vdev_label.c revision 236884
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21236884Smm
22168404Spjd/*
23219089Spjd * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24236884Smm * Copyright (c) 2012 by Delphix. All rights reserved.
25168404Spjd */
26168404Spjd
27168404Spjd/*
28168404Spjd * Virtual Device Labels
29168404Spjd * ---------------------
30168404Spjd *
31168404Spjd * The vdev label serves several distinct purposes:
32168404Spjd *
33168404Spjd *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34168404Spjd *	   identity within the pool.
35168404Spjd *
36168404Spjd * 	2. Verify that all the devices given in a configuration are present
37168404Spjd *         within the pool.
38168404Spjd *
39168404Spjd * 	3. Determine the uberblock for the pool.
40168404Spjd *
41168404Spjd * 	4. In case of an import operation, determine the configuration of the
42168404Spjd *         toplevel vdev of which it is a part.
43168404Spjd *
44168404Spjd * 	5. If an import operation cannot find all the devices in the pool,
45168404Spjd *         provide enough information to the administrator to determine which
46168404Spjd *         devices are missing.
47168404Spjd *
48168404Spjd * It is important to note that while the kernel is responsible for writing the
49168404Spjd * label, it only consumes the information in the first three cases.  The
50168404Spjd * latter information is only consumed in userland when determining the
51168404Spjd * configuration to import a pool.
52168404Spjd *
53168404Spjd *
54168404Spjd * Label Organization
55168404Spjd * ------------------
56168404Spjd *
57168404Spjd * Before describing the contents of the label, it's important to understand how
58168404Spjd * the labels are written and updated with respect to the uberblock.
59168404Spjd *
60168404Spjd * When the pool configuration is altered, either because it was newly created
61168404Spjd * or a device was added, we want to update all the labels such that we can deal
62168404Spjd * with fatal failure at any point.  To this end, each disk has two labels which
63168404Spjd * are updated before and after the uberblock is synced.  Assuming we have
64185029Spjd * labels and an uberblock with the following transaction groups:
65168404Spjd *
66168404Spjd *              L1          UB          L2
67168404Spjd *           +------+    +------+    +------+
68168404Spjd *           |      |    |      |    |      |
69168404Spjd *           | t10  |    | t10  |    | t10  |
70168404Spjd *           |      |    |      |    |      |
71168404Spjd *           +------+    +------+    +------+
72168404Spjd *
73168404Spjd * In this stable state, the labels and the uberblock were all updated within
74168404Spjd * the same transaction group (10).  Each label is mirrored and checksummed, so
75168404Spjd * that we can detect when we fail partway through writing the label.
76168404Spjd *
77168404Spjd * In order to identify which labels are valid, the labels are written in the
78168404Spjd * following manner:
79168404Spjd *
80168404Spjd * 	1. For each vdev, update 'L1' to the new label
81168404Spjd * 	2. Update the uberblock
82168404Spjd * 	3. For each vdev, update 'L2' to the new label
83168404Spjd *
84168404Spjd * Given arbitrary failure, we can determine the correct label to use based on
85168404Spjd * the transaction group.  If we fail after updating L1 but before updating the
86168404Spjd * UB, we will notice that L1's transaction group is greater than the uberblock,
87168404Spjd * so L2 must be valid.  If we fail after writing the uberblock but before
88168404Spjd * writing L2, we will notice that L2's transaction group is less than L1, and
89168404Spjd * therefore L1 is valid.
90168404Spjd *
91168404Spjd * Another added complexity is that not every label is updated when the config
92168404Spjd * is synced.  If we add a single device, we do not want to have to re-write
93168404Spjd * every label for every device in the pool.  This means that both L1 and L2 may
94168404Spjd * be older than the pool uberblock, because the necessary information is stored
95168404Spjd * on another vdev.
96168404Spjd *
97168404Spjd *
98168404Spjd * On-disk Format
99168404Spjd * --------------
100168404Spjd *
101168404Spjd * The vdev label consists of two distinct parts, and is wrapped within the
102168404Spjd * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103168404Spjd * VTOC disk labels, but is otherwise ignored.
104168404Spjd *
105168404Spjd * The first half of the label is a packed nvlist which contains pool wide
106168404Spjd * properties, per-vdev properties, and configuration information.  It is
107168404Spjd * described in more detail below.
108168404Spjd *
109168404Spjd * The latter half of the label consists of a redundant array of uberblocks.
110168404Spjd * These uberblocks are updated whenever a transaction group is committed,
111168404Spjd * or when the configuration is updated.  When a pool is loaded, we scan each
112168404Spjd * vdev for the 'best' uberblock.
113168404Spjd *
114168404Spjd *
115168404Spjd * Configuration Information
116168404Spjd * -------------------------
117168404Spjd *
118168404Spjd * The nvlist describing the pool and vdev contains the following elements:
119168404Spjd *
120168404Spjd * 	version		ZFS on-disk version
121168404Spjd * 	name		Pool name
122168404Spjd * 	state		Pool state
123168404Spjd * 	txg		Transaction group in which this label was written
124168404Spjd * 	pool_guid	Unique identifier for this pool
125168404Spjd * 	vdev_tree	An nvlist describing vdev tree.
126236884Smm *	features_for_read
127236884Smm *			An nvlist of the features necessary for reading the MOS.
128168404Spjd *
129168404Spjd * Each leaf device label also contains the following:
130168404Spjd *
131168404Spjd * 	top_guid	Unique ID for top-level vdev in which this is contained
132168404Spjd * 	guid		Unique ID for the leaf vdev
133168404Spjd *
134168404Spjd * The 'vs' configuration follows the format described in 'spa_config.c'.
135168404Spjd */
136168404Spjd
137168404Spjd#include <sys/zfs_context.h>
138168404Spjd#include <sys/spa.h>
139168404Spjd#include <sys/spa_impl.h>
140168404Spjd#include <sys/dmu.h>
141168404Spjd#include <sys/zap.h>
142168404Spjd#include <sys/vdev.h>
143168404Spjd#include <sys/vdev_impl.h>
144168404Spjd#include <sys/uberblock_impl.h>
145168404Spjd#include <sys/metaslab.h>
146168404Spjd#include <sys/zio.h>
147219089Spjd#include <sys/dsl_scan.h>
148168404Spjd#include <sys/fs/zfs.h>
149168404Spjd
150168404Spjd/*
151168404Spjd * Basic routines to read and write from a vdev label.
152168404Spjd * Used throughout the rest of this file.
153168404Spjd */
154168404Spjduint64_t
155168404Spjdvdev_label_offset(uint64_t psize, int l, uint64_t offset)
156168404Spjd{
157168404Spjd	ASSERT(offset < sizeof (vdev_label_t));
158185029Spjd	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159168404Spjd
160168404Spjd	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161168404Spjd	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162168404Spjd}
163168404Spjd
164185029Spjd/*
165185029Spjd * Returns back the vdev label associated with the passed in offset.
