaddr_cb, &sc->req_busaddr, 0);
1192
1193	/*
1194	 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
1195	 * get the size of a Chain Frame.  Previous versions use the size as a
1196	 * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
1197	 * is 0, use the default value.  The IOCMaxChainSegmentSize is the
1198	 * number of 16-byte elelements that can fit in a Chain Frame, which is
1199	 * the size of an IEEE Simple SGE.
1200	 */
1201	if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
1202		sc->chain_seg_size =
1203		    htole16(sc->facts->IOCMaxChainSegmentSize);
1204		if (sc->chain_seg_size == 0) {
1205			sc->chain_frame_size = MPR_DEFAULT_CHAIN_SEG_SIZE *
1206			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1207		} else {
1208			sc->chain_frame_size = sc->chain_seg_size *
1209			    MPR_MAX_CHAIN_ELEMENT_SIZE;
1210		}
1211	} else {
1212		sc->chain_frame_size = sc->facts->IOCRequestFrameSize * 4;
1213	}
1214	rsize = sc->chain_frame_size * sc->max_chains;
1215        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1216				16, 0,			/* algnmnt, boundary */
1217				BUS_SPACE_MAXADDR,	/* lowaddr */
1218				BUS_SPACE_MAXADDR,	/* highaddr */
1219				NULL, NULL,		/* filter, filterarg */
1220                                rsize,			/* maxsize */
1221                                1,			/* nsegments */
1222                                rsize,			/* maxsegsize */
1223                                0,			/* flags */
1224                                NULL, NULL,		/* lockfunc, lockarg */
1225                                &sc->chain_dmat)) {
1226		device_printf(sc->mpr_dev, "Cannot allocate chain DMA tag\n");
1227		return (ENOMEM);
1228        }
1229        if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1230	    BUS_DMA_NOWAIT, &sc->chain_map)) {
1231		device_printf(sc->mpr_dev, "Cannot allocate chain memory\n");
1232		return (ENOMEM);
1233        }
1234        bzero(sc->chain_frames, rsize);
1235        bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1236	    mpr_memaddr_cb, &sc->chain_busaddr, 0);
1237
1238	rsize = MPR_SENSE_LEN * sc->num_reqs;
1239	if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1240				1, 0,			/* algnmnt, boundary */
1241				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1242				BUS_SPACE_MAXADDR,	/* highaddr */
1243				NULL, NULL,		/* filter, filterarg */
1244                                rsize,			/* maxsize */
1245                                1,			/* nsegments */
1246                                rsize,			/* maxsegsize */
1247                                0,			/* flags */
1248                                NULL, NULL,		/* lockfunc, lockarg */
1249                                &sc->sense_dmat)) {
1250		device_printf(sc->mpr_dev, "Cannot allocate sense DMA tag\n");
1251		return (ENOMEM);
1252        }
1253        if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1254	    BUS_DMA_NOWAIT, &sc->sense_map)) {
1255		device_printf(sc->mpr_dev, "Cannot allocate sense memory\n");
1256		return (ENOMEM);
1257        }
1258        bzero(sc->sense_frames, rsize);
1259        bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1260	    mpr_memaddr_cb, &sc->sense_busaddr, 0);
1261
1262	sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR,
1263	    M_WAITOK | M_ZERO);
1264	if (!sc->chains) {
1265		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1266		    __func__, __LINE__);
1267		return (ENOMEM);
1268	}
1269	for (i = 0; i < sc->max_chains; i++) {
1270		chain = &sc->chains[i];
1271		chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1272		    i * sc->chain_frame_size);
1273		chain->chain_busaddr = sc->chain_busaddr +
1274		    i * sc->chain_frame_size;
1275		mpr_free_chain(sc, chain);
1276		sc->chain_free_lowwater++;
1277	}
1278
1279	/* XXX Need to pick a more precise value */
1280	nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1281        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1282				1, 0,			/* algnmnt, boundary */
1283				BUS_SPACE_MAXADDR,	/* lowaddr */
1284				BUS_SPACE_MAXADDR,	/* highaddr */
1285				NULL, NULL,		/* filter, filterarg */
1286                                BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1287                                nsegs,			/* nsegments */
1288                                BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1289                                BUS_DMA_ALLOCNOW,	/* flags */
1290                                busdma_lock_mutex,	/* lockfunc */
1291				&sc->mpr_mtx,		/* lockarg */
1292                                &sc->buffer_dmat)) {
1293		device_printf(sc->mpr_dev, "Cannot allocate buffer DMA tag\n");
1294		return (ENOMEM);
1295        }
1296
1297	/*
1298	 * SMID 0 cannot be used as a free command per the firmware spec.
1299	 * Just drop that command instead of risking accounting bugs.
1300	 */
1301	sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1302	    M_MPR, M_WAITOK | M_ZERO);
1303	if (!sc->commands) {
1304		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1305		    __func__, __LINE__);
1306		return (ENOMEM);
1307	}
1308	for (i = 1; i < sc->num_reqs; i++) {
1309		cm = &sc->commands[i];
1310		cm->cm_req = sc->req_frames +
1311		    i * sc->facts->IOCRequestFrameSize * 4;
1312		cm->cm_req_busaddr = sc->req_busaddr +
1313		    i * sc->facts->IOCRequestFrameSize * 4;
1314		cm->cm_sense = &sc->sense_frames[i];
1315		cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1316		cm->cm_desc.Default.SMID = i;
1317		cm->cm_sc = sc;
1318		TAILQ_INIT(&cm->cm_chain_list);
1319		callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1320
1321		/* XXX Is a failure here a critical problem? */
1322		if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
1323			if (i <= sc->facts->HighPriorityCredit)
1324				mpr_free_high_priority_command(sc, cm);
1325			else
1326				mpr_free_command(sc, cm);
1327		else {
1328			panic("failed to allocate command %d\n", i);
1329			sc->num_reqs = i;
1330			break;
1331		}
1332	}
1333
1334	return (0);
1335}
1336
1337static int
1338mpr_init_queues(struct mpr_softc *sc)
1339{
1340	int i;
1341
1342	memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1343
1344	/*
1345	 * According to the spec, we need to use one less reply than we
1346	 * have space for on the queue.  So sc->num_replies (the number we
1347	 * use) should be less than sc->fqdepth (allocated size).
1348	 */
1349	if (sc->num_replies >= sc->fqdepth)
1350		return (EINVAL);
1351
1352	/*
1353	 * Initialize all of the free queue entries.
