1/******************************************************************************
2
3  Copyright (c) 2001-2015, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: releng/11.0/sys/dev/e1000/e1000_ich8lan.c 304493 2016-08-19 19:02:18Z sbruno $*/
34
35/* 82562G 10/100 Network Connection
36 * 82562G-2 10/100 Network Connection
37 * 82562GT 10/100 Network Connection
38 * 82562GT-2 10/100 Network Connection
39 * 82562V 10/100 Network Connection
40 * 82562V-2 10/100 Network Connection
41 * 82566DC-2 Gigabit Network Connection
42 * 82566DC Gigabit Network Connection
43 * 82566DM-2 Gigabit Network Connection
44 * 82566DM Gigabit Network Connection
45 * 82566MC Gigabit Network Connection
46 * 82566MM Gigabit Network Connection
47 * 82567LM Gigabit Network Connection
48 * 82567LF Gigabit Network Connection
49 * 82567V Gigabit Network Connection
50 * 82567LM-2 Gigabit Network Connection
51 * 82567LF-2 Gigabit Network Connection
52 * 82567V-2 Gigabit Network Connection
53 * 82567LF-3 Gigabit Network Connection
54 * 82567LM-3 Gigabit Network Connection
55 * 82567LM-4 Gigabit Network Connection
56 * 82577LM Gigabit Network Connection
57 * 82577LC Gigabit Network Connection
58 * 82578DM Gigabit Network Connection
59 * 82578DC Gigabit Network Connection
60 * 82579LM Gigabit Network Connection
61 * 82579V Gigabit Network Connection
62 * Ethernet Connection I217-LM
63 * Ethernet Connection I217-V
64 * Ethernet Connection I218-V
65 * Ethernet Connection I218-LM
66 * Ethernet Connection (2) I218-LM
67 * Ethernet Connection (2) I218-V
68 * Ethernet Connection (3) I218-LM
69 * Ethernet Connection (3) I218-V
70 */
71
72#include "e1000_api.h"
73
74static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84					      u8 *mc_addr_list,
85					      u32 mc_addr_count);
86static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90					    bool active);
91static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92					    bool active);
93static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94				   u16 words, u16 *data);
95static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
96			       u16 *data);
97static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
98				    u16 words, u16 *data);
99static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
100static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
101static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
102static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
103					    u16 *data);
104static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
105static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
106static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
107static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
108static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
109static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
110static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
111static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
112					   u16 *speed, u16 *duplex);
113static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
114static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
115static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
116static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
117static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
118static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
119static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
120static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
121static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
122static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
123static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
124static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
125static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
126					  u32 offset, u8 *data);
127static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
128					  u8 size, u16 *data);
129static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
130					    u32 *data);
131static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
132					   u32 offset, u32 *data);
133static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
134					     u32 offset, u32 data);
135static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
136						  u32 offset, u32 dword);
137static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
138					  u32 offset, u16 *data);
139static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
140						 u32 offset, u8 byte);
141static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
142static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
143static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
144static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
145static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
146static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
147static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
148
149/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
150/* Offset 04h HSFSTS */
151union ich8_hws_flash_status {
152	struct ich8_hsfsts {
153		u16 flcdone:1; /* bit 0 Flash Cycle Done */
154		u16 flcerr:1; /* bit 1 Flash Cycle Error */
155		u16 dael:1; /* bit 2 Direct Access error Log */
156		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
157		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
158		u16 reserved1:2; /* bit 13:6 Reserved */
159		u16 reserved2:6; /* bit 13:6 Reserved */
160		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
161		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
162	} hsf_status;
163	u16 regval;
164};
165
166/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
167/* Offset 06h FLCTL */
168union ich8_hws_flash_ctrl {
169	struct ich8_hsflctl {
170		u16 flcgo:1;   /* 0 Flash Cycle Go */
171		u16 flcycle:2;   /* 2:1 Flash Cycle */
172		u16 reserved:5;   /* 7:3 Reserved  */
173		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
174		u16 flockdn:6;   /* 15:10 Reserved */
175	} hsf_ctrl;
176	u16 regval;
177};
178
179/* ICH Flash Region Access Permissions */
180union ich8_hws_flash_regacc {
181	struct ich8_flracc {
182		u32 grra:8; /* 0:7 GbE region Read Access */
183		u32 grwa:8; /* 8:15 GbE region Write Access */
184		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
185		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
186	} hsf_flregacc;
187	u16 regval;
188};
189
190/**
191 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
192 *  @hw: pointer to the HW structure
193 *
194 *  Test access to the PHY registers by reading the PHY ID registers.  If
195 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
196 *  otherwise assume the read PHY ID is correct if it is valid.
197 *
198 *  Assumes the sw/fw/hw semaphore is already acquired.
199 **/
200static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
201{
202	u16 phy_reg = 0;
203	u32 phy_id = 0;
204	s32 ret_val = 0;
205	u16 retry_count;
206	u32 mac_reg = 0;
207
208	for (retry_count = 0; retry_count < 2; retry_count++) {
209		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
210		if (ret_val || (phy_reg == 0xFFFF))
211			continue;
212		phy_id = (u32)(phy_reg << 16);
213
214		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
215		if (ret_val || (phy_reg == 0xFFFF)) {
216			phy_id = 0;
217			continue;
218		}
219		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
220		break;
221	}
222
223	if (hw->phy.id) {
224		if  (hw->phy.id == phy_id)
225			goto out;
226	} else if (phy_id) {
227		hw->phy.id = phy_id;
228		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
229		goto out;
230	}
231
232	/* In case the PHY needs to be in mdio slow mode,
233	 * set slow mode and try to get the PHY id again.
234	 */
235	if (hw->mac.type < e1000_pch_lpt) {
236		hw->phy.ops.release(hw);
237		ret_val = e1000_set_mdio_slow_mode_hv(hw);
238		if (!ret_val)
239			ret_val = e1000_get_phy_id(hw);
240		hw->phy.ops.acquire(hw);
241	}
242
243	if (ret_val)
244		return FALSE;
245out:
246	if ((hw->mac.type == e1000_pch_lpt) ||
247	    (hw->mac.type == e1000_pch_spt)) {
248		/* Only unforce SMBus if ME is not active */
249		if (!(E1000_READ_REG(hw, E1000_FWSM) &
250		    E1000_ICH_FWSM_FW_VALID)) {
251			/* Unforce SMBus mode in PHY */
252			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255
256			/* Unforce SMBus mode in MAC */
257			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260		}
261	}
262
263	return TRUE;
264}
265
266/**
267 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268 *  @hw: pointer to the HW structure
269 *
270 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271 *  used to reset the PHY to a quiescent state when necessary.
272 **/
273static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274{
275	u32 mac_reg;
276
277	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278
279	/* Set Phy Config Counter to 50msec */
280	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284
285	/* Toggle LANPHYPC Value bit */
286	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290	E1000_WRITE_FLUSH(hw);
291	msec_delay(1);
292	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294	E1000_WRITE_FLUSH(hw);
295
296	if (hw->mac.type < e1000_pch_lpt) {
297		msec_delay(50);
298	} else {
299		u16 count = 20;
300
301		do {
302			msec_delay(5);
303		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304			   E1000_CTRL_EXT_LPCD) && count--);
305
306		msec_delay(30);
307	}
308}
309
310/**
311 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312 *  @hw: pointer to the HW structure
313 *
314 *  Workarounds/flow necessary for PHY initialization during driver load
315 *  and resume paths.
316 **/
317static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318{
319	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320	s32 ret_val;
321
322	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323
324	/* Gate automatic PHY configuration by hardware on managed and
325	 * non-managed 82579 and newer adapters.
326	 */
327	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
328
329	/* It is not possible to be certain of the current state of ULP
330	 * so forcibly disable it.
331	 */
332	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333	e1000_disable_ulp_lpt_lp(hw, TRUE);
334
335	ret_val = hw->phy.ops.acquire(hw);
336	if (ret_val) {
337		DEBUGOUT("Failed to initialize PHY flow\n");
338		goto out;
339	}
340
341	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
342	 * inaccessible and resetting the PHY is not blocked, toggle the
343	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
344	 */
345	switch (hw->mac.type) {
346	case e1000_pch_lpt:
347	case e1000_pch_spt:
348		if (e1000_phy_is_accessible_pchlan(hw))
349			break;
350
351		/* Before toggling LANPHYPC, see if PHY is accessible by
352		 * forcing MAC to SMBus mode first.
353		 */
354		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
355		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
356		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
357
358		/* Wait 50 milliseconds for MAC to finish any retries
359		 * that it might be trying to perform from previous
360		 * attempts to acknowledge any phy read requests.
361		 */
362		 msec_delay(50);
363
364		/* fall-through */
365	case e1000_pch2lan:
366		if (e1000_phy_is_accessible_pchlan(hw))
367			break;
368
369		/* fall-through */
370	case e1000_pchlan:
371		if ((hw->mac.type == e1000_pchlan) &&
372		    (fwsm & E1000_ICH_FWSM_FW_VALID))
373			break;
374
375		if (hw->phy.ops.check_reset_block(hw)) {
376			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
377			ret_val = -E1000_ERR_PHY;
378			break;
379		}
380
381		/* Toggle LANPHYPC Value bit */
382		e1000_toggle_lanphypc_pch_lpt(hw);
383		if (hw->mac.type >= e1000_pch_lpt) {
384			if (e1000_phy_is_accessible_pchlan(hw))
385				break;
386
387			/* Toggling LANPHYPC brings the PHY out of SMBus mode
388			 * so ensure that the MAC is also out of SMBus mode
389			 */
390			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
391			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
392			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
393
394			if (e1000_phy_is_accessible_pchlan(hw))
395				break;
396
397			ret_val = -E1000_ERR_PHY;
398		}
399		break;
400	default:
401		break;
402	}
403
404	hw->phy.ops.release(hw);
405	if (!ret_val) {
406
407		/* Check to see if able to reset PHY.  Print error if not */
408		if (hw->phy.ops.check_reset_block(hw)) {
409			ERROR_REPORT("Reset blocked by ME\n");
410			goto out;
411		}
412
413		/* Reset the PHY before any access to it.  Doing so, ensures
414		 * that the PHY is in a known good state before we read/write
415		 * PHY registers.  The generic reset is sufficient here,
416		 * because we haven't determined the PHY type yet.
417		 */
418		ret_val = e1000_phy_hw_reset_generic(hw);
419		if (ret_val)
420			goto out;
421
422		/* On a successful reset, possibly need to wait for the PHY
423		 * to quiesce to an accessible state before returning control
424		 * to the calling function.  If the PHY does not quiesce, then
425		 * return E1000E_BLK_PHY_RESET, as this is the condition that
426		 *  the PHY is in.
427		 */
428		ret_val = hw->phy.ops.check_reset_block(hw);
429		if (ret_val)
430			ERROR_REPORT("ME blocked access to PHY after reset\n");
431	}
432
433out:
434	/* Ungate automatic PHY configuration on non-managed 82579 */
435	if ((hw->mac.type == e1000_pch2lan) &&
436	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
437		msec_delay(10);
438		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
439	}
440
441	return ret_val;
442}
443
444/**
445 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
446 *  @hw: pointer to the HW structure
447 *
448 *  Initialize family-specific PHY parameters and function pointers.
449 **/
450static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
451{
452	struct e1000_phy_info *phy = &hw->phy;
453	s32 ret_val;
454
455	DEBUGFUNC("e1000_init_phy_params_pchlan");
456
457	phy->addr		= 1;
458	phy->reset_delay_us	= 100;
459
460	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
461	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
462	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
463	phy->ops.set_page	= e1000_set_page_igp;
464	phy->ops.read_reg	= e1000_read_phy_reg_hv;
465	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
466	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
467	phy->ops.release	= e1000_release_swflag_ich8lan;
468	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
469	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
470	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
471	phy->ops.write_reg	= e1000_write_phy_reg_hv;
472	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
473	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
474	phy->ops.power_up	= e1000_power_up_phy_copper;
475	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
476	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
477
478	phy->id = e1000_phy_unknown;
479
480	ret_val = e1000_init_phy_workarounds_pchlan(hw);
481	if (ret_val)
482		return ret_val;
483
484	if (phy->id == e1000_phy_unknown)
485		switch (hw->mac.type) {
486		default:
487			ret_val = e1000_get_phy_id(hw);
488			if (ret_val)
489				return ret_val;
490			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
491				break;
492			/* fall-through */
493		case e1000_pch2lan:
494		case e1000_pch_lpt:
495		case e1000_pch_spt:
496			/* In case the PHY needs to be in mdio slow mode,
497			 * set slow mode and try to get the PHY id again.
498			 */
499			ret_val = e1000_set_mdio_slow_mode_hv(hw);
500			if (ret_val)
501				return ret_val;
502			ret_val = e1000_get_phy_id(hw);
503			if (ret_val)
504				return ret_val;
505			break;
506		}
507	phy->type = e1000_get_phy_type_from_id(phy->id);
508
509	switch (phy->type) {
510	case e1000_phy_82577:
511	case e1000_phy_82579:
512	case e1000_phy_i217:
513		phy->ops.check_polarity = e1000_check_polarity_82577;
514		phy->ops.force_speed_duplex =
515			e1000_phy_force_speed_duplex_82577;
516		phy->ops.get_cable_length = e1000_get_cable_length_82577;
517		phy->ops.get_info = e1000_get_phy_info_82577;
518		phy->ops.commit = e1000_phy_sw_reset_generic;
519		break;
520	case e1000_phy_82578:
521		phy->ops.check_polarity = e1000_check_polarity_m88;
522		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
523		phy->ops.get_cable_length = e1000_get_cable_length_m88;
524		phy->ops.get_info = e1000_get_phy_info_m88;
525		break;
526	default:
527		ret_val = -E1000_ERR_PHY;
528		break;
529	}
530
531	return ret_val;
532}
533
534/**
535 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
536 *  @hw: pointer to the HW structure
537 *
538 *  Initialize family-specific PHY parameters and function pointers.
539 **/
540static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
541{
542	struct e1000_phy_info *phy = &hw->phy;
543	s32 ret_val;
544	u16 i = 0;
545
546	DEBUGFUNC("e1000_init_phy_params_ich8lan");
547
548	phy->addr		= 1;
549	phy->reset_delay_us	= 100;
550
551	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
552	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
553	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
554	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
555	phy->ops.read_reg	= e1000_read_phy_reg_igp;
556	phy->ops.release	= e1000_release_swflag_ich8lan;
557	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
558	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
559	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
560	phy->ops.write_reg	= e1000_write_phy_reg_igp;
561	phy->ops.power_up	= e1000_power_up_phy_copper;
562	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
563
564	/* We may need to do this twice - once for IGP and if that fails,
565	 * we'll set BM func pointers and try again
566	 */
567	ret_val = e1000_determine_phy_address(hw);
568	if (ret_val) {
569		phy->ops.write_reg = e1000_write_phy_reg_bm;
570		phy->ops.read_reg  = e1000_read_phy_reg_bm;
571		ret_val = e1000_determine_phy_address(hw);
572		if (ret_val) {
573			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
574			return ret_val;
575		}
576	}
577
578	phy->id = 0;
579	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
580	       (i++ < 100)) {
581		msec_delay(1);
582		ret_val = e1000_get_phy_id(hw);
583		if (ret_val)
584			return ret_val;
585	}
586
587	/* Verify phy id */
588	switch (phy->id) {
589	case IGP03E1000_E_PHY_ID:
590		phy->type = e1000_phy_igp_3;
591		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
593		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
594		phy->ops.get_info = e1000_get_phy_info_igp;
595		phy->ops.check_polarity = e1000_check_polarity_igp;
596		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
597		break;
598	case IFE_E_PHY_ID:
599	case IFE_PLUS_E_PHY_ID:
600	case IFE_C_E_PHY_ID:
601		phy->type = e1000_phy_ife;
602		phy->autoneg_mask = E1000_ALL_NOT_GIG;
603		phy->ops.get_info = e1000_get_phy_info_ife;
604		phy->ops.check_polarity = e1000_check_polarity_ife;
605		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
606		break;
607	case BME1000_E_PHY_ID:
608		phy->type = e1000_phy_bm;
609		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
610		phy->ops.read_reg = e1000_read_phy_reg_bm;
611		phy->ops.write_reg = e1000_write_phy_reg_bm;
612		phy->ops.commit = e1000_phy_sw_reset_generic;
613		phy->ops.get_info = e1000_get_phy_info_m88;
614		phy->ops.check_polarity = e1000_check_polarity_m88;
615		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
616		break;
617	default:
618		return -E1000_ERR_PHY;
619		break;
620	}
621
622	return E1000_SUCCESS;
623}
624
625/**
626 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
627 *  @hw: pointer to the HW structure
628 *
629 *  Initialize family-specific NVM parameters and function
630 *  pointers.
631 **/
632static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
633{
634	struct e1000_nvm_info *nvm = &hw->nvm;
635	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
636	u32 gfpreg, sector_base_addr, sector_end_addr;
637	u16 i;
638	u32 nvm_size;
639
640	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
641
642	nvm->type = e1000_nvm_flash_sw;
643
644	if (hw->mac.type == e1000_pch_spt) {
645		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
646		 * STRAP register. This is because in SPT the GbE Flash region
647		 * is no longer accessed through the flash registers. Instead,
648		 * the mechanism has changed, and the Flash region access
649		 * registers are now implemented in GbE memory space.
650		 */
651		nvm->flash_base_addr = 0;
652		nvm_size =
653		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
654		    * NVM_SIZE_MULTIPLIER;
655		nvm->flash_bank_size = nvm_size / 2;
656		/* Adjust to word count */
657		nvm->flash_bank_size /= sizeof(u16);
658		/* Set the base address for flash register access */
659		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
660	} else {
661		/* Can't read flash registers if register set isn't mapped. */
662		if (!hw->flash_address) {
663			DEBUGOUT("ERROR: Flash registers not mapped\n");
664			return -E1000_ERR_CONFIG;
665		}
666
667		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
668
669		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
670		 * Add 1 to sector_end_addr since this sector is included in
671		 * the overall size.
672		 */
673		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
674		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
675
676		/* flash_base_addr is byte-aligned */
677		nvm->flash_base_addr = sector_base_addr
678				       << FLASH_SECTOR_ADDR_SHIFT;
679
680		/* find total size of the NVM, then cut in half since the total
681		 * size represents two separate NVM banks.
682		 */
683		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
684					<< FLASH_SECTOR_ADDR_SHIFT);
685		nvm->flash_bank_size /= 2;
686		/* Adjust to word count */
687		nvm->flash_bank_size /= sizeof(u16);
688	}
689
690	nvm->word_size = E1000_SHADOW_RAM_WORDS;
691
692	/* Clear shadow ram */
693	for (i = 0; i < nvm->word_size; i++) {
694		dev_spec->shadow_ram[i].modified = FALSE;
695		dev_spec->shadow_ram[i].value    = 0xFFFF;
696	}
697
698	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
699	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
700
701	/* Function Pointers */
702	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
703	nvm->ops.release	= e1000_release_nvm_ich8lan;
704	if (hw->mac.type == e1000_pch_spt) {
705		nvm->ops.read	= e1000_read_nvm_spt;
706		nvm->ops.update	= e1000_update_nvm_checksum_spt;
707	} else {
708		nvm->ops.read	= e1000_read_nvm_ich8lan;
709		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
710	}
711	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
712	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
713	nvm->ops.write		= e1000_write_nvm_ich8lan;
714
715	return E1000_SUCCESS;
716}
717
718/**
719 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
720 *  @hw: pointer to the HW structure
721 *
722 *  Initialize family-specific MAC parameters and function
723 *  pointers.