166185029Spjd */
167185029Spjdint
168185029Spjdvdev_label_number(uint64_t psize, uint64_t offset)
169185029Spjd{
170185029Spjd	int l;
171185029Spjd
172185029Spjd	if (offset >= psize - VDEV_LABEL_END_SIZE) {
173185029Spjd		offset -= psize - VDEV_LABEL_END_SIZE;
174185029Spjd		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175185029Spjd	}
176185029Spjd	l = offset / sizeof (vdev_label_t);
177185029Spjd	return (l < VDEV_LABELS ? l : -1);
178185029Spjd}
179185029Spjd
180168404Spjdstatic void
181168404Spjdvdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182185029Spjd	uint64_t size, zio_done_func_t *done, void *private, int flags)
183168404Spjd{
184185029Spjd	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185185029Spjd	    SCL_STATE_ALL);
186185029Spjd	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187168404Spjd
188168404Spjd	zio_nowait(zio_read_phys(zio, vd,
189168404Spjd	    vdev_label_offset(vd->vdev_psize, l, offset),
190168404Spjd	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
191185029Spjd	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192168404Spjd}
193168404Spjd
194168404Spjdstatic void
195168404Spjdvdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196185029Spjd	uint64_t size, zio_done_func_t *done, void *private, int flags)
197168404Spjd{
198185029Spjd	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199185029Spjd	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200185029Spjd	    (SCL_CONFIG | SCL_STATE) &&
201185029Spjd	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202185029Spjd	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203168404Spjd
204168404Spjd	zio_nowait(zio_write_phys(zio, vd,
205168404Spjd	    vdev_label_offset(vd->vdev_psize, l, offset),
206168404Spjd	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
207185029Spjd	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208168404Spjd}
209168404Spjd
210168404Spjd/*
211168404Spjd * Generate the nvlist representing this vdev's config.
212168404Spjd */
213168404Spjdnvlist_t *
214168404Spjdvdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
215219089Spjd    vdev_config_flag_t flags)
216168404Spjd{
217168404Spjd	nvlist_t *nv = NULL;
218168404Spjd
219168404Spjd	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
220168404Spjd
221168404Spjd	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
222168404Spjd	    vd->vdev_ops->vdev_op_type) == 0);
223219089Spjd	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
224168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
225168404Spjd		    == 0);
226168404Spjd	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
227168404Spjd
228168404Spjd	if (vd->vdev_path != NULL)
229168404Spjd		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
230168404Spjd		    vd->vdev_path) == 0);
231168404Spjd
232168404Spjd	if (vd->vdev_devid != NULL)
233168404Spjd		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
234168404Spjd		    vd->vdev_devid) == 0);
235168404Spjd
236185029Spjd	if (vd->vdev_physpath != NULL)
237185029Spjd		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
238185029Spjd		    vd->vdev_physpath) == 0);
239185029Spjd
240209962Smm	if (vd->vdev_fru != NULL)
241209962Smm		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
242209962Smm		    vd->vdev_fru) == 0);
243209962Smm
244168404Spjd	if (vd->vdev_nparity != 0) {
245168404Spjd		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
246168404Spjd		    VDEV_TYPE_RAIDZ) == 0);
247168404Spjd
248168404Spjd		/*
249168404Spjd		 * Make sure someone hasn't managed to sneak a fancy new vdev
250168404Spjd		 * into a crufty old storage pool.
251168404Spjd		 */
252168404Spjd		ASSERT(vd->vdev_nparity == 1 ||
253219089Spjd		    (vd->vdev_nparity <= 2 &&
254219089Spjd		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
255219089Spjd		    (vd->vdev_nparity <= 3 &&
256219089Spjd		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
257168404Spjd
258168404Spjd		/*
259168404Spjd		 * Note that we'll add the nparity tag even on storage pools
260168404Spjd		 * that only support a single parity device -- older software
261168404Spjd		 * will just ignore it.
262168404Spjd		 */
263168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
264168404Spjd		    vd->vdev_nparity) == 0);
265168404Spjd	}
266168404Spjd
267168404Spjd	if (vd->vdev_wholedisk != -1ULL)
268168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
269168404Spjd		    vd->vdev_wholedisk) == 0);
270168404Spjd
271168404Spjd	if (vd->vdev_not_present)
272168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
273168404Spjd
274168404Spjd	if (vd->vdev_isspare)
275168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
276168404Spjd
277219089Spjd	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
278219089Spjd	    vd == vd->vdev_top) {
279168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
280168404Spjd		    vd->vdev_ms_array) == 0);
281168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
282168404Spjd		    vd->vdev_ms_shift) == 0);
283168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
284168404Spjd		    vd->vdev_ashift) == 0);
285168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
286168404Spjd		    vd->vdev_asize) == 0);
287185029Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
288185029Spjd		    vd->vdev_islog) == 0);
289219089Spjd		if (vd->vdev_removing)
290219089Spjd			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
291219089Spjd			    vd->vdev_removing) == 0);
292168404Spjd	}
293168404Spjd
294209962Smm	if (vd->vdev_dtl_smo.smo_object != 0)
295168404Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
296209962Smm		    vd->vdev_dtl_smo.smo_object) == 0);
297168404Spjd
298219089Spjd	if (vd->vdev_crtxg)
299219089Spjd		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
300219089Spjd		    vd->vdev_crtxg) == 0);
301219089Spjd
302168404Spjd	if (getstats) {
303168404Spjd		vdev_stat_t vs;
304219089Spjd		pool_scan_stat_t ps;
305219089Spjd
306168404Spjd		vdev_get_stats(vd, &vs);
307219089Spjd		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
308168404Spjd		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
309219089Spjd
310219089Spjd		/* provide either current or previous scan information */
311219089Spjd		if (spa_scan_get_stats(spa, &ps) == 0) {
312219089Spjd			VERIFY(nvlist_add_uint64_array(nv,
313219089Spjd			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
314219089Spjd			    sizeof (pool_scan_stat_t) / sizeof (uint64_t))
315219089Spjd			    == 0);
316219089Spjd		}
317168404Spjd	}
318168404Spjd
319168404Spjd	if (!vd->vdev_ops->vdev_op_leaf) {
320168404Spjd		nvlist_t **child;
321219089Spjd		int c, idx;
322168404Spjd
323219089Spjd		ASSERT(!vd->vdev_ishole);
324219089Spjd
325168404Spjd		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
326168404Spjd		    KM_SLEEP);
327168404Spjd
328219089Spjd		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
329219089Spjd			vdev_t *cvd = vd->vdev_child[c];
330168404Spjd
331219089Spjd			/*
332219089Spjd			 * If we're generating an nvlist of removing
333219089Spjd			 * vdevs then skip over any device which is
334219089Spjd			 * not being removed.
