1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: releng/11.0/sys/dev/e1000/e1000_phy.c 304493 2016-08-19 19:02:18Z sbruno $*/
34
35#include "e1000_api.h"
36
37static s32 e1000_wait_autoneg(struct e1000_hw *hw);
38static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39					  u16 *data, bool read, bool page_set);
40static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42					  u16 *data, bool read);
43
44/* Cable length tables */
45static const u16 e1000_m88_cable_length_table[] = {
46	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48		(sizeof(e1000_m88_cable_length_table) / \
49		 sizeof(e1000_m88_cable_length_table[0]))
50
51static const u16 e1000_igp_2_cable_length_table[] = {
52	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
53	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
54	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
55	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
56	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
57	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
58	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
59	124};
60#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
61		(sizeof(e1000_igp_2_cable_length_table) / \
62		 sizeof(e1000_igp_2_cable_length_table[0]))
63
64/**
65 *  e1000_init_phy_ops_generic - Initialize PHY function pointers
66 *  @hw: pointer to the HW structure
67 *
68 *  Setups up the function pointers to no-op functions
69 **/
70void e1000_init_phy_ops_generic(struct e1000_hw *hw)
71{
72	struct e1000_phy_info *phy = &hw->phy;
73	DEBUGFUNC("e1000_init_phy_ops_generic");
74
75	/* Initialize function pointers */
76	phy->ops.init_params = e1000_null_ops_generic;
77	phy->ops.acquire = e1000_null_ops_generic;
78	phy->ops.check_polarity = e1000_null_ops_generic;
79	phy->ops.check_reset_block = e1000_null_ops_generic;
80	phy->ops.commit = e1000_null_ops_generic;
81	phy->ops.force_speed_duplex = e1000_null_ops_generic;
82	phy->ops.get_cfg_done = e1000_null_ops_generic;
83	phy->ops.get_cable_length = e1000_null_ops_generic;
84	phy->ops.get_info = e1000_null_ops_generic;
85	phy->ops.set_page = e1000_null_set_page;
86	phy->ops.read_reg = e1000_null_read_reg;
87	phy->ops.read_reg_locked = e1000_null_read_reg;
88	phy->ops.read_reg_page = e1000_null_read_reg;
89	phy->ops.release = e1000_null_phy_generic;
90	phy->ops.reset = e1000_null_ops_generic;
91	phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
92	phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
93	phy->ops.write_reg = e1000_null_write_reg;
94	phy->ops.write_reg_locked = e1000_null_write_reg;
95	phy->ops.write_reg_page = e1000_null_write_reg;
96	phy->ops.power_up = e1000_null_phy_generic;
97	phy->ops.power_down = e1000_null_phy_generic;
98	phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
99	phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
100	phy->ops.cfg_on_link_up = e1000_null_ops_generic;
101}
102
103/**
104 *  e1000_null_set_page - No-op function, return 0
105 *  @hw: pointer to the HW structure
106 **/
107s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw,
108			u16 E1000_UNUSEDARG data)
109{
110	DEBUGFUNC("e1000_null_set_page");
111	return E1000_SUCCESS;
112}
113
114/**
115 *  e1000_null_read_reg - No-op function, return 0
116 *  @hw: pointer to the HW structure
117 **/
118s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw,
119			u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data)
120{
121	DEBUGFUNC("e1000_null_read_reg");
122	return E1000_SUCCESS;
123}
124
125/**
126 *  e1000_null_phy_generic - No-op function, return void
127 *  @hw: pointer to the HW structure
128 **/
129void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw)
130{
131	DEBUGFUNC("e1000_null_phy_generic");
132	return;
133}
134
135/**
136 *  e1000_null_lplu_state - No-op function, return 0
137 *  @hw: pointer to the HW structure
138 **/
139s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw,
140			  bool E1000_UNUSEDARG active)
141{
142	DEBUGFUNC("e1000_null_lplu_state");
143	return E1000_SUCCESS;
144}
145
146/**
147 *  e1000_null_write_reg - No-op function, return 0
148 *  @hw: pointer to the HW structure
149 **/
150s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw,
151			 u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data)
152{
153	DEBUGFUNC("e1000_null_write_reg");
154	return E1000_SUCCESS;
155}
156
157/**
158 *  e1000_read_i2c_byte_null - No-op function, return 0
159 *  @hw: pointer to hardware structure
160 *  @byte_offset: byte offset to write
161 *  @dev_addr: device address
162 *  @data: data value read
163 *
164 **/
165s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
166			     u8 E1000_UNUSEDARG byte_offset,
167			     u8 E1000_UNUSEDARG dev_addr,
168			     u8 E1000_UNUSEDARG *data)
169{
170	DEBUGFUNC("e1000_read_i2c_byte_null");
171	return E1000_SUCCESS;
172}
173
174/**
175 *  e1000_write_i2c_byte_null - No-op function, return 0
176 *  @hw: pointer to hardware structure
177 *  @byte_offset: byte offset to write
178 *  @dev_addr: device address
179 *  @data: data value to write
180 *
181 **/
182s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
183			      u8 E1000_UNUSEDARG byte_offset,
184			      u8 E1000_UNUSEDARG dev_addr,
185			      u8 E1000_UNUSEDARG data)
186{
187	DEBUGFUNC("e1000_write_i2c_byte_null");
188	return E1000_SUCCESS;
189}
190
191/**
192 *  e1000_check_reset_block_generic - Check if PHY reset is blocked
193 *  @hw: pointer to the HW structure
194 *
195 *  Read the PHY management control register and check whether a PHY reset
196 *  is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
197 *  return E1000_BLK_PHY_RESET (12).
198 **/
199s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
200{
201	u32 manc;
202
203	DEBUGFUNC("e1000_check_reset_block");
204
205	manc = E1000_READ_REG(hw, E1000_MANC);
206
207	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
208	       E1000_BLK_PHY_RESET : E1000_SUCCESS;
209}
210
211/**
212 *  e1000_get_phy_id - Retrieve the PHY ID and revision
213 *  @hw: pointer to the HW structure
214 *
215 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
216 *  revision in the hardware structure.
217 **/
218s32 e1000_get_phy_id(struct e1000_hw *hw)
219{
220	struct e1000_phy_info *phy = &hw->phy;
221	s32 ret_val = E1000_SUCCESS;
222	u16 phy_id;
223	u16 retry_count = 0;
224
225	DEBUGFUNC("e1000_get_phy_id");
226
227	if (!phy->ops.read_reg)
228		return E1000_SUCCESS;
229
230	while (retry_count < 2) {
231		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
232		if (ret_val)
233			return ret_val;
234
235		phy->id = (u32)(phy_id << 16);
236		usec_delay(20);
237		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
238		if (ret_val)
239			return ret_val;
240
241		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
242		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
243
244		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
245			return E1000_SUCCESS;
246
247		retry_count++;
248	}
249
250	return E1000_SUCCESS;
251}
252
253/**
254 *  e1000_phy_reset_dsp_generic - Reset PHY DSP
255 *  @hw: pointer to the HW structure
256 *
257 *  Reset the digital signal processor.
258 **/
259s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
260{
261	s32 ret_val;
262
263	DEBUGFUNC("e1000_phy_reset_dsp_generic");
264
265	if (!hw->phy.ops.write_reg)
266		return E1000_SUCCESS;
267
268	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
269	if (ret_val)
270		return ret_val;
271
272	return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
273}
274
275/**
276 *  e1000_read_phy_reg_mdic - Read MDI control register
277 *  @hw: pointer to the HW structure
278 *  @offset: register offset to be read
279 *  @data: pointer to the read data
280 *
281 *  Reads the MDI control register in the PHY at offset and stores the
282 *  information read to data.
283 **/
284s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
285{
286	struct e1000_phy_info *phy = &hw->phy;
287	u32 i, mdic = 0;
288
289	DEBUGFUNC("e1000_read_phy_reg_mdic");
290
291	if (offset > MAX_PHY_REG_ADDRESS) {
292		DEBUGOUT1("PHY Address %d is out of range\n", offset);
293		return -E1000_ERR_PARAM;
294	}
295
296	/* Set up Op-code, Phy Address, and register offset in the MDI
297	 * Control register.  The MAC will take care of interfacing with the
298	 * PHY to retrieve the desired data.
299	 */
300	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
301		(phy->addr << E1000_MDIC_PHY_SHIFT) |
302		(E1000_MDIC_OP_READ));
303
304	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
305
306	/* Poll the ready bit to see if the MDI read completed
307	 * Increasing the time out as testing showed failures with
308	 * the lower time out
309	 */
310	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
311		usec_delay_irq(50);
312		mdic = E1000_READ_REG(hw, E1000_MDIC);
313		if (mdic & E1000_MDIC_READY)
314			break;
315	}
316	if (!(mdic & E1000_MDIC_READY)) {
317		DEBUGOUT("MDI Read did not complete\n");
318		return -E1000_ERR_PHY;
319	}
320	if (mdic & E1000_MDIC_ERROR) {
321		DEBUGOUT("MDI Error\n");
322		return -E1000_ERR_PHY;
323	}
324	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
325		DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
326			  offset,
327			  (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
328		return -E1000_ERR_PHY;
329	}
330	*data = (u16) mdic;
331
332	/* Allow some time after each MDIC transaction to avoid
333	 * reading duplicate data in the next MDIC transaction.
334	 */
335	if (hw->mac.type == e1000_pch2lan)
336		usec_delay_irq(100);
337
338	return E1000_SUCCESS;
339}
340
341/**
342 *  e1000_write_phy_reg_mdic - Write MDI control register
343 *  @hw: pointer to the HW structure
344 *  @offset: register offset to write to
345 *  @data: data to write to register at offset
346 *
347 *  Writes data to MDI control register in the PHY at offset.
348 **/
349s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
350{
351	struct e1000_phy_info *phy = &hw->phy;
352	u32 i, mdic = 0;
353
354	DEBUGFUNC("e1000_write_phy_reg_mdic");
355
356	if (offset > MAX_PHY_REG_ADDRESS) {
357		DEBUGOUT1("PHY Address %d is out of range\n", offset);
358		return -E1000_ERR_PARAM;
359	}
360
361	/* Set up Op-code, Phy Address, and register offset in the MDI
362	 * Control register.  The MAC will take care of interfacing with the
363	 * PHY to retrieve the desired data.
364	 */
365	mdic = (((u32)data) |
366		(offset << E1000_MDIC_REG_SHIFT) |
367		(phy->addr << E1000_MDIC_PHY_SHIFT) |
368		(E1000_MDIC_OP_WRITE));
369
370	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
371
372	/* Poll the ready bit to see if the MDI read completed
373	 * Increasing the time out as testing showed failures with
374	 * the lower time out
375	 */
376	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
377		usec_delay_irq(50);
378		mdic = E1000_READ_REG(hw, E1000_MDIC);
379		if (mdic & E1000_MDIC_READY)
380			break;
381	}
382	if (!(mdic & E1000_MDIC_READY)) {
383		DEBUGOUT("MDI Write did not complete\n");
384		return -E1000_ERR_PHY;
385	}
386	if (mdic & E1000_MDIC_ERROR) {
387		DEBUGOUT("MDI Error\n");
388		return -E1000_ERR_PHY;
389	}
390	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
391		DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
392			  offset,
393			  (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
394		return -E1000_ERR_PHY;
395	}
396
397	/* Allow some time after each MDIC transaction to avoid
398	 * reading duplicate data in the next MDIC transaction.
399	 */
400	if (hw->mac.type == e1000_pch2lan)
401		usec_delay_irq(100);
402
403	return E1000_SUCCESS;
404}
405
406/**
407 *  e1000_read_phy_reg_i2c - Read PHY register using i2c
408 *  @hw: pointer to the HW structure
409 *  @offset: register offset to be read
410 *  @data: pointer to the read data
411 *
412 *  Reads the PHY register at offset using the i2c interface and stores the
413 *  retrieved information in data.
414 **/
415s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
416{
417	struct e1000_phy_info *phy = &hw->phy;
418	u32 i, i2ccmd = 0;
419
420	DEBUGFUNC("e1000_read_phy_reg_i2c");
421
422	/* Set up Op-code, Phy Address, and register address in the I2CCMD
423	 * register.  The MAC will take care of interfacing with the
424	 * PHY to retrieve the desired data.
425	 */
426	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
427		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
428		  (E1000_I2CCMD_OPCODE_READ));
429
430	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
431
432	/* Poll the ready bit to see if the I2C read completed */
433	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
434		usec_delay(50);
435		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
436		if (i2ccmd & E1000_I2CCMD_READY)
437			break;
438	}
439	if (!(i2ccmd & E1000_I2CCMD_READY)) {
440		DEBUGOUT("I2CCMD Read did not complete\n");
441		return -E1000_ERR_PHY;
442	}
443	if (i2ccmd & E1000_I2CCMD_ERROR) {
444		DEBUGOUT("I2CCMD Error bit set\n");
445		return -E1000_ERR_PHY;
446	}
447
448	/* Need to byte-swap the 16-bit value. */
449	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
450
451	return E1000_SUCCESS;
452}
453
454/**
455 *  e1000_write_phy_reg_i2c - Write PHY register using i2c
456 *  @hw: pointer to the HW structure
457 *  @offset: register offset to write to
458 *  @data: data to write at register offset
459 *
460 *  Writes the data to PHY register at the offset using the i2c interface.
461 **/
462s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
463{
464	struct e1000_phy_info *phy = &hw->phy;
465	u32 i, i2ccmd = 0;
466	u16 phy_data_swapped;
467
468	DEBUGFUNC("e1000_write_phy_reg_i2c");
469
470	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
471	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
472		DEBUGOUT1("PHY I2C Address %d is out of range.\n",
473			  hw->phy.addr);
474		return -E1000_ERR_CONFIG;
475	}
476
477	/* Swap the data bytes for the I2C interface */
478	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
479
480	/* Set up Op-code, Phy Address, and register address in the I2CCMD
481	 * register.  The MAC will take care of interfacing with the
482	 * PHY to retrieve the desired data.
483	 */
484	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
485		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
486		  E1000_I2CCMD_OPCODE_WRITE |
487		  phy_data_swapped);
488
489	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
490
491	/* Poll the ready bit to see if the I2C read completed */
492	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
493		usec_delay(50);
494		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
495		if (i2ccmd & E1000_I2CCMD_READY)
496			break;
497	}
498	if (!(i2ccmd & E1000_I2CCMD_READY)) {
499		DEBUGOUT("I2CCMD Write did not complete\n");
500		return -E1000_ERR_PHY;
501	}
502	if (i2ccmd & E1000_I2CCMD_ERROR) {
503		DEBUGOUT("I2CCMD Error bit set\n");
504		return -E1000_ERR_PHY;
505	}
506
507	return E1000_SUCCESS;
508}
509
510/**
511 *  e1000_read_sfp_data_byte - Reads SFP module data.
512 *  @hw: pointer to the HW structure
513 *  @offset: byte location offset to be read
514 *  @data: read data buffer pointer
515 *
516 *  Reads one byte from SFP module data stored
517 *  in SFP resided EEPROM memory or SFP diagnostic area.
