vdev_label.c revision 236884
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */
26
27/*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34 *	   identity within the pool.
35 *
36 * 	2. Verify that all the devices given in a configuration are present
37 *         within the pool.
38 *
39 * 	3. Determine the uberblock for the pool.
40 *
41 * 	4. In case of an import operation, determine the configuration of the
42 *         toplevel vdev of which it is a part.
43 *
44 * 	5. If an import operation cannot find all the devices in the pool,
45 *         provide enough information to the administrator to determine which
46 *         devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases.  The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point.  To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced.  Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 *              L1          UB          L2
67 *           +------+    +------+    +------+
68 *           |      |    |      |    |      |
69 *           | t10  |    | t10  |    | t10  |
70 *           |      |    |      |    |      |
71 *           +------+    +------+    +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10).  Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 * 	1. For each vdev, update 'L1' to the new label
81 * 	2. Update the uberblock
82 * 	3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group.  If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid.  If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced.  If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool.  This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information.  It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated.  When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 * 	version		ZFS on-disk version
121 * 	name		Pool name
122 * 	state		Pool state
123 * 	txg		Transaction group in which this label was written
124 * 	pool_guid	Unique identifier for this pool
125 * 	vdev_tree	An nvlist describing vdev tree.
126 *	features_for_read
127 *			An nvlist of the features necessary for reading the MOS.
128 *
129 * Each leaf device label also contains the following:
130 *
131 * 	top_guid	Unique ID for top-level vdev in which this is contained
132 * 	guid		Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137#include <sys/zfs_context.h>
138#include <sys/spa.h>
139#include <sys/spa_impl.h>
140#include <sys/dmu.h>
141#include <sys/zap.h>
142#include <sys/vdev.h>
143#include <sys/vdev_impl.h>
144#include <sys/uberblock_impl.h>
145#include <sys/metaslab.h>
146#include <sys/zio.h>
147#include <sys/dsl_scan.h>
148#include <sys/fs/zfs.h>
149
150/*
151 * Basic routines to read and write from a vdev label.
152 * Used throughout the rest of this file.
153 */
154uint64_t
155vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156{
157	ASSERT(offset < sizeof (vdev_label_t));
158	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159
160	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162}
163
164/*
165 * Returns back the vdev label associated with the passed in offset.
166 */
167int
168vdev_label_number(uint64_t psize, uint64_t offset)
169{
170	int l;
171
172	if (offset >= psize - VDEV_LABEL_END_SIZE) {
173		offset -= psize - VDEV_LABEL_END_SIZE;
174		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175	}
176	l = offset / sizeof (vdev_label_t);
177	return (l < VDEV_LABELS ? l : -1);
178}
179
180static void
181vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182	uint64_t size, zio_done_func_t *done, void *private, int flags)
183{
184	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185	    SCL_STATE_ALL);
186	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187
188	zio_nowait(zio_read_phys(zio, vd,
189	    vdev_label_offset(vd->vdev_psize, l, offset),
190	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
191	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192}
193
194static void
195vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196	uint64_t size, zio_done_func_t *done, void *private, int flags)
197{
198	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200	    (SCL_CONFIG | SCL_STATE) &&
201	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203
204	zio_nowait(zio_write_phys(zio, vd,
205	    vdev_label_offset(vd->vdev_psize, l, offset),
206	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
207	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208}
209
210/*
211 * Generate the nvlist representing this vdev's config.
212 */
213nvlist_t *
214vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
215    vdev_config_flag_t flags)
216{
217	nvlist_t *nv = NULL;
218
219	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
220
221	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
222	    vd->vdev_ops->vdev_op_type) == 0);
223	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
224		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
225		    == 0);
226	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
227
228	if (vd->vdev_path != NULL)
229		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
230		    vd->vdev_path) == 0);
231
232	if (vd->vdev_devid != NULL)
233		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
234		    vd->vdev_devid) == 0);
235
236	if (vd->vdev_physpath != NULL)
237		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
238		    vd->vdev_physpath) == 0);
239
240	if (vd->vdev_fru != NULL)
241		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
242		    vd->vdev_fru) == 0);
243
244	if (vd->vdev_nparity != 0) {
245		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
246		    VDEV_TYPE_RAIDZ) == 0);
247
248		/*
249		 * Make sure someone hasn't managed to sneak a fancy new vdev
250		 * into a crufty old storage pool.