1354	 */
1355	for (i = 0; i < sc->fqdepth; i++)
1356		sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
1357	sc->replyfreeindex = sc->num_replies;
1358
1359	return (0);
1360}
1361
1362/* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1363 * Next are the global settings, if they exist.  Highest are the per-unit
1364 * settings, if they exist.
1365 */
1366static void
1367mpr_get_tunables(struct mpr_softc *sc)
1368{
1369	char tmpstr[80];
1370
1371	/* XXX default to some debugging for now */
1372	sc->mpr_debug = MPR_INFO | MPR_FAULT;
1373	sc->disable_msix = 0;
1374	sc->disable_msi = 0;
1375	sc->max_chains = MPR_CHAIN_FRAMES;
1376	sc->max_io_pages = MPR_MAXIO_PAGES;
1377	sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1378	sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1379
1380	/*
1381	 * Grab the global variables.
1382	 */
1383	TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug);
1384	TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1385	TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1386	TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1387	TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1388	TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1389	TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1390
1391	/* Grab the unit-instance variables */
1392	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1393	    device_get_unit(sc->mpr_dev));
1394	TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug);
1395
1396	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1397	    device_get_unit(sc->mpr_dev));
1398	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1399
1400	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1401	    device_get_unit(sc->mpr_dev));
1402	TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1403
1404	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1405	    device_get_unit(sc->mpr_dev));
1406	TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1407
1408	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1409	    device_get_unit(sc->mpr_dev));
1410	TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1411
1412	bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1413	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1414	    device_get_unit(sc->mpr_dev));
1415	TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1416
1417	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1418	    device_get_unit(sc->mpr_dev));
1419	TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1420
1421	snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1422	    device_get_unit(sc->mpr_dev));
1423	TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1424}
1425
1426static void
1427mpr_setup_sysctl(struct mpr_softc *sc)
1428{
1429	struct sysctl_ctx_list	*sysctl_ctx = NULL;
1430	struct sysctl_oid	*sysctl_tree = NULL;
1431	char tmpstr[80], tmpstr2[80];
1432
1433	/*
1434	 * Setup the sysctl variable so the user can change the debug level
1435	 * on the fly.
1436	 */
1437	snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1438	    device_get_unit(sc->mpr_dev));
1439	snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1440
1441	sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1442	if (sysctl_ctx != NULL)
1443		sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1444
1445	if (sysctl_tree == NULL) {
1446		sysctl_ctx_init(&sc->sysctl_ctx);
1447		sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1448		    SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1449		    CTLFLAG_RD, 0, tmpstr);
1450		if (sc->sysctl_tree == NULL)
1451			return;
1452		sysctl_ctx = &sc->sysctl_ctx;
1453		sysctl_tree = sc->sysctl_tree;
1454	}
1455
1456	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1457	    OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0,
1458	    "mpr debug level");
1459
1460	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1461	    OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1462	    "Disable the use of MSI-X interrupts");
1463
1464	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1465	    OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1466	    "Disable the use of MSI interrupts");
1467
1468	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1469	    OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1470	    strlen(sc->fw_version), "firmware version");
1471
1472	SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1473	    OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1474	    strlen(MPR_DRIVER_VERSION), "driver version");
1475
1476	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1477	    OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1478	    &sc->io_cmds_active, 0, "number of currently active commands");
1479
1480	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1481	    OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1482	    &sc->io_cmds_highwater, 0, "maximum active commands seen");
1483
1484	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1485	    OID_AUTO, "chain_free", CTLFLAG_RD,
1486	    &sc->chain_free, 0, "number of free chain elements");
1487
1488	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1489	    OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1490	    &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1491
1492	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1493	    OID_AUTO, "max_chains", CTLFLAG_RD,
1494	    &sc->max_chains, 0,"maximum chain frames that will be allocated");
1495
1496	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1497	    OID_AUTO, "max_io_pages", CTLFLAG_RD,
1498	    &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1499	    "IOCFacts)");
1500
1501	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1502	    OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1503	    "enable SSU to SATA SSD/HDD at shutdown");
1504
1505	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1506	    OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1507	    &sc->chain_alloc_fail, "chain allocation failures");
1508
1509	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1510	    OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1511	    &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1512	    "spinup after SATA ID error");
1513}
1514
1515int
1516mpr_attach(struct mpr_softc *sc)
1517{
1518	int error;
1519
1520	mpr_get_tunables(sc);
1521
1522	MPR_FUNCTRACE(sc);
1523
1524	mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
1525	callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
1526	TAILQ_INIT(&sc->event_list);
1527	timevalclear(&sc->lastfail);
1528
1529	if ((error = mpr_transition_ready(sc)) != 0) {
1530		mpr_printf(sc, "%s failed to transition ready\n", __func__);
1531		return (error);
1532	}
1533
1534	sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1535	    M_ZERO|M_NOWAIT);
1536	if (!sc->facts) {
1537		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1538		    __func__, __LINE__);
1539		return (ENOMEM);
1540	}
1541
1542	/*
1543	 * Get IOC Facts and allocate all structures based on this information.
1544	 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1545	 * Facts. If relevant values have changed in IOC Facts, this function
1546	 * will free all of the memory based on IOC Facts and reallocate that
1547	 * memory.  If this fails, any allocated memory should already be freed.
1548	 */
1549	if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1550		mpr_dprint(sc, MPR_FAULT, "%s IOC Facts based allocation "
1551		    "failed with error %d\n", __func__, error);
1552		return (error);
1553	}
1554
1555	/* Start the periodic watchdog check on the IOC Doorbell */
1556	mpr_periodic(sc);
1557
1558	/*
1559	 * The portenable will kick off discovery events that will drive the
1560	 * rest of the initialization process.  The CAM/SAS module will
1561	 * hold up the boot sequence until discovery is complete.
1562	 */
1563	sc->mpr_ich.ich_func = mpr_startup;
1564	sc->mpr_ich.ich_arg = sc;
1565	if (config_intrhook_establish(&sc->mpr_ich) != 0) {
1566		mpr_dprint(sc, MPR_ERROR, "Cannot establish MPR config hook\n");
1567		error = EINVAL;
1568	}
1569
1570	/*
1571	 * Allow IR to shutdown gracefully when shutdown occurs.