518 *  Function should be called with
519 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
520 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
521 *  access
522 **/
523s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
524{
525	u32 i = 0;
526	u32 i2ccmd = 0;
527	u32 data_local = 0;
528
529	DEBUGFUNC("e1000_read_sfp_data_byte");
530
531	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
532		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
533		return -E1000_ERR_PHY;
534	}
535
536	/* Set up Op-code, EEPROM Address,in the I2CCMD
537	 * register. The MAC will take care of interfacing with the
538	 * EEPROM to retrieve the desired data.
539	 */
540	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
541		  E1000_I2CCMD_OPCODE_READ);
542
543	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
544
545	/* Poll the ready bit to see if the I2C read completed */
546	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
547		usec_delay(50);
548		data_local = E1000_READ_REG(hw, E1000_I2CCMD);
549		if (data_local & E1000_I2CCMD_READY)
550			break;
551	}
552	if (!(data_local & E1000_I2CCMD_READY)) {
553		DEBUGOUT("I2CCMD Read did not complete\n");
554		return -E1000_ERR_PHY;
555	}
556	if (data_local & E1000_I2CCMD_ERROR) {
557		DEBUGOUT("I2CCMD Error bit set\n");
558		return -E1000_ERR_PHY;
559	}
560	*data = (u8) data_local & 0xFF;
561
562	return E1000_SUCCESS;
563}
564
565/**
566 *  e1000_write_sfp_data_byte - Writes SFP module data.
567 *  @hw: pointer to the HW structure
568 *  @offset: byte location offset to write to
569 *  @data: data to write
570 *
571 *  Writes one byte to SFP module data stored
572 *  in SFP resided EEPROM memory or SFP diagnostic area.
573 *  Function should be called with
574 *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
575 *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
576 *  access
577 **/
578s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
579{
580	u32 i = 0;
581	u32 i2ccmd = 0;
582	u32 data_local = 0;
583
584	DEBUGFUNC("e1000_write_sfp_data_byte");
585
586	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
587		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
588		return -E1000_ERR_PHY;
589	}
590	/* The programming interface is 16 bits wide
591	 * so we need to read the whole word first
592	 * then update appropriate byte lane and write
593	 * the updated word back.
594	 */
595	/* Set up Op-code, EEPROM Address,in the I2CCMD
596	 * register. The MAC will take care of interfacing
597	 * with an EEPROM to write the data given.
598	 */
599	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
600		  E1000_I2CCMD_OPCODE_READ);
601	/* Set a command to read single word */
602	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
603	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
604		usec_delay(50);
605		/* Poll the ready bit to see if lastly
606		 * launched I2C operation completed
607		 */
608		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
609		if (i2ccmd & E1000_I2CCMD_READY) {
610			/* Check if this is READ or WRITE phase */
611			if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
612			    E1000_I2CCMD_OPCODE_READ) {
613				/* Write the selected byte
614				 * lane and update whole word
615				 */
616				data_local = i2ccmd & 0xFF00;
617				data_local |= data;
618				i2ccmd = ((offset <<
619					E1000_I2CCMD_REG_ADDR_SHIFT) |
620					E1000_I2CCMD_OPCODE_WRITE | data_local);
621				E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
622			} else {
623				break;
624			}
625		}
626	}
627	if (!(i2ccmd & E1000_I2CCMD_READY)) {
628		DEBUGOUT("I2CCMD Write did not complete\n");
629		return -E1000_ERR_PHY;
630	}
631	if (i2ccmd & E1000_I2CCMD_ERROR) {
632		DEBUGOUT("I2CCMD Error bit set\n");
633		return -E1000_ERR_PHY;
634	}
635	return E1000_SUCCESS;
636}
637
638/**
639 *  e1000_read_phy_reg_m88 - Read m88 PHY register
640 *  @hw: pointer to the HW structure
641 *  @offset: register offset to be read
642 *  @data: pointer to the read data
643 *
644 *  Acquires semaphore, if necessary, then reads the PHY register at offset
645 *  and storing the retrieved information in data.  Release any acquired
646 *  semaphores before exiting.
647 **/
648s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
649{
650	s32 ret_val;
651
652	DEBUGFUNC("e1000_read_phy_reg_m88");
653
654	if (!hw->phy.ops.acquire)
655		return E1000_SUCCESS;
656
657	ret_val = hw->phy.ops.acquire(hw);
658	if (ret_val)
659		return ret_val;
660
661	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
662					  data);
663
664	hw->phy.ops.release(hw);
665
666	return ret_val;
667}
668
669/**
670 *  e1000_write_phy_reg_m88 - Write m88 PHY register
671 *  @hw: pointer to the HW structure
672 *  @offset: register offset to write to
673 *  @data: data to write at register offset
674 *
675 *  Acquires semaphore, if necessary, then writes the data to PHY register
676 *  at the offset.  Release any acquired semaphores before exiting.
677 **/
678s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
679{
680	s32 ret_val;
681
682	DEBUGFUNC("e1000_write_phy_reg_m88");
683
684	if (!hw->phy.ops.acquire)
685		return E1000_SUCCESS;
686
687	ret_val = hw->phy.ops.acquire(hw);
688	if (ret_val)
689		return ret_val;
690
691	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
692					   data);
693
694	hw->phy.ops.release(hw);
695
696	return ret_val;
697}
698
699/**
700 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
701 *  @hw: pointer to the HW structure
702 *  @page: page to set (shifted left when necessary)
703 *
704 *  Sets PHY page required for PHY register access.  Assumes semaphore is
705 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
706 *  must set it appropriately (if necessary) after this function returns.
707 **/
708s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
709{
710	DEBUGFUNC("e1000_set_page_igp");
711
712	DEBUGOUT1("Setting page 0x%x\n", page);
713
714	hw->phy.addr = 1;
715
716	return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
717}
718
719/**
720 *  __e1000_read_phy_reg_igp - Read igp PHY register
721 *  @hw: pointer to the HW structure
722 *  @offset: register offset to be read
723 *  @data: pointer to the read data
724 *  @locked: semaphore has already been acquired or not
725 *
726 *  Acquires semaphore, if necessary, then reads the PHY register at offset
727 *  and stores the retrieved information in data.  Release any acquired
728 *  semaphores before exiting.
729 **/
730static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
731				    bool locked)
732{
733	s32 ret_val = E1000_SUCCESS;
734
735	DEBUGFUNC("__e1000_read_phy_reg_igp");
736
737	if (!locked) {
738		if (!hw->phy.ops.acquire)
739			return E1000_SUCCESS;
740
741		ret_val = hw->phy.ops.acquire(hw);
742		if (ret_val)
743			return ret_val;
744	}
745
746	if (offset > MAX_PHY_MULTI_PAGE_REG)
747		ret_val = e1000_write_phy_reg_mdic(hw,
748						   IGP01E1000_PHY_PAGE_SELECT,
749						   (u16)offset);
750	if (!ret_val)
751		ret_val = e1000_read_phy_reg_mdic(hw,
752						  MAX_PHY_REG_ADDRESS & offset,
753						  data);
754	if (!locked)
755		hw->phy.ops.release(hw);
756
757	return ret_val;
758}
759
760/**
761 *  e1000_read_phy_reg_igp - Read igp PHY register
762 *  @hw: pointer to the HW structure
763 *  @offset: register offset to be read
764 *  @data: pointer to the read data
765 *
766 *  Acquires semaphore then reads the PHY register at offset and stores the
767 *  retrieved information in data.
768 *  Release the acquired semaphore before exiting.
769 **/
770s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
771{
772	return __e1000_read_phy_reg_igp(hw, offset, data, FALSE);
773}
774
775/**
776 *  e1000_read_phy_reg_igp_locked - Read igp PHY register
777 *  @hw: pointer to the HW structure
778 *  @offset: register offset to be read
779 *  @data: pointer to the read data
780 *
781 *  Reads the PHY register at offset and stores the retrieved information
782 *  in data.  Assumes semaphore already acquired.
783 **/
784s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
785{
786	return __e1000_read_phy_reg_igp(hw, offset, data, TRUE);
787}
788
789/**
790 *  e1000_write_phy_reg_igp - Write igp PHY register
791 *  @hw: pointer to the HW structure
792 *  @offset: register offset to write to
793 *  @data: data to write at register offset
794 *  @locked: semaphore has already been acquired or not
795 *
796 *  Acquires semaphore, if necessary, then writes the data to PHY register
797 *  at the offset.  Release any acquired semaphores before exiting.
798 **/
799static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
800				     bool locked)
801{
802	s32 ret_val = E1000_SUCCESS;
803
804	DEBUGFUNC("e1000_write_phy_reg_igp");
805
806	if (!locked) {
807		if (!hw->phy.ops.acquire)
808			return E1000_SUCCESS;
809
810		ret_val = hw->phy.ops.acquire(hw);
811		if (ret_val)
812			return ret_val;
813	}
814
815	if (offset > MAX_PHY_MULTI_PAGE_REG)
816		ret_val = e1000_write_phy_reg_mdic(hw,
817						   IGP01E1000_PHY_PAGE_SELECT,
818						   (u16)offset);
819	if (!ret_val)
820		ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
821						       offset,
822						   data);
823	if (!locked)
824		hw->phy.ops.release(hw);
825
826	return ret_val;
827}
828
829/**
830 *  e1000_write_phy_reg_igp - Write igp PHY register
831 *  @hw: pointer to the HW structure
832 *  @offset: register offset to write to
833 *  @data: data to write at register offset
834 *
835 *  Acquires semaphore then writes the data to PHY register
836 *  at the offset.  Release any acquired semaphores before exiting.
837 **/
838s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
839{
840	return __e1000_write_phy_reg_igp(hw, offset, data, FALSE);
841}
842
843/**
844 *  e1000_write_phy_reg_igp_locked - Write igp PHY register
845 *  @hw: pointer to the HW structure
846 *  @offset: register offset to write to
847 *  @data: data to write at register offset
848 *
849 *  Writes the data to PHY register at the offset.
850 *  Assumes semaphore already acquired.
851 **/
852s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
853{
854	return __e1000_write_phy_reg_igp(hw, offset, data, TRUE);
855}
856
857/**
858 *  __e1000_read_kmrn_reg - Read kumeran register
859 *  @hw: pointer to the HW structure
860 *  @offset: register offset to be read
861 *  @data: pointer to the read data
862 *  @locked: semaphore has already been acquired or not
863 *
864 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
865 *  using the kumeran interface.  The information retrieved is stored in data.
866 *  Release any acquired semaphores before exiting.
867 **/
868static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
869				 bool locked)
870{
871	u32 kmrnctrlsta;
872
873	DEBUGFUNC("__e1000_read_kmrn_reg");
874
875	if (!locked) {
876		s32 ret_val = E1000_SUCCESS;
877
878		if (!hw->phy.ops.acquire)
879			return E1000_SUCCESS;
880
881		ret_val = hw->phy.ops.acquire(hw);
882		if (ret_val)
883			return ret_val;
884	}
885
886	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
887		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
888	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
889	E1000_WRITE_FLUSH(hw);
890
891	usec_delay(2);
892
893	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
894	*data = (u16)kmrnctrlsta;
895
896	if (!locked)
897		hw->phy.ops.release(hw);
898
899	return E1000_SUCCESS;
900}
901
902/**
903 *  e1000_read_kmrn_reg_generic -  Read kumeran register
904 *  @hw: pointer to the HW structure
905 *  @offset: register offset to be read
906 *  @data: pointer to the read data
907 *
908 *  Acquires semaphore then reads the PHY register at offset using the
909 *  kumeran interface.  The information retrieved is stored in data.
910 *  Release the acquired semaphore before exiting.
911 **/
912s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
913{
914	return __e1000_read_kmrn_reg(hw, offset, data, FALSE);
915}
916
917/**
918 *  e1000_read_kmrn_reg_locked -  Read kumeran register
919 *  @hw: pointer to the HW structure
920 *  @offset: register offset to be read
921 *  @data: pointer to the read data
922 *
923 *  Reads the PHY register at offset using the kumeran interface.  The
924 *  information retrieved is stored in data.
925 *  Assumes semaphore already acquired.
926 **/
927s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
928{
929	return __e1000_read_kmrn_reg(hw, offset, data, TRUE);
930}
931
932/**
933 *  __e1000_write_kmrn_reg - Write kumeran register
934 *  @hw: pointer to the HW structure
935 *  @offset: register offset to write to
936 *  @data: data to write at register offset
937 *  @locked: semaphore has already been acquired or not
938 *
939 *  Acquires semaphore, if necessary.  Then write the data to PHY register
940 *  at the offset using the kumeran interface.  Release any acquired semaphores
941 *  before exiting.
942 **/
943static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
944				  bool locked)
945{
946	u32 kmrnctrlsta;
947
948	DEBUGFUNC("e1000_write_kmrn_reg_generic");
949
950	if (!locked) {
951		s32 ret_val = E1000_SUCCESS;
952
953		if (!hw->phy.ops.acquire)
954			return E1000_SUCCESS;
955
956		ret_val = hw->phy.ops.acquire(hw);
957		if (ret_val)
958			return ret_val;
959	}
960
961	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
962		       E1000_KMRNCTRLSTA_OFFSET) | data;
963	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
964	E1000_WRITE_FLUSH(hw);
965
966	usec_delay(2);
967
968	if (!locked)
969		hw->phy.ops.release(hw);
970
971	return E1000_SUCCESS;
972}
973
974/**
975 *  e1000_write_kmrn_reg_generic -  Write kumeran register
976 *  @hw: pointer to the HW structure
977 *  @offset: register offset to write to
978 *  @data: data to write at register offset
979 *
980 *  Acquires semaphore then writes the data to the PHY register at the offset
981 *  using the kumeran interface.  Release the acquired semaphore before exiting.
982 **/
983s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
984{
985	return __e1000_write_kmrn_reg(hw, offset, data, FALSE);
986}
987
988/**
989 *  e1000_write_kmrn_reg_locked -  Write kumeran register
990 *  @hw: pointer to the HW structure
991 *  @offset: register offset to write to
992 *  @data: data to write at register offset
993 *
994 *  Write the data to PHY register at the offset using the kumeran interface.
995 *  Assumes semaphore already acquired.
996 **/
997s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
998{
999	return __e1000_write_kmrn_reg(hw, offset, data, TRUE);
1000}
1001
1002/**
1003 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
1004 *  @hw: pointer to the HW structure
1005 *
1006 *  Sets up Master/slave mode
1007 **/
1008static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
1009{
1010	s32 ret_val;
1011	u16 phy_data;
1012
1013	/* Resolve Master/Slave mode */
1014	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
1015	if (ret_val)
1016		return ret_val;
1017
1018	/* load defaults for future use */
1019	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
1020				   ((phy_data & CR_1000T_MS_VALUE) ?
1021				    e1000_ms_force_master :
1022				    e1000_ms_force_slave) : e1000_ms_auto;
1023
1024	switch (hw->phy.ms_type) {
1025	case e1000_ms_force_master:
1026		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1027		break;
1028	case e1000_ms_force_slave:
1029		phy_data |= CR_1000T_MS_ENABLE;
1030		phy_data &= ~(CR_1000T_MS_VALUE);
1031		break;
1032	case e1000_ms_auto:
1033		phy_data &= ~CR_1000T_MS_ENABLE;
1034		/* fall-through */
1035	default:
1036		break;
1037	}
1038
1039	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
1040}
1041
1042/**
1043 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
1044 *  @hw: pointer to the HW structure
1045 *
1046 *  Sets up Carrier-sense on Transmit and downshift values.