724 **/
725static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
726{
727	struct e1000_mac_info *mac = &hw->mac;
728
729	DEBUGFUNC("e1000_init_mac_params_ich8lan");
730
731	/* Set media type function pointer */
732	hw->phy.media_type = e1000_media_type_copper;
733
734	/* Set mta register count */
735	mac->mta_reg_count = 32;
736	/* Set rar entry count */
737	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
738	if (mac->type == e1000_ich8lan)
739		mac->rar_entry_count--;
740	/* Set if part includes ASF firmware */
741	mac->asf_firmware_present = TRUE;
742	/* FWSM register */
743	mac->has_fwsm = TRUE;
744	/* ARC subsystem not supported */
745	mac->arc_subsystem_valid = FALSE;
746	/* Adaptive IFS supported */
747	mac->adaptive_ifs = TRUE;
748
749	/* Function pointers */
750
751	/* bus type/speed/width */
752	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
753	/* function id */
754	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
755	/* reset */
756	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
757	/* hw initialization */
758	mac->ops.init_hw = e1000_init_hw_ich8lan;
759	/* link setup */
760	mac->ops.setup_link = e1000_setup_link_ich8lan;
761	/* physical interface setup */
762	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
763	/* check for link */
764	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
765	/* link info */
766	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
767	/* multicast address update */
768	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
769	/* clear hardware counters */
770	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
771
772	/* LED and other operations */
773	switch (mac->type) {
774	case e1000_ich8lan:
775	case e1000_ich9lan:
776	case e1000_ich10lan:
777		/* check management mode */
778		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
779		/* ID LED init */
780		mac->ops.id_led_init = e1000_id_led_init_generic;
781		/* blink LED */
782		mac->ops.blink_led = e1000_blink_led_generic;
783		/* setup LED */
784		mac->ops.setup_led = e1000_setup_led_generic;
785		/* cleanup LED */
786		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
787		/* turn on/off LED */
788		mac->ops.led_on = e1000_led_on_ich8lan;
789		mac->ops.led_off = e1000_led_off_ich8lan;
790		break;
791	case e1000_pch2lan:
792		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
793		mac->ops.rar_set = e1000_rar_set_pch2lan;
794		/* fall-through */
795	case e1000_pch_lpt:
796	case e1000_pch_spt:
797		/* multicast address update for pch2 */
798		mac->ops.update_mc_addr_list =
799			e1000_update_mc_addr_list_pch2lan;
800		/* fall-through */
801	case e1000_pchlan:
802		/* check management mode */
803		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
804		/* ID LED init */
805		mac->ops.id_led_init = e1000_id_led_init_pchlan;
806		/* setup LED */
807		mac->ops.setup_led = e1000_setup_led_pchlan;
808		/* cleanup LED */
809		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
810		/* turn on/off LED */
811		mac->ops.led_on = e1000_led_on_pchlan;
812		mac->ops.led_off = e1000_led_off_pchlan;
813		break;
814	default:
815		break;
816	}
817
818	if ((mac->type == e1000_pch_lpt) ||
819	    (mac->type == e1000_pch_spt)) {
820		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
821		mac->ops.rar_set = e1000_rar_set_pch_lpt;
822		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
823		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
824	}
825
826	/* Enable PCS Lock-loss workaround for ICH8 */
827	if (mac->type == e1000_ich8lan)
828		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
829
830	return E1000_SUCCESS;
831}
832
833/**
834 *  __e1000_access_emi_reg_locked - Read/write EMI register
835 *  @hw: pointer to the HW structure
836 *  @addr: EMI address to program
837 *  @data: pointer to value to read/write from/to the EMI address
838 *  @read: boolean flag to indicate read or write
839 *
840 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
841 **/
842static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
843					 u16 *data, bool read)
844{
845	s32 ret_val;
846
847	DEBUGFUNC("__e1000_access_emi_reg_locked");
848
849	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
850	if (ret_val)
851		return ret_val;
852
853	if (read)
854		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
855						      data);
856	else
857		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
858						       *data);
859
860	return ret_val;
861}
862
863/**
864 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
865 *  @hw: pointer to the HW structure
866 *  @addr: EMI address to program
867 *  @data: value to be read from the EMI address
868 *
869 *  Assumes the SW/FW/HW Semaphore is already acquired.
870 **/
871s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
872{
873	DEBUGFUNC("e1000_read_emi_reg_locked");
874
875	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
876}
877
878/**
879 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
880 *  @hw: pointer to the HW structure
881 *  @addr: EMI address to program
882 *  @data: value to be written to the EMI address
883 *
884 *  Assumes the SW/FW/HW Semaphore is already acquired.
885 **/
886s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
887{
888	DEBUGFUNC("e1000_read_emi_reg_locked");
889
890	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
891}
892
893/**
894 *  e1000_set_eee_pchlan - Enable/disable EEE support
895 *  @hw: pointer to the HW structure
896 *
897 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
898 *  the link and the EEE capabilities of the link partner.  The LPI Control
899 *  register bits will remain set only if/when link is up.
900 *
901 *  EEE LPI must not be asserted earlier than one second after link is up.
902 *  On 82579, EEE LPI should not be enabled until such time otherwise there
903 *  can be link issues with some switches.  Other devices can have EEE LPI
904 *  enabled immediately upon link up since they have a timer in hardware which
905 *  prevents LPI from being asserted too early.
906 **/
907s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
908{
909	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
910	s32 ret_val;
911	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
912
913	DEBUGFUNC("e1000_set_eee_pchlan");
914
915	switch (hw->phy.type) {
916	case e1000_phy_82579:
917		lpa = I82579_EEE_LP_ABILITY;
918		pcs_status = I82579_EEE_PCS_STATUS;
919		adv_addr = I82579_EEE_ADVERTISEMENT;
920		break;
921	case e1000_phy_i217:
922		lpa = I217_EEE_LP_ABILITY;
923		pcs_status = I217_EEE_PCS_STATUS;
924		adv_addr = I217_EEE_ADVERTISEMENT;
925		break;
926	default:
927		return E1000_SUCCESS;
928	}
929
930	ret_val = hw->phy.ops.acquire(hw);
931	if (ret_val)
932		return ret_val;
933
934	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
935	if (ret_val)
936		goto release;
937
938	/* Clear bits that enable EEE in various speeds */
939	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
940
941	/* Enable EEE if not disabled by user */
942	if (!dev_spec->eee_disable) {
943		/* Save off link partner's EEE ability */
944		ret_val = e1000_read_emi_reg_locked(hw, lpa,
945						    &dev_spec->eee_lp_ability);
946		if (ret_val)
947			goto release;
948
949		/* Read EEE advertisement */
950		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
951		if (ret_val)
952			goto release;
953
954		/* Enable EEE only for speeds in which the link partner is
955		 * EEE capable and for which we advertise EEE.
956		 */
957		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
958			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
959
960		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
961			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
962			if (data & NWAY_LPAR_100TX_FD_CAPS)
963				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
964			else
965				/* EEE is not supported in 100Half, so ignore
966				 * partner's EEE in 100 ability if full-duplex
967				 * is not advertised.
968				 */
969				dev_spec->eee_lp_ability &=
970				    ~I82579_EEE_100_SUPPORTED;
971		}
972	}
973
974	if (hw->phy.type == e1000_phy_82579) {
975		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
976						    &data);
977		if (ret_val)
978			goto release;
979
980		data &= ~I82579_LPI_100_PLL_SHUT;
981		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
982						     data);
983	}
984
985	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
986	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
987	if (ret_val)
988		goto release;
989
990	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
991release:
992	hw->phy.ops.release(hw);
993
994	return ret_val;
995}
996
997/**
998 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
999 *  @hw:   pointer to the HW structure
1000 *  @link: link up bool flag
1001 *
1002 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1003 *  preventing further DMA write requests.  Workaround the issue by disabling
1004 *  the de-assertion of the clock request when in 1Gpbs mode.
1005 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1006 *  speeds in order to avoid Tx hangs.
1007 **/
1008static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1009{
1010	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1011	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1012	s32 ret_val = E1000_SUCCESS;
1013	u16 reg;
1014
1015	if (link && (status & E1000_STATUS_SPEED_1000)) {
1016		ret_val = hw->phy.ops.acquire(hw);
1017		if (ret_val)
1018			return ret_val;
1019
1020		ret_val =
1021		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1022					       &reg);
1023		if (ret_val)
1024			goto release;
1025
1026		ret_val =
1027		    e1000_write_kmrn_reg_locked(hw,
1028						E1000_KMRNCTRLSTA_K1_CONFIG,
1029						reg &
1030						~E1000_KMRNCTRLSTA_K1_ENABLE);
1031		if (ret_val)
1032			goto release;
1033
1034		usec_delay(10);
1035
1036		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1037				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1038
1039		ret_val =
1040		    e1000_write_kmrn_reg_locked(hw,
1041						E1000_KMRNCTRLSTA_K1_CONFIG,
1042						reg);
1043release:
1044		hw->phy.ops.release(hw);
1045	} else {
1046		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1047		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1048
1049		if ((hw->phy.revision > 5) || !link ||
1050		    ((status & E1000_STATUS_SPEED_100) &&
1051		     (status & E1000_STATUS_FD)))
1052			goto update_fextnvm6;
1053
1054		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1055		if (ret_val)
1056			return ret_val;
1057
1058		/* Clear link status transmit timeout */
1059		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1060
1061		if (status & E1000_STATUS_SPEED_100) {
1062			/* Set inband Tx timeout to 5x10us for 100Half */
1063			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1064
1065			/* Do not extend the K1 entry latency for 100Half */
1066			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1067		} else {
1068			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1069			reg |= 50 <<
1070			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1071
1072			/* Extend the K1 entry latency for 10 Mbps */
1073			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1074		}
1075
1076		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1077		if (ret_val)
1078			return ret_val;
1079
1080update_fextnvm6:
1081		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1082	}
1083
1084	return ret_val;
1085}
1086
1087static u64 e1000_ltr2ns(u16 ltr)
1088{
1089	u32 value, scale;
1090
1091	/* Determine the latency in nsec based on the LTR value & scale */
1092	value = ltr & E1000_LTRV_VALUE_MASK;
1093	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1094
1095	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1096}
1097
1098/**
1099 *  e1000_platform_pm_pch_lpt - Set platform power management values
1100 *  @hw: pointer to the HW structure
1101 *  @link: bool indicating link status
1102 *
1103 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1104 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1105 *  when link is up (which must not exceed the maximum latency supported
1106 *  by the platform), otherwise specify there is no LTR requirement.
1107 *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1108 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1109 *  Capability register set, on this device LTR is set by writing the
1110 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1111 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1112 *  message to the PMC.
1113 *
1114 *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1115 *  high-water mark.
1116 **/
1117static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1118{
1119	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1120		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1121	u16 lat_enc = 0;	/* latency encoded */
1122	s32 obff_hwm = 0;
1123
1124	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1125
1126	if (link) {
1127		u16 speed, duplex, scale = 0;
1128		u16 max_snoop, max_nosnoop;
1129		u16 max_ltr_enc;	/* max LTR latency encoded */
1130		s64 lat_ns;
1131		s64 value;
1132		u32 rxa;
1133
1134		if (!hw->mac.max_frame_size) {
1135			DEBUGOUT("max_frame_size not set.\n");
1136			return -E1000_ERR_CONFIG;
1137		}
1138
1139		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1140		if (!speed) {
1141			DEBUGOUT("Speed not set.\n");
1142			return -E1000_ERR_CONFIG;
1143		}
1144
1145		/* Rx Packet Buffer Allocation size (KB) */
1146		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1147
1148		/* Determine the maximum latency tolerated by the device.
1149		 *
1150		 * Per the PCIe spec, the tolerated latencies are encoded as
1151		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1152		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1153		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1154		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1155		 */
1156		lat_ns = ((s64)rxa * 1024 -
1157			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1158		if (lat_ns < 0)
1159			lat_ns = 0;
1160		else
1161			lat_ns /= speed;
1162		value = lat_ns;
1163
1164		while (value > E1000_LTRV_VALUE_MASK) {
1165			scale++;
1166			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1167		}
1168		if (scale > E1000_LTRV_SCALE_MAX) {
1169			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1170			return -E1000_ERR_CONFIG;
1171		}
1172		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1173
1174		/* Determine the maximum latency tolerated by the platform */
1175		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1176		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1177		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1178
1179		if (lat_enc > max_ltr_enc) {
1180			lat_enc = max_ltr_enc;
1181			lat_ns = e1000_ltr2ns(max_ltr_enc);
1182		}
1183
1184		if (lat_ns) {
1185			lat_ns *= speed * 1000;
1186			lat_ns /= 8;
1187			lat_ns /= 1000000000;
1188			obff_hwm = (s32)(rxa - lat_ns);
1189		}
1190		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1191			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1192			return -E1000_ERR_CONFIG;
1193		}
1194	}
1195
1196	/* Set Snoop and No-Snoop latencies the same */
1197	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1198	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1199
1200	/* Set OBFF high water mark */
1201	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1202	reg |= obff_hwm;
1203	E1000_WRITE_REG(hw, E1000_SVT, reg);
1204
1205	/* Enable OBFF */
1206	reg = E1000_READ_REG(hw, E1000_SVCR);
1207	reg |= E1000_SVCR_OFF_EN;
1208	/* Always unblock interrupts to the CPU even when the system is
1209	 * in OBFF mode. This ensures that small round-robin traffic
1210	 * (like ping) does not get dropped or experience long latency.
1211	 */
1212	reg |= E1000_SVCR_OFF_MASKINT;
1213	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1214
1215	return E1000_SUCCESS;
1216}
1217
1218/**
1219 *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1220 *  @hw: pointer to the HW structure
1221 *  @itr: interrupt throttling rate
1222 *
1223 *  Configure OBFF with the updated interrupt rate.
1224 **/
1225static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1226{
1227	u32 svcr;
1228	s32 timer;
1229
1230	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1231
1232	/* Convert ITR value into microseconds for OBFF timer */
1233	timer = itr & E1000_ITR_MASK;
1234	timer = (timer * E1000_ITR_MULT) / 1000;
1235
1236	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1237		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1238		return -E1000_ERR_CONFIG;
1239	}
1240
1241	svcr = E1000_READ_REG(hw, E1000_SVCR);
1242	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1243	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1244	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1245
1246	return E1000_SUCCESS;
1247}
1248
1249/**
1250 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1251 *  @hw: pointer to the HW structure
1252 *  @to_sx: boolean indicating a system power state transition to Sx
1253 *
1254 *  When link is down, configure ULP mode to significantly reduce the power
1255 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1256 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1257 *  system, configure the ULP mode by software.
1258 */
1259s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1260{
1261	u32 mac_reg;
1262	s32 ret_val = E1000_SUCCESS;
1263	u16 phy_reg;
1264	u16 oem_reg = 0;
1265
1266	if ((hw->mac.type < e1000_pch_lpt) ||
1267	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1268	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1269	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1270	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1271	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1272		return 0;
1273
1274	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1275		/* Request ME configure ULP mode in the PHY */
1276		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1277		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1278		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1279
1280		goto out;
1281	}
1282
1283	if (!to_sx) {
1284		int i = 0;
1285
1286		/* Poll up to 5 seconds for Cable Disconnected indication */
1287		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1288			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1289			/* Bail if link is re-acquired */
1290			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1291				return -E1000_ERR_PHY;
1292
1293			if (i++ == 100)
1294				break;
1295
1296			msec_delay(50);
1297		}
1298		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1299			 (E1000_READ_REG(hw, E1000_FEXT) &
1300			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1301			 i * 50);
1302	}
1303
1304	ret_val = hw->phy.ops.acquire(hw);
1305	if (ret_val)
1306		goto out;
1307
1308	/* Force SMBus mode in PHY */
1309	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1310	if (ret_val)
1311		goto release;
1312	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1313	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1314
1315	/* Force SMBus mode in MAC */
1316	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1317	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1318	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1319
1320	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1321	 * LPLU and disable Gig speed when entering ULP
1322	 */
1323	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1324		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1325						       &oem_reg);
1326		if (ret_val)
1327			goto release;
1328
1329		phy_reg = oem_reg;
1330		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1331
1332		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1333							phy_reg);
1334
1335		if (ret_val)
1336			goto release;
1337	}
1338
1339	/* Set Inband ULP Exit, Reset to SMBus mode and
1340	 * Disable SMBus Release on PERST# in PHY
1341	 */
1342	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1343	if (ret_val)
1344		goto release;
1345	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1346		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1347	if (to_sx) {
1348		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1349			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1350		else
1351			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1352
1353		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1354		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1355	} else {
1356		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1357		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1358		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1359	}
1360	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1361
1362	/* Set Disable SMBus Release on PERST# in MAC */
1363	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1364	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1365	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1366
1367	/* Commit ULP changes in PHY by starting auto ULP configuration */
1368	phy_reg |= I218_ULP_CONFIG1_START;
1369	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1370
1371	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1372	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1373		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1374							oem_reg);
1375		if (ret_val)
1376			goto release;
1377	}
1378
1379release:
1380	hw->phy.ops.release(hw);
1381out:
1382	if (ret_val)
1383		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1384	else
1385		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1386
1387	return ret_val;
1388}
1389
1390/**
1391 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1392 *  @hw: pointer to the HW structure
1393 *  @force: boolean indicating whether or not to force disabling ULP
1394 *
1395 *  Un-configure ULP mode when link is up, the system is transitioned from
1396 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1397 *  system, poll for an indication from ME that ULP has been un-configured.
1398 *  If not on an ME enabled system, un-configure the ULP mode by software.
1399 *
1400 *  During nominal operation, this function is called when link is acquired
1401 *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1402 *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1403 *  to forcibly disable ULP.
1404 */
1405s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1406{
1407	s32 ret_val = E1000_SUCCESS;
1408	u32 mac_reg;
1409	u16 phy_reg;
1410	int i = 0;
1411
1412	if ((hw->mac.type < e1000_pch_lpt) ||
1413	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1414	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1415	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1416	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1417	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1418		return 0;
1419
1420	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1421		if (force) {
1422			/* Request ME un-configure ULP mode in the PHY */
1423			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1424			mac_reg &= ~E1000_H2ME_ULP;
1425			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1426			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1427		}
1428
1429		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1430		while (E1000_READ_REG(hw, E1000_FWSM) &
1431		       E1000_FWSM_ULP_CFG_DONE) {
1432			if (i++ == 30) {
1433				ret_val = -E1000_ERR_PHY;
1434				goto out;
1435			}
1436
1437			msec_delay(10);
1438		}
1439		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1440
1441		if (force) {
1442			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1443			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1444			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1445		} else {
1446			/* Clear H2ME.ULP after ME ULP configuration */
1447			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1448			mac_reg &= ~E1000_H2ME_ULP;
1449			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1450		}
1451
1452		goto out;
1453	}
1454
1455	ret_val = hw->phy.ops.acquire(hw);
1456	if (ret_val)
1457		goto out;
1458
1459	if (force)
1460		/* Toggle LANPHYPC Value bit */
1461		e1000_toggle_lanphypc_pch_lpt(hw);
1462
1463	/* Unforce SMBus mode in PHY */
1464	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1465	if (ret_val) {
1466		/* The MAC might be in PCIe mode, so temporarily force to
1467		 * SMBus mode in order to access the PHY.
1468		 */
1469		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1470		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1471		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1472
1473		msec_delay(50);
1474
1475		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1476						       &phy_reg);
1477		if (ret_val)
1478			goto release;
1479	}
1480	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1481	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1482
1483	/* Unforce SMBus mode in MAC */
1484	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1485	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1486	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1487
1488	/* When ULP mode was previously entered, K1 was disabled by the
1489	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1490	 */
1491	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1492	if (ret_val)
1493		goto release;
1494	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1495	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1496
1497	/* Clear ULP enabled configuration */
1498	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1499	if (ret_val)
1500		goto release;
1501		phy_reg &= ~(I218_ULP_CONFIG1_IND |
1502			     I218_ULP_CONFIG1_STICKY_ULP |
1503			     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1504			     I218_ULP_CONFIG1_WOL_HOST |
1505			     I218_ULP_CONFIG1_INBAND_EXIT |
1506			     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1507			     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1508			     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1509		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1510
1511		/* Commit ULP changes by starting auto ULP configuration */
1512		phy_reg |= I218_ULP_CONFIG1_START;
1513		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1514
1515		/* Clear Disable SMBus Release on PERST# in MAC */
1516		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1517		mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1518		E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1519
1520release:
1521	hw->phy.ops.release(hw);
1522	if (force) {
1523		hw->phy.ops.reset(hw);
1524		msec_delay(50);
1525	}
1526out:
1527	if (ret_val)
1528		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1529	else
1530		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1531
1532	return ret_val;
1533}
1534
1535/**
1536 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1537 *  @hw: pointer to the HW structure
1538 *
1539 *  Checks to see of the link status of the hardware has changed.  If a
1540 *  change in link status has been detected, then we read the PHY registers
1541 *  to get the current speed/duplex if link exists.
1542 **/
1543static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1544{
1545	struct e1000_mac_info *mac = &hw->mac;
1546	s32 ret_val, tipg_reg = 0;
1547	u16 emi_addr, emi_val = 0;
1548	bool link;
1549	u16 phy_reg;
1550
1551	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1552
1553	/* We only want to go out to the PHY registers to see if Auto-Neg
1554	 * has completed and/or if our link status has changed.  The
1555	 * get_link_status flag is set upon receiving a Link Status
1556	 * Change or Rx Sequence Error interrupt.
1557	 */
1558	if (!mac->get_link_status)
1559		return E1000_SUCCESS;
1560
1561		/* First we want to see if the MII Status Register reports
1562		 * link.  If so, then we want to get the current speed/duplex
1563		 * of the PHY.