251		 */
252		ASSERT(vd->vdev_nparity == 1 ||
253		    (vd->vdev_nparity <= 2 &&
254		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
255		    (vd->vdev_nparity <= 3 &&
256		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
257
258		/*
259		 * Note that we'll add the nparity tag even on storage pools
260		 * that only support a single parity device -- older software
261		 * will just ignore it.
262		 */
263		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
264		    vd->vdev_nparity) == 0);
265	}
266
267	if (vd->vdev_wholedisk != -1ULL)
268		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
269		    vd->vdev_wholedisk) == 0);
270
271	if (vd->vdev_not_present)
272		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
273
274	if (vd->vdev_isspare)
275		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
276
277	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
278	    vd == vd->vdev_top) {
279		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
280		    vd->vdev_ms_array) == 0);
281		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
282		    vd->vdev_ms_shift) == 0);
283		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
284		    vd->vdev_ashift) == 0);
285		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
286		    vd->vdev_asize) == 0);
287		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
288		    vd->vdev_islog) == 0);
289		if (vd->vdev_removing)
290			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
291			    vd->vdev_removing) == 0);
292	}
293
294	if (vd->vdev_dtl_smo.smo_object != 0)
295		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
296		    vd->vdev_dtl_smo.smo_object) == 0);
297
298	if (vd->vdev_crtxg)
299		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
300		    vd->vdev_crtxg) == 0);
301
302	if (getstats) {
303		vdev_stat_t vs;
304		pool_scan_stat_t ps;
305
306		vdev_get_stats(vd, &vs);
307		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
308		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
309
310		/* provide either current or previous scan information */
311		if (spa_scan_get_stats(spa, &ps) == 0) {
312			VERIFY(nvlist_add_uint64_array(nv,
313			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
314			    sizeof (pool_scan_stat_t) / sizeof (uint64_t))
315			    == 0);
316		}
317	}
318
319	if (!vd->vdev_ops->vdev_op_leaf) {
320		nvlist_t **child;
321		int c, idx;
322
323		ASSERT(!vd->vdev_ishole);
324
325		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
326		    KM_SLEEP);
327
328		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
329			vdev_t *cvd = vd->vdev_child[c];
330
331			/*
332			 * If we're generating an nvlist of removing
333			 * vdevs then skip over any device which is
334			 * not being removed.
335			 */
336			if ((flags & VDEV_CONFIG_REMOVING) &&
337			    !cvd->vdev_removing)
338				continue;
339
340			child[idx++] = vdev_config_generate(spa, cvd,
341			    getstats, flags);
342		}
343
344		if (idx) {
345			VERIFY(nvlist_add_nvlist_array(nv,
346			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
347		}
348
349		for (c = 0; c < idx; c++)
350			nvlist_free(child[c]);
351
352		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
353
354	} else {
355		const char *aux = NULL;
356
357		if (vd->vdev_offline && !vd->vdev_tmpoffline)
358			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
359			    B_TRUE) == 0);
360		if (vd->vdev_resilvering)
361			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING,
362			    B_TRUE) == 0);
363		if (vd->vdev_faulted)
364			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
365			    B_TRUE) == 0);
366		if (vd->vdev_degraded)
367			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
368			    B_TRUE) == 0);
369		if (vd->vdev_removed)
370			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
371			    B_TRUE) == 0);
372		if (vd->vdev_unspare)
373			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
374			    B_TRUE) == 0);
375		if (vd->vdev_ishole)
376			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
377			    B_TRUE) == 0);
378
379		switch (vd->vdev_stat.vs_aux) {
380		case VDEV_AUX_ERR_EXCEEDED:
381			aux = "err_exceeded";
382			break;
383
384		case VDEV_AUX_EXTERNAL:
385			aux = "external";
386			break;
387		}
388
389		if (aux != NULL)
390			VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
391			    aux) == 0);
392
393		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
394			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
395			    vd->vdev_orig_guid) == 0);
396		}
397	}
398
399	return (nv);
400}
401
402/*
403 * Generate a view of the top-level vdevs.  If we currently have holes
404 * in the namespace, then generate an array which contains a list of holey
405 * vdevs.  Additionally, add the number of top-level children that currently
406 * exist.