1047 **/
1048s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
1049{
1050	s32 ret_val;
1051	u16 phy_data;
1052
1053	DEBUGFUNC("e1000_copper_link_setup_82577");
1054
1055	if (hw->phy.type == e1000_phy_82580) {
1056		ret_val = hw->phy.ops.reset(hw);
1057		if (ret_val) {
1058			DEBUGOUT("Error resetting the PHY.\n");
1059			return ret_val;
1060		}
1061	}
1062
1063	/* Enable CRS on Tx. This must be set for half-duplex operation. */
1064	ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
1065	if (ret_val)
1066		return ret_val;
1067
1068	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
1069
1070	/* Enable downshift */
1071	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
1072
1073	ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
1074	if (ret_val)
1075		return ret_val;
1076
1077	/* Set MDI/MDIX mode */
1078	ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
1079	if (ret_val)
1080		return ret_val;
1081	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
1082	/* Options:
1083	 *   0 - Auto (default)
1084	 *   1 - MDI mode
1085	 *   2 - MDI-X mode
1086	 */
1087	switch (hw->phy.mdix) {
1088	case 1:
1089		break;
1090	case 2:
1091		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
1092		break;
1093	case 0:
1094	default:
1095		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
1096		break;
1097	}
1098	ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
1099	if (ret_val)
1100		return ret_val;
1101
1102	return e1000_set_master_slave_mode(hw);
1103}
1104
1105/**
1106 *  e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
1107 *  @hw: pointer to the HW structure
1108 *
1109 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
1110 *  and downshift values are set also.
1111 **/
1112s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
1113{
1114	struct e1000_phy_info *phy = &hw->phy;
1115	s32 ret_val;
1116	u16 phy_data;
1117
1118	DEBUGFUNC("e1000_copper_link_setup_m88");
1119
1120
1121	/* Enable CRS on Tx. This must be set for half-duplex operation. */
1122	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1123	if (ret_val)
1124		return ret_val;
1125
1126	/* For BM PHY this bit is downshift enable */
1127	if (phy->type != e1000_phy_bm)
1128		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1129
1130	/* Options:
1131	 *   MDI/MDI-X = 0 (default)
1132	 *   0 - Auto for all speeds
1133	 *   1 - MDI mode
1134	 *   2 - MDI-X mode
1135	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1136	 */
1137	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1138
1139	switch (phy->mdix) {
1140	case 1:
1141		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1142		break;
1143	case 2:
1144		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1145		break;
1146	case 3:
1147		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1148		break;
1149	case 0:
1150	default:
1151		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1152		break;
1153	}
1154
1155	/* Options:
1156	 *   disable_polarity_correction = 0 (default)
1157	 *       Automatic Correction for Reversed Cable Polarity
1158	 *   0 - Disabled
1159	 *   1 - Enabled
1160	 */
1161	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1162	if (phy->disable_polarity_correction)
1163		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1164
1165	/* Enable downshift on BM (disabled by default) */
1166	if (phy->type == e1000_phy_bm) {
1167		/* For 82574/82583, first disable then enable downshift */
1168		if (phy->id == BME1000_E_PHY_ID_R2) {
1169			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
1170			ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1171						     phy_data);
1172			if (ret_val)
1173				return ret_val;
1174			/* Commit the changes. */
1175			ret_val = phy->ops.commit(hw);
1176			if (ret_val) {
1177				DEBUGOUT("Error committing the PHY changes\n");
1178				return ret_val;
1179			}
1180		}
1181
1182		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
1183	}
1184
1185	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1186	if (ret_val)
1187		return ret_val;
1188
1189	if ((phy->type == e1000_phy_m88) &&
1190	    (phy->revision < E1000_REVISION_4) &&
1191	    (phy->id != BME1000_E_PHY_ID_R2)) {
1192		/* Force TX_CLK in the Extended PHY Specific Control Register
1193		 * to 25MHz clock.
1194		 */
1195		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1196					    &phy_data);
1197		if (ret_val)
1198			return ret_val;
1199
1200		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1201
1202		if ((phy->revision == E1000_REVISION_2) &&
1203		    (phy->id == M88E1111_I_PHY_ID)) {
1204			/* 82573L PHY - set the downshift counter to 5x. */
1205			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
1206			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1207		} else {
1208			/* Configure Master and Slave downshift values */
1209			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1210				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1211			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1212				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1213		}
1214		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1215					     phy_data);
1216		if (ret_val)
1217			return ret_val;
1218	}
1219
1220	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
1221		/* Set PHY page 0, register 29 to 0x0003 */
1222		ret_val = phy->ops.write_reg(hw, 29, 0x0003);
1223		if (ret_val)
1224			return ret_val;
1225
1226		/* Set PHY page 0, register 30 to 0x0000 */
1227		ret_val = phy->ops.write_reg(hw, 30, 0x0000);
1228		if (ret_val)
1229			return ret_val;
1230	}
1231
1232	/* Commit the changes. */
1233	ret_val = phy->ops.commit(hw);
1234	if (ret_val) {
1235		DEBUGOUT("Error committing the PHY changes\n");
1236		return ret_val;
1237	}
1238
1239	if (phy->type == e1000_phy_82578) {
1240		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1241					    &phy_data);
1242		if (ret_val)
1243			return ret_val;
1244
1245		/* 82578 PHY - set the downshift count to 1x. */
1246		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
1247		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
1248		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1249					     phy_data);
1250		if (ret_val)
1251			return ret_val;
1252	}
1253
1254	return E1000_SUCCESS;
1255}
1256
1257/**
1258 *  e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
1259 *  @hw: pointer to the HW structure
1260 *
1261 *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
1262 *  Also enables and sets the downshift parameters.
1263 **/
1264s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
1265{
1266	struct e1000_phy_info *phy = &hw->phy;
1267	s32 ret_val;
1268	u16 phy_data;
1269
1270	DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
1271
1272
1273	/* Enable CRS on Tx. This must be set for half-duplex operation. */
1274	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1275	if (ret_val)
1276		return ret_val;
1277
1278	/* Options:
1279	 *   MDI/MDI-X = 0 (default)
1280	 *   0 - Auto for all speeds
1281	 *   1 - MDI mode
1282	 *   2 - MDI-X mode
1283	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1284	 */
1285	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1286
1287	switch (phy->mdix) {
1288	case 1:
1289		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1290		break;
1291	case 2:
1292		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1293		break;
1294	case 3:
1295		/* M88E1112 does not support this mode) */
1296		if (phy->id != M88E1112_E_PHY_ID) {
1297			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1298			break;
1299		}
1300	case 0:
1301	default:
1302		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1303		break;
1304	}
1305
1306	/* Options:
1307	 *   disable_polarity_correction = 0 (default)
1308	 *       Automatic Correction for Reversed Cable Polarity
1309	 *   0 - Disabled
1310	 *   1 - Enabled
1311	 */
1312	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1313	if (phy->disable_polarity_correction)
1314		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1315
1316	/* Enable downshift and setting it to X6 */
1317	if (phy->id == M88E1543_E_PHY_ID) {
1318		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
1319		ret_val =
1320		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1321		if (ret_val)
1322			return ret_val;
1323
1324		ret_val = phy->ops.commit(hw);
1325		if (ret_val) {
1326			DEBUGOUT("Error committing the PHY changes\n");
1327			return ret_val;
1328		}
1329	}
1330
1331	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
1332	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
1333	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
1334
1335	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1336	if (ret_val)
1337		return ret_val;
1338
1339	/* Commit the changes. */
1340	ret_val = phy->ops.commit(hw);
1341	if (ret_val) {
1342		DEBUGOUT("Error committing the PHY changes\n");
1343		return ret_val;
1344	}
1345
1346	ret_val = e1000_set_master_slave_mode(hw);
1347	if (ret_val)
1348		return ret_val;
1349
1350	return E1000_SUCCESS;
1351}
1352
1353/**
1354 *  e1000_copper_link_setup_igp - Setup igp PHY's for copper link
1355 *  @hw: pointer to the HW structure
1356 *
1357 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
1358 *  igp PHY's.
1359 **/
1360s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
1361{
1362	struct e1000_phy_info *phy = &hw->phy;
1363	s32 ret_val;
1364	u16 data;
1365
1366	DEBUGFUNC("e1000_copper_link_setup_igp");
1367
1368
1369	ret_val = hw->phy.ops.reset(hw);
1370	if (ret_val) {
1371		DEBUGOUT("Error resetting the PHY.\n");
1372		return ret_val;
1373	}
1374
1375	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
1376	 * timeout issues when LFS is enabled.
1377	 */
1378	msec_delay(100);
1379
1380	/* The NVM settings will configure LPLU in D3 for
1381	 * non-IGP1 PHYs.
1382	 */
1383	if (phy->type == e1000_phy_igp) {
1384		/* disable lplu d3 during driver init */
1385		ret_val = hw->phy.ops.set_d3_lplu_state(hw, FALSE);
1386		if (ret_val) {
1387			DEBUGOUT("Error Disabling LPLU D3\n");
1388			return ret_val;
1389		}
1390	}
1391
1392	/* disable lplu d0 during driver init */
1393	if (hw->phy.ops.set_d0_lplu_state) {
1394		ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE);
1395		if (ret_val) {
1396			DEBUGOUT("Error Disabling LPLU D0\n");
1397			return ret_val;
1398		}
1399	}
1400	/* Configure mdi-mdix settings */
1401	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
1402	if (ret_val)
1403		return ret_val;
1404
1405	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1406
1407	switch (phy->mdix) {
1408	case 1:
1409		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1410		break;
1411	case 2:
1412		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1413		break;
1414	case 0:
1415	default:
1416		data |= IGP01E1000_PSCR_AUTO_MDIX;
1417		break;
1418	}
1419	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	/* set auto-master slave resolution settings */
1424	if (hw->mac.autoneg) {
1425		/* when autonegotiation advertisement is only 1000Mbps then we
1426		 * should disable SmartSpeed and enable Auto MasterSlave
1427		 * resolution as hardware default.
1428		 */
1429		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
1430			/* Disable SmartSpeed */
1431			ret_val = phy->ops.read_reg(hw,
1432						    IGP01E1000_PHY_PORT_CONFIG,
1433						    &data);
1434			if (ret_val)
1435				return ret_val;
1436
1437			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1438			ret_val = phy->ops.write_reg(hw,
1439						     IGP01E1000_PHY_PORT_CONFIG,
1440						     data);
1441			if (ret_val)
1442				return ret_val;
1443
1444			/* Set auto Master/Slave resolution process */
1445			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
1446			if (ret_val)
1447				return ret_val;
1448
1449			data &= ~CR_1000T_MS_ENABLE;
1450			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
1451			if (ret_val)
1452				return ret_val;
1453		}
1454
1455		ret_val = e1000_set_master_slave_mode(hw);
1456	}
1457
1458	return ret_val;
1459}
1460
1461/**
1462 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
1463 *  @hw: pointer to the HW structure
1464 *
1465 *  Reads the MII auto-neg advertisement register and/or the 1000T control
1466 *  register and if the PHY is already setup for auto-negotiation, then
1467 *  return successful.  Otherwise, setup advertisement and flow control to
1468 *  the appropriate values for the wanted auto-negotiation.
1469 **/
1470s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1471{
1472	struct e1000_phy_info *phy = &hw->phy;
1473	s32 ret_val;
1474	u16 mii_autoneg_adv_reg;
1475	u16 mii_1000t_ctrl_reg = 0;
1476
1477	DEBUGFUNC("e1000_phy_setup_autoneg");
1478
1479	phy->autoneg_advertised &= phy->autoneg_mask;
1480
1481	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1482	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1483	if (ret_val)
1484		return ret_val;
1485
1486	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1487		/* Read the MII 1000Base-T Control Register (Address 9). */
1488		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1489					    &mii_1000t_ctrl_reg);
1490		if (ret_val)
1491			return ret_val;
1492	}
1493
1494	/* Need to parse both autoneg_advertised and fc and set up
1495	 * the appropriate PHY registers.  First we will parse for
1496	 * autoneg_advertised software override.  Since we can advertise
1497	 * a plethora of combinations, we need to check each bit
1498	 * individually.
1499	 */
1500
1501	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1502	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1503	 * the  1000Base-T Control Register (Address 9).
1504	 */
1505	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1506				 NWAY_AR_100TX_HD_CAPS |
1507				 NWAY_AR_10T_FD_CAPS   |
1508				 NWAY_AR_10T_HD_CAPS);
1509	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1510
1511	DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
1512
1513	/* Do we want to advertise 10 Mb Half Duplex? */
1514	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1515		DEBUGOUT("Advertise 10mb Half duplex\n");
1516		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1517	}
1518
1519	/* Do we want to advertise 10 Mb Full Duplex? */
1520	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1521		DEBUGOUT("Advertise 10mb Full duplex\n");
1522		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1523	}
1524
1525	/* Do we want to advertise 100 Mb Half Duplex? */
1526	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1527		DEBUGOUT("Advertise 100mb Half duplex\n");
1528		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1529	}
1530
1531	/* Do we want to advertise 100 Mb Full Duplex? */
1532	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1533		DEBUGOUT("Advertise 100mb Full duplex\n");
1534		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1535	}
1536
1537	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1538	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1539		DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
1540
1541	/* Do we want to advertise 1000 Mb Full Duplex? */
1542	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1543		DEBUGOUT("Advertise 1000mb Full duplex\n");
1544		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1545	}
1546
1547	/* Check for a software override of the flow control settings, and
1548	 * setup the PHY advertisement registers accordingly.  If
1549	 * auto-negotiation is enabled, then software will have to set the
1550	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1551	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1552	 * negotiation.
1553	 *
1554	 * The possible values of the "fc" parameter are:
1555	 *      0:  Flow control is completely disabled
1556	 *      1:  Rx flow control is enabled (we can receive pause frames
1557	 *          but not send pause frames).
1558	 *      2:  Tx flow control is enabled (we can send pause frames
1559	 *          but we do not support receiving pause frames).
1560	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1561	 *  other:  No software override.  The flow control configuration
1562	 *          in the EEPROM is used.
1563	 */
1564	switch (hw->fc.current_mode) {
1565	case e1000_fc_none:
1566		/* Flow control (Rx & Tx) is completely disabled by a
1567		 * software over-ride.
1568		 */
1569		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1570		break;
1571	case e1000_fc_rx_pause:
1572		/* Rx Flow control is enabled, and Tx Flow control is
1573		 * disabled, by a software over-ride.
1574		 *
1575		 * Since there really isn't a way to advertise that we are
1576		 * capable of Rx Pause ONLY, we will advertise that we
1577		 * support both symmetric and asymmetric Rx PAUSE.  Later
1578		 * (in e1000_config_fc_after_link_up) we will disable the
1579		 * hw's ability to send PAUSE frames.
1580		 */
1581		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1582		break;
1583	case e1000_fc_tx_pause:
1584		/* Tx Flow control is enabled, and Rx Flow control is
1585		 * disabled, by a software over-ride.
1586		 */
1587		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1588		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1589		break;
1590	case e1000_fc_full:
1591		/* Flow control (both Rx and Tx) is enabled by a software
1592		 * over-ride.