335219089Spjd			 */
336219089Spjd			if ((flags & VDEV_CONFIG_REMOVING) &&
337219089Spjd			    !cvd->vdev_removing)
338219089Spjd				continue;
339168404Spjd
340219089Spjd			child[idx++] = vdev_config_generate(spa, cvd,
341219089Spjd			    getstats, flags);
342219089Spjd		}
343219089Spjd
344219089Spjd		if (idx) {
345219089Spjd			VERIFY(nvlist_add_nvlist_array(nv,
346219089Spjd			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
347219089Spjd		}
348219089Spjd
349219089Spjd		for (c = 0; c < idx; c++)
350168404Spjd			nvlist_free(child[c]);
351168404Spjd
352168404Spjd		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
353168404Spjd
354168404Spjd	} else {
355219089Spjd		const char *aux = NULL;
356219089Spjd
357168404Spjd		if (vd->vdev_offline && !vd->vdev_tmpoffline)
358168404Spjd			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
359168404Spjd			    B_TRUE) == 0);
360219089Spjd		if (vd->vdev_resilvering)
361219089Spjd			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING,
362219089Spjd			    B_TRUE) == 0);
363185029Spjd		if (vd->vdev_faulted)
364185029Spjd			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
365185029Spjd			    B_TRUE) == 0);
366185029Spjd		if (vd->vdev_degraded)
367185029Spjd			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
368185029Spjd			    B_TRUE) == 0);
369185029Spjd		if (vd->vdev_removed)
370185029Spjd			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
371185029Spjd			    B_TRUE) == 0);
372185029Spjd		if (vd->vdev_unspare)
373185029Spjd			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
374185029Spjd			    B_TRUE) == 0);
375219089Spjd		if (vd->vdev_ishole)
376219089Spjd			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
377219089Spjd			    B_TRUE) == 0);
378219089Spjd
379219089Spjd		switch (vd->vdev_stat.vs_aux) {
380219089Spjd		case VDEV_AUX_ERR_EXCEEDED:
381219089Spjd			aux = "err_exceeded";
382219089Spjd			break;
383219089Spjd
384219089Spjd		case VDEV_AUX_EXTERNAL:
385219089Spjd			aux = "external";
386219089Spjd			break;
387219089Spjd		}
388219089Spjd
389219089Spjd		if (aux != NULL)
390219089Spjd			VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
391219089Spjd			    aux) == 0);
392219089Spjd
393219089Spjd		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
394219089Spjd			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
395219089Spjd			    vd->vdev_orig_guid) == 0);
396219089Spjd		}
397168404Spjd	}
398168404Spjd
399168404Spjd	return (nv);
400168404Spjd}
401168404Spjd
402219089Spjd/*
403219089Spjd * Generate a view of the top-level vdevs.  If we currently have holes
404219089Spjd * in the namespace, then generate an array which contains a list of holey
405219089Spjd * vdevs.  Additionally, add the number of top-level children that currently
406219089Spjd * exist.
407219089Spjd */
408219089Spjdvoid
409219089Spjdvdev_top_config_generate(spa_t *spa, nvlist_t *config)
410219089Spjd{
411219089Spjd	vdev_t *rvd = spa->spa_root_vdev;
412219089Spjd	uint64_t *array;
413219089Spjd	uint_t c, idx;
414219089Spjd
415219089Spjd	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
416219089Spjd
417219089Spjd	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
418219089Spjd		vdev_t *tvd = rvd->vdev_child[c];
419219089Spjd
420219089Spjd		if (tvd->vdev_ishole)
421219089Spjd			array[idx++] = c;
422219089Spjd	}
423219089Spjd
424219089Spjd	if (idx) {
425219089Spjd		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
426219089Spjd		    array, idx) == 0);
427219089Spjd	}
428219089Spjd
429219089Spjd	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
430219089Spjd	    rvd->vdev_children) == 0);
431219089Spjd
432219089Spjd	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
433219089Spjd}
434219089Spjd
435236884Smm/*
436236884Smm * Returns the configuration from the label of the given vdev. If 'label' is
437236884Smm * VDEV_BEST_LABEL, each label of the vdev will be read until a valid
438236884Smm * configuration is found; otherwise, only the specified label will be read.
439236884Smm */
440168404Spjdnvlist_t *
441236884Smmvdev_label_read_config(vdev_t *vd, int label)
442168404Spjd{
443168404Spjd	spa_t *spa = vd->vdev_spa;
444168404Spjd	nvlist_t *config = NULL;
445168404Spjd	vdev_phys_t *vp;
446168404Spjd	zio_t *zio;
447213198Smm	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
448213198Smm	    ZIO_FLAG_SPECULATIVE;
449168404Spjd
450185029Spjd	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
451168404Spjd
452185029Spjd	if (!vdev_readable(vd))
453168404Spjd		return (NULL);
454168404Spjd
455168404Spjd	vp = zio_buf_alloc(sizeof (vdev_phys_t));
456168404Spjd
457213198Smmretry:
458185029Spjd	for (int l = 0; l < VDEV_LABELS; l++) {
459236884Smm		if (label >= 0 && label < VDEV_LABELS && label != l)
460236884Smm			continue;
461168404Spjd
462185029Spjd		zio = zio_root(spa, NULL, NULL, flags);
463168404Spjd
464168404Spjd		vdev_label_read(zio, vd, l, vp,
465168404Spjd		    offsetof(vdev_label_t, vl_vdev_phys),
466185029Spjd		    sizeof (vdev_phys_t), NULL, NULL, flags);
467168404Spjd
468168404Spjd		if (zio_wait(zio) == 0 &&
469168404Spjd		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
470168404Spjd		    &config, 0) == 0)
471168404Spjd			break;
472168404Spjd
473168404Spjd		if (config != NULL) {
474168404Spjd			nvlist_free(config);
475168404Spjd			config = NULL;
476168404Spjd		}
477168404Spjd	}
478168404Spjd
479213198Smm	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
480213198Smm		flags |= ZIO_FLAG_TRYHARD;
481213198Smm		goto retry;
482213198Smm	}
483213198Smm
484168404Spjd	zio_buf_free(vp, sizeof (vdev_phys_t));
485168404Spjd
486168404Spjd	return (config);
487168404Spjd}
488168404Spjd
489168404Spjd/*
490168404Spjd * Determine if a device is in use.  The 'spare_guid' parameter will be filled
491168404Spjd * in with the device guid if this spare is active elsewhere on the system.
492168404Spjd */
493168404Spjdstatic boolean_t
494168404Spjdvdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
495185029Spjd    uint64_t *spare_guid, uint64_t *l2cache_guid)
496168404Spjd{
497168404Spjd	spa_t *spa = vd->vdev_spa;
498168404Spjd	uint64_t state, pool_guid, device_guid, txg, spare_pool;
499168404Spjd	uint64_t vdtxg = 0;
500168404Spjd	nvlist_t *label;
501168404Spjd
502168404Spjd	if (spare_guid)
503168404Spjd		*spare_guid = 0ULL;
504185029Spjd	if (l2cache_guid)
505185029Spjd		*l2cache_guid = 0ULL;
506168404Spjd
507168404Spjd	/*
508168404Spjd	 * Read the label, if any, and perform some basic sanity checks.