407 */
408void
409vdev_top_config_generate(spa_t *spa, nvlist_t *config)
410{
411	vdev_t *rvd = spa->spa_root_vdev;
412	uint64_t *array;
413	uint_t c, idx;
414
415	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
416
417	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
418		vdev_t *tvd = rvd->vdev_child[c];
419
420		if (tvd->vdev_ishole)
421			array[idx++] = c;
422	}
423
424	if (idx) {
425		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
426		    array, idx) == 0);
427	}
428
429	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
430	    rvd->vdev_children) == 0);
431
432	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
433}
434
435/*
436 * Returns the configuration from the label of the given vdev. If 'label' is
437 * VDEV_BEST_LABEL, each label of the vdev will be read until a valid
438 * configuration is found; otherwise, only the specified label will be read.
439 */
440nvlist_t *
441vdev_label_read_config(vdev_t *vd, int label)
442{
443	spa_t *spa = vd->vdev_spa;
444	nvlist_t *config = NULL;
445	vdev_phys_t *vp;
446	zio_t *zio;
447	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
448	    ZIO_FLAG_SPECULATIVE;
449
450	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
451
452	if (!vdev_readable(vd))
453		return (NULL);
454
455	vp = zio_buf_alloc(sizeof (vdev_phys_t));
456
457retry:
458	for (int l = 0; l < VDEV_LABELS; l++) {
459		if (label >= 0 && label < VDEV_LABELS && label != l)
460			continue;
461
462		zio = zio_root(spa, NULL, NULL, flags);
463
464		vdev_label_read(zio, vd, l, vp,
465		    offsetof(vdev_label_t, vl_vdev_phys),
466		    sizeof (vdev_phys_t), NULL, NULL, flags);
467
468		if (zio_wait(zio) == 0 &&
469		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
470		    &config, 0) == 0)
471			break;
472
473		if (config != NULL) {
474			nvlist_free(config);
475			config = NULL;
476		}
477	}
478
479	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
480		flags |= ZIO_FLAG_TRYHARD;
481		goto retry;
482	}
483
484	zio_buf_free(vp, sizeof (vdev_phys_t));
485
486	return (config);
487}
488
489/*
490 * Determine if a device is in use.  The 'spare_guid' parameter will be filled
491 * in with the device guid if this spare is active elsewhere on the system.
492 */
493static boolean_t
494vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
495    uint64_t *spare_guid, uint64_t *l2cache_guid)
496{
497	spa_t *spa = vd->vdev_spa;
498	uint64_t state, pool_guid, device_guid, txg, spare_pool;
499	uint64_t vdtxg = 0;
500	nvlist_t *label;
501
502	if (spare_guid)
503		*spare_guid = 0ULL;
504	if (l2cache_guid)
505		*l2cache_guid = 0ULL;
506
507	/*
508	 * Read the label, if any, and perform some basic sanity checks.
509	 */
510	if ((label = vdev_label_read_config(vd, VDEV_BEST_LABEL)) == NULL)
511		return (B_FALSE);
512
513	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
514	    &vdtxg);
515
516	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
517	    &state) != 0 ||
518	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
519	    &device_guid) != 0) {
520		nvlist_free(label);
521		return (B_FALSE);
522	}
523
524	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
525	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
526	    &pool_guid) != 0 ||
527	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
528	    &txg) != 0)) {
529		nvlist_free(label);
530		return (B_FALSE);
531	}
532
533	nvlist_free(label);
534
535	/*
536	 * Check to see if this device indeed belongs to the pool it claims to
537	 * be a part of.  The only way this is allowed is if the device is a hot
538	 * spare (which we check for later on).
539	 */
540	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
541	    !spa_guid_exists(pool_guid, device_guid) &&
542	    !spa_spare_exists(device_guid, NULL, NULL) &&
543	    !spa_l2cache_exists(device_guid, NULL))
544		return (B_FALSE);
545
546	/*
547	 * If the transaction group is zero, then this an initialized (but
548	 * unused) label.  This is only an error if the create transaction
549	 * on-disk is the same as the one we're using now, in which case the
550	 * user has attempted to add the same vdev multiple times in the same
551	 * transaction.
552	 */
553	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
554	    txg == 0 && vdtxg == crtxg)
555		return (B_TRUE);
556
557	/*
558	 * Check to see if this is a spare device.  We do an explicit check for
559	 * spa_has_spare() here because it may be on our pending list of spares
560	 * to add.  We also check if it is an l2cache device.