1572	 */
1573	sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1574	    mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1575
1576	if (sc->shutdown_eh == NULL)
1577		mpr_dprint(sc, MPR_ERROR, "shutdown event registration "
1578		    "failed\n");
1579
1580	mpr_setup_sysctl(sc);
1581
1582	sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
1583
1584	return (error);
1585}
1586
1587/* Run through any late-start handlers. */
1588static void
1589mpr_startup(void *arg)
1590{
1591	struct mpr_softc *sc;
1592
1593	sc = (struct mpr_softc *)arg;
1594
1595	mpr_lock(sc);
1596	mpr_unmask_intr(sc);
1597
1598	/* initialize device mapping tables */
1599	mpr_base_static_config_pages(sc);
1600	mpr_mapping_initialize(sc);
1601	mprsas_startup(sc);
1602	mpr_unlock(sc);
1603}
1604
1605/* Periodic watchdog.  Is called with the driver lock already held. */
1606static void
1607mpr_periodic(void *arg)
1608{
1609	struct mpr_softc *sc;
1610	uint32_t db;
1611
1612	sc = (struct mpr_softc *)arg;
1613	if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
1614		return;
1615
1616	db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1617	if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1618		if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
1619		    IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
1620			panic("TEMPERATURE FAULT: STOPPING.");
1621		}
1622		mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
1623		mpr_reinit(sc);
1624	}
1625
1626	callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
1627}
1628
1629static void
1630mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
1631    MPI2_EVENT_NOTIFICATION_REPLY *event)
1632{
1633	MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1634
1635	mpr_print_event(sc, event);
1636
1637	switch (event->Event) {
1638	case MPI2_EVENT_LOG_DATA:
1639		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
1640		if (sc->mpr_debug & MPR_EVENT)
1641			hexdump(event->EventData, event->EventDataLength, NULL,
1642			    0);
1643		break;
1644	case MPI2_EVENT_LOG_ENTRY_ADDED:
1645		entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1646		mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1647		    "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1648		     entry->LogSequence);
1649		break;
1650	default:
1651		break;
1652	}
1653	return;
1654}
1655
1656static int
1657mpr_attach_log(struct mpr_softc *sc)
1658{
1659	uint8_t events[16];
1660
1661	bzero(events, 16);
1662	setbit(events, MPI2_EVENT_LOG_DATA);
1663	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1664
1665	mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
1666	    &sc->mpr_log_eh);
1667
1668	return (0);
1669}
1670
1671static int
1672mpr_detach_log(struct mpr_softc *sc)
1673{
1674
1675	if (sc->mpr_log_eh != NULL)
1676		mpr_deregister_events(sc, sc->mpr_log_eh);
1677	return (0);
1678}
1679
1680/*
1681 * Free all of the driver resources and detach submodules.  Should be called
1682 * without the lock held.
1683 */
1684int
1685mpr_free(struct mpr_softc *sc)
1686{
1687	int error;
1688
1689	/* Turn off the watchdog */
1690	mpr_lock(sc);
1691	sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
1692	mpr_unlock(sc);
1693	/* Lock must not be held for this */
1694	callout_drain(&sc->periodic);
1695
1696	if (((error = mpr_detach_log(sc)) != 0) ||
1697	    ((error = mpr_detach_sas(sc)) != 0))
1698		return (error);
1699
1700	mpr_detach_user(sc);
1701
1702	/* Put the IOC back in the READY state. */
1703	mpr_lock(sc);
1704	if ((error = mpr_transition_ready(sc)) != 0) {
1705		mpr_unlock(sc);
1706		return (error);
1707	}
1708	mpr_unlock(sc);
1709
1710	if (sc->facts != NULL)
1711		free(sc->facts, M_MPR);
1712
1713	/*
1714	 * Free all buffers that are based on IOC Facts.  A Diag Reset may need
1715	 * to free these buffers too.
1716	 */
1717	mpr_iocfacts_free(sc);
1718
1719	if (sc->sysctl_tree != NULL)
1720		sysctl_ctx_free(&sc->sysctl_ctx);
1721
1722	/* Deregister the shutdown function */
1723	if (sc->shutdown_eh != NULL)
1724		EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1725
1726	mtx_destroy(&sc->mpr_mtx);
1727
1728	return (0);
1729}
1730
1731static __inline void
1732mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
1733{
1734	MPR_FUNCTRACE(sc);
1735
1736	if (cm == NULL) {
1737		mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
1738		return;
1739	}
1740
1741	if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
1742		cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
1743
1744	if (cm->cm_complete != NULL) {
1745		mpr_dprint(sc, MPR_TRACE,
1746		    "%s cm %p calling cm_complete %p data %p reply %p\n",
1747		    __func__, cm, cm->cm_complete, cm->cm_complete_data,
1748		    cm->cm_reply);
1749		cm->cm_complete(sc, cm);
1750	}
1751
1752	if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
1753		mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
1754		wakeup(cm);
1755	}
1756
1757	if (sc->io_cmds_active != 0) {
1758		sc->io_cmds_active--;
1759	} else {
1760		mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
1761		    "out of sync - resynching to 0\n");
1762	}
1763}
1764
1765static void
1766mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
1767{
1768	union loginfo_type {
1769		u32	loginfo;
1770		struct {
1771			u32	subcode:16;
1772			u32	code:8;
1773			u32	originator:4;
1774			u32	bus_type:4;
1775		} dw;
1776	};
1777	union loginfo_type sas_loginfo;
1778	char *originator_str = NULL;
1779
1780	sas_loginfo.loginfo = log_info;
1781	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1782		return;
1783
1784	/* each nexus loss loginfo */
1785	if (log_info == 0x31170000)
1786		return;
1787
1788	/* eat the loginfos associated with task aborts */
1789	if ((log_info == 30050000) || (log_info == 0x31140000) ||
1790	    (log_info == 0x31130000))
1791		return;
1792
1793	switch (sas_loginfo.dw.originator) {
1794	case 0:
1795		originator_str = "IOP";
1796		break;
1797	case 1:
1798		originator_str = "PL";
1799		break;
1800	case 2:
1801		originator_str = "IR";
1802		break;
1803	}
1804
1805	mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
1806	    "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
1807	    sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1808}
1809
1810static void
1811mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
1812{
1813	MPI2DefaultReply_t *mpi_reply;
1814	u16 sc_status;
1815
1816	mpi_reply = (MPI2DefaultReply_t*)reply;
1817	sc_status = le16toh(mpi_reply->IOCStatus);
1818	if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
1819		mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
1820}
1821
1822void
1823mpr_intr(void *data)
1824{
1825	struct mpr_softc *sc;
1826	uint32_t status;
1827
1828	sc = (struct mpr_softc *)data;
1829	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1830
1831	/*
1832	 * Check interrupt status register to flush the bus.  This is
1833	 * needed for both INTx interrupts and driver-driven polling
1834	 */
1835	status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1836	if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1837		return;
1838
1839	mpr_lock(sc);
1840	mpr_intr_locked(data);
1841	mpr_unlock(sc);
1842	return;
1843}
1844
1845/*
1846 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1847 * chip.  Hopefully this theory is correct.