1593		 */
1594		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1595		break;
1596	default:
1597		DEBUGOUT("Flow control param set incorrectly\n");
1598		return -E1000_ERR_CONFIG;
1599	}
1600
1601	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1602	if (ret_val)
1603		return ret_val;
1604
1605	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1606
1607	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1608		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
1609					     mii_1000t_ctrl_reg);
1610
1611	return ret_val;
1612}
1613
1614/**
1615 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1616 *  @hw: pointer to the HW structure
1617 *
1618 *  Performs initial bounds checking on autoneg advertisement parameter, then
1619 *  configure to advertise the full capability.  Setup the PHY to autoneg
1620 *  and restart the negotiation process between the link partner.  If
1621 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1622 **/
1623s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1624{
1625	struct e1000_phy_info *phy = &hw->phy;
1626	s32 ret_val;
1627	u16 phy_ctrl;
1628
1629	DEBUGFUNC("e1000_copper_link_autoneg");
1630
1631	/* Perform some bounds checking on the autoneg advertisement
1632	 * parameter.
1633	 */
1634	phy->autoneg_advertised &= phy->autoneg_mask;
1635
1636	/* If autoneg_advertised is zero, we assume it was not defaulted
1637	 * by the calling code so we set to advertise full capability.
1638	 */
1639	if (!phy->autoneg_advertised)
1640		phy->autoneg_advertised = phy->autoneg_mask;
1641
1642	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1643	ret_val = e1000_phy_setup_autoneg(hw);
1644	if (ret_val) {
1645		DEBUGOUT("Error Setting up Auto-Negotiation\n");
1646		return ret_val;
1647	}
1648	DEBUGOUT("Restarting Auto-Neg\n");
1649
1650	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1651	 * the Auto Neg Restart bit in the PHY control register.
1652	 */
1653	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1654	if (ret_val)
1655		return ret_val;
1656
1657	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1658	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1659	if (ret_val)
1660		return ret_val;
1661
1662	/* Does the user want to wait for Auto-Neg to complete here, or
1663	 * check at a later time (for example, callback routine).
1664	 */
1665	if (phy->autoneg_wait_to_complete) {
1666		ret_val = e1000_wait_autoneg(hw);
1667		if (ret_val) {
1668			DEBUGOUT("Error while waiting for autoneg to complete\n");
1669			return ret_val;
1670		}
1671	}
1672
1673	hw->mac.get_link_status = TRUE;
1674
1675	return ret_val;
1676}
1677
1678/**
1679 *  e1000_setup_copper_link_generic - Configure copper link settings
1680 *  @hw: pointer to the HW structure
1681 *
1682 *  Calls the appropriate function to configure the link for auto-neg or forced
1683 *  speed and duplex.  Then we check for link, once link is established calls
1684 *  to configure collision distance and flow control are called.  If link is
1685 *  not established, we return -E1000_ERR_PHY (-2).
1686 **/
1687s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
1688{
1689	s32 ret_val;
1690	bool link;
1691
1692	DEBUGFUNC("e1000_setup_copper_link_generic");
1693
1694	if (hw->mac.autoneg) {
1695		/* Setup autoneg and flow control advertisement and perform
1696		 * autonegotiation.
1697		 */
1698		ret_val = e1000_copper_link_autoneg(hw);
1699		if (ret_val)
1700			return ret_val;
1701	} else {
1702		/* PHY will be set to 10H, 10F, 100H or 100F
1703		 * depending on user settings.
1704		 */
1705		DEBUGOUT("Forcing Speed and Duplex\n");
1706		ret_val = hw->phy.ops.force_speed_duplex(hw);
1707		if (ret_val) {
1708			DEBUGOUT("Error Forcing Speed and Duplex\n");
1709			return ret_val;
1710		}
1711	}
1712
1713	/* Check link status. Wait up to 100 microseconds for link to become
1714	 * valid.
1715	 */
1716	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1717					     &link);
1718	if (ret_val)
1719		return ret_val;
1720
1721	if (link) {
1722		DEBUGOUT("Valid link established!!!\n");
1723		hw->mac.ops.config_collision_dist(hw);
1724		ret_val = e1000_config_fc_after_link_up_generic(hw);
1725	} else {
1726		DEBUGOUT("Unable to establish link!!!\n");
1727	}
1728
1729	return ret_val;
1730}
1731
1732/**
1733 *  e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1734 *  @hw: pointer to the HW structure
1735 *
1736 *  Calls the PHY setup function to force speed and duplex.  Clears the
1737 *  auto-crossover to force MDI manually.  Waits for link and returns
1738 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1739 **/
1740s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1741{
1742	struct e1000_phy_info *phy = &hw->phy;
1743	s32 ret_val;
1744	u16 phy_data;
1745	bool link;
1746
1747	DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
1748
1749	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1750	if (ret_val)
1751		return ret_val;
1752
1753	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1754
1755	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1756	if (ret_val)
1757		return ret_val;
1758
1759	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1760	 * forced whenever speed and duplex are forced.
1761	 */
1762	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1763	if (ret_val)
1764		return ret_val;
1765
1766	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1767	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1768
1769	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1770	if (ret_val)
1771		return ret_val;
1772
1773	DEBUGOUT1("IGP PSCR: %X\n", phy_data);
1774
1775	usec_delay(1);
1776
1777	if (phy->autoneg_wait_to_complete) {
1778		DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
1779
1780		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1781						     100000, &link);
1782		if (ret_val)
1783			return ret_val;
1784
1785		if (!link)
1786			DEBUGOUT("Link taking longer than expected.\n");
1787
1788		/* Try once more */
1789		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1790						     100000, &link);
1791	}
1792
1793	return ret_val;
1794}
1795
1796/**
1797 *  e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1798 *  @hw: pointer to the HW structure
1799 *
1800 *  Calls the PHY setup function to force speed and duplex.  Clears the
1801 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1802 *  changes.  If time expires while waiting for link up, we reset the DSP.
1803 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1804 *  successful completion, else return corresponding error code.
1805 **/
1806s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1807{
1808	struct e1000_phy_info *phy = &hw->phy;
1809	s32 ret_val;
1810	u16 phy_data;
1811	bool link;
1812
1813	DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
1814
1815	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1816	if (phy->type != e1000_phy_i210) {
1817		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1818		 * requires MDI forced whenever speed and duplex are forced.
1819		 */
1820		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1821					    &phy_data);
1822		if (ret_val)
1823			return ret_val;
1824
1825		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1826		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1827					     phy_data);
1828		if (ret_val)
1829			return ret_val;
1830
1831		DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
1832	}
1833
1834	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1835	if (ret_val)
1836		return ret_val;
1837
1838	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1839
1840	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1841	if (ret_val)
1842		return ret_val;
1843
1844	/* Reset the phy to commit changes. */
1845	ret_val = hw->phy.ops.commit(hw);
1846	if (ret_val)
1847		return ret_val;
1848
1849	if (phy->autoneg_wait_to_complete) {
1850		DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
1851
1852		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1853						     100000, &link);
1854		if (ret_val)
1855			return ret_val;
1856
1857		if (!link) {
1858			bool reset_dsp = TRUE;
1859
1860			switch (hw->phy.id) {
1861			case I347AT4_E_PHY_ID:
1862			case M88E1340M_E_PHY_ID:
1863			case M88E1112_E_PHY_ID:
1864			case M88E1543_E_PHY_ID:
1865			case M88E1512_E_PHY_ID:
1866			case I210_I_PHY_ID:
1867				reset_dsp = FALSE;
1868				break;
1869			default:
1870				if (hw->phy.type != e1000_phy_m88)
1871					reset_dsp = FALSE;
1872				break;
1873			}
1874
1875			if (!reset_dsp) {
1876				DEBUGOUT("Link taking longer than expected.\n");
1877			} else {
1878				/* We didn't get link.
1879				 * Reset the DSP and cross our fingers.
1880				 */
1881				ret_val = phy->ops.write_reg(hw,
1882						M88E1000_PHY_PAGE_SELECT,
1883						0x001d);
1884				if (ret_val)
1885					return ret_val;
1886				ret_val = e1000_phy_reset_dsp_generic(hw);
1887				if (ret_val)
1888					return ret_val;
1889			}
1890		}
1891
1892		/* Try once more */
1893		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1894						     100000, &link);
1895		if (ret_val)
1896			return ret_val;
1897	}
1898
1899	if (hw->phy.type != e1000_phy_m88)
1900		return E1000_SUCCESS;
1901
1902	if (hw->phy.id == I347AT4_E_PHY_ID ||
1903		hw->phy.id == M88E1340M_E_PHY_ID ||
1904		hw->phy.id == M88E1112_E_PHY_ID)
1905		return E1000_SUCCESS;
1906	if (hw->phy.id == I210_I_PHY_ID)
1907		return E1000_SUCCESS;
1908	if ((hw->phy.id == M88E1543_E_PHY_ID) ||
1909	    (hw->phy.id == M88E1512_E_PHY_ID))
1910		return E1000_SUCCESS;
1911	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1912	if (ret_val)
1913		return ret_val;
1914
1915	/* Resetting the phy means we need to re-force TX_CLK in the
1916	 * Extended PHY Specific Control Register to 25MHz clock from
1917	 * the reset value of 2.5MHz.
1918	 */
1919	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1920	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1921	if (ret_val)
1922		return ret_val;
1923
1924	/* In addition, we must re-enable CRS on Tx for both half and full
1925	 * duplex.
1926	 */
1927	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1928	if (ret_val)
1929		return ret_val;
1930
1931	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1932	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1933
1934	return ret_val;
1935}
1936
1937/**
1938 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1939 *  @hw: pointer to the HW structure
1940 *
1941 *  Forces the speed and duplex settings of the PHY.
1942 *  This is a function pointer entry point only called by
1943 *  PHY setup routines.
1944 **/
1945s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1946{
1947	struct e1000_phy_info *phy = &hw->phy;
1948	s32 ret_val;
1949	u16 data;
1950	bool link;
1951
1952	DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
1953
1954	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
1955	if (ret_val)
1956		return ret_val;
1957
1958	e1000_phy_force_speed_duplex_setup(hw, &data);
1959
1960	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
1961	if (ret_val)
1962		return ret_val;
1963
1964	/* Disable MDI-X support for 10/100 */
1965	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
1966	if (ret_val)
1967		return ret_val;
1968
1969	data &= ~IFE_PMC_AUTO_MDIX;
1970	data &= ~IFE_PMC_FORCE_MDIX;
1971
1972	ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
1973	if (ret_val)
1974		return ret_val;
1975
1976	DEBUGOUT1("IFE PMC: %X\n", data);
1977
1978	usec_delay(1);
1979
1980	if (phy->autoneg_wait_to_complete) {
1981		DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
1982
1983		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1984						     100000, &link);
1985		if (ret_val)
1986			return ret_val;
1987
1988		if (!link)
1989			DEBUGOUT("Link taking longer than expected.\n");
1990
1991		/* Try once more */
1992		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1993						     100000, &link);
1994		if (ret_val)
1995			return ret_val;
1996	}
1997
1998	return E1000_SUCCESS;
1999}
2000
2001/**
2002 *  e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
2003 *  @hw: pointer to the HW structure
2004 *  @phy_ctrl: pointer to current value of PHY_CONTROL
2005 *
2006 *  Forces speed and duplex on the PHY by doing the following: disable flow
2007 *  control, force speed/duplex on the MAC, disable auto speed detection,
2008 *  disable auto-negotiation, configure duplex, configure speed, configure
2009 *  the collision distance, write configuration to CTRL register.  The
2010 *  caller must write to the PHY_CONTROL register for these settings to
2011 *  take affect.
2012 **/
2013void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
2014{
2015	struct e1000_mac_info *mac = &hw->mac;
2016	u32 ctrl;
2017
2018	DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
2019
2020	/* Turn off flow control when forcing speed/duplex */
2021	hw->fc.current_mode = e1000_fc_none;
2022
2023	/* Force speed/duplex on the mac */
2024	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2025	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2026	ctrl &= ~E1000_CTRL_SPD_SEL;
2027
2028	/* Disable Auto Speed Detection */
2029	ctrl &= ~E1000_CTRL_ASDE;
2030
2031	/* Disable autoneg on the phy */
2032	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
2033
2034	/* Forcing Full or Half Duplex? */
2035	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
2036		ctrl &= ~E1000_CTRL_FD;
2037		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
2038		DEBUGOUT("Half Duplex\n");
2039	} else {
2040		ctrl |= E1000_CTRL_FD;
2041		*phy_ctrl |= MII_CR_FULL_DUPLEX;
2042		DEBUGOUT("Full Duplex\n");
2043	}
2044
2045	/* Forcing 10mb or 100mb? */
2046	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
2047		ctrl |= E1000_CTRL_SPD_100;
2048		*phy_ctrl |= MII_CR_SPEED_100;
2049		*phy_ctrl &= ~MII_CR_SPEED_1000;
2050		DEBUGOUT("Forcing 100mb\n");
2051	} else {
2052		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2053		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2054		DEBUGOUT("Forcing 10mb\n");
2055	}
2056
2057	hw->mac.ops.config_collision_dist(hw);
2058
2059	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2060}
2061
2062/**
2063 *  e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
2064 *  @hw: pointer to the HW structure
2065 *  @active: boolean used to enable/disable lplu
2066 *
2067 *  Success returns 0, Failure returns 1
2068 *
2069 *  The low power link up (lplu) state is set to the power management level D3
2070 *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
2071 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2072 *  is used during Dx states where the power conservation is most important.
2073 *  During driver activity, SmartSpeed should be enabled so performance is
2074 *  maintained.
2075 **/
2076s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
2077{
2078	struct e1000_phy_info *phy = &hw->phy;
2079	s32 ret_val;
2080	u16 data;
2081
2082	DEBUGFUNC("e1000_set_d3_lplu_state_generic");
2083
2084	if (!hw->phy.ops.read_reg)
2085		return E1000_SUCCESS;
2086
2087	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
2088	if (ret_val)
2089		return ret_val;
2090
2091	if (!active) {
2092		data &= ~IGP02E1000_PM_D3_LPLU;
2093		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2094					     data);
2095		if (ret_val)
2096			return ret_val;
2097		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2098		 * during Dx states where the power conservation is most
2099		 * important.  During driver activity we should enable
2100		 * SmartSpeed, so performance is maintained.
2101		 */
2102		if (phy->smart_speed == e1000_smart_speed_on) {
2103			ret_val = phy->ops.read_reg(hw,
2104						    IGP01E1000_PHY_PORT_CONFIG,
2105						    &data);
2106			if (ret_val)
2107				return ret_val;
2108
2109			data |= IGP01E1000_PSCFR_SMART_SPEED;
2110			ret_val = phy->ops.write_reg(hw,
2111						     IGP01E1000_PHY_PORT_CONFIG,
2112						     data);
2113			if (ret_val)
2114				return ret_val;
2115		} else if (phy->smart_speed == e1000_smart_speed_off) {
2116			ret_val = phy->ops.read_reg(hw,
2117						    IGP01E1000_PHY_PORT_CONFIG,
2118						    &data);
2119			if (ret_val)
2120				return ret_val;
2121
2122			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2123			ret_val = phy->ops.write_reg(hw,
2124						     IGP01E1000_PHY_PORT_CONFIG,
2125						     data);
2126			if (ret_val)
2127				return ret_val;
2128		}
2129	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2130		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2131		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2132		data |= IGP02E1000_PM_D3_LPLU;
2133		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2134					     data);
2135		if (ret_val)
2136			return ret_val;
2137
2138		/* When LPLU is enabled, we should disable SmartSpeed */
2139		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2140					    &data);
2141		if (ret_val)
2142			return ret_val;
2143
2144		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2145		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2146					     data);
2147	}
2148
2149	return ret_val;
2150}
2151
2152/**
2153 *  e1000_check_downshift_generic - Checks whether a downshift in speed occurred
2154 *  @hw: pointer to the HW structure
2155 *
2156 *  Success returns 0, Failure returns 1
2157 *
2158 *  A downshift is detected by querying the PHY link health.