561	 */
562	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
563	    spa_has_spare(spa, device_guid)) {
564		if (spare_guid)
565			*spare_guid = device_guid;
566
567		switch (reason) {
568		case VDEV_LABEL_CREATE:
569		case VDEV_LABEL_L2CACHE:
570			return (B_TRUE);
571
572		case VDEV_LABEL_REPLACE:
573			return (!spa_has_spare(spa, device_guid) ||
574			    spare_pool != 0ULL);
575
576		case VDEV_LABEL_SPARE:
577			return (spa_has_spare(spa, device_guid));
578		}
579	}
580
581	/*
582	 * Check to see if this is an l2cache device.
583	 */
584	if (spa_l2cache_exists(device_guid, NULL))
585		return (B_TRUE);
586
587	/*
588	 * We can't rely on a pool's state if it's been imported
589	 * read-only.  Instead we look to see if the pools is marked
590	 * read-only in the namespace and set the state to active.
591	 */
592	if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
593	    spa_mode(spa) == FREAD)
594		state = POOL_STATE_ACTIVE;
595
596	/*
597	 * If the device is marked ACTIVE, then this device is in use by another
598	 * pool on the system.
599	 */
600	return (state == POOL_STATE_ACTIVE);
601}
602
603/*
604 * Initialize a vdev label.  We check to make sure each leaf device is not in
605 * use, and writable.  We put down an initial label which we will later
606 * overwrite with a complete label.  Note that it's important to do this
607 * sequentially, not in parallel, so that we catch cases of multiple use of the
608 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
609 * itself.
610 */
611int
612vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
613{
614	spa_t *spa = vd->vdev_spa;
615	nvlist_t *label;
616	vdev_phys_t *vp;
617	char *pad2;
618	uberblock_t *ub;
619	zio_t *zio;
620	char *buf;
621	size_t buflen;
622	int error;
623	uint64_t spare_guid, l2cache_guid;
624	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
625
626	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
627
628	for (int c = 0; c < vd->vdev_children; c++)
629		if ((error = vdev_label_init(vd->vdev_child[c],
630		    crtxg, reason)) != 0)
631			return (error);
632
633	/* Track the creation time for this vdev */
634	vd->vdev_crtxg = crtxg;
635
636	if (!vd->vdev_ops->vdev_op_leaf)
637		return (0);
638
639	/*
640	 * Dead vdevs cannot be initialized.
641	 */
642	if (vdev_is_dead(vd))
643		return (EIO);
644
645	/*
646	 * Determine if the vdev is in use.
647	 */
648	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
649	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
650		return (EBUSY);
651
652	/*
653	 * If this is a request to add or replace a spare or l2cache device
654	 * that is in use elsewhere on the system, then we must update the
655	 * guid (which was initialized to a random value) to reflect the
656	 * actual GUID (which is shared between multiple pools).
657	 */
658	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
659	    spare_guid != 0ULL) {
660		uint64_t guid_delta = spare_guid - vd->vdev_guid;
661
662		vd->vdev_guid += guid_delta;
663
664		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
665			pvd->vdev_guid_sum += guid_delta;
666
667		/*
668		 * If this is a replacement, then we want to fallthrough to the
669		 * rest of the code.  If we're adding a spare, then it's already
670		 * labeled appropriately and we can just return.
671		 */
672		if (reason == VDEV_LABEL_SPARE)
673			return (0);
674		ASSERT(reason == VDEV_LABEL_REPLACE ||
675		    reason == VDEV_LABEL_SPLIT);
676	}
677
678	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
679	    l2cache_guid != 0ULL) {
680		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
681
682		vd->vdev_guid += guid_delta;
683
684		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
685			pvd->vdev_guid_sum += guid_delta;
686
687		/*
688		 * If this is a replacement, then we want to fallthrough to the
689		 * rest of the code.  If we're adding an l2cache, then it's
690		 * already labeled appropriately and we can just return.
691		 */
692		if (reason == VDEV_LABEL_L2CACHE)
693			return (0);
694		ASSERT(reason == VDEV_LABEL_REPLACE);
695	}
696
697	/*
698	 * Initialize its label.
699	 */
700	vp = zio_buf_alloc(sizeof (vdev_phys_t));
701	bzero(vp, sizeof (vdev_phys_t));
702
703	/*
704	 * Generate a label describing the pool and our top-level vdev.