1564		 */
1565		ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1566		if (ret_val)
1567			return ret_val;
1568
1569	if (hw->mac.type == e1000_pchlan) {
1570		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1571		if (ret_val)
1572			return ret_val;
1573	}
1574
1575	/* When connected at 10Mbps half-duplex, some parts are excessively
1576	 * aggressive resulting in many collisions. To avoid this, increase
1577	 * the IPG and reduce Rx latency in the PHY.
1578	 */
1579	if (((hw->mac.type == e1000_pch2lan) ||
1580	     (hw->mac.type == e1000_pch_lpt) ||
1581	     (hw->mac.type == e1000_pch_spt)) && link) {
1582		u16 speed, duplex;
1583
1584		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1585		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1586		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1587
1588		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1589			tipg_reg |= 0xFF;
1590			/* Reduce Rx latency in analog PHY */
1591			emi_val = 0;
1592		} else if (hw->mac.type == e1000_pch_spt &&
1593			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1594			tipg_reg |= 0xC;
1595			emi_val = 1;
1596		} else {
1597			/* Roll back the default values */
1598			tipg_reg |= 0x08;
1599			emi_val = 1;
1600		}
1601
1602		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1603
1604		ret_val = hw->phy.ops.acquire(hw);
1605		if (ret_val)
1606			return ret_val;
1607
1608		if (hw->mac.type == e1000_pch2lan)
1609			emi_addr = I82579_RX_CONFIG;
1610		else
1611			emi_addr = I217_RX_CONFIG;
1612		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1613
1614		if (hw->mac.type == e1000_pch_lpt ||
1615		    hw->mac.type == e1000_pch_spt) {
1616			u16 phy_reg;
1617
1618			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1619						    &phy_reg);
1620			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1621			if (speed == SPEED_100 || speed == SPEED_10)
1622				phy_reg |= 0x3E8;
1623			else
1624				phy_reg |= 0xFA;
1625			hw->phy.ops.write_reg_locked(hw,
1626						     I217_PLL_CLOCK_GATE_REG,
1627						     phy_reg);
1628
1629			if (speed == SPEED_1000) {
1630				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1631							    &phy_reg);
1632
1633				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1634
1635				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1636							     phy_reg);
1637				}
1638		 }
1639		hw->phy.ops.release(hw);
1640
1641		if (ret_val)
1642			return ret_val;
1643
1644		if (hw->mac.type == e1000_pch_spt) {
1645			u16 data;
1646			u16 ptr_gap;
1647
1648			if (speed == SPEED_1000) {
1649				ret_val = hw->phy.ops.acquire(hw);
1650				if (ret_val)
1651					return ret_val;
1652
1653				ret_val = hw->phy.ops.read_reg_locked(hw,
1654							      PHY_REG(776, 20),
1655							      &data);
1656				if (ret_val) {
1657					hw->phy.ops.release(hw);
1658					return ret_val;
1659				}
1660
1661				ptr_gap = (data & (0x3FF << 2)) >> 2;
1662				if (ptr_gap < 0x18) {
1663					data &= ~(0x3FF << 2);
1664					data |= (0x18 << 2);
1665					ret_val =
1666						hw->phy.ops.write_reg_locked(hw,
1667							PHY_REG(776, 20), data);
1668				}
1669				hw->phy.ops.release(hw);
1670				if (ret_val)
1671					return ret_val;
1672			} else {
1673				ret_val = hw->phy.ops.acquire(hw);
1674				if (ret_val)
1675					return ret_val;
1676
1677				ret_val = hw->phy.ops.write_reg_locked(hw,
1678							     PHY_REG(776, 20),
1679							     0xC023);
1680				hw->phy.ops.release(hw);
1681				if (ret_val)
1682					return ret_val;
1683
1684			}
1685		}
1686	}
1687
1688	/* I217 Packet Loss issue:
1689	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1690	 * on power up.
1691	 * Set the Beacon Duration for I217 to 8 usec
1692	 */
1693	if ((hw->mac.type == e1000_pch_lpt) ||
1694	    (hw->mac.type == e1000_pch_spt)) {
1695		u32 mac_reg;
1696
1697		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1698		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1699		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1700		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1701	}
1702
1703	/* Work-around I218 hang issue */
1704	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1705	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1706	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1707	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1708		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1709		if (ret_val)
1710			return ret_val;
1711	}
1712	if ((hw->mac.type == e1000_pch_lpt) ||
1713	    (hw->mac.type == e1000_pch_spt)) {
1714		/* Set platform power management values for
1715		 * Latency Tolerance Reporting (LTR)
1716		 * Optimized Buffer Flush/Fill (OBFF)
1717		 */
1718		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1719		if (ret_val)
1720			return ret_val;
1721	}
1722
1723	/* Clear link partner's EEE ability */
1724	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1725
1726	/* FEXTNVM6 K1-off workaround */
1727	if (hw->mac.type == e1000_pch_spt) {
1728		u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1729		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1730
1731		if ((pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) &&
1732			(hw->dev_spec.ich8lan.disable_k1_off == FALSE))
1733			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1734		else
1735			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1736
1737		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1738	}
1739
1740	if (!link)
1741		return E1000_SUCCESS; /* No link detected */
1742
1743	mac->get_link_status = FALSE;
1744
1745	switch (hw->mac.type) {
1746	case e1000_pch2lan:
1747		ret_val = e1000_k1_workaround_lv(hw);
1748		if (ret_val)
1749			return ret_val;
1750		/* fall-thru */
1751	case e1000_pchlan:
1752		if (hw->phy.type == e1000_phy_82578) {
1753			ret_val = e1000_link_stall_workaround_hv(hw);
1754			if (ret_val)
1755				return ret_val;
1756		}
1757
1758		/* Workaround for PCHx parts in half-duplex:
1759		 * Set the number of preambles removed from the packet
1760		 * when it is passed from the PHY to the MAC to prevent
1761		 * the MAC from misinterpreting the packet type.
1762		 */
1763		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1764		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1765
1766		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1767		    E1000_STATUS_FD)
1768			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1769
1770		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1771		break;
1772	default:
1773		break;
1774	}
1775
1776	/* Check if there was DownShift, must be checked
1777	 * immediately after link-up
1778	 */
1779	e1000_check_downshift_generic(hw);
1780
1781	/* Enable/Disable EEE after link up */
1782	if (hw->phy.type > e1000_phy_82579) {
1783		ret_val = e1000_set_eee_pchlan(hw);
1784		if (ret_val)
1785			return ret_val;
1786	}
1787
1788	/* If we are forcing speed/duplex, then we simply return since
1789	 * we have already determined whether we have link or not.
1790	 */
1791	if (!mac->autoneg)
1792		return -E1000_ERR_CONFIG;
1793
1794	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1795	 * of MAC speed/duplex configuration.  So we only need to
1796	 * configure Collision Distance in the MAC.
1797	 */
1798	mac->ops.config_collision_dist(hw);
1799
1800	/* Configure Flow Control now that Auto-Neg has completed.
1801	 * First, we need to restore the desired flow control
1802	 * settings because we may have had to re-autoneg with a
1803	 * different link partner.
1804	 */
1805	ret_val = e1000_config_fc_after_link_up_generic(hw);
1806	if (ret_val)
1807		DEBUGOUT("Error configuring flow control\n");
1808
1809	return ret_val;
1810}
1811
1812/**
1813 *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1814 *  @hw: pointer to the HW structure
1815 *
1816 *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1817 **/
1818void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1819{
1820	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1821
1822	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1823	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1824	switch (hw->mac.type) {
1825	case e1000_ich8lan:
1826	case e1000_ich9lan:
1827	case e1000_ich10lan:
1828		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1829		break;
1830	case e1000_pchlan:
1831	case e1000_pch2lan:
1832	case e1000_pch_lpt:
1833	case e1000_pch_spt:
1834		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1835		break;
1836	default:
1837		break;
1838	}
1839}
1840
1841/**
1842 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1843 *  @hw: pointer to the HW structure
1844 *
1845 *  Acquires the mutex for performing NVM operations.
1846 **/
1847static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1848{
1849	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1850
1851	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1852
1853	return E1000_SUCCESS;
1854}
1855
1856/**
1857 *  e1000_release_nvm_ich8lan - Release NVM mutex
1858 *  @hw: pointer to the HW structure
1859 *
1860 *  Releases the mutex used while performing NVM operations.
1861 **/
1862static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1863{
1864	DEBUGFUNC("e1000_release_nvm_ich8lan");
1865
1866	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1867
1868	return;
1869}
1870
1871/**
1872 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1873 *  @hw: pointer to the HW structure
1874 *
1875 *  Acquires the software control flag for performing PHY and select
1876 *  MAC CSR accesses.
1877 **/
1878static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1879{
1880	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1881	s32 ret_val = E1000_SUCCESS;
1882
1883	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1884
1885	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1886
1887	while (timeout) {
1888		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1889		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1890			break;
1891
1892		msec_delay_irq(1);
1893		timeout--;
1894	}
1895
1896	if (!timeout) {
1897		DEBUGOUT("SW has already locked the resource.\n");
1898		ret_val = -E1000_ERR_CONFIG;
1899		goto out;
1900	}
1901
1902	timeout = SW_FLAG_TIMEOUT;
1903
1904	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1905	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1906
1907	while (timeout) {
1908		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1909		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1910			break;
1911
1912		msec_delay_irq(1);
1913		timeout--;
1914	}
1915
1916	if (!timeout) {
1917		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1918			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1919		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1920		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1921		ret_val = -E1000_ERR_CONFIG;
1922		goto out;
1923	}
1924
1925out:
1926	if (ret_val)
1927		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1928
1929	return ret_val;
1930}
1931
1932/**
1933 *  e1000_release_swflag_ich8lan - Release software control flag
1934 *  @hw: pointer to the HW structure
1935 *
1936 *  Releases the software control flag for performing PHY and select
1937 *  MAC CSR accesses.
1938 **/
1939static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1940{
1941	u32 extcnf_ctrl;
1942
1943	DEBUGFUNC("e1000_release_swflag_ich8lan");
1944
1945	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1946
1947	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1948		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1949		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1950	} else {
1951		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1952	}
1953
1954	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1955
1956	return;
1957}
1958
1959/**
1960 *  e1000_check_mng_mode_ich8lan - Checks management mode
1961 *  @hw: pointer to the HW structure
1962 *
1963 *  This checks if the adapter has any manageability enabled.
1964 *  This is a function pointer entry point only called by read/write
1965 *  routines for the PHY and NVM parts.
1966 **/
1967static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1968{
1969	u32 fwsm;
1970
1971	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1972
1973	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1974
1975	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1976	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1977		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1978}
1979
1980/**
1981 *  e1000_check_mng_mode_pchlan - Checks management mode
1982 *  @hw: pointer to the HW structure
1983 *
1984 *  This checks if the adapter has iAMT enabled.
1985 *  This is a function pointer entry point only called by read/write
1986 *  routines for the PHY and NVM parts.
1987 **/
1988static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1989{
1990	u32 fwsm;
1991
1992	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1993
1994	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1995
1996	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1997	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1998}
1999
2000/**
2001 *  e1000_rar_set_pch2lan - Set receive address register
2002 *  @hw: pointer to the HW structure
2003 *  @addr: pointer to the receive address
2004 *  @index: receive address array register
2005 *
2006 *  Sets the receive address array register at index to the address passed
2007 *  in by addr.  For 82579, RAR[0] is the base address register that is to
2008 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2009 *  Use SHRA[0-3] in place of those reserved for ME.
2010 **/
2011static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2012{
2013	u32 rar_low, rar_high;
2014
2015	DEBUGFUNC("e1000_rar_set_pch2lan");
2016
2017	/* HW expects these in little endian so we reverse the byte order
2018	 * from network order (big endian) to little endian
2019	 */
2020	rar_low = ((u32) addr[0] |
2021		   ((u32) addr[1] << 8) |
2022		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2023
2024	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2025
2026	/* If MAC address zero, no need to set the AV bit */
2027	if (rar_low || rar_high)
2028		rar_high |= E1000_RAH_AV;
2029
2030	if (index == 0) {
2031		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2032		E1000_WRITE_FLUSH(hw);
2033		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2034		E1000_WRITE_FLUSH(hw);
2035		return E1000_SUCCESS;
2036	}
2037
2038	/* RAR[1-6] are owned by manageability.  Skip those and program the
2039	 * next address into the SHRA register array.
2040	 */
2041	if (index < (u32) (hw->mac.rar_entry_count)) {
2042		s32 ret_val;
2043
2044		ret_val = e1000_acquire_swflag_ich8lan(hw);
2045		if (ret_val)
2046			goto out;
2047
2048		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2049		E1000_WRITE_FLUSH(hw);
2050		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2051		E1000_WRITE_FLUSH(hw);
2052
2053		e1000_release_swflag_ich8lan(hw);
2054
2055		/* verify the register updates */
2056		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2057		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2058			return E1000_SUCCESS;
2059
2060		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2061			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2062	}
2063
2064out:
2065	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2066	return -E1000_ERR_CONFIG;
2067}
2068
2069/**
2070 *  e1000_rar_set_pch_lpt - Set receive address registers
2071 *  @hw: pointer to the HW structure
2072 *  @addr: pointer to the receive address
2073 *  @index: receive address array register
2074 *
2075 *  Sets the receive address register array at index to the address passed
2076 *  in by addr. For LPT, RAR[0] is the base address register that is to
2077 *  contain the MAC address. SHRA[0-10] are the shared receive address
2078 *  registers that are shared between the Host and manageability engine (ME).
2079 **/
2080static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2081{
2082	u32 rar_low, rar_high;
2083	u32 wlock_mac;
2084
2085	DEBUGFUNC("e1000_rar_set_pch_lpt");
2086
2087	/* HW expects these in little endian so we reverse the byte order
2088	 * from network order (big endian) to little endian
2089	 */
2090	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2091		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2092
2093	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2094
2095	/* If MAC address zero, no need to set the AV bit */
2096	if (rar_low || rar_high)
2097		rar_high |= E1000_RAH_AV;
2098
2099	if (index == 0) {
2100		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2101		E1000_WRITE_FLUSH(hw);
2102		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2103		E1000_WRITE_FLUSH(hw);
2104		return E1000_SUCCESS;
2105	}
2106
2107	/* The manageability engine (ME) can lock certain SHRAR registers that
2108	 * it is using - those registers are unavailable for use.
2109	 */
2110	if (index < hw->mac.rar_entry_count) {
2111		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2112			    E1000_FWSM_WLOCK_MAC_MASK;
2113		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2114
2115		/* Check if all SHRAR registers are locked */
2116		if (wlock_mac == 1)
2117			goto out;
2118
2119		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2120			s32 ret_val;
2121
2122			ret_val = e1000_acquire_swflag_ich8lan(hw);
2123
2124			if (ret_val)
2125				goto out;
2126
2127			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2128					rar_low);
2129			E1000_WRITE_FLUSH(hw);
2130			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2131					rar_high);
2132			E1000_WRITE_FLUSH(hw);
2133
2134			e1000_release_swflag_ich8lan(hw);
2135
2136			/* verify the register updates */
2137			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2138			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2139				return E1000_SUCCESS;
2140		}
2141	}
2142
2143out:
2144	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2145	return -E1000_ERR_CONFIG;
2146}
2147
2148/**
2149 *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2150 *  @hw: pointer to the HW structure
2151 *  @mc_addr_list: array of multicast addresses to program
2152 *  @mc_addr_count: number of multicast addresses to program
2153 *
2154 *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2155 *  The caller must have a packed mc_addr_list of multicast addresses.
2156 **/
2157static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2158					      u8 *mc_addr_list,
2159					      u32 mc_addr_count)
2160{
2161	u16 phy_reg = 0;
2162	int i;
2163	s32 ret_val;
2164
2165	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2166
2167	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2168
2169	ret_val = hw->phy.ops.acquire(hw);
2170	if (ret_val)
2171		return;
2172
2173	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2174	if (ret_val)
2175		goto release;
2176
2177	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2178		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2179					   (u16)(hw->mac.mta_shadow[i] &
2180						 0xFFFF));
2181		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2182					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2183						 0xFFFF));
2184	}
2185
2186	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2187
2188release:
2189	hw->phy.ops.release(hw);
2190}
2191
2192/**
2193 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2194 *  @hw: pointer to the HW structure
2195 *
2196 *  Checks if firmware is blocking the reset of the PHY.
2197 *  This is a function pointer entry point only called by
2198 *  reset routines.
2199 **/
2200static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2201{
2202	u32 fwsm;
2203	bool blocked = FALSE;
2204	int i = 0;
2205
2206	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2207
2208	do {
2209		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2210		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2211			blocked = TRUE;
2212			msec_delay(10);
2213			continue;
2214		}
2215		blocked = FALSE;
2216	} while (blocked && (i++ < 30));
2217	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2218}
2219
2220/**
2221 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2222 *  @hw: pointer to the HW structure
2223 *
2224 *  Assumes semaphore already acquired.
2225 *
2226 **/
2227static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2228{
2229	u16 phy_data;
2230	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2231	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2232		E1000_STRAP_SMT_FREQ_SHIFT;
2233	s32 ret_val;
2234
2235	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2236
2237	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2238	if (ret_val)
2239		return ret_val;
2240
2241	phy_data &= ~HV_SMB_ADDR_MASK;
2242	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2243	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2244
2245	if (hw->phy.type == e1000_phy_i217) {
2246		/* Restore SMBus frequency */
2247		if (freq--) {
2248			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2249			phy_data |= (freq & (1 << 0)) <<
2250				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2251			phy_data |= (freq & (1 << 1)) <<
2252				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2253		} else {
2254			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2255		}
2256	}
2257
2258	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2259}
2260
2261/**
2262 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2263 *  @hw:   pointer to the HW structure
2264 *
2265 *  SW should configure the LCD from the NVM extended configuration region
2266 *  as a workaround for certain parts.
2267 **/
2268static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2269{
2270	struct e1000_phy_info *phy = &hw->phy;
2271	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2272	s32 ret_val = E1000_SUCCESS;
2273	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2274
2275	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2276
2277	/* Initialize the PHY from the NVM on ICH platforms.  This
2278	 * is needed due to an issue where the NVM configuration is
2279	 * not properly autoloaded after power transitions.
2280	 * Therefore, after each PHY reset, we will load the
2281	 * configuration data out of the NVM manually.
2282	 */
2283	switch (hw->mac.type) {
2284	case e1000_ich8lan:
2285		if (phy->type != e1000_phy_igp_3)
2286			return ret_val;
2287
2288		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2289		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2290			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2291			break;
2292		}
2293		/* Fall-thru */
2294	case e1000_pchlan:
2295	case e1000_pch2lan:
2296	case e1000_pch_lpt:
2297	case e1000_pch_spt:
2298		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2299		break;
2300	default:
2301		return ret_val;
2302	}
2303
2304	ret_val = hw->phy.ops.acquire(hw);
2305	if (ret_val)
2306		return ret_val;
2307
2308	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2309	if (!(data & sw_cfg_mask))
2310		goto release;
2311
2312	/* Make sure HW does not configure LCD from PHY
2313	 * extended configuration before SW configuration
2314	 */
2315	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2316	if ((hw->mac.type < e1000_pch2lan) &&
2317	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2318			goto release;
2319
2320	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2321	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2322	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2323	if (!cnf_size)
2324		goto release;
2325
2326	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2327	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2328
2329	if (((hw->mac.type == e1000_pchlan) &&
2330	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2331	    (hw->mac.type > e1000_pchlan)) {
2332		/* HW configures the SMBus address and LEDs when the
2333		 * OEM and LCD Write Enable bits are set in the NVM.
2334		 * When both NVM bits are cleared, SW will configure
2335		 * them instead.
2336		 */
2337		ret_val = e1000_write_smbus_addr(hw);
2338		if (ret_val)
2339			goto release;
2340
2341		data = E1000_READ_REG(hw, E1000_LEDCTL);
2342		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2343							(u16)data);
2344		if (ret_val)
2345			goto release;
2346	}
2347
2348	/* Configure LCD from extended configuration region. */
2349
2350	/* cnf_base_addr is in DWORD */
2351	word_addr = (u16)(cnf_base_addr << 1);
2352
2353	for (i = 0; i < cnf_size; i++) {
2354		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2355					   &reg_data);
2356		if (ret_val)
2357			goto release;
2358
2359		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2360					   1, &reg_addr);
2361		if (ret_val)
2362			goto release;
2363
2364		/* Save off the PHY page for future writes. */
2365		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2366			phy_page = reg_data;
2367			continue;
2368		}
2369
2370		reg_addr &= PHY_REG_MASK;
2371		reg_addr |= phy_page;
2372
2373		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2374						    reg_data);
2375		if (ret_val)
2376			goto release;
2377	}
2378
2379release:
2380	hw->phy.ops.release(hw);
2381	return ret_val;
2382}
2383
2384/**
2385 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2386 *  @hw:   pointer to the HW structure
2387 *  @link: link up bool flag
2388 *
2389 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2390 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2391 *  If link is down, the function will restore the default K1 setting located
2392 *  in the NVM.