2159 **/
2160s32 e1000_check_downshift_generic(struct e1000_hw *hw)
2161{
2162	struct e1000_phy_info *phy = &hw->phy;
2163	s32 ret_val;
2164	u16 phy_data, offset, mask;
2165
2166	DEBUGFUNC("e1000_check_downshift_generic");
2167
2168	switch (phy->type) {
2169	case e1000_phy_i210:
2170	case e1000_phy_m88:
2171	case e1000_phy_gg82563:
2172	case e1000_phy_bm:
2173	case e1000_phy_82578:
2174		offset = M88E1000_PHY_SPEC_STATUS;
2175		mask = M88E1000_PSSR_DOWNSHIFT;
2176		break;
2177	case e1000_phy_igp:
2178	case e1000_phy_igp_2:
2179	case e1000_phy_igp_3:
2180		offset = IGP01E1000_PHY_LINK_HEALTH;
2181		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
2182		break;
2183	default:
2184		/* speed downshift not supported */
2185		phy->speed_downgraded = FALSE;
2186		return E1000_SUCCESS;
2187	}
2188
2189	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2190
2191	if (!ret_val)
2192		phy->speed_downgraded = !!(phy_data & mask);
2193
2194	return ret_val;
2195}
2196
2197/**
2198 *  e1000_check_polarity_m88 - Checks the polarity.
2199 *  @hw: pointer to the HW structure
2200 *
2201 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2202 *
2203 *  Polarity is determined based on the PHY specific status register.
2204 **/
2205s32 e1000_check_polarity_m88(struct e1000_hw *hw)
2206{
2207	struct e1000_phy_info *phy = &hw->phy;
2208	s32 ret_val;
2209	u16 data;
2210
2211	DEBUGFUNC("e1000_check_polarity_m88");
2212
2213	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
2214
2215	if (!ret_val)
2216		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
2217				       ? e1000_rev_polarity_reversed
2218				       : e1000_rev_polarity_normal);
2219
2220	return ret_val;
2221}
2222
2223/**
2224 *  e1000_check_polarity_igp - Checks the polarity.
2225 *  @hw: pointer to the HW structure
2226 *
2227 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2228 *
2229 *  Polarity is determined based on the PHY port status register, and the
2230 *  current speed (since there is no polarity at 100Mbps).
2231 **/
2232s32 e1000_check_polarity_igp(struct e1000_hw *hw)
2233{
2234	struct e1000_phy_info *phy = &hw->phy;
2235	s32 ret_val;
2236	u16 data, offset, mask;
2237
2238	DEBUGFUNC("e1000_check_polarity_igp");
2239
2240	/* Polarity is determined based on the speed of
2241	 * our connection.
2242	 */
2243	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2244	if (ret_val)
2245		return ret_val;
2246
2247	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2248	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2249		offset = IGP01E1000_PHY_PCS_INIT_REG;
2250		mask = IGP01E1000_PHY_POLARITY_MASK;
2251	} else {
2252		/* This really only applies to 10Mbps since
2253		 * there is no polarity for 100Mbps (always 0).
2254		 */
2255		offset = IGP01E1000_PHY_PORT_STATUS;
2256		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
2257	}
2258
2259	ret_val = phy->ops.read_reg(hw, offset, &data);
2260
2261	if (!ret_val)
2262		phy->cable_polarity = ((data & mask)
2263				       ? e1000_rev_polarity_reversed
2264				       : e1000_rev_polarity_normal);
2265
2266	return ret_val;
2267}
2268
2269/**
2270 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
2271 *  @hw: pointer to the HW structure
2272 *
2273 *  Polarity is determined on the polarity reversal feature being enabled.
2274 **/
2275s32 e1000_check_polarity_ife(struct e1000_hw *hw)
2276{
2277	struct e1000_phy_info *phy = &hw->phy;
2278	s32 ret_val;
2279	u16 phy_data, offset, mask;
2280
2281	DEBUGFUNC("e1000_check_polarity_ife");
2282
2283	/* Polarity is determined based on the reversal feature being enabled.
2284	 */
2285	if (phy->polarity_correction) {
2286		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
2287		mask = IFE_PESC_POLARITY_REVERSED;
2288	} else {
2289		offset = IFE_PHY_SPECIAL_CONTROL;
2290		mask = IFE_PSC_FORCE_POLARITY;
2291	}
2292
2293	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2294
2295	if (!ret_val)
2296		phy->cable_polarity = ((phy_data & mask)
2297				       ? e1000_rev_polarity_reversed
2298				       : e1000_rev_polarity_normal);
2299
2300	return ret_val;
2301}
2302
2303/**
2304 *  e1000_wait_autoneg - Wait for auto-neg completion
2305 *  @hw: pointer to the HW structure
2306 *
2307 *  Waits for auto-negotiation to complete or for the auto-negotiation time
2308 *  limit to expire, which ever happens first.
2309 **/
2310static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2311{
2312	s32 ret_val = E1000_SUCCESS;
2313	u16 i, phy_status;
2314
2315	DEBUGFUNC("e1000_wait_autoneg");
2316
2317	if (!hw->phy.ops.read_reg)
2318		return E1000_SUCCESS;
2319
2320	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
2321	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
2322		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2323		if (ret_val)
2324			break;
2325		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2326		if (ret_val)
2327			break;
2328		if (phy_status & MII_SR_AUTONEG_COMPLETE)
2329			break;
2330		msec_delay(100);
2331	}
2332
2333	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
2334	 * has completed.
2335	 */
2336	return ret_val;
2337}
2338
2339/**
2340 *  e1000_phy_has_link_generic - Polls PHY for link
2341 *  @hw: pointer to the HW structure
2342 *  @iterations: number of times to poll for link
2343 *  @usec_interval: delay between polling attempts
2344 *  @success: pointer to whether polling was successful or not
2345 *
2346 *  Polls the PHY status register for link, 'iterations' number of times.
2347 **/
2348s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
2349			       u32 usec_interval, bool *success)
2350{
2351	s32 ret_val = E1000_SUCCESS;
2352	u16 i, phy_status;
2353
2354	DEBUGFUNC("e1000_phy_has_link_generic");
2355
2356	if (!hw->phy.ops.read_reg)
2357		return E1000_SUCCESS;
2358
2359	for (i = 0; i < iterations; i++) {
2360		/* Some PHYs require the PHY_STATUS register to be read
2361		 * twice due to the link bit being sticky.  No harm doing
2362		 * it across the board.
2363		 */
2364		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2365		if (ret_val) {
2366			/* If the first read fails, another entity may have
2367			 * ownership of the resources, wait and try again to
2368			 * see if they have relinquished the resources yet.
2369			 */
2370			if (usec_interval >= 1000)
2371				msec_delay(usec_interval/1000);
2372			else
2373				usec_delay(usec_interval);
2374		}
2375		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2376		if (ret_val)
2377			break;
2378		if (phy_status & MII_SR_LINK_STATUS)
2379			break;
2380		if (usec_interval >= 1000)
2381			msec_delay(usec_interval/1000);
2382		else
2383			usec_delay(usec_interval);
2384	}
2385
2386	*success = (i < iterations);
2387
2388	return ret_val;
2389}
2390
2391/**
2392 *  e1000_get_cable_length_m88 - Determine cable length for m88 PHY
2393 *  @hw: pointer to the HW structure
2394 *
2395 *  Reads the PHY specific status register to retrieve the cable length
2396 *  information.  The cable length is determined by averaging the minimum and
2397 *  maximum values to get the "average" cable length.  The m88 PHY has four
2398 *  possible cable length values, which are:
2399 *	Register Value		Cable Length
2400 *	0			< 50 meters
2401 *	1			50 - 80 meters
2402 *	2			80 - 110 meters
2403 *	3			110 - 140 meters
2404 *	4			> 140 meters
2405 **/
2406s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
2407{
2408	struct e1000_phy_info *phy = &hw->phy;
2409	s32 ret_val;
2410	u16 phy_data, index;
2411
2412	DEBUGFUNC("e1000_get_cable_length_m88");
2413
2414	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2415	if (ret_val)
2416		return ret_val;
2417
2418	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
2419		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
2420
2421	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
2422		return -E1000_ERR_PHY;
2423
2424	phy->min_cable_length = e1000_m88_cable_length_table[index];
2425	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
2426
2427	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2428
2429	return E1000_SUCCESS;
2430}
2431
2432s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
2433{
2434	struct e1000_phy_info *phy = &hw->phy;
2435	s32 ret_val;
2436	u16 phy_data, phy_data2, is_cm;
2437	u16 index, default_page;
2438
2439	DEBUGFUNC("e1000_get_cable_length_m88_gen2");
2440
2441	switch (hw->phy.id) {
2442	case I210_I_PHY_ID:
2443		/* Get cable length from PHY Cable Diagnostics Control Reg */
2444		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2445					    (I347AT4_PCDL + phy->addr),
2446					    &phy_data);
2447		if (ret_val)
2448			return ret_val;
2449
2450		/* Check if the unit of cable length is meters or cm */
2451		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2452					    I347AT4_PCDC, &phy_data2);
2453		if (ret_val)
2454			return ret_val;
2455
2456		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2457
2458		/* Populate the phy structure with cable length in meters */
2459		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2460		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2461		phy->cable_length = phy_data / (is_cm ? 100 : 1);
2462		break;
2463	case M88E1543_E_PHY_ID:
2464	case M88E1512_E_PHY_ID:
2465	case M88E1340M_E_PHY_ID:
2466	case I347AT4_E_PHY_ID:
2467		/* Remember the original page select and set it to 7 */
2468		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2469					    &default_page);
2470		if (ret_val)
2471			return ret_val;
2472
2473		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
2474		if (ret_val)
2475			return ret_val;
2476
2477		/* Get cable length from PHY Cable Diagnostics Control Reg */
2478		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
2479					    &phy_data);
2480		if (ret_val)
2481			return ret_val;
2482
2483		/* Check if the unit of cable length is meters or cm */
2484		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
2485		if (ret_val)
2486			return ret_val;
2487
2488		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2489
2490		/* Populate the phy structure with cable length in meters */
2491		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2492		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2493		phy->cable_length = phy_data / (is_cm ? 100 : 1);
2494
2495		/* Reset the page select to its original value */
2496		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2497					     default_page);
2498		if (ret_val)
2499			return ret_val;
2500		break;
2501
2502	case M88E1112_E_PHY_ID:
2503		/* Remember the original page select and set it to 5 */
2504		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2505					    &default_page);
2506		if (ret_val)
2507			return ret_val;
2508
2509		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
2510		if (ret_val)
2511			return ret_val;
2512
2513		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
2514					    &phy_data);
2515		if (ret_val)
2516			return ret_val;
2517
2518		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
2519			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
2520
2521		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
2522			return -E1000_ERR_PHY;
2523
2524		phy->min_cable_length = e1000_m88_cable_length_table[index];
2525		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
2526
2527		phy->cable_length = (phy->min_cable_length +
2528				     phy->max_cable_length) / 2;
2529
2530		/* Reset the page select to its original value */
2531		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2532					     default_page);
2533		if (ret_val)
2534			return ret_val;
2535
2536		break;
2537	default:
2538		return -E1000_ERR_PHY;
2539	}
2540
2541	return ret_val;
2542}
2543
2544/**
2545 *  e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
2546 *  @hw: pointer to the HW structure
2547 *
2548 *  The automatic gain control (agc) normalizes the amplitude of the
2549 *  received signal, adjusting for the attenuation produced by the
2550 *  cable.  By reading the AGC registers, which represent the
2551 *  combination of coarse and fine gain value, the value can be put
2552 *  into a lookup table to obtain the approximate cable length
2553 *  for each channel.
2554 **/
2555s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
2556{
2557	struct e1000_phy_info *phy = &hw->phy;
2558	s32 ret_val;
2559	u16 phy_data, i, agc_value = 0;
2560	u16 cur_agc_index, max_agc_index = 0;
2561	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
2562	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
2563		IGP02E1000_PHY_AGC_A,
2564		IGP02E1000_PHY_AGC_B,
2565		IGP02E1000_PHY_AGC_C,
2566		IGP02E1000_PHY_AGC_D
2567	};
2568
2569	DEBUGFUNC("e1000_get_cable_length_igp_2");
2570
2571	/* Read the AGC registers for all channels */
2572	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
2573		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
2574		if (ret_val)
2575			return ret_val;
2576
2577		/* Getting bits 15:9, which represent the combination of
2578		 * coarse and fine gain values.  The result is a number
2579		 * that can be put into the lookup table to obtain the
2580		 * approximate cable length.
2581		 */
2582		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
2583				 IGP02E1000_AGC_LENGTH_MASK);
2584
2585		/* Array index bound check. */
2586		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
2587		    (cur_agc_index == 0))
2588			return -E1000_ERR_PHY;
2589
2590		/* Remove min & max AGC values from calculation. */
2591		if (e1000_igp_2_cable_length_table[min_agc_index] >
2592		    e1000_igp_2_cable_length_table[cur_agc_index])
2593			min_agc_index = cur_agc_index;
2594		if (e1000_igp_2_cable_length_table[max_agc_index] <
2595		    e1000_igp_2_cable_length_table[cur_agc_index])
2596			max_agc_index = cur_agc_index;
2597
2598		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
2599	}
2600
2601	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
2602		      e1000_igp_2_cable_length_table[max_agc_index]);
2603	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
2604
2605	/* Calculate cable length with the error range of +/- 10 meters. */
2606	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
2607				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
2608	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
2609
2610	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2611
2612	return E1000_SUCCESS;
2613}
2614
2615/**
2616 *  e1000_get_phy_info_m88 - Retrieve PHY information
2617 *  @hw: pointer to the HW structure
2618 *
2619 *  Valid for only copper links.  Read the PHY status register (sticky read)
2620 *  to verify that link is up.  Read the PHY special control register to
2621 *  determine the polarity and 10base-T extended distance.  Read the PHY
2622 *  special status register to determine MDI/MDIx and current speed.  If
2623 *  speed is 1000, then determine cable length, local and remote receiver.