705	 * We mark it as being from txg 0 to indicate that it's not
706	 * really part of an active pool just yet.  The labels will
707	 * be written again with a meaningful txg by spa_sync().
708	 */
709	if (reason == VDEV_LABEL_SPARE ||
710	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
711		/*
712		 * For inactive hot spares, we generate a special label that
713		 * identifies as a mutually shared hot spare.  We write the
714		 * label if we are adding a hot spare, or if we are removing an
715		 * active hot spare (in which case we want to revert the
716		 * labels).
717		 */
718		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
719
720		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
721		    spa_version(spa)) == 0);
722		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
723		    POOL_STATE_SPARE) == 0);
724		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
725		    vd->vdev_guid) == 0);
726	} else if (reason == VDEV_LABEL_L2CACHE ||
727	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
728		/*
729		 * For level 2 ARC devices, add a special label.
730		 */
731		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
732
733		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
734		    spa_version(spa)) == 0);
735		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
736		    POOL_STATE_L2CACHE) == 0);
737		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
738		    vd->vdev_guid) == 0);
739	} else {
740		uint64_t txg = 0ULL;
741
742		if (reason == VDEV_LABEL_SPLIT)
743			txg = spa->spa_uberblock.ub_txg;
744		label = spa_config_generate(spa, vd, txg, B_FALSE);
745
746		/*
747		 * Add our creation time.  This allows us to detect multiple
748		 * vdev uses as described above, and automatically expires if we
749		 * fail.
750		 */
751		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
752		    crtxg) == 0);
753	}
754
755	buf = vp->vp_nvlist;
756	buflen = sizeof (vp->vp_nvlist);
757
758	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
759	if (error != 0) {
760		nvlist_free(label);
761		zio_buf_free(vp, sizeof (vdev_phys_t));
762		/* EFAULT means nvlist_pack ran out of room */
763		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
764	}
765
766	/*
767	 * Initialize uberblock template.
768	 */
769	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
770	bzero(ub, VDEV_UBERBLOCK_RING);
771	*ub = spa->spa_uberblock;
772	ub->ub_txg = 0;
773
774	/* Initialize the 2nd padding area. */
775	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
776	bzero(pad2, VDEV_PAD_SIZE);
777
778	/*
779	 * Write everything in parallel.
780	 */
781retry:
782	zio = zio_root(spa, NULL, NULL, flags);
783
784	for (int l = 0; l < VDEV_LABELS; l++) {
785
786		vdev_label_write(zio, vd, l, vp,
787		    offsetof(vdev_label_t, vl_vdev_phys),
788		    sizeof (vdev_phys_t), NULL, NULL, flags);
789
790		/*
791		 * Skip the 1st padding area.
792		 * Zero out the 2nd padding area where it might have
793		 * left over data from previous filesystem format.
794		 */
795		vdev_label_write(zio, vd, l, pad2,
796		    offsetof(vdev_label_t, vl_pad2),
797		    VDEV_PAD_SIZE, NULL, NULL, flags);
798
799		vdev_label_write(zio, vd, l, ub,
800		    offsetof(vdev_label_t, vl_uberblock),
801		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
802	}
803
804	error = zio_wait(zio);
805
806	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
807		flags |= ZIO_FLAG_TRYHARD;
808		goto retry;
809	}
810
811	nvlist_free(label);
812	zio_buf_free(pad2, VDEV_PAD_SIZE);
813	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
814	zio_buf_free(vp, sizeof (vdev_phys_t));
815
816	/*
817	 * If this vdev hasn't been previously identified as a spare, then we
818	 * mark it as such only if a) we are labeling it as a spare, or b) it
819	 * exists as a spare elsewhere in the system.  Do the same for
820	 * level 2 ARC devices.
821	 */
822	if (error == 0 && !vd->vdev_isspare &&
823	    (reason == VDEV_LABEL_SPARE ||
824	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
825		spa_spare_add(vd);
826
827	if (error == 0 && !vd->vdev_isl2cache &&
828	    (reason == VDEV_LABEL_L2CACHE ||
829	    spa_l2cache_exists(vd->vdev_guid, NULL)))
830		spa_l2cache_add(vd);
831
832	return (error);
833}
834
835/*
836 * ==========================================================================
837 * uberblock load/sync
838 * ==========================================================================
839 */
840
841/*
842 * Consider the following situation: txg is safely synced to disk.  We've
843 * written the first uberblock for txg + 1, and then we lose power.  When we
844 * come back up, we fail to see the uberblock for txg + 1 because, say,
845 * it was on a mirrored device and the replica to which we wrote txg + 1
846 * is now offline.  If we then make some changes and sync txg + 1, and then
847 * the missing replica comes back, then for a few seconds we'll have two
848 * conflicting uberblocks on disk with the same txg.  The solution is simple:
849 * among uberblocks with equal txg, choose the one with the latest timestamp.