509168404Spjd	 */
510236884Smm	if ((label = vdev_label_read_config(vd, VDEV_BEST_LABEL)) == NULL)
511168404Spjd		return (B_FALSE);
512168404Spjd
513168404Spjd	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
514168404Spjd	    &vdtxg);
515168404Spjd
516168404Spjd	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
517168404Spjd	    &state) != 0 ||
518168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
519168404Spjd	    &device_guid) != 0) {
520168404Spjd		nvlist_free(label);
521168404Spjd		return (B_FALSE);
522168404Spjd	}
523168404Spjd
524185029Spjd	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
525168404Spjd	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
526168404Spjd	    &pool_guid) != 0 ||
527168404Spjd	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
528168404Spjd	    &txg) != 0)) {
529168404Spjd		nvlist_free(label);
530168404Spjd		return (B_FALSE);
531168404Spjd	}
532168404Spjd
533168404Spjd	nvlist_free(label);
534168404Spjd
535168404Spjd	/*
536168404Spjd	 * Check to see if this device indeed belongs to the pool it claims to
537168404Spjd	 * be a part of.  The only way this is allowed is if the device is a hot
538168404Spjd	 * spare (which we check for later on).
539168404Spjd	 */
540185029Spjd	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
541168404Spjd	    !spa_guid_exists(pool_guid, device_guid) &&
542185029Spjd	    !spa_spare_exists(device_guid, NULL, NULL) &&
543185029Spjd	    !spa_l2cache_exists(device_guid, NULL))
544168404Spjd		return (B_FALSE);
545168404Spjd
546168404Spjd	/*
547168404Spjd	 * If the transaction group is zero, then this an initialized (but
548168404Spjd	 * unused) label.  This is only an error if the create transaction
549168404Spjd	 * on-disk is the same as the one we're using now, in which case the
550168404Spjd	 * user has attempted to add the same vdev multiple times in the same
551168404Spjd	 * transaction.
552168404Spjd	 */
553185029Spjd	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
554185029Spjd	    txg == 0 && vdtxg == crtxg)
555168404Spjd		return (B_TRUE);
556168404Spjd
557168404Spjd	/*
558168404Spjd	 * Check to see if this is a spare device.  We do an explicit check for
559168404Spjd	 * spa_has_spare() here because it may be on our pending list of spares
560185029Spjd	 * to add.  We also check if it is an l2cache device.
561168404Spjd	 */
562185029Spjd	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
563168404Spjd	    spa_has_spare(spa, device_guid)) {
564168404Spjd		if (spare_guid)
565168404Spjd			*spare_guid = device_guid;
566168404Spjd
567168404Spjd		switch (reason) {
568168404Spjd		case VDEV_LABEL_CREATE:
569185029Spjd		case VDEV_LABEL_L2CACHE:
570168404Spjd			return (B_TRUE);
571168404Spjd
572168404Spjd		case VDEV_LABEL_REPLACE:
573168404Spjd			return (!spa_has_spare(spa, device_guid) ||
574168404Spjd			    spare_pool != 0ULL);
575168404Spjd
576168404Spjd		case VDEV_LABEL_SPARE:
577168404Spjd			return (spa_has_spare(spa, device_guid));
578168404Spjd		}
579168404Spjd	}
580168404Spjd
581168404Spjd	/*
582185029Spjd	 * Check to see if this is an l2cache device.
583185029Spjd	 */
584185029Spjd	if (spa_l2cache_exists(device_guid, NULL))
585185029Spjd		return (B_TRUE);
586185029Spjd
587185029Spjd	/*
588219089Spjd	 * We can't rely on a pool's state if it's been imported
589219089Spjd	 * read-only.  Instead we look to see if the pools is marked
590219089Spjd	 * read-only in the namespace and set the state to active.
591219089Spjd	 */
592219089Spjd	if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
593219089Spjd	    spa_mode(spa) == FREAD)
594219089Spjd		state = POOL_STATE_ACTIVE;
595219089Spjd
596219089Spjd	/*
597168404Spjd	 * If the device is marked ACTIVE, then this device is in use by another
598168404Spjd	 * pool on the system.
599168404Spjd	 */
600168404Spjd	return (state == POOL_STATE_ACTIVE);
601168404Spjd}
602168404Spjd
603168404Spjd/*
604168404Spjd * Initialize a vdev label.  We check to make sure each leaf device is not in
605168404Spjd * use, and writable.  We put down an initial label which we will later
606168404Spjd * overwrite with a complete label.  Note that it's important to do this
607168404Spjd * sequentially, not in parallel, so that we catch cases of multiple use of the
608168404Spjd * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
609168404Spjd * itself.
610168404Spjd */
611168404Spjdint
612168404Spjdvdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
613168404Spjd{
614168404Spjd	spa_t *spa = vd->vdev_spa;
615168404Spjd	nvlist_t *label;
616168404Spjd	vdev_phys_t *vp;
617209962Smm	char *pad2;
618168404Spjd	uberblock_t *ub;
619168404Spjd	zio_t *zio;
620168404Spjd	char *buf;
621168404Spjd	size_t buflen;
622168404Spjd	int error;
623185029Spjd	uint64_t spare_guid, l2cache_guid;
624185029Spjd	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
625168404Spjd
626185029Spjd	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
627168404Spjd
628185029Spjd	for (int c = 0; c < vd->vdev_children; c++)
629168404Spjd		if ((error = vdev_label_init(vd->vdev_child[c],
630168404Spjd		    crtxg, reason)) != 0)
631168404Spjd			return (error);
632168404Spjd
633219089Spjd	/* Track the creation time for this vdev */
634219089Spjd	vd->vdev_crtxg = crtxg;
635219089Spjd
636168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
637168404Spjd		return (0);
638168404Spjd
639168404Spjd	/*
640168404Spjd	 * Dead vdevs cannot be initialized.
641168404Spjd	 */
642168404Spjd	if (vdev_is_dead(vd))
643168404Spjd		return (EIO);
644168404Spjd
645168404Spjd	/*
646168404Spjd	 * Determine if the vdev is in use.
647168404Spjd	 */
648219089Spjd	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
649185029Spjd	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
650168404Spjd		return (EBUSY);
651168404Spjd
652168404Spjd	/*
653185029Spjd	 * If this is a request to add or replace a spare or l2cache device
654185029Spjd	 * that is in use elsewhere on the system, then we must update the
655185029Spjd	 * guid (which was initialized to a random value) to reflect the
656185029Spjd	 * actual GUID (which is shared between multiple pools).