2393 **/
2394static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2395{
2396	s32 ret_val = E1000_SUCCESS;
2397	u16 status_reg = 0;
2398	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2399
2400	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2401
2402	if (hw->mac.type != e1000_pchlan)
2403		return E1000_SUCCESS;
2404
2405	/* Wrap the whole flow with the sw flag */
2406	ret_val = hw->phy.ops.acquire(hw);
2407	if (ret_val)
2408		return ret_val;
2409
2410	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2411	if (link) {
2412		if (hw->phy.type == e1000_phy_82578) {
2413			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2414							      &status_reg);
2415			if (ret_val)
2416				goto release;
2417
2418			status_reg &= (BM_CS_STATUS_LINK_UP |
2419				       BM_CS_STATUS_RESOLVED |
2420				       BM_CS_STATUS_SPEED_MASK);
2421
2422			if (status_reg == (BM_CS_STATUS_LINK_UP |
2423					   BM_CS_STATUS_RESOLVED |
2424					   BM_CS_STATUS_SPEED_1000))
2425				k1_enable = FALSE;
2426		}
2427
2428		if (hw->phy.type == e1000_phy_82577) {
2429			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2430							      &status_reg);
2431			if (ret_val)
2432				goto release;
2433
2434			status_reg &= (HV_M_STATUS_LINK_UP |
2435				       HV_M_STATUS_AUTONEG_COMPLETE |
2436				       HV_M_STATUS_SPEED_MASK);
2437
2438			if (status_reg == (HV_M_STATUS_LINK_UP |
2439					   HV_M_STATUS_AUTONEG_COMPLETE |
2440					   HV_M_STATUS_SPEED_1000))
2441				k1_enable = FALSE;
2442		}
2443
2444		/* Link stall fix for link up */
2445		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2446						       0x0100);
2447		if (ret_val)
2448			goto release;
2449
2450	} else {
2451		/* Link stall fix for link down */
2452		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2453						       0x4100);
2454		if (ret_val)
2455			goto release;
2456	}
2457
2458	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2459
2460release:
2461	hw->phy.ops.release(hw);
2462
2463	return ret_val;
2464}
2465
2466/**
2467 *  e1000_configure_k1_ich8lan - Configure K1 power state
2468 *  @hw: pointer to the HW structure
2469 *  @enable: K1 state to configure
2470 *
2471 *  Configure the K1 power state based on the provided parameter.
2472 *  Assumes semaphore already acquired.
2473 *
2474 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2475 **/
2476s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2477{
2478	s32 ret_val;
2479	u32 ctrl_reg = 0;
2480	u32 ctrl_ext = 0;
2481	u32 reg = 0;
2482	u16 kmrn_reg = 0;
2483
2484	DEBUGFUNC("e1000_configure_k1_ich8lan");
2485
2486	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2487					     &kmrn_reg);
2488	if (ret_val)
2489		return ret_val;
2490
2491	if (k1_enable)
2492		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2493	else
2494		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2495
2496	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2497					      kmrn_reg);
2498	if (ret_val)
2499		return ret_val;
2500
2501	usec_delay(20);
2502	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2503	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2504
2505	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2506	reg |= E1000_CTRL_FRCSPD;
2507	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2508
2509	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2510	E1000_WRITE_FLUSH(hw);
2511	usec_delay(20);
2512	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2513	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2514	E1000_WRITE_FLUSH(hw);
2515	usec_delay(20);
2516
2517	return E1000_SUCCESS;
2518}
2519
2520/**
2521 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2522 *  @hw:       pointer to the HW structure
2523 *  @d0_state: boolean if entering d0 or d3 device state
2524 *
2525 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2526 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2527 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2528 **/
2529static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2530{
2531	s32 ret_val = 0;
2532	u32 mac_reg;
2533	u16 oem_reg;
2534
2535	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2536
2537	if (hw->mac.type < e1000_pchlan)
2538		return ret_val;
2539
2540	ret_val = hw->phy.ops.acquire(hw);
2541	if (ret_val)
2542		return ret_val;
2543
2544	if (hw->mac.type == e1000_pchlan) {
2545		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2546		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2547			goto release;
2548	}
2549
2550	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2551	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2552		goto release;
2553
2554	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2555
2556	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2557	if (ret_val)
2558		goto release;
2559
2560	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2561
2562	if (d0_state) {
2563		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2564			oem_reg |= HV_OEM_BITS_GBE_DIS;
2565
2566		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2567			oem_reg |= HV_OEM_BITS_LPLU;
2568	} else {
2569		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2570		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2571			oem_reg |= HV_OEM_BITS_GBE_DIS;
2572
2573		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2574		    E1000_PHY_CTRL_NOND0A_LPLU))
2575			oem_reg |= HV_OEM_BITS_LPLU;
2576	}
2577
2578	/* Set Restart auto-neg to activate the bits */
2579	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2580	    !hw->phy.ops.check_reset_block(hw))
2581		oem_reg |= HV_OEM_BITS_RESTART_AN;
2582
2583	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2584
2585release:
2586	hw->phy.ops.release(hw);
2587
2588	return ret_val;
2589}
2590
2591
2592/**
2593 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2594 *  @hw:   pointer to the HW structure
2595 **/
2596static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2597{
2598	s32 ret_val;
2599	u16 data;
2600
2601	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2602
2603	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2604	if (ret_val)
2605		return ret_val;
2606
2607	data |= HV_KMRN_MDIO_SLOW;
2608
2609	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2610
2611	return ret_val;
2612}
2613
2614/**
2615 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2616 *  done after every PHY reset.
2617 **/
2618static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2619{
2620	s32 ret_val = E1000_SUCCESS;
2621	u16 phy_data;
2622
2623	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2624
2625	if (hw->mac.type != e1000_pchlan)
2626		return E1000_SUCCESS;
2627
2628	/* Set MDIO slow mode before any other MDIO access */
2629	if (hw->phy.type == e1000_phy_82577) {
2630		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2631		if (ret_val)
2632			return ret_val;
2633	}
2634
2635	if (((hw->phy.type == e1000_phy_82577) &&
2636	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2637	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2638		/* Disable generation of early preamble */
2639		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2640		if (ret_val)
2641			return ret_val;
2642
2643		/* Preamble tuning for SSC */
2644		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2645						0xA204);
2646		if (ret_val)
2647			return ret_val;
2648	}
2649
2650	if (hw->phy.type == e1000_phy_82578) {
2651		/* Return registers to default by doing a soft reset then
2652		 * writing 0x3140 to the control register.
2653		 */
2654		if (hw->phy.revision < 2) {
2655			e1000_phy_sw_reset_generic(hw);
2656			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2657							0x3140);
2658		}
2659	}
2660
2661	/* Select page 0 */
2662	ret_val = hw->phy.ops.acquire(hw);
2663	if (ret_val)
2664		return ret_val;
2665
2666	hw->phy.addr = 1;
2667	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2668	hw->phy.ops.release(hw);
2669	if (ret_val)
2670		return ret_val;
2671
2672	/* Configure the K1 Si workaround during phy reset assuming there is
2673	 * link so that it disables K1 if link is in 1Gbps.
2674	 */
2675	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2676	if (ret_val)
2677		return ret_val;
2678
2679	/* Workaround for link disconnects on a busy hub in half duplex */
2680	ret_val = hw->phy.ops.acquire(hw);
2681	if (ret_val)
2682		return ret_val;
2683	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2684	if (ret_val)
2685		goto release;
2686	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2687					       phy_data & 0x00FF);
2688	if (ret_val)
2689		goto release;
2690
2691	/* set MSE higher to enable link to stay up when noise is high */
2692	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2693release:
2694	hw->phy.ops.release(hw);
2695
2696	return ret_val;
2697}
2698
2699/**
2700 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2701 *  @hw:   pointer to the HW structure
2702 **/
2703void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2704{
2705	u32 mac_reg;
2706	u16 i, phy_reg = 0;
2707	s32 ret_val;
2708
2709	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2710
2711	ret_val = hw->phy.ops.acquire(hw);
2712	if (ret_val)
2713		return;
2714	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2715	if (ret_val)
2716		goto release;
2717
2718	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2719	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2720		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2721		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2722					   (u16)(mac_reg & 0xFFFF));
2723		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2724					   (u16)((mac_reg >> 16) & 0xFFFF));
2725
2726		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2727		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2728					   (u16)(mac_reg & 0xFFFF));
2729		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2730					   (u16)((mac_reg & E1000_RAH_AV)
2731						 >> 16));
2732	}
2733
2734	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2735
2736release:
2737	hw->phy.ops.release(hw);
2738}
2739
2740static u32 e1000_calc_rx_da_crc(u8 mac[])
2741{
2742	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2743	u32 i, j, mask, crc;
2744
2745	DEBUGFUNC("e1000_calc_rx_da_crc");
2746
2747	crc = 0xffffffff;
2748	for (i = 0; i < 6; i++) {
2749		crc = crc ^ mac[i];
2750		for (j = 8; j > 0; j--) {
2751			mask = (crc & 1) * (-1);
2752			crc = (crc >> 1) ^ (poly & mask);
2753		}
2754	}
2755	return ~crc;
2756}
2757
2758/**
2759 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2760 *  with 82579 PHY
2761 *  @hw: pointer to the HW structure
2762 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2763 **/
2764s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2765{
2766	s32 ret_val = E1000_SUCCESS;
2767	u16 phy_reg, data;
2768	u32 mac_reg;
2769	u16 i;
2770
2771	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2772
2773	if (hw->mac.type < e1000_pch2lan)
2774		return E1000_SUCCESS;
2775
2776	/* disable Rx path while enabling/disabling workaround */
2777	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2778	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2779					phy_reg | (1 << 14));
2780	if (ret_val)
2781		return ret_val;
2782
2783	if (enable) {
2784		/* Write Rx addresses (rar_entry_count for RAL/H, and
2785		 * SHRAL/H) and initial CRC values to the MAC
2786		 */
2787		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2788			u8 mac_addr[ETH_ADDR_LEN] = {0};
2789			u32 addr_high, addr_low;
2790
2791			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2792			if (!(addr_high & E1000_RAH_AV))
2793				continue;
2794			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2795			mac_addr[0] = (addr_low & 0xFF);
2796			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2797			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2798			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2799			mac_addr[4] = (addr_high & 0xFF);
2800			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2801
2802			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2803					e1000_calc_rx_da_crc(mac_addr));
2804		}
2805
2806		/* Write Rx addresses to the PHY */
2807		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2808
2809		/* Enable jumbo frame workaround in the MAC */
2810		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2811		mac_reg &= ~(1 << 14);
2812		mac_reg |= (7 << 15);
2813		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2814
2815		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2816		mac_reg |= E1000_RCTL_SECRC;
2817		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2818
2819		ret_val = e1000_read_kmrn_reg_generic(hw,
2820						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2821						&data);
2822		if (ret_val)
2823			return ret_val;
2824		ret_val = e1000_write_kmrn_reg_generic(hw,
2825						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2826						data | (1 << 0));
2827		if (ret_val)
2828			return ret_val;
2829		ret_val = e1000_read_kmrn_reg_generic(hw,
2830						E1000_KMRNCTRLSTA_HD_CTRL,
2831						&data);
2832		if (ret_val)
2833			return ret_val;
2834		data &= ~(0xF << 8);
2835		data |= (0xB << 8);
2836		ret_val = e1000_write_kmrn_reg_generic(hw,
2837						E1000_KMRNCTRLSTA_HD_CTRL,
2838						data);
2839		if (ret_val)
2840			return ret_val;
2841
2842		/* Enable jumbo frame workaround in the PHY */
2843		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2844		data &= ~(0x7F << 5);
2845		data |= (0x37 << 5);
2846		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2847		if (ret_val)
2848			return ret_val;
2849		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2850		data &= ~(1 << 13);
2851		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2852		if (ret_val)
2853			return ret_val;
2854		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2855		data &= ~(0x3FF << 2);
2856		data |= (E1000_TX_PTR_GAP << 2);
2857		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2858		if (ret_val)
2859			return ret_val;
2860		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2861		if (ret_val)
2862			return ret_val;
2863		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2864		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2865						(1 << 10));
2866		if (ret_val)
2867			return ret_val;
2868	} else {
2869		/* Write MAC register values back to h/w defaults */
2870		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2871		mac_reg &= ~(0xF << 14);
2872		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2873
2874		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2875		mac_reg &= ~E1000_RCTL_SECRC;
2876		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2877
2878		ret_val = e1000_read_kmrn_reg_generic(hw,
2879						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2880						&data);
2881		if (ret_val)
2882			return ret_val;
2883		ret_val = e1000_write_kmrn_reg_generic(hw,
2884						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2885						data & ~(1 << 0));
2886		if (ret_val)
2887			return ret_val;
2888		ret_val = e1000_read_kmrn_reg_generic(hw,
2889						E1000_KMRNCTRLSTA_HD_CTRL,
2890						&data);
2891		if (ret_val)
2892			return ret_val;
2893		data &= ~(0xF << 8);
2894		data |= (0xB << 8);
2895		ret_val = e1000_write_kmrn_reg_generic(hw,
2896						E1000_KMRNCTRLSTA_HD_CTRL,
2897						data);
2898		if (ret_val)
2899			return ret_val;
2900
2901		/* Write PHY register values back to h/w defaults */
2902		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2903		data &= ~(0x7F << 5);
2904		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2905		if (ret_val)
2906			return ret_val;
2907		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2908		data |= (1 << 13);
2909		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2910		if (ret_val)
2911			return ret_val;
2912		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2913		data &= ~(0x3FF << 2);
2914		data |= (0x8 << 2);
2915		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2916		if (ret_val)
2917			return ret_val;
2918		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2919		if (ret_val)
2920			return ret_val;
2921		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2922		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2923						~(1 << 10));
2924		if (ret_val)
2925			return ret_val;
2926	}
2927
2928	/* re-enable Rx path after enabling/disabling workaround */
2929	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2930				     ~(1 << 14));
2931}
2932
2933/**
2934 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2935 *  done after every PHY reset.
2936 **/
2937static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2938{
2939	s32 ret_val = E1000_SUCCESS;
2940
2941	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2942
2943	if (hw->mac.type != e1000_pch2lan)
2944		return E1000_SUCCESS;
2945
2946	/* Set MDIO slow mode before any other MDIO access */
2947	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2948	if (ret_val)
2949		return ret_val;
2950
2951	ret_val = hw->phy.ops.acquire(hw);
2952	if (ret_val)
2953		return ret_val;
2954	/* set MSE higher to enable link to stay up when noise is high */
2955	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2956	if (ret_val)
2957		goto release;
2958	/* drop link after 5 times MSE threshold was reached */
2959	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2960release:
2961	hw->phy.ops.release(hw);
2962
2963	return ret_val;
2964}
2965
2966/**
2967 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2968 *  @hw:   pointer to the HW structure
2969 *
2970 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2971 *  Disable K1 for 1000 and 100 speeds
2972 **/
2973static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2974{
2975	s32 ret_val = E1000_SUCCESS;
2976	u16 status_reg = 0;
2977
2978	DEBUGFUNC("e1000_k1_workaround_lv");
2979
2980	if (hw->mac.type != e1000_pch2lan)
2981		return E1000_SUCCESS;
2982
2983	/* Set K1 beacon duration based on 10Mbs speed */
2984	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2985	if (ret_val)
2986		return ret_val;
2987
2988	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2989	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2990		if (status_reg &
2991		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2992			u16 pm_phy_reg;
2993
2994			/* LV 1G/100 Packet drop issue wa  */
2995			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2996						       &pm_phy_reg);
2997			if (ret_val)
2998				return ret_val;
2999			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3000			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3001							pm_phy_reg);
3002			if (ret_val)
3003				return ret_val;
3004		} else {
3005			u32 mac_reg;
3006			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3007			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3008			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3009			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3010		}
3011	}
3012
3013	return ret_val;
3014}
3015
3016/**
3017 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3018 *  @hw:   pointer to the HW structure
3019 *  @gate: boolean set to TRUE to gate, FALSE to ungate
3020 *
3021 *  Gate/ungate the automatic PHY configuration via hardware; perform
3022 *  the configuration via software instead.
3023 **/
3024static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3025{
3026	u32 extcnf_ctrl;
3027
3028	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3029
3030	if (hw->mac.type < e1000_pch2lan)
3031		return;
3032
3033	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3034
3035	if (gate)
3036		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3037	else
3038		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3039
3040	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3041}
3042
3043/**
3044 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3045 *  @hw: pointer to the HW structure
3046 *
3047 *  Check the appropriate indication the MAC has finished configuring the
3048 *  PHY after a software reset.
3049 **/
3050static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3051{
3052	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3053
3054	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3055
3056	/* Wait for basic configuration completes before proceeding */
3057	do {
3058		data = E1000_READ_REG(hw, E1000_STATUS);
3059		data &= E1000_STATUS_LAN_INIT_DONE;
3060		usec_delay(100);
3061	} while ((!data) && --loop);
3062
3063	/* If basic configuration is incomplete before the above loop
3064	 * count reaches 0, loading the configuration from NVM will
3065	 * leave the PHY in a bad state possibly resulting in no link.
3066	 */
3067	if (loop == 0)
3068		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3069
3070	/* Clear the Init Done bit for the next init event */
3071	data = E1000_READ_REG(hw, E1000_STATUS);
3072	data &= ~E1000_STATUS_LAN_INIT_DONE;
3073	E1000_WRITE_REG(hw, E1000_STATUS, data);
3074}
3075
3076/**
3077 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3078 *  @hw: pointer to the HW structure
3079 **/
3080static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3081{
3082	s32 ret_val = E1000_SUCCESS;
3083	u16 reg;
3084
3085	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3086
3087	if (hw->phy.ops.check_reset_block(hw))
3088		return E1000_SUCCESS;
3089
3090	/* Allow time for h/w to get to quiescent state after reset */
3091	msec_delay(10);
3092
3093	/* Perform any necessary post-reset workarounds */
3094	switch (hw->mac.type) {
3095	case e1000_pchlan:
3096		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3097		if (ret_val)
3098			return ret_val;
3099		break;
3100	case e1000_pch2lan:
3101		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3102		if (ret_val)
3103			return ret_val;
3104		break;
3105	default:
3106		break;
3107	}
3108
3109	/* Clear the host wakeup bit after lcd reset */
3110	if (hw->mac.type >= e1000_pchlan) {
3111		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3112		reg &= ~BM_WUC_HOST_WU_BIT;
3113		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3114	}
3115
3116	/* Configure the LCD with the extended configuration region in NVM */
3117	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3118	if (ret_val)
3119		return ret_val;
3120
3121	/* Configure the LCD with the OEM bits in NVM */
3122	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3123
3124	if (hw->mac.type == e1000_pch2lan) {
3125		/* Ungate automatic PHY configuration on non-managed 82579 */
3126		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3127		    E1000_ICH_FWSM_FW_VALID)) {
3128			msec_delay(10);
3129			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3130		}
3131
3132		/* Set EEE LPI Update Timer to 200usec */
3133		ret_val = hw->phy.ops.acquire(hw);
3134		if (ret_val)
3135			return ret_val;
3136		ret_val = e1000_write_emi_reg_locked(hw,
3137						     I82579_LPI_UPDATE_TIMER,
3138						     0x1387);
3139		hw->phy.ops.release(hw);
3140	}
3141
3142	return ret_val;
3143}
3144
3145/**
3146 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3147 *  @hw: pointer to the HW structure
3148 *
3149 *  Resets the PHY
3150 *  This is a function pointer entry point called by drivers
3151 *  or other shared routines.
3152 **/
3153static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3154{
3155	s32 ret_val = E1000_SUCCESS;
3156
3157	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3158
3159	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3160	if ((hw->mac.type == e1000_pch2lan) &&
3161	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3162		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3163
3164	ret_val = e1000_phy_hw_reset_generic(hw);
3165	if (ret_val)
3166		return ret_val;
3167
3168	return e1000_post_phy_reset_ich8lan(hw);
3169}
3170
3171/**
3172 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3173 *  @hw: pointer to the HW structure
3174 *  @active: TRUE to enable LPLU, FALSE to disable
3175 *
3176 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3177 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3178 *  the phy speed. This function will manually set the LPLU bit and restart
3179 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3180 *  since it configures the same bit.