1848 */
1849void
1850mpr_intr_msi(void *data)
1851{
1852	struct mpr_softc *sc;
1853
1854	sc = (struct mpr_softc *)data;
1855	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1856	mpr_lock(sc);
1857	mpr_intr_locked(data);
1858	mpr_unlock(sc);
1859	return;
1860}
1861
1862/*
1863 * The locking is overly broad and simplistic, but easy to deal with for now.
1864 */
1865void
1866mpr_intr_locked(void *data)
1867{
1868	MPI2_REPLY_DESCRIPTORS_UNION *desc;
1869	struct mpr_softc *sc;
1870	struct mpr_command *cm = NULL;
1871	uint8_t flags;
1872	u_int pq;
1873	MPI2_DIAG_RELEASE_REPLY *rel_rep;
1874	mpr_fw_diagnostic_buffer_t *pBuffer;
1875
1876	sc = (struct mpr_softc *)data;
1877
1878	pq = sc->replypostindex;
1879	mpr_dprint(sc, MPR_TRACE,
1880	    "%s sc %p starting with replypostindex %u\n",
1881	    __func__, sc, sc->replypostindex);
1882
1883	for ( ;; ) {
1884		cm = NULL;
1885		desc = &sc->post_queue[sc->replypostindex];
1886		flags = desc->Default.ReplyFlags &
1887		    MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1888		if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
1889		    (le32toh(desc->Words.High) == 0xffffffff))
1890			break;
1891
1892		/* increment the replypostindex now, so that event handlers
1893		 * and cm completion handlers which decide to do a diag
1894		 * reset can zero it without it getting incremented again
1895		 * afterwards, and we break out of this loop on the next
1896		 * iteration since the reply post queue has been cleared to
1897		 * 0xFF and all descriptors look unused (which they are).
1898		 */
1899		if (++sc->replypostindex >= sc->pqdepth)
1900			sc->replypostindex = 0;
1901
1902		switch (flags) {
1903		case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1904		case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
1905			cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
1906			cm->cm_reply = NULL;
1907			break;
1908		case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1909		{
1910			uint32_t baddr;
1911			uint8_t *reply;
1912
1913			/*
1914			 * Re-compose the reply address from the address
1915			 * sent back from the chip.  The ReplyFrameAddress
1916			 * is the lower 32 bits of the physical address of
1917			 * particular reply frame.  Convert that address to
1918			 * host format, and then use that to provide the
1919			 * offset against the virtual address base
1920			 * (sc->reply_frames).
1921			 */
1922			baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1923			reply = sc->reply_frames +
1924				(baddr - ((uint32_t)sc->reply_busaddr));
1925			/*
1926			 * Make sure the reply we got back is in a valid
1927			 * range.  If not, go ahead and panic here, since
1928			 * we'll probably panic as soon as we deference the
1929			 * reply pointer anyway.
1930			 */
1931			if ((reply < sc->reply_frames)
1932			 || (reply > (sc->reply_frames +
1933			     (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1934				printf("%s: WARNING: reply %p out of range!\n",
1935				       __func__, reply);
1936				printf("%s: reply_frames %p, fqdepth %d, "
1937				       "frame size %d\n", __func__,
1938				       sc->reply_frames, sc->fqdepth,
1939				       sc->facts->ReplyFrameSize * 4);
1940				printf("%s: baddr %#x,\n", __func__, baddr);
1941				/* LSI-TODO. See Linux Code for Graceful exit */
1942				panic("Reply address out of range");
1943			}
1944			if (le16toh(desc->AddressReply.SMID) == 0) {
1945				if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1946				    MPI2_FUNCTION_DIAG_BUFFER_POST) {
1947					/*
1948					 * If SMID is 0 for Diag Buffer Post,
1949					 * this implies that the reply is due to
1950					 * a release function with a status that
1951					 * the buffer has been released.  Set
1952					 * the buffer flags accordingly.
1953					 */
1954					rel_rep =
1955					    (MPI2_DIAG_RELEASE_REPLY *)reply;
1956					if ((le16toh(rel_rep->IOCStatus) &
1957					    MPI2_IOCSTATUS_MASK) ==
1958					    MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1959					{
1960						pBuffer =
1961						    &sc->fw_diag_buffer_list[
1962						    rel_rep->BufferType];
1963						pBuffer->valid_data = TRUE;
1964						pBuffer->owned_by_firmware =
1965						    FALSE;
1966						pBuffer->immediate = FALSE;
1967					}
1968				} else
1969					mpr_dispatch_event(sc, baddr,
1970					    (MPI2_EVENT_NOTIFICATION_REPLY *)
1971					    reply);
1972			} else {
1973				cm = &sc->commands[
1974				    le16toh(desc->AddressReply.SMID)];
1975				cm->cm_reply = reply;
1976				cm->cm_reply_data =
1977				    le32toh(desc->AddressReply.
1978				    ReplyFrameAddress);
1979			}
1980			break;
1981		}
1982		case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1983		case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1984		case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1985		default:
1986			/* Unhandled */
1987			mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
1988			    desc->Default.ReplyFlags);
1989			cm = NULL;
1990			break;
1991		}
1992
1993		if (cm != NULL) {
1994			// Print Error reply frame
1995			if (cm->cm_reply)
1996				mpr_display_reply_info(sc,cm->cm_reply);
1997			mpr_complete_command(sc, cm);
1998		}
1999
2000		desc->Words.Low = 0xffffffff;
2001		desc->Words.High = 0xffffffff;
2002	}
2003
2004	if (pq != sc->replypostindex) {
2005		mpr_dprint(sc, MPR_TRACE,
2006		    "%s sc %p writing postindex %d\n",
2007		    __func__, sc, sc->replypostindex);
2008		mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2009		    sc->replypostindex);
2010	}
2011
2012	return;
2013}
2014
2015static void
2016mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2017    MPI2_EVENT_NOTIFICATION_REPLY *reply)
2018{
2019	struct mpr_event_handle *eh;
2020	int event, handled = 0;
2021
2022	event = le16toh(reply->Event);
2023	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2024		if (isset(eh->mask, event)) {
2025			eh->callback(sc, data, reply);
2026			handled++;
2027		}
2028	}
2029
2030	if (handled == 0)
2031		mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2032		    le16toh(event));
2033
2034	/*
2035	 * This is the only place that the event/reply should be freed.