657168404Spjd	 */
658185029Spjd	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
659185029Spjd	    spare_guid != 0ULL) {
660185029Spjd		uint64_t guid_delta = spare_guid - vd->vdev_guid;
661168404Spjd
662185029Spjd		vd->vdev_guid += guid_delta;
663168404Spjd
664185029Spjd		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
665185029Spjd			pvd->vdev_guid_sum += guid_delta;
666168404Spjd
667168404Spjd		/*
668168404Spjd		 * If this is a replacement, then we want to fallthrough to the
669168404Spjd		 * rest of the code.  If we're adding a spare, then it's already
670185029Spjd		 * labeled appropriately and we can just return.
671168404Spjd		 */
672168404Spjd		if (reason == VDEV_LABEL_SPARE)
673168404Spjd			return (0);
674219089Spjd		ASSERT(reason == VDEV_LABEL_REPLACE ||
675219089Spjd		    reason == VDEV_LABEL_SPLIT);
676168404Spjd	}
677168404Spjd
678185029Spjd	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
679185029Spjd	    l2cache_guid != 0ULL) {
680185029Spjd		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
681185029Spjd
682185029Spjd		vd->vdev_guid += guid_delta;
683185029Spjd
684185029Spjd		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
685185029Spjd			pvd->vdev_guid_sum += guid_delta;
686185029Spjd
687185029Spjd		/*
688185029Spjd		 * If this is a replacement, then we want to fallthrough to the
689185029Spjd		 * rest of the code.  If we're adding an l2cache, then it's
690185029Spjd		 * already labeled appropriately and we can just return.
691185029Spjd		 */
692185029Spjd		if (reason == VDEV_LABEL_L2CACHE)
693185029Spjd			return (0);
694185029Spjd		ASSERT(reason == VDEV_LABEL_REPLACE);
695185029Spjd	}
696185029Spjd
697168404Spjd	/*
698168404Spjd	 * Initialize its label.
699168404Spjd	 */
700168404Spjd	vp = zio_buf_alloc(sizeof (vdev_phys_t));
701168404Spjd	bzero(vp, sizeof (vdev_phys_t));
702168404Spjd
703168404Spjd	/*
704168404Spjd	 * Generate a label describing the pool and our top-level vdev.
705168404Spjd	 * We mark it as being from txg 0 to indicate that it's not
706168404Spjd	 * really part of an active pool just yet.  The labels will
707168404Spjd	 * be written again with a meaningful txg by spa_sync().
708168404Spjd	 */
709168404Spjd	if (reason == VDEV_LABEL_SPARE ||
710168404Spjd	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
711168404Spjd		/*
712168404Spjd		 * For inactive hot spares, we generate a special label that
713168404Spjd		 * identifies as a mutually shared hot spare.  We write the
714168404Spjd		 * label if we are adding a hot spare, or if we are removing an
715168404Spjd		 * active hot spare (in which case we want to revert the
716168404Spjd		 * labels).
717168404Spjd		 */
718168404Spjd		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
719168404Spjd
720168404Spjd		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
721168404Spjd		    spa_version(spa)) == 0);
722168404Spjd		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
723168404Spjd		    POOL_STATE_SPARE) == 0);
724168404Spjd		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
725168404Spjd		    vd->vdev_guid) == 0);
726185029Spjd	} else if (reason == VDEV_LABEL_L2CACHE ||
727185029Spjd	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
728185029Spjd		/*
729185029Spjd		 * For level 2 ARC devices, add a special label.
730185029Spjd		 */
731185029Spjd		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
732185029Spjd
733185029Spjd		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
734185029Spjd		    spa_version(spa)) == 0);
735185029Spjd		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
736185029Spjd		    POOL_STATE_L2CACHE) == 0);
737185029Spjd		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
738185029Spjd		    vd->vdev_guid) == 0);
739168404Spjd	} else {
740219089Spjd		uint64_t txg = 0ULL;
741168404Spjd
742219089Spjd		if (reason == VDEV_LABEL_SPLIT)
743219089Spjd			txg = spa->spa_uberblock.ub_txg;
744219089Spjd		label = spa_config_generate(spa, vd, txg, B_FALSE);
745219089Spjd
746168404Spjd		/*
747168404Spjd		 * Add our creation time.  This allows us to detect multiple
748168404Spjd		 * vdev uses as described above, and automatically expires if we
749168404Spjd		 * fail.
750168404Spjd		 */
751168404Spjd		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
752168404Spjd		    crtxg) == 0);
753168404Spjd	}
754168404Spjd
755168404Spjd	buf = vp->vp_nvlist;
756168404Spjd	buflen = sizeof (vp->vp_nvlist);
757168404Spjd
758168404Spjd	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
759168404Spjd	if (error != 0) {
760168404Spjd		nvlist_free(label);
761168404Spjd		zio_buf_free(vp, sizeof (vdev_phys_t));
762168404Spjd		/* EFAULT means nvlist_pack ran out of room */
763168404Spjd		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
764168404Spjd	}
765168404Spjd
766168404Spjd	/*
767168404Spjd	 * Initialize uberblock template.
768168404Spjd	 */
769219089Spjd	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
770219089Spjd	bzero(ub, VDEV_UBERBLOCK_RING);
771168404Spjd	*ub = spa->spa_uberblock;
772168404Spjd	ub->ub_txg = 0;
773168404Spjd
774209962Smm	/* Initialize the 2nd padding area. */
775209962Smm	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
776209962Smm	bzero(pad2, VDEV_PAD_SIZE);
777209962Smm
778168404Spjd	/*
779168404Spjd	 * Write everything in parallel.
780168404Spjd	 */
781213198Smmretry:
782185029Spjd	zio = zio_root(spa, NULL, NULL, flags);
783168404Spjd
784185029Spjd	for (int l = 0; l < VDEV_LABELS; l++) {
785168404Spjd
786168404Spjd		vdev_label_write(zio, vd, l, vp,
787168404Spjd		    offsetof(vdev_label_t, vl_vdev_phys),
788185029Spjd		    sizeof (vdev_phys_t), NULL, NULL, flags);
789168404Spjd
790209962Smm		/*
791209962Smm		 * Skip the 1st padding area.
792209962Smm		 * Zero out the 2nd padding area where it might have
793209962Smm		 * left over data from previous filesystem format.
794209962Smm		 */
795209962Smm		vdev_label_write(zio, vd, l, pad2,
796209962Smm		    offsetof(vdev_label_t, vl_pad2),
797209962Smm		    VDEV_PAD_SIZE, NULL, NULL, flags);
798168404Spjd
799219089Spjd		vdev_label_write(zio, vd, l, ub,
800219089Spjd		    offsetof(vdev_label_t, vl_uberblock),
801219089Spjd		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
802168404Spjd	}
803168404Spjd
804168404Spjd	error = zio_wait(zio);
805168404Spjd
806213198Smm	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
807213198Smm		flags |= ZIO_FLAG_TRYHARD;
808213198Smm		goto retry;
809213198Smm	}
810213198Smm
811168404Spjd	nvlist_free(label);
812209962Smm	zio_buf_free(pad2, VDEV_PAD_SIZE);
813219089Spjd	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
814168404Spjd	zio_buf_free(vp, sizeof (vdev_phys_t));
815168404Spjd
816168404Spjd	/*
817168404Spjd	 * If this vdev hasn't been previously identified as a spare, then we
818185029Spjd	 * mark it as such only if a) we are labeling it as a spare, or b) it
819185029Spjd	 * exists as a spare elsewhere in the system.  Do the same for
820185029Spjd	 * level 2 ARC devices.