3181 **/
3182static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3183{
3184	s32 ret_val;
3185	u16 oem_reg;
3186
3187	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3188	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3189	if (ret_val)
3190		return ret_val;
3191
3192	if (active)
3193		oem_reg |= HV_OEM_BITS_LPLU;
3194	else
3195		oem_reg &= ~HV_OEM_BITS_LPLU;
3196
3197	if (!hw->phy.ops.check_reset_block(hw))
3198		oem_reg |= HV_OEM_BITS_RESTART_AN;
3199
3200	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3201}
3202
3203/**
3204 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3205 *  @hw: pointer to the HW structure
3206 *  @active: TRUE to enable LPLU, FALSE to disable
3207 *
3208 *  Sets the LPLU D0 state according to the active flag.  When
3209 *  activating LPLU this function also disables smart speed
3210 *  and vice versa.  LPLU will not be activated unless the
3211 *  device autonegotiation advertisement meets standards of
3212 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3213 *  This is a function pointer entry point only called by
3214 *  PHY setup routines.
3215 **/
3216static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3217{
3218	struct e1000_phy_info *phy = &hw->phy;
3219	u32 phy_ctrl;
3220	s32 ret_val = E1000_SUCCESS;
3221	u16 data;
3222
3223	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3224
3225	if (phy->type == e1000_phy_ife)
3226		return E1000_SUCCESS;
3227
3228	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3229
3230	if (active) {
3231		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3232		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3233
3234		if (phy->type != e1000_phy_igp_3)
3235			return E1000_SUCCESS;
3236
3237		/* Call gig speed drop workaround on LPLU before accessing
3238		 * any PHY registers
3239		 */
3240		if (hw->mac.type == e1000_ich8lan)
3241			e1000_gig_downshift_workaround_ich8lan(hw);
3242
3243		/* When LPLU is enabled, we should disable SmartSpeed */
3244		ret_val = phy->ops.read_reg(hw,
3245					    IGP01E1000_PHY_PORT_CONFIG,
3246					    &data);
3247		if (ret_val)
3248			return ret_val;
3249		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3250		ret_val = phy->ops.write_reg(hw,
3251					     IGP01E1000_PHY_PORT_CONFIG,
3252					     data);
3253		if (ret_val)
3254			return ret_val;
3255	} else {
3256		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3257		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3258
3259		if (phy->type != e1000_phy_igp_3)
3260			return E1000_SUCCESS;
3261
3262		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3263		 * during Dx states where the power conservation is most
3264		 * important.  During driver activity we should enable
3265		 * SmartSpeed, so performance is maintained.
3266		 */
3267		if (phy->smart_speed == e1000_smart_speed_on) {
3268			ret_val = phy->ops.read_reg(hw,
3269						    IGP01E1000_PHY_PORT_CONFIG,
3270						    &data);
3271			if (ret_val)
3272				return ret_val;
3273
3274			data |= IGP01E1000_PSCFR_SMART_SPEED;
3275			ret_val = phy->ops.write_reg(hw,
3276						     IGP01E1000_PHY_PORT_CONFIG,
3277						     data);
3278			if (ret_val)
3279				return ret_val;
3280		} else if (phy->smart_speed == e1000_smart_speed_off) {
3281			ret_val = phy->ops.read_reg(hw,
3282						    IGP01E1000_PHY_PORT_CONFIG,
3283						    &data);
3284			if (ret_val)
3285				return ret_val;
3286
3287			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3288			ret_val = phy->ops.write_reg(hw,
3289						     IGP01E1000_PHY_PORT_CONFIG,
3290						     data);
3291			if (ret_val)
3292				return ret_val;
3293		}
3294	}
3295
3296	return E1000_SUCCESS;
3297}
3298
3299/**
3300 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3301 *  @hw: pointer to the HW structure
3302 *  @active: TRUE to enable LPLU, FALSE to disable
3303 *
3304 *  Sets the LPLU D3 state according to the active flag.  When
3305 *  activating LPLU this function also disables smart speed
3306 *  and vice versa.  LPLU will not be activated unless the
3307 *  device autonegotiation advertisement meets standards of
3308 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3309 *  This is a function pointer entry point only called by
3310 *  PHY setup routines.
3311 **/
3312static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3313{
3314	struct e1000_phy_info *phy = &hw->phy;
3315	u32 phy_ctrl;
3316	s32 ret_val = E1000_SUCCESS;
3317	u16 data;
3318
3319	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3320
3321	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3322
3323	if (!active) {
3324		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3325		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3326
3327		if (phy->type != e1000_phy_igp_3)
3328			return E1000_SUCCESS;
3329
3330		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3331		 * during Dx states where the power conservation is most
3332		 * important.  During driver activity we should enable
3333		 * SmartSpeed, so performance is maintained.
3334		 */
3335		if (phy->smart_speed == e1000_smart_speed_on) {
3336			ret_val = phy->ops.read_reg(hw,
3337						    IGP01E1000_PHY_PORT_CONFIG,
3338						    &data);
3339			if (ret_val)
3340				return ret_val;
3341
3342			data |= IGP01E1000_PSCFR_SMART_SPEED;
3343			ret_val = phy->ops.write_reg(hw,
3344						     IGP01E1000_PHY_PORT_CONFIG,
3345						     data);
3346			if (ret_val)
3347				return ret_val;
3348		} else if (phy->smart_speed == e1000_smart_speed_off) {
3349			ret_val = phy->ops.read_reg(hw,
3350						    IGP01E1000_PHY_PORT_CONFIG,
3351						    &data);
3352			if (ret_val)
3353				return ret_val;
3354
3355			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3356			ret_val = phy->ops.write_reg(hw,
3357						     IGP01E1000_PHY_PORT_CONFIG,
3358						     data);
3359			if (ret_val)
3360				return ret_val;
3361		}
3362	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3363		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3364		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3365		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3366		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3367
3368		if (phy->type != e1000_phy_igp_3)
3369			return E1000_SUCCESS;
3370
3371		/* Call gig speed drop workaround on LPLU before accessing
3372		 * any PHY registers
3373		 */
3374		if (hw->mac.type == e1000_ich8lan)
3375			e1000_gig_downshift_workaround_ich8lan(hw);
3376
3377		/* When LPLU is enabled, we should disable SmartSpeed */
3378		ret_val = phy->ops.read_reg(hw,
3379					    IGP01E1000_PHY_PORT_CONFIG,
3380					    &data);
3381		if (ret_val)
3382			return ret_val;
3383
3384		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3385		ret_val = phy->ops.write_reg(hw,
3386					     IGP01E1000_PHY_PORT_CONFIG,
3387					     data);
3388	}
3389
3390	return ret_val;
3391}
3392
3393/**
3394 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3395 *  @hw: pointer to the HW structure
3396 *  @bank:  pointer to the variable that returns the active bank
3397 *
3398 *  Reads signature byte from the NVM using the flash access registers.
3399 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3400 **/
3401static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3402{
3403	u32 eecd;
3404	struct e1000_nvm_info *nvm = &hw->nvm;
3405	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3406	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3407	u32 nvm_dword = 0;
3408	u8 sig_byte = 0;
3409	s32 ret_val;
3410
3411	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3412
3413	switch (hw->mac.type) {
3414	case e1000_pch_spt:
3415		bank1_offset = nvm->flash_bank_size;
3416		act_offset = E1000_ICH_NVM_SIG_WORD;
3417
3418		/* set bank to 0 in case flash read fails */
3419		*bank = 0;
3420
3421		/* Check bank 0 */
3422		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3423							 &nvm_dword);
3424		if (ret_val)
3425			return ret_val;
3426		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3427		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3428		    E1000_ICH_NVM_SIG_VALUE) {
3429			*bank = 0;
3430			return E1000_SUCCESS;
3431		}
3432
3433		/* Check bank 1 */
3434		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3435							 bank1_offset,
3436							 &nvm_dword);
3437		if (ret_val)
3438			return ret_val;
3439		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3440		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3441		    E1000_ICH_NVM_SIG_VALUE) {
3442			*bank = 1;
3443			return E1000_SUCCESS;
3444		}
3445
3446		DEBUGOUT("ERROR: No valid NVM bank present\n");
3447		return -E1000_ERR_NVM;
3448	case e1000_ich8lan:
3449	case e1000_ich9lan:
3450		eecd = E1000_READ_REG(hw, E1000_EECD);
3451		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3452		    E1000_EECD_SEC1VAL_VALID_MASK) {
3453			if (eecd & E1000_EECD_SEC1VAL)
3454				*bank = 1;
3455			else
3456				*bank = 0;
3457
3458			return E1000_SUCCESS;
3459		}
3460		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3461		/* fall-thru */
3462	default:
3463		/* set bank to 0 in case flash read fails */
3464		*bank = 0;
3465
3466		/* Check bank 0 */
3467		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3468							&sig_byte);
3469		if (ret_val)
3470			return ret_val;
3471		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3472		    E1000_ICH_NVM_SIG_VALUE) {
3473			*bank = 0;
3474			return E1000_SUCCESS;
3475		}
3476
3477		/* Check bank 1 */
3478		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3479							bank1_offset,
3480							&sig_byte);
3481		if (ret_val)
3482			return ret_val;
3483		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3484		    E1000_ICH_NVM_SIG_VALUE) {
3485			*bank = 1;
3486			return E1000_SUCCESS;
3487		}
3488
3489		DEBUGOUT("ERROR: No valid NVM bank present\n");
3490		return -E1000_ERR_NVM;
3491	}
3492}
3493
3494/**
3495 *  e1000_read_nvm_spt - NVM access for SPT
3496 *  @hw: pointer to the HW structure
3497 *  @offset: The offset (in bytes) of the word(s) to read.
3498 *  @words: Size of data to read in words.
3499 *  @data: pointer to the word(s) to read at offset.
3500 *
3501 *  Reads a word(s) from the NVM
3502 **/
3503static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3504			      u16 *data)
3505{
3506	struct e1000_nvm_info *nvm = &hw->nvm;
3507	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3508	u32 act_offset;
3509	s32 ret_val = E1000_SUCCESS;
3510	u32 bank = 0;
3511	u32 dword = 0;
3512	u16 offset_to_read;
3513	u16 i;
3514
3515	DEBUGFUNC("e1000_read_nvm_spt");
3516
3517	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3518	    (words == 0)) {
3519		DEBUGOUT("nvm parameter(s) out of bounds\n");
3520		ret_val = -E1000_ERR_NVM;
3521		goto out;
3522	}
3523
3524	nvm->ops.acquire(hw);
3525
3526	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3527	if (ret_val != E1000_SUCCESS) {
3528		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3529		bank = 0;
3530	}
3531
3532	act_offset = (bank) ? nvm->flash_bank_size : 0;
3533	act_offset += offset;
3534
3535	ret_val = E1000_SUCCESS;
3536
3537	for (i = 0; i < words; i += 2) {
3538		if (words - i == 1) {
3539			if (dev_spec->shadow_ram[offset+i].modified) {
3540				data[i] = dev_spec->shadow_ram[offset+i].value;
3541			} else {
3542				offset_to_read = act_offset + i -
3543						 ((act_offset + i) % 2);
3544				ret_val =
3545				   e1000_read_flash_dword_ich8lan(hw,
3546								 offset_to_read,
3547								 &dword);
3548				if (ret_val)
3549					break;
3550				if ((act_offset + i) % 2 == 0)
3551					data[i] = (u16)(dword & 0xFFFF);
3552				else
3553					data[i] = (u16)((dword >> 16) & 0xFFFF);
3554			}
3555		} else {
3556			offset_to_read = act_offset + i;
3557			if (!(dev_spec->shadow_ram[offset+i].modified) ||
3558			    !(dev_spec->shadow_ram[offset+i+1].modified)) {
3559				ret_val =
3560				   e1000_read_flash_dword_ich8lan(hw,
3561								 offset_to_read,
3562								 &dword);
3563				if (ret_val)
3564					break;
3565			}
3566			if (dev_spec->shadow_ram[offset+i].modified)
3567				data[i] = dev_spec->shadow_ram[offset+i].value;
3568			else
3569				data[i] = (u16) (dword & 0xFFFF);
3570			if (dev_spec->shadow_ram[offset+i].modified)
3571				data[i+1] =
3572				   dev_spec->shadow_ram[offset+i+1].value;
3573			else
3574				data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3575		}
3576	}
3577
3578	nvm->ops.release(hw);
3579
3580out:
3581	if (ret_val)
3582		DEBUGOUT1("NVM read error: %d\n", ret_val);
3583
3584	return ret_val;
3585}
3586
3587/**
3588 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3589 *  @hw: pointer to the HW structure
3590 *  @offset: The offset (in bytes) of the word(s) to read.
3591 *  @words: Size of data to read in words
3592 *  @data: Pointer to the word(s) to read at offset.
3593 *
3594 *  Reads a word(s) from the NVM using the flash access registers.
3595 **/
3596static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3597				  u16 *data)
3598{
3599	struct e1000_nvm_info *nvm = &hw->nvm;
3600	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3601	u32 act_offset;
3602	s32 ret_val = E1000_SUCCESS;
3603	u32 bank = 0;
3604	u16 i, word;
3605
3606	DEBUGFUNC("e1000_read_nvm_ich8lan");
3607
3608	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3609	    (words == 0)) {
3610		DEBUGOUT("nvm parameter(s) out of bounds\n");
3611		ret_val = -E1000_ERR_NVM;
3612		goto out;
3613	}
3614
3615	nvm->ops.acquire(hw);
3616
3617	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3618	if (ret_val != E1000_SUCCESS) {
3619		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3620		bank = 0;
3621	}
3622
3623	act_offset = (bank) ? nvm->flash_bank_size : 0;
3624	act_offset += offset;
3625
3626	ret_val = E1000_SUCCESS;
3627	for (i = 0; i < words; i++) {
3628		if (dev_spec->shadow_ram[offset+i].modified) {
3629			data[i] = dev_spec->shadow_ram[offset+i].value;
3630		} else {
3631			ret_val = e1000_read_flash_word_ich8lan(hw,
3632								act_offset + i,
3633								&word);
3634			if (ret_val)
3635				break;
3636			data[i] = word;
3637		}
3638	}
3639
3640	nvm->ops.release(hw);
3641
3642out:
3643	if (ret_val)
3644		DEBUGOUT1("NVM read error: %d\n", ret_val);
3645
3646	return ret_val;
3647}
3648
3649/**
3650 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3651 *  @hw: pointer to the HW structure
3652 *
3653 *  This function does initial flash setup so that a new read/write/erase cycle
3654 *  can be started.
3655 **/
3656static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3657{
3658	union ich8_hws_flash_status hsfsts;
3659	s32 ret_val = -E1000_ERR_NVM;
3660
3661	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3662
3663	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3664
3665	/* Check if the flash descriptor is valid */
3666	if (!hsfsts.hsf_status.fldesvalid) {
3667		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3668		return -E1000_ERR_NVM;
3669	}
3670
3671	/* Clear FCERR and DAEL in hw status by writing 1 */
3672	hsfsts.hsf_status.flcerr = 1;
3673	hsfsts.hsf_status.dael = 1;
3674	if (hw->mac.type == e1000_pch_spt)
3675		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3676				      hsfsts.regval & 0xFFFF);
3677	else
3678		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3679
3680	/* Either we should have a hardware SPI cycle in progress
3681	 * bit to check against, in order to start a new cycle or
3682	 * FDONE bit should be changed in the hardware so that it
3683	 * is 1 after hardware reset, which can then be used as an
3684	 * indication whether a cycle is in progress or has been
3685	 * completed.
3686	 */
3687
3688	if (!hsfsts.hsf_status.flcinprog) {
3689		/* There is no cycle running at present,
3690		 * so we can start a cycle.
3691		 * Begin by setting Flash Cycle Done.
3692		 */
3693		hsfsts.hsf_status.flcdone = 1;
3694		if (hw->mac.type == e1000_pch_spt)
3695			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3696					      hsfsts.regval & 0xFFFF);
3697		else
3698			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3699						hsfsts.regval);
3700		ret_val = E1000_SUCCESS;
3701	} else {
3702		s32 i;
3703
3704		/* Otherwise poll for sometime so the current
3705		 * cycle has a chance to end before giving up.
3706		 */
3707		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3708			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3709							      ICH_FLASH_HSFSTS);
3710			if (!hsfsts.hsf_status.flcinprog) {
3711				ret_val = E1000_SUCCESS;
3712				break;
3713			}
3714			usec_delay(1);
3715		}
3716		if (ret_val == E1000_SUCCESS) {
3717			/* Successful in waiting for previous cycle to timeout,
3718			 * now set the Flash Cycle Done.
3719			 */
3720			hsfsts.hsf_status.flcdone = 1;
3721			if (hw->mac.type == e1000_pch_spt)
3722				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3723						      hsfsts.regval & 0xFFFF);
3724			else
3725				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3726							hsfsts.regval);
3727		} else {
3728			DEBUGOUT("Flash controller busy, cannot get access\n");
3729		}
3730	}
3731
3732	return ret_val;
3733}
3734
3735/**
3736 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3737 *  @hw: pointer to the HW structure
3738 *  @timeout: maximum time to wait for completion
3739 *
3740 *  This function starts a flash cycle and waits for its completion.
3741 **/
3742static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3743{
3744	union ich8_hws_flash_ctrl hsflctl;
3745	union ich8_hws_flash_status hsfsts;
3746	u32 i = 0;
3747
3748	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3749
3750	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3751	if (hw->mac.type == e1000_pch_spt)
3752		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3753	else
3754		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3755	hsflctl.hsf_ctrl.flcgo = 1;
3756
3757	if (hw->mac.type == e1000_pch_spt)
3758		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3759				      hsflctl.regval << 16);
3760	else
3761		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3762
3763	/* wait till FDONE bit is set to 1 */
3764	do {
3765		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3766		if (hsfsts.hsf_status.flcdone)
3767			break;
3768		usec_delay(1);
3769	} while (i++ < timeout);
3770
3771	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3772		return E1000_SUCCESS;
3773
3774	return -E1000_ERR_NVM;
3775}
3776
3777/**
3778 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3779 *  @hw: pointer to the HW structure
3780 *  @offset: offset to data location
3781 *  @data: pointer to the location for storing the data
3782 *
3783 *  Reads the flash dword at offset into data.  Offset is converted
3784 *  to bytes before read.
3785 **/
3786static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3787					  u32 *data)
3788{
3789	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3790
3791	if (!data)
3792		return -E1000_ERR_NVM;
3793
3794	/* Must convert word offset into bytes. */
3795	offset <<= 1;
3796
3797	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3798}
3799
3800/**
3801 *  e1000_read_flash_word_ich8lan - Read word from flash
3802 *  @hw: pointer to the HW structure
3803 *  @offset: offset to data location
3804 *  @data: pointer to the location for storing the data
3805 *
3806 *  Reads the flash word at offset into data.  Offset is converted
3807 *  to bytes before read.
3808 **/
3809static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3810					 u16 *data)
3811{
3812	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3813
3814	if (!data)
3815		return -E1000_ERR_NVM;
3816
3817	/* Must convert offset into bytes. */
3818	offset <<= 1;
3819
3820	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3821}
3822
3823/**
3824 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3825 *  @hw: pointer to the HW structure
3826 *  @offset: The offset of the byte to read.
3827 *  @data: Pointer to a byte to store the value read.
3828 *
3829 *  Reads a single byte from the NVM using the flash access registers.
3830 **/
3831static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3832					 u8 *data)
3833{
3834	s32 ret_val;
3835	u16 word = 0;
3836
3837	/* In SPT, only 32 bits access is supported,
3838	 * so this function should not be called.
3839	 */
3840	if (hw->mac.type == e1000_pch_spt)
3841		return -E1000_ERR_NVM;
3842	else
3843		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3844
3845	if (ret_val)
3846		return ret_val;
3847
3848	*data = (u8)word;
3849
3850	return E1000_SUCCESS;
3851}
3852
3853/**
3854 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3855 *  @hw: pointer to the HW structure
3856 *  @offset: The offset (in bytes) of the byte or word to read.
3857 *  @size: Size of data to read, 1=byte 2=word
3858 *  @data: Pointer to the word to store the value read.
3859 *
3860 *  Reads a byte or word from the NVM using the flash access registers.
3861 **/
3862static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3863					 u8 size, u16 *data)
3864{
3865	union ich8_hws_flash_status hsfsts;
3866	union ich8_hws_flash_ctrl hsflctl;
3867	u32 flash_linear_addr;
3868	u32 flash_data = 0;
3869	s32 ret_val = -E1000_ERR_NVM;
3870	u8 count = 0;
3871
3872	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3873
3874	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3875		return -E1000_ERR_NVM;
3876	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3877			     hw->nvm.flash_base_addr);
3878
3879	do {
3880		usec_delay(1);
3881		/* Steps */
3882		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3883		if (ret_val != E1000_SUCCESS)
3884			break;
3885		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3886
3887		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3888		hsflctl.hsf_ctrl.fldbcount = size - 1;
3889		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3890		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3891		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3892
3893		ret_val = e1000_flash_cycle_ich8lan(hw,
3894						ICH_FLASH_READ_COMMAND_TIMEOUT);
3895
3896		/* Check if FCERR is set to 1, if set to 1, clear it
3897		 * and try the whole sequence a few more times, else
3898		 * read in (shift in) the Flash Data0, the order is
3899		 * least significant byte first msb to lsb
3900		 */
3901		if (ret_val == E1000_SUCCESS) {
3902			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3903			if (size == 1)
3904				*data = (u8)(flash_data & 0x000000FF);
3905			else if (size == 2)
3906				*data = (u16)(flash_data & 0x0000FFFF);
3907			break;
3908		} else {
3909			/* If we've gotten here, then things are probably
3910			 * completely hosed, but if the error condition is
3911			 * detected, it won't hurt to give it another try...