850 */
851static int
852vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
853{
854	if (ub1->ub_txg < ub2->ub_txg)
855		return (-1);
856	if (ub1->ub_txg > ub2->ub_txg)
857		return (1);
858
859	if (ub1->ub_timestamp < ub2->ub_timestamp)
860		return (-1);
861	if (ub1->ub_timestamp > ub2->ub_timestamp)
862		return (1);
863
864	return (0);
865}
866
867struct ubl_cbdata {
868	uberblock_t	*ubl_ubbest;	/* Best uberblock */
869	vdev_t		*ubl_vd;	/* vdev associated with the above */
870	int		ubl_label;	/* Label associated with the above */
871};
872
873static void
874vdev_uberblock_load_done(zio_t *zio)
875{
876	vdev_t *vd = zio->io_vd;
877	spa_t *spa = zio->io_spa;
878	zio_t *rio = zio->io_private;
879	uberblock_t *ub = zio->io_data;
880	struct ubl_cbdata *cbp = rio->io_private;
881
882	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
883
884	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
885		mutex_enter(&rio->io_lock);
886		if (ub->ub_txg <= spa->spa_load_max_txg &&
887		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
888			/*
889			 * Keep track of the vdev and label in which this
890			 * uberblock was found. We will use this information
891			 * later to obtain the config nvlist associated with
892			 * this uberblock.
893			 */
894			*cbp->ubl_ubbest = *ub;
895			cbp->ubl_vd = vd;
896			cbp->ubl_label = vdev_label_number(vd->vdev_psize,
897			    zio->io_offset);
898		}
899		mutex_exit(&rio->io_lock);
900	}
901
902	zio_buf_free(zio->io_data, zio->io_size);
903}
904
905static void
906vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
907    struct ubl_cbdata *cbp)
908{
909	for (int c = 0; c < vd->vdev_children; c++)
910		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
911
912	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
913		for (int l = 0; l < VDEV_LABELS; l++) {
914			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
915				vdev_label_read(zio, vd, l,
916				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
917				    VDEV_UBERBLOCK_OFFSET(vd, n),
918				    VDEV_UBERBLOCK_SIZE(vd),
919				    vdev_uberblock_load_done, zio, flags);
920			}
921		}
922	}
923}
924
925/*
926 * Reads the 'best' uberblock from disk along with its associated
927 * configuration. First, we read the uberblock array of each label of each
928 * vdev, keeping track of the uberblock with the highest txg in each array.
929 * Then, we read the configuration from the same label as the best uberblock.
930 */
931void
932vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
933{
934	int i;
935	zio_t *zio;
936	spa_t *spa = rvd->vdev_spa;
937	struct ubl_cbdata cb;
938	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
939	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
940
941	ASSERT(ub);
942	ASSERT(config);
943
944	bzero(ub, sizeof (uberblock_t));
945	*config = NULL;
946
947	cb.ubl_ubbest = ub;
948	cb.ubl_vd = NULL;
949
950	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
951	zio = zio_root(spa, NULL, &cb, flags);
952	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
953	(void) zio_wait(zio);
954	if (cb.ubl_vd != NULL) {
955		for (i = cb.ubl_label % 2; i < VDEV_LABELS; i += 2) {
956			*config = vdev_label_read_config(cb.ubl_vd, i);
957			if (*config != NULL)
958				break;
959		}
960	}
961	spa_config_exit(spa, SCL_ALL, FTAG);
962}
963
964/*
965 * On success, increment root zio's count of good writes.
966 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
967 */
968static void
969vdev_uberblock_sync_done(zio_t *zio)
970{
971	uint64_t *good_writes = zio->io_private;
972
973	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
974		atomic_add_64(good_writes, 1);
975}
976
977/*
978 * Write the uberblock to all labels of all leaves of the specified vdev.