821168404Spjd	 */
822168404Spjd	if (error == 0 && !vd->vdev_isspare &&
823168404Spjd	    (reason == VDEV_LABEL_SPARE ||
824185029Spjd	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
825168404Spjd		spa_spare_add(vd);
826168404Spjd
827185029Spjd	if (error == 0 && !vd->vdev_isl2cache &&
828185029Spjd	    (reason == VDEV_LABEL_L2CACHE ||
829185029Spjd	    spa_l2cache_exists(vd->vdev_guid, NULL)))
830185029Spjd		spa_l2cache_add(vd);
831185029Spjd
832168404Spjd	return (error);
833168404Spjd}
834168404Spjd
835168404Spjd/*
836168404Spjd * ==========================================================================
837168404Spjd * uberblock load/sync
838168404Spjd * ==========================================================================
839168404Spjd */
840168404Spjd
841168404Spjd/*
842168404Spjd * Consider the following situation: txg is safely synced to disk.  We've
843168404Spjd * written the first uberblock for txg + 1, and then we lose power.  When we
844168404Spjd * come back up, we fail to see the uberblock for txg + 1 because, say,
845168404Spjd * it was on a mirrored device and the replica to which we wrote txg + 1
846168404Spjd * is now offline.  If we then make some changes and sync txg + 1, and then
847236884Smm * the missing replica comes back, then for a few seconds we'll have two
848168404Spjd * conflicting uberblocks on disk with the same txg.  The solution is simple:
849168404Spjd * among uberblocks with equal txg, choose the one with the latest timestamp.
850168404Spjd */
851168404Spjdstatic int
852168404Spjdvdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
853168404Spjd{
854168404Spjd	if (ub1->ub_txg < ub2->ub_txg)
855168404Spjd		return (-1);
856168404Spjd	if (ub1->ub_txg > ub2->ub_txg)
857168404Spjd		return (1);
858168404Spjd
859168404Spjd	if (ub1->ub_timestamp < ub2->ub_timestamp)
860168404Spjd		return (-1);
861168404Spjd	if (ub1->ub_timestamp > ub2->ub_timestamp)
862168404Spjd		return (1);
863168404Spjd
864168404Spjd	return (0);
865168404Spjd}
866168404Spjd
867236884Smmstruct ubl_cbdata {
868236884Smm	uberblock_t	*ubl_ubbest;	/* Best uberblock */
869236884Smm	vdev_t		*ubl_vd;	/* vdev associated with the above */
870236884Smm	int		ubl_label;	/* Label associated with the above */
871236884Smm};
872236884Smm
873168404Spjdstatic void
874168404Spjdvdev_uberblock_load_done(zio_t *zio)
875168404Spjd{
876236884Smm	vdev_t *vd = zio->io_vd;
877219089Spjd	spa_t *spa = zio->io_spa;
878185029Spjd	zio_t *rio = zio->io_private;
879168404Spjd	uberblock_t *ub = zio->io_data;
880236884Smm	struct ubl_cbdata *cbp = rio->io_private;
881168404Spjd
882236884Smm	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
883168404Spjd
884168404Spjd	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
885185029Spjd		mutex_enter(&rio->io_lock);
886219089Spjd		if (ub->ub_txg <= spa->spa_load_max_txg &&
887236884Smm		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
888236884Smm			/*
889236884Smm			 * Keep track of the vdev and label in which this
890236884Smm			 * uberblock was found. We will use this information
891236884Smm			 * later to obtain the config nvlist associated with
892236884Smm			 * this uberblock.
893236884Smm			 */
894236884Smm			*cbp->ubl_ubbest = *ub;
895236884Smm			cbp->ubl_vd = vd;
896236884Smm			cbp->ubl_label = vdev_label_number(vd->vdev_psize,
897236884Smm			    zio->io_offset);
898236884Smm		}
899185029Spjd		mutex_exit(&rio->io_lock);
900168404Spjd	}
901168404Spjd
902168404Spjd	zio_buf_free(zio->io_data, zio->io_size);
903168404Spjd}
904168404Spjd
905236884Smmstatic void
906236884Smmvdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
907236884Smm    struct ubl_cbdata *cbp)
908168404Spjd{
909185029Spjd	for (int c = 0; c < vd->vdev_children; c++)
910236884Smm		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
911168404Spjd
912185029Spjd	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
913185029Spjd		for (int l = 0; l < VDEV_LABELS; l++) {
914185029Spjd			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
915185029Spjd				vdev_label_read(zio, vd, l,
916185029Spjd				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
917185029Spjd				    VDEV_UBERBLOCK_OFFSET(vd, n),
918185029Spjd				    VDEV_UBERBLOCK_SIZE(vd),
919185029Spjd				    vdev_uberblock_load_done, zio, flags);
920185029Spjd			}
921168404Spjd		}
922168404Spjd	}
923236884Smm}
924185029Spjd
925236884Smm/*
926236884Smm * Reads the 'best' uberblock from disk along with its associated
927236884Smm * configuration. First, we read the uberblock array of each label of each
928236884Smm * vdev, keeping track of the uberblock with the highest txg in each array.
929236884Smm * Then, we read the configuration from the same label as the best uberblock.
930236884Smm */
931236884Smmvoid
932236884Smmvdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
933236884Smm{
934236884Smm	int i;
935236884Smm	zio_t *zio;
936236884Smm	spa_t *spa = rvd->vdev_spa;
937236884Smm	struct ubl_cbdata cb;
938236884Smm	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
939236884Smm	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
940236884Smm
941236884Smm	ASSERT(ub);
942236884Smm	ASSERT(config);
943236884Smm
944236884Smm	bzero(ub, sizeof (uberblock_t));
945236884Smm	*config = NULL;
946236884Smm
947236884Smm	cb.ubl_ubbest = ub;
948236884Smm	cb.ubl_vd = NULL;
949236884Smm
950236884Smm	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
951236884Smm	zio = zio_root(spa, NULL, &cb, flags);
952236884Smm	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
953236884Smm	(void) zio_wait(zio);
954236884Smm	if (cb.ubl_vd != NULL) {
955236884Smm		for (i = cb.ubl_label % 2; i < VDEV_LABELS; i += 2) {
956236884Smm			*config = vdev_label_read_config(cb.ubl_vd, i);
957236884Smm			if (*config != NULL)
958236884Smm				break;
959236884Smm		}
960185029Spjd	}
961236884Smm	spa_config_exit(spa, SCL_ALL, FTAG);
962168404Spjd}
963168404Spjd
964168404Spjd/*
965185029Spjd * On success, increment root zio's count of good writes.