3912			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3913			 */
3914			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3915							      ICH_FLASH_HSFSTS);
3916			if (hsfsts.hsf_status.flcerr) {
3917				/* Repeat for some time before giving up. */
3918				continue;
3919			} else if (!hsfsts.hsf_status.flcdone) {
3920				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3921				break;
3922			}
3923		}
3924	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3925
3926	return ret_val;
3927}
3928
3929/**
3930 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3931 *  @hw: pointer to the HW structure
3932 *  @offset: The offset (in bytes) of the dword to read.
3933 *  @data: Pointer to the dword to store the value read.
3934 *
3935 *  Reads a byte or word from the NVM using the flash access registers.
3936 **/
3937static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3938					   u32 *data)
3939{
3940	union ich8_hws_flash_status hsfsts;
3941	union ich8_hws_flash_ctrl hsflctl;
3942	u32 flash_linear_addr;
3943	s32 ret_val = -E1000_ERR_NVM;
3944	u8 count = 0;
3945
3946	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3947
3948		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3949		    hw->mac.type != e1000_pch_spt)
3950			return -E1000_ERR_NVM;
3951	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3952			     hw->nvm.flash_base_addr);
3953
3954	do {
3955		usec_delay(1);
3956		/* Steps */
3957		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3958		if (ret_val != E1000_SUCCESS)
3959			break;
3960		/* In SPT, This register is in Lan memory space, not flash.
3961		 * Therefore, only 32 bit access is supported
3962		 */
3963		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3964
3965		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3966		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3967		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3968		/* In SPT, This register is in Lan memory space, not flash.
3969		 * Therefore, only 32 bit access is supported
3970		 */
3971		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3972				      (u32)hsflctl.regval << 16);
3973		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3974
3975		ret_val = e1000_flash_cycle_ich8lan(hw,
3976						ICH_FLASH_READ_COMMAND_TIMEOUT);
3977
3978		/* Check if FCERR is set to 1, if set to 1, clear it
3979		 * and try the whole sequence a few more times, else
3980		 * read in (shift in) the Flash Data0, the order is
3981		 * least significant byte first msb to lsb
3982		 */
3983		if (ret_val == E1000_SUCCESS) {
3984			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3985			break;
3986		} else {
3987			/* If we've gotten here, then things are probably
3988			 * completely hosed, but if the error condition is
3989			 * detected, it won't hurt to give it another try...
3990			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3991			 */
3992			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3993							      ICH_FLASH_HSFSTS);
3994			if (hsfsts.hsf_status.flcerr) {
3995				/* Repeat for some time before giving up. */
3996				continue;
3997			} else if (!hsfsts.hsf_status.flcdone) {
3998				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3999				break;
4000			}
4001		}
4002	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4003
4004	return ret_val;
4005}
4006
4007/**
4008 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4009 *  @hw: pointer to the HW structure
4010 *  @offset: The offset (in bytes) of the word(s) to write.
4011 *  @words: Size of data to write in words
4012 *  @data: Pointer to the word(s) to write at offset.
4013 *
4014 *  Writes a byte or word to the NVM using the flash access registers.
4015 **/
4016static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4017				   u16 *data)
4018{
4019	struct e1000_nvm_info *nvm = &hw->nvm;
4020	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4021	u16 i;
4022
4023	DEBUGFUNC("e1000_write_nvm_ich8lan");
4024
4025	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4026	    (words == 0)) {
4027		DEBUGOUT("nvm parameter(s) out of bounds\n");
4028		return -E1000_ERR_NVM;
4029	}
4030
4031	nvm->ops.acquire(hw);
4032
4033	for (i = 0; i < words; i++) {
4034		dev_spec->shadow_ram[offset+i].modified = TRUE;
4035		dev_spec->shadow_ram[offset+i].value = data[i];
4036	}
4037
4038	nvm->ops.release(hw);
4039
4040	return E1000_SUCCESS;
4041}
4042
4043/**
4044 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4045 *  @hw: pointer to the HW structure
4046 *
4047 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4048 *  which writes the checksum to the shadow ram.  The changes in the shadow
4049 *  ram are then committed to the EEPROM by processing each bank at a time
4050 *  checking for the modified bit and writing only the pending changes.
4051 *  After a successful commit, the shadow ram is cleared and is ready for
4052 *  future writes.
4053 **/
4054static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4055{
4056	struct e1000_nvm_info *nvm = &hw->nvm;
4057	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4058	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4059	s32 ret_val;
4060	u32 dword = 0;
4061
4062	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4063
4064	ret_val = e1000_update_nvm_checksum_generic(hw);
4065	if (ret_val)
4066		goto out;
4067
4068	if (nvm->type != e1000_nvm_flash_sw)
4069		goto out;
4070
4071	nvm->ops.acquire(hw);
4072
4073	/* We're writing to the opposite bank so if we're on bank 1,
4074	 * write to bank 0 etc.  We also need to erase the segment that
4075	 * is going to be written
4076	 */
4077	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4078	if (ret_val != E1000_SUCCESS) {
4079		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4080		bank = 0;
4081	}
4082
4083	if (bank == 0) {
4084		new_bank_offset = nvm->flash_bank_size;
4085		old_bank_offset = 0;
4086		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4087		if (ret_val)
4088			goto release;
4089	} else {
4090		old_bank_offset = nvm->flash_bank_size;
4091		new_bank_offset = 0;
4092		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4093		if (ret_val)
4094			goto release;
4095	}
4096	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4097		/* Determine whether to write the value stored
4098		 * in the other NVM bank or a modified value stored
4099		 * in the shadow RAM
4100		 */
4101		ret_val = e1000_read_flash_dword_ich8lan(hw,
4102							 i + old_bank_offset,
4103							 &dword);
4104
4105		if (dev_spec->shadow_ram[i].modified) {
4106			dword &= 0xffff0000;
4107			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4108		}
4109		if (dev_spec->shadow_ram[i + 1].modified) {
4110			dword &= 0x0000ffff;
4111			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4112				  << 16);
4113		}
4114		if (ret_val)
4115			break;
4116
4117		/* If the word is 0x13, then make sure the signature bits
4118		 * (15:14) are 11b until the commit has completed.
4119		 * This will allow us to write 10b which indicates the
4120		 * signature is valid.  We want to do this after the write
4121		 * has completed so that we don't mark the segment valid
4122		 * while the write is still in progress
4123		 */
4124		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4125			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4126
4127		/* Convert offset to bytes. */
4128		act_offset = (i + new_bank_offset) << 1;
4129
4130		usec_delay(100);
4131
4132		/* Write the data to the new bank. Offset in words*/
4133		act_offset = i + new_bank_offset;
4134		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4135								dword);
4136		if (ret_val)
4137			break;
4138	 }
4139
4140	/* Don't bother writing the segment valid bits if sector
4141	 * programming failed.
4142	 */
4143	if (ret_val) {
4144		DEBUGOUT("Flash commit failed.\n");
4145		goto release;
4146	}
4147
4148	/* Finally validate the new segment by setting bit 15:14
4149	 * to 10b in word 0x13 , this can be done without an
4150	 * erase as well since these bits are 11 to start with
4151	 * and we need to change bit 14 to 0b
4152	 */
4153	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4154
4155	/*offset in words but we read dword*/
4156	--act_offset;
4157	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4158
4159	if (ret_val)
4160		goto release;
4161
4162	dword &= 0xBFFFFFFF;
4163	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4164
4165	if (ret_val)
4166		goto release;
4167
4168	/* And invalidate the previously valid segment by setting
4169	 * its signature word (0x13) high_byte to 0b. This can be
4170	 * done without an erase because flash erase sets all bits
4171	 * to 1's. We can write 1's to 0's without an erase
4172	 */
4173	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4174
4175	/* offset in words but we read dword*/
4176	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4177	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4178
4179	if (ret_val)
4180		goto release;
4181
4182	dword &= 0x00FFFFFF;
4183	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4184
4185	if (ret_val)
4186		goto release;
4187
4188	/* Great!  Everything worked, we can now clear the cached entries. */
4189	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4190		dev_spec->shadow_ram[i].modified = FALSE;
4191		dev_spec->shadow_ram[i].value = 0xFFFF;
4192	}
4193
4194release:
4195	nvm->ops.release(hw);
4196
4197	/* Reload the EEPROM, or else modifications will not appear
4198	 * until after the next adapter reset.
4199	 */
4200	if (!ret_val) {
4201		nvm->ops.reload(hw);
4202		msec_delay(10);
4203	}
4204
4205out:
4206	if (ret_val)
4207		DEBUGOUT1("NVM update error: %d\n", ret_val);
4208
4209	return ret_val;
4210}
4211
4212/**
4213 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4214 *  @hw: pointer to the HW structure
4215 *
4216 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4217 *  which writes the checksum to the shadow ram.  The changes in the shadow
4218 *  ram are then committed to the EEPROM by processing each bank at a time
4219 *  checking for the modified bit and writing only the pending changes.
4220 *  After a successful commit, the shadow ram is cleared and is ready for
4221 *  future writes.
4222 **/
4223static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4224{
4225	struct e1000_nvm_info *nvm = &hw->nvm;
4226	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4227	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4228	s32 ret_val;
4229	u16 data = 0;
4230
4231	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4232
4233	ret_val = e1000_update_nvm_checksum_generic(hw);
4234	if (ret_val)
4235		goto out;
4236
4237	if (nvm->type != e1000_nvm_flash_sw)
4238		goto out;
4239
4240	nvm->ops.acquire(hw);
4241
4242	/* We're writing to the opposite bank so if we're on bank 1,
4243	 * write to bank 0 etc.  We also need to erase the segment that
4244	 * is going to be written
4245	 */
4246	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4247	if (ret_val != E1000_SUCCESS) {
4248		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4249		bank = 0;
4250	}
4251
4252	if (bank == 0) {
4253		new_bank_offset = nvm->flash_bank_size;
4254		old_bank_offset = 0;
4255		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4256		if (ret_val)
4257			goto release;
4258	} else {
4259		old_bank_offset = nvm->flash_bank_size;
4260		new_bank_offset = 0;
4261		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4262		if (ret_val)
4263			goto release;
4264	}
4265	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4266		if (dev_spec->shadow_ram[i].modified) {
4267			data = dev_spec->shadow_ram[i].value;
4268		} else {
4269			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4270								old_bank_offset,
4271								&data);
4272			if (ret_val)
4273				break;
4274		}
4275		/* If the word is 0x13, then make sure the signature bits
4276		 * (15:14) are 11b until the commit has completed.
4277		 * This will allow us to write 10b which indicates the
4278		 * signature is valid.  We want to do this after the write
4279		 * has completed so that we don't mark the segment valid
4280		 * while the write is still in progress
4281		 */
4282		if (i == E1000_ICH_NVM_SIG_WORD)
4283			data |= E1000_ICH_NVM_SIG_MASK;
4284
4285		/* Convert offset to bytes. */
4286		act_offset = (i + new_bank_offset) << 1;
4287
4288		usec_delay(100);
4289
4290		/* Write the bytes to the new bank. */
4291		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4292							       act_offset,
4293							       (u8)data);
4294		if (ret_val)
4295			break;
4296
4297		usec_delay(100);
4298		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4299							  act_offset + 1,
4300							  (u8)(data >> 8));
4301		if (ret_val)
4302			break;
4303	 }
4304
4305	/* Don't bother writing the segment valid bits if sector
4306	 * programming failed.
4307	 */
4308	if (ret_val) {
4309		DEBUGOUT("Flash commit failed.\n");
4310		goto release;
4311	}
4312
4313	/* Finally validate the new segment by setting bit 15:14
4314	 * to 10b in word 0x13 , this can be done without an
4315	 * erase as well since these bits are 11 to start with
4316	 * and we need to change bit 14 to 0b
4317	 */
4318	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4319	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4320	if (ret_val)
4321		goto release;
4322
4323	data &= 0xBFFF;
4324	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4325						       (u8)(data >> 8));
4326	if (ret_val)
4327		goto release;
4328
4329	/* And invalidate the previously valid segment by setting
4330	 * its signature word (0x13) high_byte to 0b. This can be
4331	 * done without an erase because flash erase sets all bits
4332	 * to 1's. We can write 1's to 0's without an erase
4333	 */
4334	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4335
4336	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4337
4338	if (ret_val)
4339		goto release;
4340
4341	/* Great!  Everything worked, we can now clear the cached entries. */
4342	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4343		dev_spec->shadow_ram[i].modified = FALSE;
4344		dev_spec->shadow_ram[i].value = 0xFFFF;
4345	}
4346
4347release:
4348	nvm->ops.release(hw);
4349
4350	/* Reload the EEPROM, or else modifications will not appear
4351	 * until after the next adapter reset.
4352	 */
4353	if (!ret_val) {
4354		nvm->ops.reload(hw);
4355		msec_delay(10);
4356	}
4357
4358out:
4359	if (ret_val)
4360		DEBUGOUT1("NVM update error: %d\n", ret_val);
4361
4362	return ret_val;
4363}
4364
4365/**
4366 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4367 *  @hw: pointer to the HW structure
4368 *
4369 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4370 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4371 *  calculated, in which case we need to calculate the checksum and set bit 6.
4372 **/
4373static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4374{
4375	s32 ret_val;
4376	u16 data;
4377	u16 word;
4378	u16 valid_csum_mask;
4379
4380	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4381
4382	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4383	 * the checksum needs to be fixed.  This bit is an indication that
4384	 * the NVM was prepared by OEM software and did not calculate
4385	 * the checksum...a likely scenario.
4386	 */
4387	switch (hw->mac.type) {
4388	case e1000_pch_lpt:
4389	case e1000_pch_spt:
4390		word = NVM_COMPAT;
4391		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4392		break;
4393	default:
4394		word = NVM_FUTURE_INIT_WORD1;
4395		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4396		break;
4397	}
4398
4399	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4400	if (ret_val)
4401		return ret_val;
4402
4403	if (!(data & valid_csum_mask)) {
4404		data |= valid_csum_mask;
4405		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4406		if (ret_val)
4407			return ret_val;
4408		ret_val = hw->nvm.ops.update(hw);
4409		if (ret_val)
4410			return ret_val;
4411	}
4412
4413	return e1000_validate_nvm_checksum_generic(hw);
4414}
4415
4416/**
4417 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4418 *  @hw: pointer to the HW structure
4419 *  @offset: The offset (in bytes) of the byte/word to read.
4420 *  @size: Size of data to read, 1=byte 2=word
4421 *  @data: The byte(s) to write to the NVM.
4422 *
4423 *  Writes one/two bytes to the NVM using the flash access registers.
4424 **/
4425static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4426					  u8 size, u16 data)
4427{
4428	union ich8_hws_flash_status hsfsts;
4429	union ich8_hws_flash_ctrl hsflctl;
4430	u32 flash_linear_addr;
4431	u32 flash_data = 0;
4432	s32 ret_val;
4433	u8 count = 0;
4434
4435	DEBUGFUNC("e1000_write_ich8_data");
4436
4437	if (hw->mac.type == e1000_pch_spt) {
4438		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4439			return -E1000_ERR_NVM;
4440	} else {
4441		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4442			return -E1000_ERR_NVM;
4443	}
4444
4445	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4446			     hw->nvm.flash_base_addr);
4447
4448	do {
4449		usec_delay(1);
4450		/* Steps */
4451		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4452		if (ret_val != E1000_SUCCESS)
4453			break;
4454		/* In SPT, This register is in Lan memory space, not
4455		 * flash.  Therefore, only 32 bit access is supported
4456		 */
4457		if (hw->mac.type == e1000_pch_spt)
4458			hsflctl.regval =
4459			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4460		else
4461			hsflctl.regval =
4462			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4463
4464		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4465		hsflctl.hsf_ctrl.fldbcount = size - 1;
4466		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4467		/* In SPT, This register is in Lan memory space,
4468		 * not flash.  Therefore, only 32 bit access is
4469		 * supported
4470		 */
4471		if (hw->mac.type == e1000_pch_spt)
4472			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4473					      hsflctl.regval << 16);
4474		else
4475			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4476						hsflctl.regval);
4477
4478		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4479
4480		if (size == 1)
4481			flash_data = (u32)data & 0x00FF;
4482		else
4483			flash_data = (u32)data;
4484
4485		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4486
4487		/* check if FCERR is set to 1 , if set to 1, clear it
4488		 * and try the whole sequence a few more times else done
4489		 */
4490		ret_val =
4491		    e1000_flash_cycle_ich8lan(hw,
4492					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4493		if (ret_val == E1000_SUCCESS)
4494			break;
4495
4496		/* If we're here, then things are most likely
4497		 * completely hosed, but if the error condition
4498		 * is detected, it won't hurt to give it another
4499		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4500		 */
4501		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4502		if (hsfsts.hsf_status.flcerr)
4503			/* Repeat for some time before giving up. */
4504			continue;
4505		if (!hsfsts.hsf_status.flcdone) {
4506			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4507			break;
4508		}
4509	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4510
4511	return ret_val;
4512}
4513
4514/**
4515*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4516*  @hw: pointer to the HW structure
4517*  @offset: The offset (in bytes) of the dwords to read.
4518*  @data: The 4 bytes to write to the NVM.
4519*
4520*  Writes one/two/four bytes to the NVM using the flash access registers.
4521**/
4522static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4523					    u32 data)
4524{
4525	union ich8_hws_flash_status hsfsts;
4526	union ich8_hws_flash_ctrl hsflctl;
4527	u32 flash_linear_addr;
4528	s32 ret_val;
4529	u8 count = 0;
4530
4531	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4532
4533	if (hw->mac.type == e1000_pch_spt) {
4534		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4535			return -E1000_ERR_NVM;
4536	}
4537	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4538			     hw->nvm.flash_base_addr);
4539	do {
4540		usec_delay(1);
4541		/* Steps */
4542		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4543		if (ret_val != E1000_SUCCESS)
4544			break;
4545
4546		/* In SPT, This register is in Lan memory space, not
4547		 * flash.  Therefore, only 32 bit access is supported
4548		 */
4549		if (hw->mac.type == e1000_pch_spt)
4550			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4551							      ICH_FLASH_HSFSTS)
4552					 >> 16;
4553		else
4554			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4555							      ICH_FLASH_HSFCTL);
4556
4557		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4558		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4559
4560		/* In SPT, This register is in Lan memory space,
4561		 * not flash.  Therefore, only 32 bit access is
4562		 * supported
4563		 */
4564		if (hw->mac.type == e1000_pch_spt)
4565			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4566					      hsflctl.regval << 16);
4567		else
4568			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4569						hsflctl.regval);
4570
4571		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4572
4573		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4574
4575		/* check if FCERR is set to 1 , if set to 1, clear it
4576		 * and try the whole sequence a few more times else done
4577		 */
4578		ret_val = e1000_flash_cycle_ich8lan(hw,
4579					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4580
4581		if (ret_val == E1000_SUCCESS)
4582			break;
4583
4584		/* If we're here, then things are most likely
4585		 * completely hosed, but if the error condition
4586		 * is detected, it won't hurt to give it another
4587		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4588		 */
4589		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4590
4591		if (hsfsts.hsf_status.flcerr)
4592			/* Repeat for some time before giving up. */
4593			continue;
4594		if (!hsfsts.hsf_status.flcdone) {
4595			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4596			break;
4597		}
4598	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4599
4600	return ret_val;
4601}
4602
4603/**
4604 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4605 *  @hw: pointer to the HW structure
4606 *  @offset: The index of the byte to read.
4607 *  @data: The byte to write to the NVM.
4608 *
4609 *  Writes a single byte to the NVM using the flash access registers.
4610 **/
4611static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4612					  u8 data)
4613{
4614	u16 word = (u16)data;
4615
4616	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4617
4618	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4619}
4620
4621/**
4622*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4623*  @hw: pointer to the HW structure
4624*  @offset: The offset of the word to write.
4625*  @dword: The dword to write to the NVM.
4626*
4627*  Writes a single dword to the NVM using the flash access registers.
4628*  Goes through a retry algorithm before giving up.