979 */
980static void
981vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
982{
983	uberblock_t *ubbuf;
984	int n;
985
986	for (int c = 0; c < vd->vdev_children; c++)
987		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
988
989	if (!vd->vdev_ops->vdev_op_leaf)
990		return;
991
992	if (!vdev_writeable(vd))
993		return;
994
995	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
996
997	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
998	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
999	*ubbuf = *ub;
1000
1001	for (int l = 0; l < VDEV_LABELS; l++)
1002		vdev_label_write(zio, vd, l, ubbuf,
1003		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1004		    vdev_uberblock_sync_done, zio->io_private,
1005		    flags | ZIO_FLAG_DONT_PROPAGATE);
1006
1007	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1008}
1009
1010int
1011vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1012{
1013	spa_t *spa = svd[0]->vdev_spa;
1014	zio_t *zio;
1015	uint64_t good_writes = 0;
1016
1017	zio = zio_root(spa, NULL, &good_writes, flags);
1018
1019	for (int v = 0; v < svdcount; v++)
1020		vdev_uberblock_sync(zio, ub, svd[v], flags);
1021
1022	(void) zio_wait(zio);
1023
1024	/*
1025	 * Flush the uberblocks to disk.  This ensures that the odd labels
1026	 * are no longer needed (because the new uberblocks and the even
1027	 * labels are safely on disk), so it is safe to overwrite them.
1028	 */
1029	zio = zio_root(spa, NULL, NULL, flags);
1030
1031	for (int v = 0; v < svdcount; v++)
1032		zio_flush(zio, svd[v]);
1033
1034	(void) zio_wait(zio);
1035
1036	return (good_writes >= 1 ? 0 : EIO);
1037}
1038
1039/*
1040 * On success, increment the count of good writes for our top-level vdev.
1041 */
1042static void
1043vdev_label_sync_done(zio_t *zio)
1044{
1045	uint64_t *good_writes = zio->io_private;
1046
1047	if (zio->io_error == 0)
1048		atomic_add_64(good_writes, 1);
1049}
1050
1051/*
1052 * If there weren't enough good writes, indicate failure to the parent.
1053 */
1054static void
1055vdev_label_sync_top_done(zio_t *zio)
1056{
1057	uint64_t *good_writes = zio->io_private;
1058
1059	if (*good_writes == 0)
1060		zio->io_error = EIO;
1061
1062	kmem_free(good_writes, sizeof (uint64_t));
1063}
1064
1065/*
1066 * We ignore errors for log and cache devices, simply free the private data.
1067 */
1068static void
1069vdev_label_sync_ignore_done(zio_t *zio)
1070{
1071	kmem_free(zio->io_private, sizeof (uint64_t));
1072}
1073
1074/*
1075 * Write all even or odd labels to all leaves of the specified vdev.
1076 */
1077static void
1078vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1079{
1080	nvlist_t *label;
1081	vdev_phys_t *vp;
1082	char *buf;
1083	size_t buflen;
1084
1085	for (int c = 0; c < vd->vdev_children; c++)
1086		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1087
1088	if (!vd->vdev_ops->vdev_op_leaf)
1089		return;
1090
1091	if (!vdev_writeable(vd))
1092		return;
1093
1094	/*
1095	 * Generate a label describing the top-level config to which we belong.
1096	 */
1097	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1098
1099	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1100	bzero(vp, sizeof (vdev_phys_t));
1101
1102	buf = vp->vp_nvlist;
1103	buflen = sizeof (vp->vp_nvlist);
1104
1105	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1106		for (; l < VDEV_LABELS; l += 2) {
1107			vdev_label_write(zio, vd, l, vp,
1108			    offsetof(vdev_label_t, vl_vdev_phys),
1109			    sizeof (vdev_phys_t),
1110			    vdev_label_sync_done, zio->io_private,
1111			    flags | ZIO_FLAG_DONT_PROPAGATE);
1112		}
1113	}
1114
1115	zio_buf_free(vp, sizeof (vdev_phys_t));
1116	nvlist_free(label);
1117}
1118
1119int
1120vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1121{
1122	list_t *dl = &spa->spa_config_dirty_list;
1123	vdev_t *vd;
1124	zio_t *zio;
1125	int error;
1126
1127	/*
1128	 * Write the new labels to disk.