966168404Spjd * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
967168404Spjd */
968168404Spjdstatic void
969168404Spjdvdev_uberblock_sync_done(zio_t *zio)
970168404Spjd{
971185029Spjd	uint64_t *good_writes = zio->io_private;
972168404Spjd
973168404Spjd	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
974168404Spjd		atomic_add_64(good_writes, 1);
975168404Spjd}
976168404Spjd
977185029Spjd/*
978185029Spjd * Write the uberblock to all labels of all leaves of the specified vdev.
979185029Spjd */
980168404Spjdstatic void
981185029Spjdvdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
982168404Spjd{
983185029Spjd	uberblock_t *ubbuf;
984185029Spjd	int n;
985168404Spjd
986185029Spjd	for (int c = 0; c < vd->vdev_children; c++)
987185029Spjd		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
988168404Spjd
989168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
990168404Spjd		return;
991168404Spjd
992185029Spjd	if (!vdev_writeable(vd))
993168404Spjd		return;
994168404Spjd
995185029Spjd	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
996168404Spjd
997185029Spjd	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
998185029Spjd	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
999185029Spjd	*ubbuf = *ub;
1000168404Spjd
1001185029Spjd	for (int l = 0; l < VDEV_LABELS; l++)
1002185029Spjd		vdev_label_write(zio, vd, l, ubbuf,
1003185029Spjd		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1004185029Spjd		    vdev_uberblock_sync_done, zio->io_private,
1005185029Spjd		    flags | ZIO_FLAG_DONT_PROPAGATE);
1006168404Spjd
1007185029Spjd	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1008168404Spjd}
1009168404Spjd
1010185029Spjdint
1011185029Spjdvdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1012168404Spjd{
1013185029Spjd	spa_t *spa = svd[0]->vdev_spa;
1014168404Spjd	zio_t *zio;
1015185029Spjd	uint64_t good_writes = 0;
1016168404Spjd
1017185029Spjd	zio = zio_root(spa, NULL, &good_writes, flags);
1018168404Spjd
1019185029Spjd	for (int v = 0; v < svdcount; v++)
1020185029Spjd		vdev_uberblock_sync(zio, ub, svd[v], flags);
1021168404Spjd
1022185029Spjd	(void) zio_wait(zio);
1023168404Spjd
1024168404Spjd	/*
1025185029Spjd	 * Flush the uberblocks to disk.  This ensures that the odd labels
1026185029Spjd	 * are no longer needed (because the new uberblocks and the even
1027185029Spjd	 * labels are safely on disk), so it is safe to overwrite them.
1028168404Spjd	 */
1029185029Spjd	zio = zio_root(spa, NULL, NULL, flags);
1030168404Spjd
1031185029Spjd	for (int v = 0; v < svdcount; v++)
1032185029Spjd		zio_flush(zio, svd[v]);
1033168404Spjd
1034185029Spjd	(void) zio_wait(zio);
1035185029Spjd
1036185029Spjd	return (good_writes >= 1 ? 0 : EIO);
1037168404Spjd}
1038168404Spjd
1039168404Spjd/*
1040185029Spjd * On success, increment the count of good writes for our top-level vdev.
1041168404Spjd */
1042168404Spjdstatic void
1043185029Spjdvdev_label_sync_done(zio_t *zio)
1044168404Spjd{
1045185029Spjd	uint64_t *good_writes = zio->io_private;
1046168404Spjd
1047168404Spjd	if (zio->io_error == 0)
1048168404Spjd		atomic_add_64(good_writes, 1);
1049168404Spjd}
1050168404Spjd
1051185029Spjd/*
1052185029Spjd * If there weren't enough good writes, indicate failure to the parent.
1053185029Spjd */
1054168404Spjdstatic void
1055185029Spjdvdev_label_sync_top_done(zio_t *zio)
1056168404Spjd{
1057185029Spjd	uint64_t *good_writes = zio->io_private;
1058185029Spjd
1059185029Spjd	if (*good_writes == 0)
1060185029Spjd		zio->io_error = EIO;
1061185029Spjd
1062185029Spjd	kmem_free(good_writes, sizeof (uint64_t));
1063185029Spjd}
1064185029Spjd
1065185029Spjd/*
1066185029Spjd * We ignore errors for log and cache devices, simply free the private data.
1067185029Spjd */
1068185029Spjdstatic void
1069185029Spjdvdev_label_sync_ignore_done(zio_t *zio)
1070185029Spjd{
1071185029Spjd	kmem_free(zio->io_private, sizeof (uint64_t));
1072185029Spjd}
1073185029Spjd
1074185029Spjd/*
1075185029Spjd * Write all even or odd labels to all leaves of the specified vdev.
1076185029Spjd */
1077185029Spjdstatic void
1078185029Spjdvdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1079185029Spjd{
1080168404Spjd	nvlist_t *label;
1081168404Spjd	vdev_phys_t *vp;
1082168404Spjd	char *buf;
1083168404Spjd	size_t buflen;
1084168404Spjd
1085185029Spjd	for (int c = 0; c < vd->vdev_children; c++)
1086185029Spjd		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1087168404Spjd
1088168404Spjd	if (!vd->vdev_ops->vdev_op_leaf)
1089168404Spjd		return;
1090168404Spjd
1091185029Spjd	if (!vdev_writeable(vd))
1092168404Spjd		return;
1093168404Spjd
1094168404Spjd	/*
1095168404Spjd	 * Generate a label describing the top-level config to which we belong.
1096168404Spjd	 */
1097168404Spjd	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1098168404Spjd
1099168404Spjd	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1100168404Spjd	bzero(vp, sizeof (vdev_phys_t));
1101168404Spjd
1102168404Spjd	buf = vp->vp_nvlist;
1103168404Spjd	buflen = sizeof (vp->vp_nvlist);
1104168404Spjd
1105185029Spjd	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1106185029Spjd		for (; l < VDEV_LABELS; l += 2) {
1107185029Spjd			vdev_label_write(zio, vd, l, vp,
1108185029Spjd			    offsetof(vdev_label_t, vl_vdev_phys),
1109185029Spjd			    sizeof (vdev_phys_t),
1110185029Spjd			    vdev_label_sync_done, zio->io_private,
1111185029Spjd			    flags | ZIO_FLAG_DONT_PROPAGATE);
1112185029Spjd		}
1113185029Spjd	}
1114168404Spjd
1115168404Spjd	zio_buf_free(vp, sizeof (vdev_phys_t));
1116168404Spjd	nvlist_free(label);
1117168404Spjd}
1118168404Spjd
1119185029Spjdint
1120185029Spjdvdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1121168404Spjd{
1122185029Spjd	list_t *dl = &spa->spa_config_dirty_list;
1123185029Spjd	vdev_t *vd;
1124168404Spjd	zio_t *zio;
1125168404Spjd	int error;
1126168404Spjd
1127185029Spjd	/*
1128185029Spjd	 * Write the new labels to disk.