2036	 * Anything wanting to hold onto the event data should have
2037	 * already copied it into their own storage.
2038	 */
2039	mpr_free_reply(sc, data);
2040}
2041
2042static void
2043mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2044{
2045	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2046
2047	if (cm->cm_reply)
2048		mpr_print_event(sc,
2049			(MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2050
2051	mpr_free_command(sc, cm);
2052
2053	/* next, send a port enable */
2054	mprsas_startup(sc);
2055}
2056
2057/*
2058 * For both register_events and update_events, the caller supplies a bitmap
2059 * of events that it _wants_.  These functions then turn that into a bitmask
2060 * suitable for the controller.
2061 */
2062int
2063mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2064    mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2065{
2066	struct mpr_event_handle *eh;
2067	int error = 0;
2068
2069	eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2070	if (!eh) {
2071		device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
2072		    __func__, __LINE__);
2073		return (ENOMEM);
2074	}
2075	eh->callback = cb;
2076	eh->data = data;
2077	TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2078	if (mask != NULL)
2079		error = mpr_update_events(sc, eh, mask);
2080	*handle = eh;
2081
2082	return (error);
2083}
2084
2085int
2086mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2087    uint8_t *mask)
2088{
2089	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2090	MPI2_EVENT_NOTIFICATION_REPLY *reply;
2091	struct mpr_command *cm;
2092	struct mpr_event_handle *eh;
2093	int error, i;
2094
2095	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2096
2097	if ((mask != NULL) && (handle != NULL))
2098		bcopy(mask, &handle->mask[0], 16);
2099	memset(sc->event_mask, 0xff, 16);
2100
2101	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2102		for (i = 0; i < 16; i++)
2103			sc->event_mask[i] &= ~eh->mask[i];
2104	}
2105
2106	if ((cm = mpr_alloc_command(sc)) == NULL)
2107		return (EBUSY);
2108	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2109	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2110	evtreq->MsgFlags = 0;
2111	evtreq->SASBroadcastPrimitiveMasks = 0;
2112#ifdef MPR_DEBUG_ALL_EVENTS
2113	{
2114		u_char fullmask[16];
2115		memset(fullmask, 0x00, 16);
2116		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2117	}
2118#else
2119		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2120#endif
2121	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2122	cm->cm_data = NULL;
2123
2124	error = mpr_request_polled(sc, cm);
2125	reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2126	if ((reply == NULL) ||
2127	    (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2128		error = ENXIO;
2129
2130	if (reply)
2131		mpr_print_event(sc, reply);
2132
2133	mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2134
2135	mpr_free_command(sc, cm);
2136	return (error);
2137}
2138
2139static int
2140mpr_reregister_events(struct mpr_softc *sc)
2141{
2142	MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2143	struct mpr_command *cm;
2144	struct mpr_event_handle *eh;
2145	int error, i;
2146
2147	mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2148
2149	/* first, reregister events */
2150
2151	memset(sc->event_mask, 0xff, 16);
2152
2153	TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2154		for (i = 0; i < 16; i++)
2155			sc->event_mask[i] &= ~eh->mask[i];
2156	}
2157
2158	if ((cm = mpr_alloc_command(sc)) == NULL)
2159		return (EBUSY);
2160	evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2161	evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2162	evtreq->MsgFlags = 0;
2163	evtreq->SASBroadcastPrimitiveMasks = 0;
2164#ifdef MPR_DEBUG_ALL_EVENTS
2165	{
2166		u_char fullmask[16];
2167		memset(fullmask, 0x00, 16);
2168		bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2169	}
2170#else
2171		bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2172#endif
2173	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2174	cm->cm_data = NULL;
2175	cm->cm_complete = mpr_reregister_events_complete;
2176
2177	error = mpr_map_command(sc, cm);
2178
2179	mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2180	    error);
2181	return (error);
2182}
2183
2184int
2185mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2186{
2187
2188	TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2189	free(handle, M_MPR);
2190	return (mpr_update_events(sc, NULL, NULL));
2191}
2192
2193/*
2194 * Add a chain element as the next SGE for the specified command.
2195 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
2196 * only required for IEEE commands.  Therefore there is no code for commands
2197 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
2198 * shouldn't be requesting chains).
2199 */
2200static int
2201mpr_add_chain(struct mpr_command *cm, int segsleft)
2202{
2203	struct mpr_softc *sc = cm->cm_sc;
2204	MPI2_REQUEST_HEADER *req;
2205	MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
2206	struct mpr_chain *chain;
2207	int sgc_size, current_segs, rem_segs, segs_per_frame;
2208	uint8_t next_chain_offset = 0;
2209
2210	/*
2211	 * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
2212	 * only IEEE commands should be requesting chains.  Return some error
2213	 * code other than 0.
2214	 */
2215	if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
2216		mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
2217		    "an MPI SGL.\n");
2218		return(ENOBUFS);
2219	}
2220
2221	sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
2222	if (cm->cm_sglsize < sgc_size)
2223		panic("MPR: Need SGE Error Code\n");
2224
2225	chain = mpr_alloc_chain(cm->cm_sc);
2226	if (chain == NULL)
2227		return (ENOBUFS);
2228
2229	/*
2230	 * Note: a double-linked list is used to make it easier to walk for
2231	 * debugging.
2232	 */
2233	TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2234
2235	/*
2236	 * Need to know if the number of frames left is more than 1 or not.  If
2237	 * more than 1 frame is required, NextChainOffset will need to be set,
2238	 * which will just be the last segment of the frame.