2624 **/
2625s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
2626{
2627	struct e1000_phy_info *phy = &hw->phy;
2628	s32  ret_val;
2629	u16 phy_data;
2630	bool link;
2631
2632	DEBUGFUNC("e1000_get_phy_info_m88");
2633
2634	if (phy->media_type != e1000_media_type_copper) {
2635		DEBUGOUT("Phy info is only valid for copper media\n");
2636		return -E1000_ERR_CONFIG;
2637	}
2638
2639	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2640	if (ret_val)
2641		return ret_val;
2642
2643	if (!link) {
2644		DEBUGOUT("Phy info is only valid if link is up\n");
2645		return -E1000_ERR_CONFIG;
2646	}
2647
2648	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2649	if (ret_val)
2650		return ret_val;
2651
2652	phy->polarity_correction = !!(phy_data &
2653				      M88E1000_PSCR_POLARITY_REVERSAL);
2654
2655	ret_val = e1000_check_polarity_m88(hw);
2656	if (ret_val)
2657		return ret_val;
2658
2659	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2660	if (ret_val)
2661		return ret_val;
2662
2663	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
2664
2665	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2666		ret_val = hw->phy.ops.get_cable_length(hw);
2667		if (ret_val)
2668			return ret_val;
2669
2670		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2671		if (ret_val)
2672			return ret_val;
2673
2674		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2675				? e1000_1000t_rx_status_ok
2676				: e1000_1000t_rx_status_not_ok;
2677
2678		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2679				 ? e1000_1000t_rx_status_ok
2680				 : e1000_1000t_rx_status_not_ok;
2681	} else {
2682		/* Set values to "undefined" */
2683		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2684		phy->local_rx = e1000_1000t_rx_status_undefined;
2685		phy->remote_rx = e1000_1000t_rx_status_undefined;
2686	}
2687
2688	return ret_val;
2689}
2690
2691/**
2692 *  e1000_get_phy_info_igp - Retrieve igp PHY information
2693 *  @hw: pointer to the HW structure
2694 *
2695 *  Read PHY status to determine if link is up.  If link is up, then
2696 *  set/determine 10base-T extended distance and polarity correction.  Read
2697 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2698 *  determine on the cable length, local and remote receiver.
2699 **/
2700s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
2701{
2702	struct e1000_phy_info *phy = &hw->phy;
2703	s32 ret_val;
2704	u16 data;
2705	bool link;
2706
2707	DEBUGFUNC("e1000_get_phy_info_igp");
2708
2709	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2710	if (ret_val)
2711		return ret_val;
2712
2713	if (!link) {
2714		DEBUGOUT("Phy info is only valid if link is up\n");
2715		return -E1000_ERR_CONFIG;
2716	}
2717
2718	phy->polarity_correction = TRUE;
2719
2720	ret_val = e1000_check_polarity_igp(hw);
2721	if (ret_val)
2722		return ret_val;
2723
2724	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2725	if (ret_val)
2726		return ret_val;
2727
2728	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2729
2730	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2731	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2732		ret_val = phy->ops.get_cable_length(hw);
2733		if (ret_val)
2734			return ret_val;
2735
2736		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2737		if (ret_val)
2738			return ret_val;
2739
2740		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2741				? e1000_1000t_rx_status_ok
2742				: e1000_1000t_rx_status_not_ok;
2743
2744		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2745				 ? e1000_1000t_rx_status_ok
2746				 : e1000_1000t_rx_status_not_ok;
2747	} else {
2748		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2749		phy->local_rx = e1000_1000t_rx_status_undefined;
2750		phy->remote_rx = e1000_1000t_rx_status_undefined;
2751	}
2752
2753	return ret_val;
2754}
2755
2756/**
2757 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2758 *  @hw: pointer to the HW structure
2759 *
2760 *  Populates "phy" structure with various feature states.
2761 **/
2762s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2763{
2764	struct e1000_phy_info *phy = &hw->phy;
2765	s32 ret_val;
2766	u16 data;
2767	bool link;
2768
2769	DEBUGFUNC("e1000_get_phy_info_ife");
2770
2771	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2772	if (ret_val)
2773		return ret_val;
2774
2775	if (!link) {
2776		DEBUGOUT("Phy info is only valid if link is up\n");
2777		return -E1000_ERR_CONFIG;
2778	}
2779
2780	ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2781	if (ret_val)
2782		return ret_val;
2783	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2784
2785	if (phy->polarity_correction) {
2786		ret_val = e1000_check_polarity_ife(hw);
2787		if (ret_val)
2788			return ret_val;
2789	} else {
2790		/* Polarity is forced */
2791		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2792				       ? e1000_rev_polarity_reversed
2793				       : e1000_rev_polarity_normal);
2794	}
2795
2796	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
2797	if (ret_val)
2798		return ret_val;
2799
2800	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2801
2802	/* The following parameters are undefined for 10/100 operation. */
2803	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2804	phy->local_rx = e1000_1000t_rx_status_undefined;
2805	phy->remote_rx = e1000_1000t_rx_status_undefined;
2806
2807	return E1000_SUCCESS;
2808}
2809
2810/**
2811 *  e1000_phy_sw_reset_generic - PHY software reset
2812 *  @hw: pointer to the HW structure
2813 *
2814 *  Does a software reset of the PHY by reading the PHY control register and
2815 *  setting/write the control register reset bit to the PHY.
2816 **/
2817s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
2818{
2819	s32 ret_val;
2820	u16 phy_ctrl;
2821
2822	DEBUGFUNC("e1000_phy_sw_reset_generic");
2823
2824	if (!hw->phy.ops.read_reg)
2825		return E1000_SUCCESS;
2826
2827	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2828	if (ret_val)
2829		return ret_val;
2830
2831	phy_ctrl |= MII_CR_RESET;
2832	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2833	if (ret_val)
2834		return ret_val;
2835
2836	usec_delay(1);
2837
2838	return ret_val;
2839}
2840
2841/**
2842 *  e1000_phy_hw_reset_generic - PHY hardware reset
2843 *  @hw: pointer to the HW structure
2844 *
2845 *  Verify the reset block is not blocking us from resetting.  Acquire
2846 *  semaphore (if necessary) and read/set/write the device control reset
2847 *  bit in the PHY.  Wait the appropriate delay time for the device to
2848 *  reset and release the semaphore (if necessary).
2849 **/
2850s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
2851{
2852	struct e1000_phy_info *phy = &hw->phy;
2853	s32 ret_val;
2854	u32 ctrl;
2855
2856	DEBUGFUNC("e1000_phy_hw_reset_generic");
2857
2858	if (phy->ops.check_reset_block) {
2859		ret_val = phy->ops.check_reset_block(hw);
2860		if (ret_val)
2861			return E1000_SUCCESS;
2862	}
2863
2864	ret_val = phy->ops.acquire(hw);
2865	if (ret_val)
2866		return ret_val;
2867
2868	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2869	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2870	E1000_WRITE_FLUSH(hw);
2871
2872	usec_delay(phy->reset_delay_us);
2873
2874	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2875	E1000_WRITE_FLUSH(hw);
2876
2877	usec_delay(150);
2878
2879	phy->ops.release(hw);
2880
2881	return phy->ops.get_cfg_done(hw);
2882}
2883
2884/**
2885 *  e1000_get_cfg_done_generic - Generic configuration done
2886 *  @hw: pointer to the HW structure
2887 *
2888 *  Generic function to wait 10 milli-seconds for configuration to complete
2889 *  and return success.
2890 **/
2891s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw)
2892{
2893	DEBUGFUNC("e1000_get_cfg_done_generic");
2894
2895	msec_delay_irq(10);
2896
2897	return E1000_SUCCESS;
2898}
2899
2900/**
2901 *  e1000_phy_init_script_igp3 - Inits the IGP3 PHY
2902 *  @hw: pointer to the HW structure
2903 *
2904 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2905 **/
2906s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
2907{
2908	DEBUGOUT("Running IGP 3 PHY init script\n");
2909
2910	/* PHY init IGP 3 */
2911	/* Enable rise/fall, 10-mode work in class-A */
2912	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2913	/* Remove all caps from Replica path filter */
2914	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2915	/* Bias trimming for ADC, AFE and Driver (Default) */
2916	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2917	/* Increase Hybrid poly bias */
2918	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2919	/* Add 4% to Tx amplitude in Gig mode */
2920	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2921	/* Disable trimming (TTT) */
2922	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2923	/* Poly DC correction to 94.6% + 2% for all channels */
2924	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2925	/* ABS DC correction to 95.9% */
2926	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2927	/* BG temp curve trim */
2928	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2929	/* Increasing ADC OPAMP stage 1 currents to max */
2930	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2931	/* Force 1000 ( required for enabling PHY regs configuration) */
2932	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2933	/* Set upd_freq to 6 */
2934	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2935	/* Disable NPDFE */
2936	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2937	/* Disable adaptive fixed FFE (Default) */
2938	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2939	/* Enable FFE hysteresis */
2940	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2941	/* Fixed FFE for short cable lengths */
2942	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2943	/* Fixed FFE for medium cable lengths */
2944	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2945	/* Fixed FFE for long cable lengths */
2946	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2947	/* Enable Adaptive Clip Threshold */
2948	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2949	/* AHT reset limit to 1 */
2950	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2951	/* Set AHT master delay to 127 msec */
2952	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2953	/* Set scan bits for AHT */
2954	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2955	/* Set AHT Preset bits */
2956	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2957	/* Change integ_factor of channel A to 3 */
2958	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2959	/* Change prop_factor of channels BCD to 8 */
2960	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2961	/* Change cg_icount + enable integbp for channels BCD */
2962	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2963	/* Change cg_icount + enable integbp + change prop_factor_master
2964	 * to 8 for channel A
2965	 */
2966	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2967	/* Disable AHT in Slave mode on channel A */
2968	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2969	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2970	 * Enable SPD+B2B
2971	 */
2972	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2973	/* Enable restart AN on an1000_dis change */
2974	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2975	/* Enable wh_fifo read clock in 10/100 modes */
2976	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2977	/* Restart AN, Speed selection is 1000 */
2978	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2979
2980	return E1000_SUCCESS;
2981}
2982
2983/**
2984 *  e1000_get_phy_type_from_id - Get PHY type from id
2985 *  @phy_id: phy_id read from the phy
2986 *
2987 *  Returns the phy type from the id.
2988 **/
2989enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
2990{
2991	enum e1000_phy_type phy_type = e1000_phy_unknown;
2992
2993	switch (phy_id) {
2994	case M88E1000_I_PHY_ID:
2995	case M88E1000_E_PHY_ID:
2996	case M88E1111_I_PHY_ID:
2997	case M88E1011_I_PHY_ID:
2998	case M88E1543_E_PHY_ID:
2999	case M88E1512_E_PHY_ID:
3000	case I347AT4_E_PHY_ID:
3001	case M88E1112_E_PHY_ID:
3002	case M88E1340M_E_PHY_ID:
3003		phy_type = e1000_phy_m88;
3004		break;
3005	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
3006		phy_type = e1000_phy_igp_2;
3007		break;
3008	case GG82563_E_PHY_ID:
3009		phy_type = e1000_phy_gg82563;
3010		break;
3011	case IGP03E1000_E_PHY_ID:
3012		phy_type = e1000_phy_igp_3;
3013		break;
3014	case IFE_E_PHY_ID:
3015	case IFE_PLUS_E_PHY_ID:
3016	case IFE_C_E_PHY_ID:
3017		phy_type = e1000_phy_ife;
3018		break;
3019	case BME1000_E_PHY_ID:
3020	case BME1000_E_PHY_ID_R2:
3021		phy_type = e1000_phy_bm;
3022		break;
3023	case I82578_E_PHY_ID:
3024		phy_type = e1000_phy_82578;
3025		break;
3026	case I82577_E_PHY_ID:
3027		phy_type = e1000_phy_82577;
3028		break;
3029	case I82579_E_PHY_ID:
3030		phy_type = e1000_phy_82579;
3031		break;
3032	case I217_E_PHY_ID:
3033		phy_type = e1000_phy_i217;
3034		break;
3035	case I82580_I_PHY_ID:
3036		phy_type = e1000_phy_82580;
3037		break;
3038	case I210_I_PHY_ID:
3039		phy_type = e1000_phy_i210;
3040		break;
3041	default:
3042		phy_type = e1000_phy_unknown;
3043		break;
3044	}
3045	return phy_type;
3046}
3047
3048/**
3049 *  e1000_determine_phy_address - Determines PHY address.
3050 *  @hw: pointer to the HW structure
3051 *
3052 *  This uses a trial and error method to loop through possible PHY
3053 *  addresses. It tests each by reading the PHY ID registers and
3054 *  checking for a match.
3055 **/
3056s32 e1000_determine_phy_address(struct e1000_hw *hw)
3057{
3058	u32 phy_addr = 0;
3059	u32 i;
3060	enum e1000_phy_type phy_type = e1000_phy_unknown;
3061
3062	hw->phy.id = phy_type;
3063
3064	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
3065		hw->phy.addr = phy_addr;
3066		i = 0;
3067
3068		do {
3069			e1000_get_phy_id(hw);
3070			phy_type = e1000_get_phy_type_from_id(hw->phy.id);
3071
3072			/* If phy_type is valid, break - we found our
3073			 * PHY address
3074			 */
3075			if (phy_type != e1000_phy_unknown)
3076				return E1000_SUCCESS;
3077
3078			msec_delay(1);
3079			i++;
3080		} while (i < 10);
3081	}
3082
3083	return -E1000_ERR_PHY_TYPE;
3084}
3085
3086/**
3087 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
3088 *  @page: page to access
3089 *
3090 *  Returns the phy address for the page requested.
3091 **/
3092static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
3093{
3094	u32 phy_addr = 2;
3095
3096	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
3097		phy_addr = 1;
3098
3099	return phy_addr;
3100}
3101
3102/**
3103 *  e1000_write_phy_reg_bm - Write BM PHY register
3104 *  @hw: pointer to the HW structure
3105 *  @offset: register offset to write to
3106 *  @data: data to write at register offset
3107 *
3108 *  Acquires semaphore, if necessary, then writes the data to PHY register
3109 *  at the offset.  Release any acquired semaphores before exiting.
3110 **/
3111s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
3112{
3113	s32 ret_val;
3114	u32 page = offset >> IGP_PAGE_SHIFT;
3115
3116	DEBUGFUNC("e1000_write_phy_reg_bm");
3117
3118	ret_val = hw->phy.ops.acquire(hw);
3119	if (ret_val)
3120		return ret_val;
3121
3122	/* Page 800 works differently than the rest so it has its own func */
3123	if (page == BM_WUC_PAGE) {
3124		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3125							 FALSE, false);
3126		goto release;
3127	}
3128
3129	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
3130
3131	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3132		u32 page_shift, page_select;
3133
3134		/* Page select is register 31 for phy address 1 and 22 for
3135		 * phy address 2 and 3. Page select is shifted only for
3136		 * phy address 1.
3137		 */
3138		if (hw->phy.addr == 1) {
3139			page_shift = IGP_PAGE_SHIFT;
3140			page_select = IGP01E1000_PHY_PAGE_SELECT;
3141		} else {
3142			page_shift = 0;
3143			page_select = BM_PHY_PAGE_SELECT;
3144		}
3145
3146		/* Page is shifted left, PHY expects (page x 32) */
3147		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
3148						   (page << page_shift));
3149		if (ret_val)
3150			goto release;
3151	}
3152
3153	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3154					   data);
3155
3156release:
3157	hw->phy.ops.release(hw);
3158	return ret_val;
3159}
3160
3161/**
3162 *  e1000_read_phy_reg_bm - Read BM PHY register
3163 *  @hw: pointer to the HW structure
3164 *  @offset: register offset to be read
3165 *  @data: pointer to the read data
3166 *
3167 *  Acquires semaphore, if necessary, then reads the PHY register at offset
3168 *  and storing the retrieved information in data.  Release any acquired
3169 *  semaphores before exiting.