1129185029Spjd	 */
1130185029Spjd	zio = zio_root(spa, NULL, NULL, flags);
1131168404Spjd
1132185029Spjd	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1133185029Spjd		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1134185029Spjd		    KM_SLEEP);
1135219089Spjd
1136219089Spjd		ASSERT(!vd->vdev_ishole);
1137219089Spjd
1138209962Smm		zio_t *vio = zio_null(zio, spa, NULL,
1139185029Spjd		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1140185029Spjd		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1141185029Spjd		    good_writes, flags);
1142185029Spjd		vdev_label_sync(vio, vd, l, txg, flags);
1143185029Spjd		zio_nowait(vio);
1144185029Spjd	}
1145168404Spjd
1146185029Spjd	error = zio_wait(zio);
1147168404Spjd
1148168404Spjd	/*
1149185029Spjd	 * Flush the new labels to disk.
1150168404Spjd	 */
1151185029Spjd	zio = zio_root(spa, NULL, NULL, flags);
1152168404Spjd
1153185029Spjd	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1154185029Spjd		zio_flush(zio, vd);
1155168404Spjd
1156185029Spjd	(void) zio_wait(zio);
1157168404Spjd
1158168404Spjd	return (error);
1159168404Spjd}
1160168404Spjd
1161168404Spjd/*
1162185029Spjd * Sync the uberblock and any changes to the vdev configuration.
1163168404Spjd *
1164168404Spjd * The order of operations is carefully crafted to ensure that
1165168404Spjd * if the system panics or loses power at any time, the state on disk
1166168404Spjd * is still transactionally consistent.  The in-line comments below
1167168404Spjd * describe the failure semantics at each stage.
1168168404Spjd *
1169185029Spjd * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1170168404Spjd * at any time, you can just call it again, and it will resume its work.
1171168404Spjd */
1172168404Spjdint
1173213198Smmvdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1174168404Spjd{
1175185029Spjd	spa_t *spa = svd[0]->vdev_spa;
1176168404Spjd	uberblock_t *ub = &spa->spa_uberblock;
1177168404Spjd	vdev_t *vd;
1178168404Spjd	zio_t *zio;
1179185029Spjd	int error;
1180185029Spjd	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1181168404Spjd
1182213198Smm	/*
1183213198Smm	 * Normally, we don't want to try too hard to write every label and
1184213198Smm	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1185213198Smm	 * sync process to block while we retry.  But if we can't write a
1186213198Smm	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1187213198Smm	 * bailing out and declaring the pool faulted.
1188213198Smm	 */
1189213198Smm	if (tryhard)
1190213198Smm		flags |= ZIO_FLAG_TRYHARD;
1191213198Smm
1192168404Spjd	ASSERT(ub->ub_txg <= txg);
1193168404Spjd
1194168404Spjd	/*
1195185029Spjd	 * If this isn't a resync due to I/O errors,
1196185029Spjd	 * and nothing changed in this transaction group,
1197185029Spjd	 * and the vdev configuration hasn't changed,
1198168404Spjd	 * then there's nothing to do.
1199168404Spjd	 */
1200185029Spjd	if (ub->ub_txg < txg &&
1201185029Spjd	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1202185029Spjd	    list_is_empty(&spa->spa_config_dirty_list))
1203168404Spjd		return (0);
1204168404Spjd
1205168404Spjd	if (txg > spa_freeze_txg(spa))
1206168404Spjd		return (0);
1207168404Spjd
1208168404Spjd	ASSERT(txg <= spa->spa_final_txg);
1209168404Spjd
1210168404Spjd	/*
1211168404Spjd	 * Flush the write cache of every disk that's been written to
1212168404Spjd	 * in this transaction group.  This ensures that all blocks
1213168404Spjd	 * written in this txg will be committed to stable storage
1214168404Spjd	 * before any uberblock that references them.
1215168404Spjd	 */
1216185029Spjd	zio = zio_root(spa, NULL, NULL, flags);
1217185029Spjd
1218168404Spjd	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1219185029Spjd	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1220185029Spjd		zio_flush(zio, vd);
1221185029Spjd
1222168404Spjd	(void) zio_wait(zio);
1223168404Spjd
1224168404Spjd	/*
1225168404Spjd	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1226168404Spjd	 * system dies in the middle of this process, that's OK: all of the
1227168404Spjd	 * even labels that made it to disk will be newer than any uberblock,
1228168404Spjd	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1229185029Spjd	 * which have not yet been touched, will still be valid.  We flush
1230185029Spjd	 * the new labels to disk to ensure that all even-label updates
1231185029Spjd	 * are committed to stable storage before the uberblock update.
1232168404Spjd	 */
1233185029Spjd	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1234185029Spjd		return (error);
1235168404Spjd
1236168404Spjd	/*
1237185029Spjd	 * Sync the uberblocks to all vdevs in svd[].
1238168404Spjd	 * If the system dies in the middle of this step, there are two cases
1239168404Spjd	 * to consider, and the on-disk state is consistent either way:
1240168404Spjd	 *
1241168404Spjd	 * (1)	If none of the new uberblocks made it to disk, then the
1242168404Spjd	 *	previous uberblock will be the newest, and the odd labels
1243168404Spjd	 *	(which had not yet been touched) will be valid with respect
1244168404Spjd	 *	to that uberblock.
1245168404Spjd	 *
1246168404Spjd	 * (2)	If one or more new uberblocks made it to disk, then they
1247168404Spjd	 *	will be the newest, and the even labels (which had all
1248168404Spjd	 *	been successfully committed) will be valid with respect
1249168404Spjd	 *	to the new uberblocks.
1250168404Spjd	 */
1251185029Spjd	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1252168404Spjd		return (error);
1253168404Spjd
1254168404Spjd	/*
1255168404Spjd	 * Sync out odd labels for every dirty vdev.  If the system dies
1256168404Spjd	 * in the middle of this process, the even labels and the new
1257168404Spjd	 * uberblocks will suffice to open the pool.  The next time
1258168404Spjd	 * the pool is opened, the first thing we'll do -- before any
1259168404Spjd	 * user data is modified -- is mark every vdev dirty so that
1260185029Spjd	 * all labels will be brought up to date.  We flush the new labels
1261185029Spjd	 * to disk to ensure that all odd-label updates are committed to
1262185029Spjd	 * stable storage before the next transaction group begins.
1263168404Spjd	 */
1264185029Spjd	return (vdev_label_sync_list(spa, 1, txg, flags));
1265168404Spjd}
1266