4629**/
4630static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4631						 u32 offset, u32 dword)
4632{
4633	s32 ret_val;
4634	u16 program_retries;
4635
4636	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4637
4638	/* Must convert word offset into bytes. */
4639	offset <<= 1;
4640
4641	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4642
4643	if (!ret_val)
4644		return ret_val;
4645	for (program_retries = 0; program_retries < 100; program_retries++) {
4646		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4647		usec_delay(100);
4648		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4649		if (ret_val == E1000_SUCCESS)
4650			break;
4651	}
4652	if (program_retries == 100)
4653		return -E1000_ERR_NVM;
4654
4655	return E1000_SUCCESS;
4656}
4657
4658/**
4659 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4660 *  @hw: pointer to the HW structure
4661 *  @offset: The offset of the byte to write.
4662 *  @byte: The byte to write to the NVM.
4663 *
4664 *  Writes a single byte to the NVM using the flash access registers.
4665 *  Goes through a retry algorithm before giving up.
4666 **/
4667static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4668						u32 offset, u8 byte)
4669{
4670	s32 ret_val;
4671	u16 program_retries;
4672
4673	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4674
4675	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4676	if (!ret_val)
4677		return ret_val;
4678
4679	for (program_retries = 0; program_retries < 100; program_retries++) {
4680		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4681		usec_delay(100);
4682		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4683		if (ret_val == E1000_SUCCESS)
4684			break;
4685	}
4686	if (program_retries == 100)
4687		return -E1000_ERR_NVM;
4688
4689	return E1000_SUCCESS;
4690}
4691
4692/**
4693 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4694 *  @hw: pointer to the HW structure
4695 *  @bank: 0 for first bank, 1 for second bank, etc.
4696 *
4697 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4698 *  bank N is 4096 * N + flash_reg_addr.
4699 **/
4700static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4701{
4702	struct e1000_nvm_info *nvm = &hw->nvm;
4703	union ich8_hws_flash_status hsfsts;
4704	union ich8_hws_flash_ctrl hsflctl;
4705	u32 flash_linear_addr;
4706	/* bank size is in 16bit words - adjust to bytes */
4707	u32 flash_bank_size = nvm->flash_bank_size * 2;
4708	s32 ret_val;
4709	s32 count = 0;
4710	s32 j, iteration, sector_size;
4711
4712	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4713
4714	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4715
4716	/* Determine HW Sector size: Read BERASE bits of hw flash status
4717	 * register
4718	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4719	 *     consecutive sectors.  The start index for the nth Hw sector
4720	 *     can be calculated as = bank * 4096 + n * 256
4721	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4722	 *     The start index for the nth Hw sector can be calculated
4723	 *     as = bank * 4096
4724	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4725	 *     (ich9 only, otherwise error condition)
4726	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4727	 */
4728	switch (hsfsts.hsf_status.berasesz) {
4729	case 0:
4730		/* Hw sector size 256 */
4731		sector_size = ICH_FLASH_SEG_SIZE_256;
4732		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4733		break;
4734	case 1:
4735		sector_size = ICH_FLASH_SEG_SIZE_4K;
4736		iteration = 1;
4737		break;
4738	case 2:
4739		sector_size = ICH_FLASH_SEG_SIZE_8K;
4740		iteration = 1;
4741		break;
4742	case 3:
4743		sector_size = ICH_FLASH_SEG_SIZE_64K;
4744		iteration = 1;
4745		break;
4746	default:
4747		return -E1000_ERR_NVM;
4748	}
4749
4750	/* Start with the base address, then add the sector offset. */
4751	flash_linear_addr = hw->nvm.flash_base_addr;
4752	flash_linear_addr += (bank) ? flash_bank_size : 0;
4753
4754	for (j = 0; j < iteration; j++) {
4755		do {
4756			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4757
4758			/* Steps */
4759			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4760			if (ret_val)
4761				return ret_val;
4762
4763			/* Write a value 11 (block Erase) in Flash
4764			 * Cycle field in hw flash control
4765			 */
4766			if (hw->mac.type == e1000_pch_spt)
4767				hsflctl.regval =
4768				    E1000_READ_FLASH_REG(hw,
4769							 ICH_FLASH_HSFSTS)>>16;
4770			else
4771				hsflctl.regval =
4772				    E1000_READ_FLASH_REG16(hw,
4773							   ICH_FLASH_HSFCTL);
4774
4775			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4776			if (hw->mac.type == e1000_pch_spt)
4777				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4778						      hsflctl.regval << 16);
4779			else
4780				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4781							hsflctl.regval);
4782
4783			/* Write the last 24 bits of an index within the
4784			 * block into Flash Linear address field in Flash
4785			 * Address.
4786			 */
4787			flash_linear_addr += (j * sector_size);
4788			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4789					      flash_linear_addr);
4790
4791			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4792			if (ret_val == E1000_SUCCESS)
4793				break;
4794
4795			/* Check if FCERR is set to 1.  If 1,
4796			 * clear it and try the whole sequence
4797			 * a few more times else Done
4798			 */
4799			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4800						      ICH_FLASH_HSFSTS);
4801			if (hsfsts.hsf_status.flcerr)
4802				/* repeat for some time before giving up */
4803				continue;
4804			else if (!hsfsts.hsf_status.flcdone)
4805				return ret_val;
4806		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4807	}
4808
4809	return E1000_SUCCESS;
4810}
4811
4812/**
4813 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4814 *  @hw: pointer to the HW structure
4815 *  @data: Pointer to the LED settings
4816 *
4817 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4818 *  settings is all 0's or F's, set the LED default to a valid LED default
4819 *  setting.
4820 **/
4821static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4822{
4823	s32 ret_val;
4824
4825	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4826
4827	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4828	if (ret_val) {
4829		DEBUGOUT("NVM Read Error\n");
4830		return ret_val;
4831	}
4832
4833	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4834		*data = ID_LED_DEFAULT_ICH8LAN;
4835
4836	return E1000_SUCCESS;
4837}
4838
4839/**
4840 *  e1000_id_led_init_pchlan - store LED configurations
4841 *  @hw: pointer to the HW structure
4842 *
4843 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4844 *  the PHY LED configuration register.
4845 *
4846 *  PCH also does not have an "always on" or "always off" mode which
4847 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4848 *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4849 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4850 *  link based on logic in e1000_led_[on|off]_pchlan().
4851 **/
4852static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4853{
4854	struct e1000_mac_info *mac = &hw->mac;
4855	s32 ret_val;
4856	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4857	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4858	u16 data, i, temp, shift;
4859
4860	DEBUGFUNC("e1000_id_led_init_pchlan");
4861
4862	/* Get default ID LED modes */
4863	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4864	if (ret_val)
4865		return ret_val;
4866
4867	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4868	mac->ledctl_mode1 = mac->ledctl_default;
4869	mac->ledctl_mode2 = mac->ledctl_default;
4870
4871	for (i = 0; i < 4; i++) {
4872		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4873		shift = (i * 5);
4874		switch (temp) {
4875		case ID_LED_ON1_DEF2:
4876		case ID_LED_ON1_ON2:
4877		case ID_LED_ON1_OFF2:
4878			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4879			mac->ledctl_mode1 |= (ledctl_on << shift);
4880			break;
4881		case ID_LED_OFF1_DEF2:
4882		case ID_LED_OFF1_ON2:
4883		case ID_LED_OFF1_OFF2:
4884			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4885			mac->ledctl_mode1 |= (ledctl_off << shift);
4886			break;
4887		default:
4888			/* Do nothing */
4889			break;
4890		}
4891		switch (temp) {
4892		case ID_LED_DEF1_ON2:
4893		case ID_LED_ON1_ON2:
4894		case ID_LED_OFF1_ON2:
4895			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4896			mac->ledctl_mode2 |= (ledctl_on << shift);
4897			break;
4898		case ID_LED_DEF1_OFF2:
4899		case ID_LED_ON1_OFF2:
4900		case ID_LED_OFF1_OFF2:
4901			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4902			mac->ledctl_mode2 |= (ledctl_off << shift);
4903			break;
4904		default:
4905			/* Do nothing */
4906			break;
4907		}
4908	}
4909
4910	return E1000_SUCCESS;
4911}
4912
4913/**
4914 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4915 *  @hw: pointer to the HW structure
4916 *
4917 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4918 *  register, so the bus width is hard coded.
4919 **/
4920static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4921{
4922	struct e1000_bus_info *bus = &hw->bus;
4923	s32 ret_val;
4924
4925	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4926
4927	ret_val = e1000_get_bus_info_pcie_generic(hw);
4928
4929	/* ICH devices are "PCI Express"-ish.  They have
4930	 * a configuration space, but do not contain
4931	 * PCI Express Capability registers, so bus width
4932	 * must be hardcoded.
4933	 */
4934	if (bus->width == e1000_bus_width_unknown)
4935		bus->width = e1000_bus_width_pcie_x1;
4936
4937	return ret_val;
4938}
4939
4940/**
4941 *  e1000_reset_hw_ich8lan - Reset the hardware
4942 *  @hw: pointer to the HW structure
4943 *
4944 *  Does a full reset of the hardware which includes a reset of the PHY and
4945 *  MAC.
4946 **/
4947static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4948{
4949	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4950	u16 kum_cfg;
4951	u32 ctrl, reg;
4952	s32 ret_val;
4953
4954	DEBUGFUNC("e1000_reset_hw_ich8lan");
4955
4956	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4957	 * on the last TLP read/write transaction when MAC is reset.
4958	 */
4959	ret_val = e1000_disable_pcie_master_generic(hw);
4960	if (ret_val)
4961		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4962
4963	DEBUGOUT("Masking off all interrupts\n");
4964	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4965
4966	/* Disable the Transmit and Receive units.  Then delay to allow
4967	 * any pending transactions to complete before we hit the MAC
4968	 * with the global reset.
4969	 */
4970	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4971	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4972	E1000_WRITE_FLUSH(hw);
4973
4974	msec_delay(10);
4975
4976	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4977	if (hw->mac.type == e1000_ich8lan) {
4978		/* Set Tx and Rx buffer allocation to 8k apiece. */
4979		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4980		/* Set Packet Buffer Size to 16k. */
4981		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4982	}
4983
4984	if (hw->mac.type == e1000_pchlan) {
4985		/* Save the NVM K1 bit setting*/
4986		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4987		if (ret_val)
4988			return ret_val;
4989
4990		if (kum_cfg & E1000_NVM_K1_ENABLE)
4991			dev_spec->nvm_k1_enabled = TRUE;
4992		else
4993			dev_spec->nvm_k1_enabled = FALSE;
4994	}
4995
4996	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4997
4998	if (!hw->phy.ops.check_reset_block(hw)) {
4999		/* Full-chip reset requires MAC and PHY reset at the same
5000		 * time to make sure the interface between MAC and the
5001		 * external PHY is reset.
5002		 */
5003		ctrl |= E1000_CTRL_PHY_RST;
5004
5005		/* Gate automatic PHY configuration by hardware on
5006		 * non-managed 82579
5007		 */
5008		if ((hw->mac.type == e1000_pch2lan) &&
5009		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5010			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5011	}
5012	ret_val = e1000_acquire_swflag_ich8lan(hw);
5013	DEBUGOUT("Issuing a global reset to ich8lan\n");
5014	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5015	/* cannot issue a flush here because it hangs the hardware */
5016	msec_delay(20);
5017
5018	/* Set Phy Config Counter to 50msec */
5019	if (hw->mac.type == e1000_pch2lan) {
5020		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5021		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5022		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5023		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5024	}
5025
5026	if (!ret_val)
5027		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
5028
5029	if (ctrl & E1000_CTRL_PHY_RST) {
5030		ret_val = hw->phy.ops.get_cfg_done(hw);
5031		if (ret_val)
5032			return ret_val;
5033
5034		ret_val = e1000_post_phy_reset_ich8lan(hw);
5035		if (ret_val)
5036			return ret_val;
5037	}
5038
5039	/* For PCH, this write will make sure that any noise
5040	 * will be detected as a CRC error and be dropped rather than show up
5041	 * as a bad packet to the DMA engine.
5042	 */
5043	if (hw->mac.type == e1000_pchlan)
5044		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5045
5046	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5047	E1000_READ_REG(hw, E1000_ICR);
5048
5049	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5050	reg |= E1000_KABGTXD_BGSQLBIAS;
5051	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5052
5053	return E1000_SUCCESS;
5054}
5055
5056/**
5057 *  e1000_init_hw_ich8lan - Initialize the hardware
5058 *  @hw: pointer to the HW structure
5059 *
5060 *  Prepares the hardware for transmit and receive by doing the following:
5061 *   - initialize hardware bits
5062 *   - initialize LED identification
5063 *   - setup receive address registers
5064 *   - setup flow control
5065 *   - setup transmit descriptors
5066 *   - clear statistics
5067 **/
5068static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5069{
5070	struct e1000_mac_info *mac = &hw->mac;
5071	u32 ctrl_ext, txdctl, snoop;
5072	s32 ret_val;
5073	u16 i;
5074
5075	DEBUGFUNC("e1000_init_hw_ich8lan");
5076
5077	e1000_initialize_hw_bits_ich8lan(hw);
5078
5079	/* Initialize identification LED */
5080	ret_val = mac->ops.id_led_init(hw);
5081	/* An error is not fatal and we should not stop init due to this */
5082	if (ret_val)
5083		DEBUGOUT("Error initializing identification LED\n");
5084
5085	/* Setup the receive address. */
5086	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5087
5088	/* Zero out the Multicast HASH table */
5089	DEBUGOUT("Zeroing the MTA\n");
5090	for (i = 0; i < mac->mta_reg_count; i++)
5091		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5092
5093	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5094	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5095	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5096	 */
5097	if (hw->phy.type == e1000_phy_82578) {
5098		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5099		i &= ~BM_WUC_HOST_WU_BIT;
5100		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5101		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5102		if (ret_val)
5103			return ret_val;
5104	}
5105
5106	/* Setup link and flow control */
5107	ret_val = mac->ops.setup_link(hw);
5108
5109	/* Set the transmit descriptor write-back policy for both queues */
5110	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5111	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5112		  E1000_TXDCTL_FULL_TX_DESC_WB);
5113	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5114		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5115	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5116	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5117	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5118		  E1000_TXDCTL_FULL_TX_DESC_WB);
5119	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5120		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5121	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5122
5123	/* ICH8 has opposite polarity of no_snoop bits.
5124	 * By default, we should use snoop behavior.
5125	 */
5126	if (mac->type == e1000_ich8lan)
5127		snoop = PCIE_ICH8_SNOOP_ALL;
5128	else
5129		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5130	e1000_set_pcie_no_snoop_generic(hw, snoop);
5131
5132	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5133	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5134	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5135
5136	/* Clear all of the statistics registers (clear on read).  It is
5137	 * important that we do this after we have tried to establish link
5138	 * because the symbol error count will increment wildly if there
5139	 * is no link.
5140	 */
5141	e1000_clear_hw_cntrs_ich8lan(hw);
5142
5143	return ret_val;
5144}
5145
5146/**
5147 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5148 *  @hw: pointer to the HW structure
5149 *
5150 *  Sets/Clears required hardware bits necessary for correctly setting up the
5151 *  hardware for transmit and receive.
5152 **/
5153static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5154{
5155	u32 reg;
5156
5157	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5158
5159	/* Extended Device Control */
5160	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5161	reg |= (1 << 22);
5162	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5163	if (hw->mac.type >= e1000_pchlan)
5164		reg |= E1000_CTRL_EXT_PHYPDEN;
5165	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5166
5167	/* Transmit Descriptor Control 0 */
5168	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5169	reg |= (1 << 22);
5170	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5171
5172	/* Transmit Descriptor Control 1 */
5173	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5174	reg |= (1 << 22);
5175	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5176
5177	/* Transmit Arbitration Control 0 */
5178	reg = E1000_READ_REG(hw, E1000_TARC(0));
5179	if (hw->mac.type == e1000_ich8lan)
5180		reg |= (1 << 28) | (1 << 29);
5181	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5182	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5183
5184	/* Transmit Arbitration Control 1 */
5185	reg = E1000_READ_REG(hw, E1000_TARC(1));
5186	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5187		reg &= ~(1 << 28);
5188	else
5189		reg |= (1 << 28);
5190	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5191	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5192
5193	/* Device Status */
5194	if (hw->mac.type == e1000_ich8lan) {
5195		reg = E1000_READ_REG(hw, E1000_STATUS);
5196		reg &= ~(1 << 31);
5197		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5198	}
5199
5200	/* work-around descriptor data corruption issue during nfs v2 udp
5201	 * traffic, just disable the nfs filtering capability
5202	 */
5203	reg = E1000_READ_REG(hw, E1000_RFCTL);
5204	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5205
5206	/* Disable IPv6 extension header parsing because some malformed
5207	 * IPv6 headers can hang the Rx.
5208	 */
5209	if (hw->mac.type == e1000_ich8lan)
5210		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5211	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5212
5213	/* Enable ECC on Lynxpoint */
5214	if ((hw->mac.type == e1000_pch_lpt) ||
5215	    (hw->mac.type == e1000_pch_spt)) {
5216		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5217		reg |= E1000_PBECCSTS_ECC_ENABLE;
5218		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5219
5220		reg = E1000_READ_REG(hw, E1000_CTRL);
5221		reg |= E1000_CTRL_MEHE;
5222		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5223	}
5224
5225	return;
5226}
5227
5228/**
5229 *  e1000_setup_link_ich8lan - Setup flow control and link settings
5230 *  @hw: pointer to the HW structure
5231 *
5232 *  Determines which flow control settings to use, then configures flow
5233 *  control.  Calls the appropriate media-specific link configuration
5234 *  function.  Assuming the adapter has a valid link partner, a valid link
5235 *  should be established.  Assumes the hardware has previously been reset
5236 *  and the transmitter and receiver are not enabled.
5237 **/
5238static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5239{
5240	s32 ret_val;
5241
5242	DEBUGFUNC("e1000_setup_link_ich8lan");
5243
5244	if (hw->phy.ops.check_reset_block(hw))
5245		return E1000_SUCCESS;
5246
5247	/* ICH parts do not have a word in the NVM to determine
5248	 * the default flow control setting, so we explicitly
5249	 * set it to full.
5250	 */
5251	if (hw->fc.requested_mode == e1000_fc_default)
5252		hw->fc.requested_mode = e1000_fc_full;
5253
5254	/* Save off the requested flow control mode for use later.  Depending
5255	 * on the link partner's capabilities, we may or may not use this mode.
5256	 */
5257	hw->fc.current_mode = hw->fc.requested_mode;
5258
5259	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5260		hw->fc.current_mode);
5261
5262	/* Continue to configure the copper link. */
5263	ret_val = hw->mac.ops.setup_physical_interface(hw);
5264	if (ret_val)
5265		return ret_val;
5266
5267	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5268	if ((hw->phy.type == e1000_phy_82578) ||
5269	    (hw->phy.type == e1000_phy_82579) ||
5270	    (hw->phy.type == e1000_phy_i217) ||
5271	    (hw->phy.type == e1000_phy_82577)) {
5272		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5273
5274		ret_val = hw->phy.ops.write_reg(hw,
5275					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5276					     hw->fc.pause_time);
5277		if (ret_val)
5278			return ret_val;
5279	}
5280
5281	return e1000_set_fc_watermarks_generic(hw);
5282}
5283
5284/**
5285 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5286 *  @hw: pointer to the HW structure
5287 *
5288 *  Configures the kumeran interface to the PHY to wait the appropriate time
5289 *  when polling the PHY, then call the generic setup_copper_link to finish
5290 *  configuring the copper link.
5291 **/
5292static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5293{
5294	u32 ctrl;
5295	s32 ret_val;
5296	u16 reg_data;
5297
5298	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5299
5300	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5301	ctrl |= E1000_CTRL_SLU;
5302	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5303	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5304
5305	/* Set the mac to wait the maximum time between each iteration
5306	 * and increase the max iterations when polling the phy;
5307	 * this fixes erroneous timeouts at 10Mbps.