3170 **/
3171s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
3172{
3173	s32 ret_val;
3174	u32 page = offset >> IGP_PAGE_SHIFT;
3175
3176	DEBUGFUNC("e1000_read_phy_reg_bm");
3177
3178	ret_val = hw->phy.ops.acquire(hw);
3179	if (ret_val)
3180		return ret_val;
3181
3182	/* Page 800 works differently than the rest so it has its own func */
3183	if (page == BM_WUC_PAGE) {
3184		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
3185							 TRUE, FALSE);
3186		goto release;
3187	}
3188
3189	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
3190
3191	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3192		u32 page_shift, page_select;
3193
3194		/* Page select is register 31 for phy address 1 and 22 for
3195		 * phy address 2 and 3. Page select is shifted only for
3196		 * phy address 1.
3197		 */
3198		if (hw->phy.addr == 1) {
3199			page_shift = IGP_PAGE_SHIFT;
3200			page_select = IGP01E1000_PHY_PAGE_SELECT;
3201		} else {
3202			page_shift = 0;
3203			page_select = BM_PHY_PAGE_SELECT;
3204		}
3205
3206		/* Page is shifted left, PHY expects (page x 32) */
3207		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
3208						   (page << page_shift));
3209		if (ret_val)
3210			goto release;
3211	}
3212
3213	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3214					  data);
3215release:
3216	hw->phy.ops.release(hw);
3217	return ret_val;
3218}
3219
3220/**
3221 *  e1000_read_phy_reg_bm2 - Read BM PHY register
3222 *  @hw: pointer to the HW structure
3223 *  @offset: register offset to be read
3224 *  @data: pointer to the read data
3225 *
3226 *  Acquires semaphore, if necessary, then reads the PHY register at offset
3227 *  and storing the retrieved information in data.  Release any acquired
3228 *  semaphores before exiting.
3229 **/
3230s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
3231{
3232	s32 ret_val;
3233	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
3234
3235	DEBUGFUNC("e1000_read_phy_reg_bm2");
3236
3237	ret_val = hw->phy.ops.acquire(hw);
3238	if (ret_val)
3239		return ret_val;
3240
3241	/* Page 800 works differently than the rest so it has its own func */
3242	if (page == BM_WUC_PAGE) {
3243		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
3244							 TRUE, FALSE);
3245		goto release;
3246	}
3247
3248	hw->phy.addr = 1;
3249
3250	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3251		/* Page is shifted left, PHY expects (page x 32) */
3252		ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
3253						   page);
3254
3255		if (ret_val)
3256			goto release;
3257	}
3258
3259	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3260					  data);
3261release:
3262	hw->phy.ops.release(hw);
3263	return ret_val;
3264}
3265
3266/**
3267 *  e1000_write_phy_reg_bm2 - Write BM PHY register
3268 *  @hw: pointer to the HW structure
3269 *  @offset: register offset to write to
3270 *  @data: data to write at register offset
3271 *
3272 *  Acquires semaphore, if necessary, then writes the data to PHY register
3273 *  at the offset.  Release any acquired semaphores before exiting.
3274 **/
3275s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
3276{
3277	s32 ret_val;
3278	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
3279
3280	DEBUGFUNC("e1000_write_phy_reg_bm2");
3281
3282	ret_val = hw->phy.ops.acquire(hw);
3283	if (ret_val)
3284		return ret_val;
3285
3286	/* Page 800 works differently than the rest so it has its own func */
3287	if (page == BM_WUC_PAGE) {
3288		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3289							 FALSE, false);
3290		goto release;
3291	}
3292
3293	hw->phy.addr = 1;
3294
3295	if (offset > MAX_PHY_MULTI_PAGE_REG) {
3296		/* Page is shifted left, PHY expects (page x 32) */
3297		ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
3298						   page);
3299
3300		if (ret_val)
3301			goto release;
3302	}
3303
3304	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
3305					   data);
3306
3307release:
3308	hw->phy.ops.release(hw);
3309	return ret_val;
3310}
3311
3312/**
3313 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
3314 *  @hw: pointer to the HW structure
3315 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
3316 *
3317 *  Assumes semaphore already acquired and phy_reg points to a valid memory
3318 *  address to store contents of the BM_WUC_ENABLE_REG register.
3319 **/
3320s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
3321{
3322	s32 ret_val;
3323	u16 temp;
3324
3325	DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
3326
3327	if (!phy_reg)
3328		return -E1000_ERR_PARAM;
3329
3330	/* All page select, port ctrl and wakeup registers use phy address 1 */
3331	hw->phy.addr = 1;
3332
3333	/* Select Port Control Registers page */
3334	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
3335	if (ret_val) {
3336		DEBUGOUT("Could not set Port Control page\n");
3337		return ret_val;
3338	}
3339
3340	ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
3341	if (ret_val) {
3342		DEBUGOUT2("Could not read PHY register %d.%d\n",
3343			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3344		return ret_val;
3345	}
3346
3347	/* Enable both PHY wakeup mode and Wakeup register page writes.
3348	 * Prevent a power state change by disabling ME and Host PHY wakeup.
3349	 */
3350	temp = *phy_reg;
3351	temp |= BM_WUC_ENABLE_BIT;
3352	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
3353
3354	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
3355	if (ret_val) {
3356		DEBUGOUT2("Could not write PHY register %d.%d\n",
3357			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3358		return ret_val;
3359	}
3360
3361	/* Select Host Wakeup Registers page - caller now able to write
3362	 * registers on the Wakeup registers page
3363	 */
3364	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
3365}
3366
3367/**
3368 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
3369 *  @hw: pointer to the HW structure
3370 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
3371 *
3372 *  Restore BM_WUC_ENABLE_REG to its original value.
3373 *
3374 *  Assumes semaphore already acquired and *phy_reg is the contents of the
3375 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
3376 *  caller.
3377 **/
3378s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
3379{
3380	s32 ret_val;
3381
3382	DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
3383
3384	if (!phy_reg)
3385		return -E1000_ERR_PARAM;
3386
3387	/* Select Port Control Registers page */
3388	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
3389	if (ret_val) {
3390		DEBUGOUT("Could not set Port Control page\n");
3391		return ret_val;
3392	}
3393
3394	/* Restore 769.17 to its original value */
3395	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
3396	if (ret_val)
3397		DEBUGOUT2("Could not restore PHY register %d.%d\n",
3398			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
3399
3400	return ret_val;
3401}
3402
3403/**
3404 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
3405 *  @hw: pointer to the HW structure
3406 *  @offset: register offset to be read or written
3407 *  @data: pointer to the data to read or write
3408 *  @read: determines if operation is read or write
3409 *  @page_set: BM_WUC_PAGE already set and access enabled
3410 *
3411 *  Read the PHY register at offset and store the retrieved information in
3412 *  data, or write data to PHY register at offset.  Note the procedure to
3413 *  access the PHY wakeup registers is different than reading the other PHY
3414 *  registers. It works as such:
3415 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
3416 *  2) Set page to 800 for host (801 if we were manageability)
3417 *  3) Write the address using the address opcode (0x11)
3418 *  4) Read or write the data using the data opcode (0x12)
3419 *  5) Restore 769.17.2 to its original value
3420 *
3421 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
3422 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
3423 *
3424 *  Assumes semaphore is already acquired.  When page_set==TRUE, assumes
3425 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
3426 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
3427 **/
3428static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
3429					  u16 *data, bool read, bool page_set)
3430{
3431	s32 ret_val;
3432	u16 reg = BM_PHY_REG_NUM(offset);
3433	u16 page = BM_PHY_REG_PAGE(offset);
3434	u16 phy_reg = 0;
3435
3436	DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
3437
3438	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
3439	if ((hw->mac.type == e1000_pchlan) &&
3440	   (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
3441		DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
3442			  page);
3443
3444	if (!page_set) {
3445		/* Enable access to PHY wakeup registers */
3446		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
3447		if (ret_val) {
3448			DEBUGOUT("Could not enable PHY wakeup reg access\n");
3449			return ret_val;
3450		}
3451	}
3452
3453	DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
3454
3455	/* Write the Wakeup register page offset value using opcode 0x11 */
3456	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
3457	if (ret_val) {
3458		DEBUGOUT1("Could not write address opcode to page %d\n", page);
3459		return ret_val;
3460	}
3461
3462	if (read) {
3463		/* Read the Wakeup register page value using opcode 0x12 */
3464		ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
3465						  data);
3466	} else {
3467		/* Write the Wakeup register page value using opcode 0x12 */
3468		ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
3469						   *data);
3470	}
3471
3472	if (ret_val) {
3473		DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
3474		return ret_val;
3475	}
3476
3477	if (!page_set)
3478		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
3479
3480	return ret_val;
3481}
3482
3483/**
3484 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
3485 * @hw: pointer to the HW structure
3486 *
3487 * In the case of a PHY power down to save power, or to turn off link during a
3488 * driver unload, or wake on lan is not enabled, restore the link to previous
3489 * settings.
3490 **/
3491void e1000_power_up_phy_copper(struct e1000_hw *hw)
3492{
3493	u16 mii_reg = 0;
3494
3495	/* The PHY will retain its settings across a power down/up cycle */
3496	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
3497	mii_reg &= ~MII_CR_POWER_DOWN;
3498	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
3499}
3500
3501/**
3502 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
3503 * @hw: pointer to the HW structure
3504 *
3505 * In the case of a PHY power down to save power, or to turn off link during a
3506 * driver unload, or wake on lan is not enabled, restore the link to previous
3507 * settings.
3508 **/
3509void e1000_power_down_phy_copper(struct e1000_hw *hw)
3510{
3511	u16 mii_reg = 0;
3512
3513	/* The PHY will retain its settings across a power down/up cycle */
3514	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
3515	mii_reg |= MII_CR_POWER_DOWN;
3516	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
3517	msec_delay(1);
3518}
3519
3520/**
3521 *  __e1000_read_phy_reg_hv -  Read HV PHY register
3522 *  @hw: pointer to the HW structure
3523 *  @offset: register offset to be read
3524 *  @data: pointer to the read data
3525 *  @locked: semaphore has already been acquired or not
3526 *
3527 *  Acquires semaphore, if necessary, then reads the PHY register at offset
3528 *  and stores the retrieved information in data.  Release any acquired
3529 *  semaphore before exiting.
3530 **/
3531static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
3532				   bool locked, bool page_set)
3533{
3534	s32 ret_val;
3535	u16 page = BM_PHY_REG_PAGE(offset);
3536	u16 reg = BM_PHY_REG_NUM(offset);
3537	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
3538
3539	DEBUGFUNC("__e1000_read_phy_reg_hv");
3540
3541	if (!locked) {
3542		ret_val = hw->phy.ops.acquire(hw);
3543		if (ret_val)
3544			return ret_val;
3545	}
3546	/* Page 800 works differently than the rest so it has its own func */
3547	if (page == BM_WUC_PAGE) {
3548		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
3549							 TRUE, page_set);
3550		goto out;
3551	}
3552
3553	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3554		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3555							 data, TRUE);
3556		goto out;
3557	}
3558
3559	if (!page_set) {
3560		if (page == HV_INTC_FC_PAGE_START)
3561			page = 0;
3562
3563		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3564			/* Page is shifted left, PHY expects (page x 32) */
3565			ret_val = e1000_set_page_igp(hw,
3566						     (page << IGP_PAGE_SHIFT));
3567
3568			hw->phy.addr = phy_addr;
3569
3570			if (ret_val)
3571				goto out;
3572		}
3573	}
3574
3575	DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3576		  page << IGP_PAGE_SHIFT, reg);
3577
3578	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3579					  data);
3580out:
3581	if (!locked)
3582		hw->phy.ops.release(hw);
3583
3584	return ret_val;
3585}
3586
3587/**
3588 *  e1000_read_phy_reg_hv -  Read HV PHY register
3589 *  @hw: pointer to the HW structure
3590 *  @offset: register offset to be read
3591 *  @data: pointer to the read data
3592 *
3593 *  Acquires semaphore then reads the PHY register at offset and stores
3594 *  the retrieved information in data.  Release the acquired semaphore
3595 *  before exiting.
3596 **/
3597s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
3598{
3599	return __e1000_read_phy_reg_hv(hw, offset, data, FALSE, false);
3600}
3601
3602/**
3603 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
3604 *  @hw: pointer to the HW structure
3605 *  @offset: register offset to be read
3606 *  @data: pointer to the read data
3607 *
3608 *  Reads the PHY register at offset and stores the retrieved information
3609 *  in data.  Assumes semaphore already acquired.
3610 **/
3611s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
3612{
3613	return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, FALSE);
3614}
3615
3616/**
3617 *  e1000_read_phy_reg_page_hv - Read HV PHY register
3618 *  @hw: pointer to the HW structure
3619 *  @offset: register offset to write to
3620 *  @data: data to write at register offset
3621 *
3622 *  Reads the PHY register at offset and stores the retrieved information
3623 *  in data.  Assumes semaphore already acquired and page already set.
3624 **/
3625s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
3626{
3627	return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, true);
3628}
3629
3630/**
3631 *  __e1000_write_phy_reg_hv - Write HV PHY register
3632 *  @hw: pointer to the HW structure
3633 *  @offset: register offset to write to
3634 *  @data: data to write at register offset
3635 *  @locked: semaphore has already been acquired or not
3636 *
3637 *  Acquires semaphore, if necessary, then writes the data to PHY register
3638 *  at the offset.  Release any acquired semaphores before exiting.
3639 **/
3640static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
3641				    bool locked, bool page_set)
3642{
3643	s32 ret_val;
3644	u16 page = BM_PHY_REG_PAGE(offset);
3645	u16 reg = BM_PHY_REG_NUM(offset);
3646	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
3647
3648	DEBUGFUNC("__e1000_write_phy_reg_hv");
3649
3650	if (!locked) {
3651		ret_val = hw->phy.ops.acquire(hw);
3652		if (ret_val)
3653			return ret_val;
3654	}
3655	/* Page 800 works differently than the rest so it has its own func */
3656	if (page == BM_WUC_PAGE) {
3657		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3658							 FALSE, page_set);
3659		goto out;
3660	}
3661
3662	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3663		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3664							 &data, FALSE);
3665		goto out;
3666	}
3667
3668	if (!page_set) {
3669		if (page == HV_INTC_FC_PAGE_START)
3670			page = 0;
3671
3672		/* Workaround MDIO accesses being disabled after entering IEEE
3673		 * Power Down (when bit 11 of the PHY Control register is set)
3674		 */
3675		if ((hw->phy.type == e1000_phy_82578) &&
3676		    (hw->phy.revision >= 1) &&
3677		    (hw->phy.addr == 2) &&
3678		    !(MAX_PHY_REG_ADDRESS & reg) &&
3679		    (data & (1 << 11))) {
3680			u16 data2 = 0x7EFF;
3681			ret_val = e1000_access_phy_debug_regs_hv(hw,
3682								 (1 << 6) | 0x3,
3683								 &data2, FALSE);
3684			if (ret_val)
3685				goto out;
3686		}
3687
3688		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3689			/* Page is shifted left, PHY expects (page x 32) */
3690			ret_val = e1000_set_page_igp(hw,
3691						     (page << IGP_PAGE_SHIFT));
3692
3693			hw->phy.addr = phy_addr;
3694
3695			if (ret_val)
3696				goto out;
3697		}
3698	}
3699
3700	DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3701		  page << IGP_PAGE_SHIFT, reg);
3702
3703	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3704					   data);
3705
3706out:
3707	if (!locked)
3708		hw->phy.ops.release(hw);
3709
3710	return ret_val;
3711}
3712
3713/**
3714 *  e1000_write_phy_reg_hv - Write HV PHY register
3715 *  @hw: pointer to the HW structure
3716 *  @offset: register offset to write to
3717 *  @data: data to write at register offset
3718 *
3719 *  Acquires semaphore then writes the data to PHY register at the offset.