1129	 */
1130	zio = zio_root(spa, NULL, NULL, flags);
1131
1132	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1133		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1134		    KM_SLEEP);
1135
1136		ASSERT(!vd->vdev_ishole);
1137
1138		zio_t *vio = zio_null(zio, spa, NULL,
1139		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1140		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1141		    good_writes, flags);
1142		vdev_label_sync(vio, vd, l, txg, flags);
1143		zio_nowait(vio);
1144	}
1145
1146	error = zio_wait(zio);
1147
1148	/*
1149	 * Flush the new labels to disk.
1150	 */
1151	zio = zio_root(spa, NULL, NULL, flags);
1152
1153	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1154		zio_flush(zio, vd);
1155
1156	(void) zio_wait(zio);
1157
1158	return (error);
1159}
1160
1161/*
1162 * Sync the uberblock and any changes to the vdev configuration.
1163 *
1164 * The order of operations is carefully crafted to ensure that
1165 * if the system panics or loses power at any time, the state on disk
1166 * is still transactionally consistent.  The in-line comments below
1167 * describe the failure semantics at each stage.
1168 *
1169 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1170 * at any time, you can just call it again, and it will resume its work.
1171 */
1172int
1173vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1174{
1175	spa_t *spa = svd[0]->vdev_spa;
1176	uberblock_t *ub = &spa->spa_uberblock;
1177	vdev_t *vd;
1178	zio_t *zio;
1179	int error;
1180	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1181
1182	/*
1183	 * Normally, we don't want to try too hard to write every label and
1184	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1185	 * sync process to block while we retry.  But if we can't write a
1186	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1187	 * bailing out and declaring the pool faulted.
1188	 */
1189	if (tryhard)
1190		flags |= ZIO_FLAG_TRYHARD;
1191
1192	ASSERT(ub->ub_txg <= txg);
1193
1194	/*
1195	 * If this isn't a resync due to I/O errors,
1196	 * and nothing changed in this transaction group,
1197	 * and the vdev configuration hasn't changed,
1198	 * then there's nothing to do.
1199	 */
1200	if (ub->ub_txg < txg &&
1201	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1202	    list_is_empty(&spa->spa_config_dirty_list))
1203		return (0);
1204
1205	if (txg > spa_freeze_txg(spa))
1206		return (0);
1207
1208	ASSERT(txg <= spa->spa_final_txg);
1209
1210	/*
1211	 * Flush the write cache of every disk that's been written to
1212	 * in this transaction group.  This ensures that all blocks
1213	 * written in this txg will be committed to stable storage
1214	 * before any uberblock that references them.
1215	 */
1216	zio = zio_root(spa, NULL, NULL, flags);
1217
1218	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1219	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1220		zio_flush(zio, vd);
1221
1222	(void) zio_wait(zio);
1223
1224	/*
1225	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1226	 * system dies in the middle of this process, that's OK: all of the
1227	 * even labels that made it to disk will be newer than any uberblock,
1228	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1229	 * which have not yet been touched, will still be valid.  We flush
1230	 * the new labels to disk to ensure that all even-label updates
1231	 * are committed to stable storage before the uberblock update.
1232	 */
1233	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1234		return (error);
1235
1236	/*
1237	 * Sync the uberblocks to all vdevs in svd[].
1238	 * If the system dies in the middle of this step, there are two cases
1239	 * to consider, and the on-disk state is consistent either way:
1240	 *
1241	 * (1)	If none of the new uberblocks made it to disk, then the
1242	 *	previous uberblock will be the newest, and the odd labels
1243	 *	(which had not yet been touched) will be valid with respect
1244	 *	to that uberblock.
1245	 *
1246	 * (2)	If one or more new uberblocks made it to disk, then they
1247	 *	will be the newest, and the even labels (which had all
1248	 *	been successfully committed) will be valid with respect
1249	 *	to the new uberblocks.
1250	 */
1251	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1252		return (error);
1253
1254	/*
1255	 * Sync out odd labels for every dirty vdev.  If the system dies
1256	 * in the middle of this process, the even labels and the new
1257	 * uberblocks will suffice to open the pool.  The next time
1258	 * the pool is opened, the first thing we'll do -- before any
1259	 * user data is modified -- is mark every vdev dirty so that
1260	 * all labels will be brought up to date.  We flush the new labels
1261	 * to disk to ensure that all odd-label updates are committed to
1262	 * stable storage before the next transaction group begins.
1263	 */
1264	return (vdev_label_sync_list(spa, 1, txg, flags));
1265}
1266