5308	 */
5309	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5310					       0xFFFF);
5311	if (ret_val)
5312		return ret_val;
5313	ret_val = e1000_read_kmrn_reg_generic(hw,
5314					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5315					      &reg_data);
5316	if (ret_val)
5317		return ret_val;
5318	reg_data |= 0x3F;
5319	ret_val = e1000_write_kmrn_reg_generic(hw,
5320					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5321					       reg_data);
5322	if (ret_val)
5323		return ret_val;
5324
5325	switch (hw->phy.type) {
5326	case e1000_phy_igp_3:
5327		ret_val = e1000_copper_link_setup_igp(hw);
5328		if (ret_val)
5329			return ret_val;
5330		break;
5331	case e1000_phy_bm:
5332	case e1000_phy_82578:
5333		ret_val = e1000_copper_link_setup_m88(hw);
5334		if (ret_val)
5335			return ret_val;
5336		break;
5337	case e1000_phy_82577:
5338	case e1000_phy_82579:
5339		ret_val = e1000_copper_link_setup_82577(hw);
5340		if (ret_val)
5341			return ret_val;
5342		break;
5343	case e1000_phy_ife:
5344		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5345					       &reg_data);
5346		if (ret_val)
5347			return ret_val;
5348
5349		reg_data &= ~IFE_PMC_AUTO_MDIX;
5350
5351		switch (hw->phy.mdix) {
5352		case 1:
5353			reg_data &= ~IFE_PMC_FORCE_MDIX;
5354			break;
5355		case 2:
5356			reg_data |= IFE_PMC_FORCE_MDIX;
5357			break;
5358		case 0:
5359		default:
5360			reg_data |= IFE_PMC_AUTO_MDIX;
5361			break;
5362		}
5363		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5364						reg_data);
5365		if (ret_val)
5366			return ret_val;
5367		break;
5368	default:
5369		break;
5370	}
5371
5372	return e1000_setup_copper_link_generic(hw);
5373}
5374
5375/**
5376 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5377 *  @hw: pointer to the HW structure
5378 *
5379 *  Calls the PHY specific link setup function and then calls the
5380 *  generic setup_copper_link to finish configuring the link for
5381 *  Lynxpoint PCH devices
5382 **/
5383static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5384{
5385	u32 ctrl;
5386	s32 ret_val;
5387
5388	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5389
5390	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5391	ctrl |= E1000_CTRL_SLU;
5392	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5393	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5394
5395	ret_val = e1000_copper_link_setup_82577(hw);
5396	if (ret_val)
5397		return ret_val;
5398
5399	return e1000_setup_copper_link_generic(hw);
5400}
5401
5402/**
5403 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5404 *  @hw: pointer to the HW structure
5405 *  @speed: pointer to store current link speed
5406 *  @duplex: pointer to store the current link duplex
5407 *
5408 *  Calls the generic get_speed_and_duplex to retrieve the current link
5409 *  information and then calls the Kumeran lock loss workaround for links at
5410 *  gigabit speeds.
5411 **/
5412static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5413					  u16 *duplex)
5414{
5415	s32 ret_val;
5416
5417	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5418
5419	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5420	if (ret_val)
5421		return ret_val;
5422
5423	if ((hw->mac.type == e1000_ich8lan) &&
5424	    (hw->phy.type == e1000_phy_igp_3) &&
5425	    (*speed == SPEED_1000)) {
5426		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5427	}
5428
5429	return ret_val;
5430}
5431
5432/**
5433 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5434 *  @hw: pointer to the HW structure
5435 *
5436 *  Work-around for 82566 Kumeran PCS lock loss:
5437 *  On link status change (i.e. PCI reset, speed change) and link is up and
5438 *  speed is gigabit-
5439 *    0) if workaround is optionally disabled do nothing
5440 *    1) wait 1ms for Kumeran link to come up
5441 *    2) check Kumeran Diagnostic register PCS lock loss bit
5442 *    3) if not set the link is locked (all is good), otherwise...
5443 *    4) reset the PHY
5444 *    5) repeat up to 10 times
5445 *  Note: this is only called for IGP3 copper when speed is 1gb.
5446 **/
5447static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5448{
5449	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5450	u32 phy_ctrl;
5451	s32 ret_val;
5452	u16 i, data;
5453	bool link;
5454
5455	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5456
5457	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5458		return E1000_SUCCESS;
5459
5460	/* Make sure link is up before proceeding.  If not just return.
5461	 * Attempting this while link is negotiating fouled up link
5462	 * stability
5463	 */
5464	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5465	if (!link)
5466		return E1000_SUCCESS;
5467
5468	for (i = 0; i < 10; i++) {
5469		/* read once to clear */
5470		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5471		if (ret_val)
5472			return ret_val;
5473		/* and again to get new status */
5474		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5475		if (ret_val)
5476			return ret_val;
5477
5478		/* check for PCS lock */
5479		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5480			return E1000_SUCCESS;
5481
5482		/* Issue PHY reset */
5483		hw->phy.ops.reset(hw);
5484		msec_delay_irq(5);
5485	}
5486	/* Disable GigE link negotiation */
5487	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5488	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5489		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5490	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5491
5492	/* Call gig speed drop workaround on Gig disable before accessing
5493	 * any PHY registers
5494	 */
5495	e1000_gig_downshift_workaround_ich8lan(hw);
5496
5497	/* unable to acquire PCS lock */
5498	return -E1000_ERR_PHY;
5499}
5500
5501/**
5502 *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5503 *  @hw: pointer to the HW structure
5504 *  @state: boolean value used to set the current Kumeran workaround state
5505 *
5506 *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
5507 *  /disabled - FALSE).
5508 **/
5509void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5510						 bool state)
5511{
5512	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5513
5514	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5515
5516	if (hw->mac.type != e1000_ich8lan) {
5517		DEBUGOUT("Workaround applies to ICH8 only.\n");
5518		return;
5519	}
5520
5521	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5522
5523	return;
5524}
5525
5526/**
5527 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5528 *  @hw: pointer to the HW structure
5529 *
5530 *  Workaround for 82566 power-down on D3 entry:
5531 *    1) disable gigabit link
5532 *    2) write VR power-down enable
5533 *    3) read it back
5534 *  Continue if successful, else issue LCD reset and repeat
5535 **/
5536void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5537{
5538	u32 reg;
5539	u16 data;
5540	u8  retry = 0;
5541
5542	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5543
5544	if (hw->phy.type != e1000_phy_igp_3)
5545		return;
5546
5547	/* Try the workaround twice (if needed) */
5548	do {
5549		/* Disable link */
5550		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5551		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5552			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5553		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5554
5555		/* Call gig speed drop workaround on Gig disable before
5556		 * accessing any PHY registers
5557		 */
5558		if (hw->mac.type == e1000_ich8lan)
5559			e1000_gig_downshift_workaround_ich8lan(hw);
5560
5561		/* Write VR power-down enable */
5562		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5563		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5564		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5565				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5566
5567		/* Read it back and test */
5568		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5569		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5570		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5571			break;
5572
5573		/* Issue PHY reset and repeat at most one more time */
5574		reg = E1000_READ_REG(hw, E1000_CTRL);
5575		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5576		retry++;
5577	} while (retry);
5578}
5579
5580/**
5581 *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5582 *  @hw: pointer to the HW structure
5583 *
5584 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5585 *  LPLU, Gig disable, MDIC PHY reset):
5586 *    1) Set Kumeran Near-end loopback
5587 *    2) Clear Kumeran Near-end loopback
5588 *  Should only be called for ICH8[m] devices with any 1G Phy.
5589 **/
5590void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5591{
5592	s32 ret_val;
5593	u16 reg_data;
5594
5595	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5596
5597	if ((hw->mac.type != e1000_ich8lan) ||
5598	    (hw->phy.type == e1000_phy_ife))
5599		return;
5600
5601	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5602					      &reg_data);
5603	if (ret_val)
5604		return;
5605	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5606	ret_val = e1000_write_kmrn_reg_generic(hw,
5607					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5608					       reg_data);
5609	if (ret_val)
5610		return;
5611	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5612	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5613				     reg_data);
5614}
5615
5616/**
5617 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5618 *  @hw: pointer to the HW structure
5619 *
5620 *  During S0 to Sx transition, it is possible the link remains at gig
5621 *  instead of negotiating to a lower speed.  Before going to Sx, set
5622 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5623 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5624 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5625 *  needs to be written.
5626 *  Parts that support (and are linked to a partner which support) EEE in
5627 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5628 *  than 10Mbps w/o EEE.
5629 **/
5630void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5631{
5632	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5633	u32 phy_ctrl;
5634	s32 ret_val;
5635
5636	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5637
5638	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5639	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5640
5641	if (hw->phy.type == e1000_phy_i217) {
5642		u16 phy_reg, device_id = hw->device_id;
5643
5644		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5645		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5646		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5647		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5648		    (hw->mac.type == e1000_pch_spt)) {
5649			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5650
5651			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5652					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5653		}
5654
5655		ret_val = hw->phy.ops.acquire(hw);
5656		if (ret_val)
5657			goto out;
5658
5659		if (!dev_spec->eee_disable) {
5660			u16 eee_advert;
5661
5662			ret_val =
5663			    e1000_read_emi_reg_locked(hw,
5664						      I217_EEE_ADVERTISEMENT,
5665						      &eee_advert);
5666			if (ret_val)
5667				goto release;
5668
5669			/* Disable LPLU if both link partners support 100BaseT
5670			 * EEE and 100Full is advertised on both ends of the
5671			 * link, and enable Auto Enable LPI since there will
5672			 * be no driver to enable LPI while in Sx.
5673			 */
5674			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5675			    (dev_spec->eee_lp_ability &
5676			     I82579_EEE_100_SUPPORTED) &&
5677			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5678				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5679					      E1000_PHY_CTRL_NOND0A_LPLU);
5680
5681				/* Set Auto Enable LPI after link up */
5682				hw->phy.ops.read_reg_locked(hw,
5683							    I217_LPI_GPIO_CTRL,
5684							    &phy_reg);
5685				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5686				hw->phy.ops.write_reg_locked(hw,
5687							     I217_LPI_GPIO_CTRL,
5688							     phy_reg);
5689			}
5690		}
5691
5692		/* For i217 Intel Rapid Start Technology support,
5693		 * when the system is going into Sx and no manageability engine
5694		 * is present, the driver must configure proxy to reset only on
5695		 * power good.  LPI (Low Power Idle) state must also reset only
5696		 * on power good, as well as the MTA (Multicast table array).
5697		 * The SMBus release must also be disabled on LCD reset.
5698		 */
5699		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5700		      E1000_ICH_FWSM_FW_VALID)) {
5701			/* Enable proxy to reset only on power good. */
5702			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5703						    &phy_reg);
5704			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5705			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5706						     phy_reg);
5707
5708			/* Set bit enable LPI (EEE) to reset only on
5709			 * power good.
5710			*/
5711			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5712			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5713			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5714
5715			/* Disable the SMB release on LCD reset. */
5716			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5717			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5718			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5719		}
5720
5721		/* Enable MTA to reset for Intel Rapid Start Technology
5722		 * Support
5723		 */
5724		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5725		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5726		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5727
5728release:
5729		hw->phy.ops.release(hw);
5730	}
5731out:
5732	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5733
5734	if (hw->mac.type == e1000_ich8lan)
5735		e1000_gig_downshift_workaround_ich8lan(hw);
5736
5737	if (hw->mac.type >= e1000_pchlan) {
5738		e1000_oem_bits_config_ich8lan(hw, FALSE);
5739
5740		/* Reset PHY to activate OEM bits on 82577/8 */
5741		if (hw->mac.type == e1000_pchlan)
5742			e1000_phy_hw_reset_generic(hw);
5743
5744		ret_val = hw->phy.ops.acquire(hw);
5745		if (ret_val)
5746			return;
5747		e1000_write_smbus_addr(hw);
5748		hw->phy.ops.release(hw);
5749	}
5750
5751	return;
5752}
5753
5754/**
5755 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5756 *  @hw: pointer to the HW structure
5757 *
5758 *  During Sx to S0 transitions on non-managed devices or managed devices
5759 *  on which PHY resets are not blocked, if the PHY registers cannot be
5760 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5761 *  the PHY.
5762 *  On i217, setup Intel Rapid Start Technology.
5763 **/
5764u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5765{
5766	s32 ret_val;
5767
5768	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5769	if (hw->mac.type < e1000_pch2lan)
5770		return E1000_SUCCESS;
5771
5772	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5773	if (ret_val) {
5774		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5775		return ret_val;
5776	}
5777
5778	/* For i217 Intel Rapid Start Technology support when the system
5779	 * is transitioning from Sx and no manageability engine is present
5780	 * configure SMBus to restore on reset, disable proxy, and enable
5781	 * the reset on MTA (Multicast table array).
5782	 */
5783	if (hw->phy.type == e1000_phy_i217) {
5784		u16 phy_reg;
5785
5786		ret_val = hw->phy.ops.acquire(hw);
5787		if (ret_val) {
5788			DEBUGOUT("Failed to setup iRST\n");
5789			return ret_val;
5790		}
5791
5792		/* Clear Auto Enable LPI after link up */
5793		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5794		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5795		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5796
5797		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5798		    E1000_ICH_FWSM_FW_VALID)) {
5799			/* Restore clear on SMB if no manageability engine
5800			 * is present
5801			 */
5802			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5803							      &phy_reg);
5804			if (ret_val)
5805				goto release;
5806			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5807			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5808
5809			/* Disable Proxy */
5810			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5811		}
5812		/* Enable reset on MTA */
5813		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5814						      &phy_reg);
5815		if (ret_val)
5816			goto release;
5817		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5818		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5819release:
5820		if (ret_val)
5821			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5822		hw->phy.ops.release(hw);
5823		return ret_val;
5824	}
5825	return E1000_SUCCESS;
5826}
5827
5828/**
5829 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5830 *  @hw: pointer to the HW structure
5831 *
5832 *  Return the LED back to the default configuration.
5833 **/
5834static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5835{
5836	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5837
5838	if (hw->phy.type == e1000_phy_ife)
5839		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5840					     0);
5841
5842	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5843	return E1000_SUCCESS;
5844}
5845
5846/**
5847 *  e1000_led_on_ich8lan - Turn LEDs on
5848 *  @hw: pointer to the HW structure
5849 *
5850 *  Turn on the LEDs.
5851 **/
5852static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5853{
5854	DEBUGFUNC("e1000_led_on_ich8lan");
5855
5856	if (hw->phy.type == e1000_phy_ife)
5857		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5858				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5859
5860	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5861	return E1000_SUCCESS;
5862}
5863
5864/**
5865 *  e1000_led_off_ich8lan - Turn LEDs off
5866 *  @hw: pointer to the HW structure
5867 *
5868 *  Turn off the LEDs.
5869 **/
5870static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5871{
5872	DEBUGFUNC("e1000_led_off_ich8lan");
5873
5874	if (hw->phy.type == e1000_phy_ife)
5875		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5876			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5877
5878	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5879	return E1000_SUCCESS;
5880}
5881
5882/**
5883 *  e1000_setup_led_pchlan - Configures SW controllable LED
5884 *  @hw: pointer to the HW structure
5885 *
5886 *  This prepares the SW controllable LED for use.
5887 **/
5888static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5889{
5890	DEBUGFUNC("e1000_setup_led_pchlan");
5891
5892	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5893				     (u16)hw->mac.ledctl_mode1);
5894}
5895
5896/**
5897 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5898 *  @hw: pointer to the HW structure
5899 *
5900 *  Return the LED back to the default configuration.
5901 **/
5902static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5903{
5904	DEBUGFUNC("e1000_cleanup_led_pchlan");
5905
5906	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5907				     (u16)hw->mac.ledctl_default);
5908}
5909
5910/**
5911 *  e1000_led_on_pchlan - Turn LEDs on
5912 *  @hw: pointer to the HW structure
5913 *
5914 *  Turn on the LEDs.
5915 **/
5916static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5917{
5918	u16 data = (u16)hw->mac.ledctl_mode2;
5919	u32 i, led;
5920
5921	DEBUGFUNC("e1000_led_on_pchlan");
5922
5923	/* If no link, then turn LED on by setting the invert bit
5924	 * for each LED that's mode is "link_up" in ledctl_mode2.
5925	 */
5926	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5927		for (i = 0; i < 3; i++) {
5928			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5929			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5930			    E1000_LEDCTL_MODE_LINK_UP)
5931				continue;
5932			if (led & E1000_PHY_LED0_IVRT)
5933				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5934			else
5935				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5936		}
5937	}
5938
5939	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5940}
5941
5942/**
5943 *  e1000_led_off_pchlan - Turn LEDs off
5944 *  @hw: pointer to the HW structure
5945 *
5946 *  Turn off the LEDs.
5947 **/
5948static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5949{
5950	u16 data = (u16)hw->mac.ledctl_mode1;
5951	u32 i, led;
5952
5953	DEBUGFUNC("e1000_led_off_pchlan");
5954
5955	/* If no link, then turn LED off by clearing the invert bit
5956	 * for each LED that's mode is "link_up" in ledctl_mode1.
5957	 */
5958	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5959		for (i = 0; i < 3; i++) {
5960			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5961			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5962			    E1000_LEDCTL_MODE_LINK_UP)
5963				continue;
5964			if (led & E1000_PHY_LED0_IVRT)
5965				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5966			else
5967				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5968		}
5969	}
5970
5971	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5972}
5973
5974/**
5975 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5976 *  @hw: pointer to the HW structure
5977 *
5978 *  Read appropriate register for the config done bit for completion status
5979 *  and configure the PHY through s/w for EEPROM-less parts.
5980 *
5981 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5982 *  config done bit, so only an error is logged and continues.  If we were
5983 *  to return with error, EEPROM-less silicon would not be able to be reset
5984 *  or change link.
5985 **/
5986static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5987{
5988	s32 ret_val = E1000_SUCCESS;
5989	u32 bank = 0;
5990	u32 status;
5991
5992	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5993
5994	e1000_get_cfg_done_generic(hw);
5995
5996	/* Wait for indication from h/w that it has completed basic config */
5997	if (hw->mac.type >= e1000_ich10lan) {
5998		e1000_lan_init_done_ich8lan(hw);
5999	} else {
6000		ret_val = e1000_get_auto_rd_done_generic(hw);
6001		if (ret_val) {
6002			/* When auto config read does not complete, do not
6003			 * return with an error. This can happen in situations
6004			 * where there is no eeprom and prevents getting link.
6005			 */
6006			DEBUGOUT("Auto Read Done did not complete\n");
6007			ret_val = E1000_SUCCESS;
6008		}
6009	}
6010
6011	/* Clear PHY Reset Asserted bit */
6012	status = E1000_READ_REG(hw, E1000_STATUS);
6013	if (status & E1000_STATUS_PHYRA)
6014		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6015	else
6016		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6017
6018	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6019	if (hw->mac.type <= e1000_ich9lan) {
6020		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6021		    (hw->phy.type == e1000_phy_igp_3)) {
6022			e1000_phy_init_script_igp3(hw);
6023		}
6024	} else {
6025		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6026			/* Maybe we should do a basic PHY config */
6027			DEBUGOUT("EEPROM not present\n");
6028			ret_val = -E1000_ERR_CONFIG;
6029		}
6030	}
6031
6032	return ret_val;
6033}
6034
6035/**
6036 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6037 * @hw: pointer to the HW structure
6038 *
6039 * In the case of a PHY power down to save power, or to turn off link during a
6040 * driver unload, or wake on lan is not enabled, remove the link.
6041 **/
6042static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6043{
6044	/* If the management interface is not enabled, then power down */
6045	if (!(hw->mac.ops.check_mng_mode(hw) ||
6046	      hw->phy.ops.check_reset_block(hw)))
6047		e1000_power_down_phy_copper(hw);
6048
6049	return;
6050}
6051
6052/**
6053 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6054 *  @hw: pointer to the HW structure
6055 *
6056 *  Clears hardware counters specific to the silicon family and calls
6057 *  clear_hw_cntrs_generic to clear all general purpose counters.
6058 **/
6059static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6060{
6061	u16 phy_data;
6062	s32 ret_val;
6063
6064	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6065
6066	e1000_clear_hw_cntrs_base_generic(hw);
6067
6068	E1000_READ_REG(hw, E1000_ALGNERRC);
6069	E1000_READ_REG(hw, E1000_RXERRC);
6070	E1000_READ_REG(hw, E1000_TNCRS);
6071	E1000_READ_REG(hw, E1000_CEXTERR);
6072	E1000_READ_REG(hw, E1000_TSCTC);
6073	E1000_READ_REG(hw, E1000_TSCTFC);
6074
6075	E1000_READ_REG(hw, E1000_MGTPRC);
6076	E1000_READ_REG(hw, E1000_MGTPDC);
6077	E1000_READ_REG(hw, E1000_MGTPTC);
6078
6079	E1000_READ_REG(hw, E1000_IAC);
6080	E1000_READ_REG(hw, E1000_ICRXOC);
6081
6082	/* Clear PHY statistics registers */
6083	if ((hw->phy.type == e1000_phy_82578) ||
6084	    (hw->phy.type == e1000_phy_82579) ||
6085	    (hw->phy.type == e1000_phy_i217) ||
6086	    (hw->phy.type == e1000_phy_82577)) {
6087		ret_val = hw->phy.ops.acquire(hw);
6088		if (ret_val)
6089			return;
6090		ret_val = hw->phy.ops.set_page(hw,
6091					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6092		if (ret_val)
6093			goto release;
6094		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6095		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6096		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6097		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6098		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6099		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6100		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6101		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6102		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6103		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6104		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6105		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6106		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6107		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6108release:
6109		hw->phy.ops.release(hw);
6110	}
6111}
6112
6113