3720 *  Release the acquired semaphores before exiting.
3721 **/
3722s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3723{
3724	return __e1000_write_phy_reg_hv(hw, offset, data, FALSE, false);
3725}
3726
3727/**
3728 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3729 *  @hw: pointer to the HW structure
3730 *  @offset: register offset to write to
3731 *  @data: data to write at register offset
3732 *
3733 *  Writes the data to PHY register at the offset.  Assumes semaphore
3734 *  already acquired.
3735 **/
3736s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3737{
3738	return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, FALSE);
3739}
3740
3741/**
3742 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3743 *  @hw: pointer to the HW structure
3744 *  @offset: register offset to write to
3745 *  @data: data to write at register offset
3746 *
3747 *  Writes the data to PHY register at the offset.  Assumes semaphore
3748 *  already acquired and page already set.
3749 **/
3750s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3751{
3752	return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, true);
3753}
3754
3755/**
3756 *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
3757 *  @page: page to be accessed
3758 **/
3759static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3760{
3761	u32 phy_addr = 2;
3762
3763	if (page >= HV_INTC_FC_PAGE_START)
3764		phy_addr = 1;
3765
3766	return phy_addr;
3767}
3768
3769/**
3770 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3771 *  @hw: pointer to the HW structure
3772 *  @offset: register offset to be read or written
3773 *  @data: pointer to the data to be read or written
3774 *  @read: determines if operation is read or write
3775 *
3776 *  Reads the PHY register at offset and stores the retreived information
3777 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3778 *  to access these regs uses the address port and data port to read/write.
3779 *  These accesses done with PHY address 2 and without using pages.
3780 **/
3781static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3782					  u16 *data, bool read)
3783{
3784	s32 ret_val;
3785	u32 addr_reg;
3786	u32 data_reg;
3787
3788	DEBUGFUNC("e1000_access_phy_debug_regs_hv");
3789
3790	/* This takes care of the difference with desktop vs mobile phy */
3791	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3792		    I82578_ADDR_REG : I82577_ADDR_REG);
3793	data_reg = addr_reg + 1;
3794
3795	/* All operations in this function are phy address 2 */
3796	hw->phy.addr = 2;
3797
3798	/* masking with 0x3F to remove the page from offset */
3799	ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3800	if (ret_val) {
3801		DEBUGOUT("Could not write the Address Offset port register\n");
3802		return ret_val;
3803	}
3804
3805	/* Read or write the data value next */
3806	if (read)
3807		ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
3808	else
3809		ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
3810
3811	if (ret_val)
3812		DEBUGOUT("Could not access the Data port register\n");
3813
3814	return ret_val;
3815}
3816
3817/**
3818 *  e1000_link_stall_workaround_hv - Si workaround
3819 *  @hw: pointer to the HW structure
3820 *
3821 *  This function works around a Si bug where the link partner can get
3822 *  a link up indication before the PHY does.  If small packets are sent
3823 *  by the link partner they can be placed in the packet buffer without
3824 *  being properly accounted for by the PHY and will stall preventing
3825 *  further packets from being received.  The workaround is to clear the
3826 *  packet buffer after the PHY detects link up.
3827 **/
3828s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3829{
3830	s32 ret_val = E1000_SUCCESS;
3831	u16 data;
3832
3833	DEBUGFUNC("e1000_link_stall_workaround_hv");
3834
3835	if (hw->phy.type != e1000_phy_82578)
3836		return E1000_SUCCESS;
3837
3838	/* Do not apply workaround if in PHY loopback bit 14 set */
3839	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
3840	if (data & PHY_CONTROL_LB)
3841		return E1000_SUCCESS;
3842
3843	/* check if link is up and at 1Gbps */
3844	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
3845	if (ret_val)
3846		return ret_val;
3847
3848	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3849		 BM_CS_STATUS_SPEED_MASK);
3850
3851	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3852		     BM_CS_STATUS_SPEED_1000))
3853		return E1000_SUCCESS;
3854
3855	msec_delay(200);
3856
3857	/* flush the packets in the fifo buffer */
3858	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3859					(HV_MUX_DATA_CTRL_GEN_TO_MAC |
3860					 HV_MUX_DATA_CTRL_FORCE_SPEED));
3861	if (ret_val)
3862		return ret_val;
3863
3864	return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
3865				     HV_MUX_DATA_CTRL_GEN_TO_MAC);
3866}
3867
3868/**
3869 *  e1000_check_polarity_82577 - Checks the polarity.
3870 *  @hw: pointer to the HW structure
3871 *
3872 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3873 *
3874 *  Polarity is determined based on the PHY specific status register.
3875 **/
3876s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3877{
3878	struct e1000_phy_info *phy = &hw->phy;
3879	s32 ret_val;
3880	u16 data;
3881
3882	DEBUGFUNC("e1000_check_polarity_82577");
3883
3884	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3885
3886	if (!ret_val)
3887		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3888				       ? e1000_rev_polarity_reversed
3889				       : e1000_rev_polarity_normal);
3890
3891	return ret_val;
3892}
3893
3894/**
3895 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3896 *  @hw: pointer to the HW structure
3897 *
3898 *  Calls the PHY setup function to force speed and duplex.
3899 **/
3900s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3901{
3902	struct e1000_phy_info *phy = &hw->phy;
3903	s32 ret_val;
3904	u16 phy_data;
3905	bool link;
3906
3907	DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
3908
3909	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
3910	if (ret_val)
3911		return ret_val;
3912
3913	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
3914
3915	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
3916	if (ret_val)
3917		return ret_val;
3918
3919	usec_delay(1);
3920
3921	if (phy->autoneg_wait_to_complete) {
3922		DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
3923
3924		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3925						     100000, &link);
3926		if (ret_val)
3927			return ret_val;
3928
3929		if (!link)
3930			DEBUGOUT("Link taking longer than expected.\n");
3931
3932		/* Try once more */
3933		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3934						     100000, &link);
3935	}
3936
3937	return ret_val;
3938}
3939
3940/**
3941 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3942 *  @hw: pointer to the HW structure
3943 *
3944 *  Read PHY status to determine if link is up.  If link is up, then
3945 *  set/determine 10base-T extended distance and polarity correction.  Read
3946 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3947 *  determine on the cable length, local and remote receiver.
3948 **/
3949s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3950{
3951	struct e1000_phy_info *phy = &hw->phy;
3952	s32 ret_val;
3953	u16 data;
3954	bool link;
3955
3956	DEBUGFUNC("e1000_get_phy_info_82577");
3957
3958	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
3959	if (ret_val)
3960		return ret_val;
3961
3962	if (!link) {
3963		DEBUGOUT("Phy info is only valid if link is up\n");
3964		return -E1000_ERR_CONFIG;
3965	}
3966
3967	phy->polarity_correction = TRUE;
3968
3969	ret_val = e1000_check_polarity_82577(hw);
3970	if (ret_val)
3971		return ret_val;
3972
3973	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3974	if (ret_val)
3975		return ret_val;
3976
3977	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3978
3979	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3980	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3981		ret_val = hw->phy.ops.get_cable_length(hw);
3982		if (ret_val)
3983			return ret_val;
3984
3985		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
3986		if (ret_val)
3987			return ret_val;
3988
3989		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3990				? e1000_1000t_rx_status_ok
3991				: e1000_1000t_rx_status_not_ok;
3992
3993		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3994				 ? e1000_1000t_rx_status_ok
3995				 : e1000_1000t_rx_status_not_ok;
3996	} else {
3997		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3998		phy->local_rx = e1000_1000t_rx_status_undefined;
3999		phy->remote_rx = e1000_1000t_rx_status_undefined;
4000	}
4001
4002	return E1000_SUCCESS;
4003}
4004
4005/**
4006 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
4007 *  @hw: pointer to the HW structure
4008 *
4009 * Reads the diagnostic status register and verifies result is valid before
4010 * placing it in the phy_cable_length field.
4011 **/
4012s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
4013{
4014	struct e1000_phy_info *phy = &hw->phy;
4015	s32 ret_val;
4016	u16 phy_data, length;
4017
4018	DEBUGFUNC("e1000_get_cable_length_82577");
4019
4020	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
4021	if (ret_val)
4022		return ret_val;
4023
4024	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
4025		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
4026
4027	if (length == E1000_CABLE_LENGTH_UNDEFINED)
4028		return -E1000_ERR_PHY;
4029
4030	phy->cable_length = length;
4031
4032	return E1000_SUCCESS;
4033}
4034
4035/**
4036 *  e1000_write_phy_reg_gs40g - Write GS40G  PHY register
4037 *  @hw: pointer to the HW structure
4038 *  @offset: register offset to write to
4039 *  @data: data to write at register offset
4040 *
4041 *  Acquires semaphore, if necessary, then writes the data to PHY register
4042 *  at the offset.  Release any acquired semaphores before exiting.
4043 **/
4044s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
4045{
4046	s32 ret_val;
4047	u16 page = offset >> GS40G_PAGE_SHIFT;
4048
4049	DEBUGFUNC("e1000_write_phy_reg_gs40g");
4050
4051	offset = offset & GS40G_OFFSET_MASK;
4052	ret_val = hw->phy.ops.acquire(hw);
4053	if (ret_val)
4054		return ret_val;
4055
4056	ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
4057	if (ret_val)
4058		goto release;
4059	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
4060
4061release:
4062	hw->phy.ops.release(hw);
4063	return ret_val;
4064}
4065
4066/**
4067 *  e1000_read_phy_reg_gs40g - Read GS40G  PHY register
4068 *  @hw: pointer to the HW structure
4069 *  @offset: lower half is register offset to read to
4070 *     upper half is page to use.
4071 *  @data: data to read at register offset
4072 *
4073 *  Acquires semaphore, if necessary, then reads the data in the PHY register
4074 *  at the offset.  Release any acquired semaphores before exiting.
4075 **/
4076s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
4077{
4078	s32 ret_val;
4079	u16 page = offset >> GS40G_PAGE_SHIFT;
4080
4081	DEBUGFUNC("e1000_read_phy_reg_gs40g");
4082
4083	offset = offset & GS40G_OFFSET_MASK;
4084	ret_val = hw->phy.ops.acquire(hw);
4085	if (ret_val)
4086		return ret_val;
4087
4088	ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
4089	if (ret_val)
4090		goto release;
4091	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
4092
4093release:
4094	hw->phy.ops.release(hw);
4095	return ret_val;
4096}
4097
4098/**
4099 *  e1000_read_phy_reg_mphy - Read mPHY control register
4100 *  @hw: pointer to the HW structure
4101 *  @address: address to be read
4102 *  @data: pointer to the read data
4103 *
4104 *  Reads the mPHY control register in the PHY at offset and stores the
4105 *  information read to data.
4106 **/
4107s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data)
4108{
4109	u32 mphy_ctrl = 0;
4110	bool locked = FALSE;
4111	bool ready;
4112
4113	DEBUGFUNC("e1000_read_phy_reg_mphy");
4114
4115	/* Check if mPHY is ready to read/write operations */
4116	ready = e1000_is_mphy_ready(hw);
4117	if (!ready)
4118		return -E1000_ERR_PHY;
4119
4120	/* Check if mPHY access is disabled and enable it if so */
4121	mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
4122	if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
4123		locked = TRUE;
4124		ready = e1000_is_mphy_ready(hw);
4125		if (!ready)
4126			return -E1000_ERR_PHY;
4127		mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
4128		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
4129	}
4130
4131	/* Set the address that we want to read */
4132	ready = e1000_is_mphy_ready(hw);
4133	if (!ready)
4134		return -E1000_ERR_PHY;
4135
4136	/* We mask address, because we want to use only current lane */
4137	mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK &
4138		~E1000_MPHY_ADDRESS_FNC_OVERRIDE) |
4139		(address & E1000_MPHY_ADDRESS_MASK);
4140	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
4141
4142	/* Read data from the address */
4143	ready = e1000_is_mphy_ready(hw);
4144	if (!ready)
4145		return -E1000_ERR_PHY;
4146	*data = E1000_READ_REG(hw, E1000_MPHY_DATA);
4147
4148	/* Disable access to mPHY if it was originally disabled */
4149	if (locked)
4150		ready = e1000_is_mphy_ready(hw);
4151	if (!ready)
4152		return -E1000_ERR_PHY;
4153	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
4154			E1000_MPHY_DIS_ACCESS);
4155
4156	return E1000_SUCCESS;
4157}
4158
4159/**
4160 *  e1000_write_phy_reg_mphy - Write mPHY control register
4161 *  @hw: pointer to the HW structure
4162 *  @address: address to write to
4163 *  @data: data to write to register at offset
4164 *  @line_override: used when we want to use different line than default one
4165 *
4166 *  Writes data to mPHY control register.
4167 **/
4168s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
4169			     bool line_override)
4170{
4171	u32 mphy_ctrl = 0;
4172	bool locked = FALSE;
4173	bool ready;
4174
4175	DEBUGFUNC("e1000_write_phy_reg_mphy");
4176
4177	/* Check if mPHY is ready to read/write operations */
4178	ready = e1000_is_mphy_ready(hw);
4179	if (!ready)
4180		return -E1000_ERR_PHY;
4181
4182	/* Check if mPHY access is disabled and enable it if so */
4183	mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
4184	if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
4185		locked = TRUE;
4186		ready = e1000_is_mphy_ready(hw);
4187		if (!ready)
4188			return -E1000_ERR_PHY;
4189		mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
4190		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
4191	}
4192
4193	/* Set the address that we want to read */
4194	ready = e1000_is_mphy_ready(hw);
4195	if (!ready)
4196		return -E1000_ERR_PHY;
4197
4198	/* We mask address, because we want to use only current lane */
4199	if (line_override)
4200		mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE;
4201	else
4202		mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE;
4203	mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) |
4204		(address & E1000_MPHY_ADDRESS_MASK);
4205	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
4206
4207	/* Read data from the address */
4208	ready = e1000_is_mphy_ready(hw);
4209	if (!ready)
4210		return -E1000_ERR_PHY;
4211	E1000_WRITE_REG(hw, E1000_MPHY_DATA, data);
4212
4213	/* Disable access to mPHY if it was originally disabled */
4214	if (locked)
4215		ready = e1000_is_mphy_ready(hw);
4216	if (!ready)
4217		return -E1000_ERR_PHY;
4218	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
4219			E1000_MPHY_DIS_ACCESS);
4220
4221	return E1000_SUCCESS;
4222}
4223
4224/**
4225 *  e1000_is_mphy_ready - Check if mPHY control register is not busy
4226 *  @hw: pointer to the HW structure
4227 *
4228 *  Returns mPHY control register status.
4229 **/
4230bool e1000_is_mphy_ready(struct e1000_hw *hw)
4231{
4232	u16 retry_count = 0;
4233	u32 mphy_ctrl = 0;
4234	bool ready = FALSE;
4235
4236	while (retry_count < 2) {
4237		mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
4238		if (mphy_ctrl & E1000_MPHY_BUSY) {
4239			usec_delay(20);
4240			retry_count++;
4241			continue;
4242		}
4243		ready = TRUE;
4244		break;
4245	}
4246
4247	if (!ready)
4248		DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
4249
4250	return ready;
4251}
4252