2239	 */
2240	rem_segs = 0;
2241	if (cm->cm_sglsize < (sgc_size * segsleft)) {
2242		/*
2243		 * rem_segs is the number of segements remaining after the
2244		 * segments that will go into the current frame.  Since it is
2245		 * known that at least one more frame is required, account for
2246		 * the chain element.  To know if more than one more frame is
2247		 * required, just check if there will be a remainder after using
2248		 * the current frame (with this chain) and the next frame.  If
2249		 * so the NextChainOffset must be the last element of the next
2250		 * frame.
2251		 */
2252		current_segs = (cm->cm_sglsize / sgc_size) - 1;
2253		rem_segs = segsleft - current_segs;
2254		segs_per_frame = sc->chain_frame_size / sgc_size;
2255		if (rem_segs > segs_per_frame) {
2256			next_chain_offset = segs_per_frame - 1;
2257		}
2258	}
2259	ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
2260	ieee_sgc->Length = next_chain_offset ?
2261	    htole32((uint32_t)sc->chain_frame_size) :
2262	    htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
2263	ieee_sgc->NextChainOffset = next_chain_offset;
2264	ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2265	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2266	ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
2267	ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
2268	cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
2269	req = (MPI2_REQUEST_HEADER *)cm->cm_req;
2270	req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
2271
2272	cm->cm_sglsize = sc->chain_frame_size;
2273	return (0);
2274}
2275
2276/*
2277 * Add one scatter-gather element to the scatter-gather list for a command.
2278 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
2279 * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
2280 * chain, so don't consider any chain additions.
2281 */
2282int
2283mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
2284    int segsleft)
2285{
2286	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2287	u32 sge_flags;
2288
2289	/*
2290	 * case 1: >=1 more segment, no room for anything (error)
2291	 * case 2: 1 more segment and enough room for it
2292         */
2293
2294	if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
2295		mpr_dprint(cm->cm_sc, MPR_ERROR,
2296		    "%s: warning: Not enough room for MPI SGL in frame.\n",
2297		    __func__);
2298		return(ENOBUFS);
2299	}
2300
2301	KASSERT(segsleft == 1,
2302	    ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
2303	    segsleft));
2304
2305	/*
2306	 * There is one more segment left to add for the MPI SGL and there is
2307	 * enough room in the frame to add it.  This is the normal case because
2308	 * MPI SGL's don't have chains, otherwise something is wrong.
2309	 *
2310	 * If this is a bi-directional request, need to account for that
2311	 * here.  Save the pre-filled sge values.  These will be used
2312	 * either for the 2nd SGL or for a single direction SGL.  If
2313	 * cm_out_len is non-zero, this is a bi-directional request, so
2314	 * fill in the OUT SGL first, then the IN SGL, otherwise just
2315	 * fill in the IN SGL.  Note that at this time, when filling in
2316	 * 2 SGL's for a bi-directional request, they both use the same
2317	 * DMA buffer (same cm command).
2318	 */
2319	saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
2320	saved_address_low = sge->Address.Low;
2321	saved_address_high = sge->Address.High;
2322	if (cm->cm_out_len) {
2323		sge->FlagsLength = cm->cm_out_len |
2324		    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2325		    MPI2_SGE_FLAGS_END_OF_BUFFER |
2326		    MPI2_SGE_FLAGS_HOST_TO_IOC |
2327		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2328		    MPI2_SGE_FLAGS_SHIFT);
2329		cm->cm_sglsize -= len;
2330		/* Endian Safe code */
2331		sge_flags = sge->FlagsLength;
2332		sge->FlagsLength = htole32(sge_flags);
2333		sge->Address.High = htole32(sge->Address.High);
2334		sge->Address.Low = htole32(sge->Address.Low);
2335		bcopy(sge, cm->cm_sge, len);
2336		cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2337	}
2338	sge->FlagsLength = saved_buf_len |
2339	    ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2340	    MPI2_SGE_FLAGS_END_OF_BUFFER |
2341	    MPI2_SGE_FLAGS_LAST_ELEMENT |
2342	    MPI2_SGE_FLAGS_END_OF_LIST |
2343	    MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2344	    MPI2_SGE_FLAGS_SHIFT);
2345	if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
2346		sge->FlagsLength |=
2347		    ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
2348		    MPI2_SGE_FLAGS_SHIFT);
2349	} else {
2350		sge->FlagsLength |=
2351		    ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
2352		    MPI2_SGE_FLAGS_SHIFT);
2353	}
2354	sge->Address.Low = saved_address_low;
2355	sge->Address.High = saved_address_high;
2356
2357	cm->cm_sglsize -= len;
2358	/* Endian Safe code */
2359	sge_flags = sge->FlagsLength;
2360	sge->FlagsLength = htole32(sge_flags);
2361	sge->Address.High = htole32(sge->Address.High);
2362	sge->Address.Low = htole32(sge->Address.Low);
2363	bcopy(sge, cm->cm_sge, len);
2364	cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2365	return (0);
2366}
2367
2368/*
2369 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
2370 * gather list for a command.  Maintain cm_sglsize and cm_sge as the
2371 * remaining size and pointer to the next SGE to fill in, respectively.
2372 */
2373int
2374mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
2375{
2376	MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
2377	int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
2378	uint32_t saved_buf_len, saved_address_low, saved_address_high;
2379	uint32_t sge_length;
2380
2381	/*
2382	 * case 1: No room for chain or segment (error).
2383	 * case 2: Two or more segments left but only room for chain.
2384	 * case 3: Last segment and room for it, so set flags.
2385	 */
2386
2387	/*
2388	 * There should be room for at least one element, or there is a big
2389	 * problem.
2390	 */
2391	if (cm->cm_sglsize < ieee_sge_size)
2392		panic("MPR: Need SGE Error Code\n");
2393
2394	if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
2395		if ((error = mpr_add_chain(cm, segsleft)) != 0)
2396			return (error);
2397	}
2398
2399	if (segsleft == 1) {
2400		/*
2401		 * If this is a bi-directional request, need to account for that
2402		 * here.  Save the pre-filled sge values.  These will be used
2403		 * either for the 2nd SGL or for a single direction SGL.  If
2404		 * cm_out_len is non-zero, this is a bi-directional request, so
2405		 * fill in the OUT SGL first, then the IN SGL, otherwise just
2406		 * fill in the IN SGL.  Note that at this time, when filling in
2407		 * 2 SGL's for a bi-directional request, they both use the same
2408		 * DMA buffer (same cm command).
2409		 */
2410		saved_buf_len = sge->Length;
2411		saved_address_low = sge->Address.Low;
2412		saved_address_high = sge->Address.High;
2413		if (cm->cm_out_len) {
2414			sge->Length = cm->cm_out_len;
2415			sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2416			    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2417			cm->cm_sglsize -= ieee_sge_size;
2418			/* Endian Safe code */
2419			sge_length = sge->Length;
2420			sge->Length = htole32(sge_length);
2421			sge->Address.High = htole32(sge->Address.High);
2422			sge->Address.Low = htole32(sge->Address.Low);
2423			bcopy(sgep, cm->cm_sge, ieee_sge_size);
2424			cm->cm_sge =
2425			    (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
2426			    ieee_sge_size);
2427		}
2428		sge->Length = saved_buf_len;
2429		sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2430		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2431		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2432		sge->Address.Low = saved_address_low;
2433		sge->Address.High = saved_address_high;
2434	}
2435
2436	cm->cm_sglsize -= ieee_sge_size;
2437	/* Endian Safe code */
2438	sge_length = sge->Length;
2439	sge->Length = htole32(sge_length);
2440	sge->Address.High = htole32(sge->Address.High);
2441	sge->Address.Low = htole32(sge->Address.Low);
2442	bcopy(sgep, cm->cm_sge, ieee_sge_size);
2443	cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
2444	    ieee_sge_size);
2445	return (0);
2446}
2447
2448/*
2449 * Add one dma segment to the scatter-gather list for a command.
2450 */
2451int
2452mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
2453    int segsleft)
2454{
2455	MPI2_SGE_SIMPLE64 sge;
2456	MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
2457
2458	if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
2459		ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2460		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2461		ieee_sge.Length = len;
2462		mpr_from_u64(pa, &ieee_sge.Address);
2463
2464		return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
2465	} else {
2466		/*
2467		 * This driver always uses 64-bit address elements for
2468		 * simplicity.
2469		 */
2470		flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2471		    MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2472		/* Set Endian safe macro in mpr_push_sge */
2473		sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
2474		mpr_from_u64(pa, &sge.Address);
2475
2476		return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
2477	}
2478}
2479
2480static void
2481mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2482{
2483	struct mpr_softc *sc;
2484	struct mpr_command *cm;
2485	u_int i, dir, sflags;
2486
2487	cm = (struct mpr_command *)arg;
2488	sc = cm->cm_sc;
2489
2490	/*
2491	 * In this case, just print out a warning and let the chip tell the
2492	 * user they did the wrong thing.
2493	 */
2494	if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2495		mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
2496		    "segments, more than the %d allowed\n", __func__, nsegs,
2497		    cm->cm_max_segs);
2498	}
2499
2500	/*
2501	 * Set up DMA direction flags.  Bi-directional requests are also handled
2502	 * here.  In that case, both direction flags will be set.
2503	 */
2504	sflags = 0;
2505	if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
2506		/*
2507		 * We have to add a special case for SMP passthrough, there
2508		 * is no easy way to generically handle it.  The first
2509		 * S/G element is used for the command (therefore the
2510		 * direction bit needs to be set).  The second one is used
2511		 * for the reply.  We'll leave it to the caller to make
2512		 * sure we only have two buffers.
2513		 */
2514		/*
2515		 * Even though the busdma man page says it doesn't make
2516		 * sense to have both direction flags, it does in this case.
2517		 * We have one s/g element being accessed in each direction.
2518		 */
2519		dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2520
2521		/*
2522		 * Set the direction flag on the first buffer in the SMP
2523		 * passthrough request.  We'll clear it for the second one.
2524		 */
2525		sflags |= MPI2_SGE_FLAGS_DIRECTION |
2526			  MPI2_SGE_FLAGS_END_OF_BUFFER;
2527	} else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
2528		sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2529		dir = BUS_DMASYNC_PREWRITE;
2530	} else
2531		dir = BUS_DMASYNC_PREREAD;
2532
2533	for (i = 0; i < nsegs; i++) {
2534		if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
2535			sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2536		}
2537		error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2538		    sflags, nsegs - i);
2539		if (error != 0) {
2540			/* Resource shortage, roll back! */
2541			if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
2542				mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
2543				    "consider increasing hw.mpr.max_chains.\n");
2544			cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
2545			mpr_complete_command(sc, cm);
2546			return;
2547		}
2548	}
2549
2550	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2551	mpr_enqueue_request(sc, cm);
2552
2553	return;
2554}
2555
2556static void
2557mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2558	     int error)
2559{
2560	mpr_data_cb(arg, segs, nsegs, error);
2561}
2562
2563/*
2564 * This is the routine to enqueue commands ansynchronously.
2565 * Note that the only error path here is from bus_dmamap_load(), which can
2566 * return EINPROGRESS if it is waiting for resources.  Other than this, it's
2567 * assumed that if you have a command in-hand, then you have enough credits
2568 * to use it.
2569 */
2570int
2571mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
2572{
2573	int error = 0;
2574
2575	if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
2576		error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2577		    &cm->cm_uio, mpr_data_cb2, cm, 0);
2578	} else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
2579		error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
2580		    cm->cm_data, mpr_data_cb, cm, 0);
2581	} else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2582		error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2583		    cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
2584	} else {
2585		/* Add a zero-length element as needed */
2586		if (cm->cm_sge != NULL)
2587			mpr_add_dmaseg(cm, 0, 0, 0, 1);
2588		mpr_enqueue_request(sc, cm);
2589	}
2590
2591	return (error);
2592}
2593
2594/*
2595 * This is the routine to enqueue commands synchronously.  An error of
2596 * EINPROGRESS from mpr_map_command() is ignored since the command will
2597 * be executed and enqueued automatically.  Other errors come from msleep().
2598 */
2599int
2600mpr_wait_command(struct mpr_softc *sc, struct mpr_command *cm, int timeout,
2601    int sleep_flag)
2602{
2603	int error, rc;
2604	struct timeval cur_time, start_time;
2605
2606	if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
2607		return  EBUSY;
2608
2609	cm->cm_complete = NULL;
2610	cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
2611	error = mpr_map_command(sc, cm);
2612	if ((error != 0) && (error != EINPROGRESS))
2613		return (error);
2614
2615	// Check for context and wait for 50 mSec at a time until time has
2616	// expired or the command has finished.  If msleep can't be used, need
2617	// to poll.
2618#if __FreeBSD_version >= 1000029
2619	if (curthread->td_no_sleeping)
2620#else //__FreeBSD_version < 1000029
2621	if (curthread->td_pflags & TDP_NOSLEEPING)
2622#endif //__FreeBSD_version >= 1000029
2623		sleep_flag = NO_SLEEP;
2624	getmicrotime(&start_time);
2625	if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
2626		error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
2627	} else {
2628		while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
2629			mpr_intr_locked(sc);
2630			if (sleep_flag == CAN_SLEEP)
2631				pause("mprwait", hz/20);
2632			else
2633				DELAY(50000);
2634
2635			getmicrotime(&cur_time);
2636			if ((cur_time.tv_sec - start_time.tv_sec) > timeout) {
2637				error = EWOULDBLOCK;
2638				break;
2639			}
2640		}
2641	}
2642
2643	if (error == EWOULDBLOCK) {
2644		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
2645		rc = mpr_reinit(sc);
2646		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
2647		    "failed");
2648		error = ETIMEDOUT;
2649	}
2650	return (error);
2651}
2652
2653/*
2654 * This is the routine to enqueue a command synchonously and poll for
2655 * completion.  Its use should be rare.
2656 */
2657int
2658mpr_request_polled(struct mpr_softc *sc, struct mpr_command *cm)
2659{
2660	int error, timeout = 0, rc;
2661	struct timeval cur_time, start_time;
2662
2663	error = 0;
2664
2665	cm->cm_flags |= MPR_CM_FLAGS_POLLED;
2666	cm->cm_complete = NULL;
2667	mpr_map_command(sc, cm);
2668
2669	getmicrotime(&start_time);
2670	while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
2671		mpr_intr_locked(sc);
2672
2673		if (mtx_owned(&sc->mpr_mtx))
2674			msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
2675			    "mprpoll", hz/20);
2676		else
2677			pause("mprpoll", hz/20);
2678
2679		/*
2680		 * Check for real-time timeout and fail if more than 60 seconds.
2681		 */
2682		getmicrotime(&cur_time);
2683		timeout = cur_time.tv_sec - start_time.tv_sec;
2684		if (timeout > 60) {
2685			mpr_dprint(sc, MPR_FAULT, "polling failed\n");
2686			error = ETIMEDOUT;
2687			break;
2688		}
2689	}
2690
2691	if (error) {
2692		mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
2693		rc = mpr_reinit(sc);
2694		mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
2695		    "failed");
2696	}
2697	return (error);
2698}
2699
2700/*
2701 * The MPT driver had a verbose interface for config pages.  In this driver,
2702 * reduce it to much simpler terms, similar to the Linux driver.
2703 */
2704int
2705mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
2706{
2707	MPI2_CONFIG_REQUEST *req;
2708	struct mpr_command *cm;
2709	int error;
2710
2711	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
2712		return (EBUSY);
2713	}
2714
2715	cm = mpr_alloc_command(sc);
2716	if (cm == NULL) {
2717		return (EBUSY);
2718	}
2719
2720	req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2721	req->Function = MPI2_FUNCTION_CONFIG;
2722	req->Action = params->action;
2723	req->SGLFlags = 0;
2724	req->ChainOffset = 0;
2725	req->PageAddress = params->page_address;
2726	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2727		MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2728
2729		hdr = &params->hdr.Ext;
2730		req->ExtPageType = hdr->ExtPageType;
2731		req->ExtPageLength = hdr->ExtPageLength;
2732		req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2733		req->Header.PageLength = 0; /* Must be set to zero */
2734		req->Header.PageNumber = hdr->PageNumber;
2735		req->Header.PageVersion = hdr->PageVersion;
2736	} else {
2737		MPI2_CONFIG_PAGE_HEADER *hdr;
2738
2739		hdr = &params->hdr.Struct;
2740		req->Header.PageType = hdr->PageType;
2741		req->Header.PageNumber = hdr->PageNumber;
2742		req->Header.PageLength = hdr->PageLength;
2743		req->Header.PageVersion = hdr->PageVersion;
2744	}
2745
2746	cm->cm_data = params->buffer;
2747	cm->cm_length = params->length;
2748	if (cm->cm_data != NULL) {
2749		cm->cm_sge = &req->PageBufferSGE;
2750		cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2751		cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
2752	} else
2753		cm->cm_sge = NULL;
2754	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2755
2756	cm->cm_complete_data = params;
2757	if (params->callback != NULL) {
2758		cm->cm_complete = mpr_config_complete;
2759		return (mpr_map_command(sc, cm));
2760	} else {
2761		error = mpr_wait_command(sc, cm, 0, CAN_SLEEP);
2762		if (error) {
2763			mpr_dprint(sc, MPR_FAULT,
2764			    "Error %d reading config page\n", error);
2765			mpr_free_command(sc, cm);
2766			return (error);
2767		}
2768		mpr_config_complete(sc, cm);
2769	}
2770
2771	return (0);
2772}
2773
2774int
2775mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
2776{
2777	return (EINVAL);
2778}
2779
2780static void
2781mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
2782{
2783	MPI2_CONFIG_REPLY *reply;
2784	struct mpr_config_params *params;
2785
2786	MPR_FUNCTRACE(sc);
2787	params = cm->cm_complete_data;
2788
2789	if (cm->cm_data != NULL) {
2790		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2791		    BUS_DMASYNC_POSTREAD);
2792		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2793	}
2794
2795	/*
2796	 * XXX KDM need to do more error recovery?  This results in the
2797	 * device in question not getting probed.
2798	 */
2799	if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
2800		params->status = MPI2_IOCSTATUS_BUSY;
2801		goto done;
2802	}
2803
2804	reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
2805	if (reply == NULL) {
2806		params->status = MPI2_IOCSTATUS_BUSY;
2807		goto done;
2808	}
2809	params->status = reply->IOCStatus;
2810	if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2811		params->hdr.Ext.ExtPageType = reply->ExtPageType;
2812		params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2813		params->hdr.Ext.PageType = reply->Header.PageType;
2814		params->hdr.Ext.PageNumber = reply->Header.PageNumber;
2815		params->hdr.Ext.PageVersion = reply->Header.PageVersion;
2816	} else {
2817		params->hdr.Struct.PageType = reply->Header.PageType;
2818		params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2819		params->hdr.Struct.PageLength = reply->Header.PageLength;
2820		params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2821	}
2822
2823done:
2824	mpr_free_command(sc, cm);
2825	if (params->callback != NULL)
2826		params->callback(sc, params);
2827
2828	return;
2829}
2830