1/*-
2 * Implementation of Utility functions for all SCSI device types.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: releng/11.0/sys/cam/scsi/scsi_all.c 302281 2016-06-29 16:41:37Z sbruno $");
32
33#include <sys/param.h>
34#include <sys/types.h>
35#include <sys/stdint.h>
36
37#ifdef _KERNEL
38#include <opt_scsi.h>
39
40#include <sys/systm.h>
41#include <sys/libkern.h>
42#include <sys/kernel.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/ctype.h>
48#else
49#include <errno.h>
50#include <stdio.h>
51#include <stdlib.h>
52#include <string.h>
53#include <ctype.h>
54#endif
55
56#include <cam/cam.h>
57#include <cam/cam_ccb.h>
58#include <cam/cam_queue.h>
59#include <cam/cam_xpt.h>
60#include <cam/scsi/scsi_all.h>
61#include <sys/ata.h>
62#include <sys/sbuf.h>
63
64#ifdef _KERNEL
65#include <cam/cam_periph.h>
66#include <cam/cam_xpt_sim.h>
67#include <cam/cam_xpt_periph.h>
68#include <cam/cam_xpt_internal.h>
69#else
70#include <camlib.h>
71#include <stddef.h>
72
73#ifndef FALSE
74#define FALSE   0
75#endif /* FALSE */
76#ifndef TRUE
77#define TRUE    1
78#endif /* TRUE */
79#define ERESTART        -1              /* restart syscall */
80#define EJUSTRETURN     -2              /* don't modify regs, just return */
81#endif /* !_KERNEL */
82
83/*
84 * This is the default number of milliseconds we wait for devices to settle
85 * after a SCSI bus reset.
86 */
87#ifndef SCSI_DELAY
88#define SCSI_DELAY 2000
89#endif
90/*
91 * All devices need _some_ sort of bus settle delay, so we'll set it to
92 * a minimum value of 100ms. Note that this is pertinent only for SPI-
93 * not transport like Fibre Channel or iSCSI where 'delay' is completely
94 * meaningless.
95 */
96#ifndef SCSI_MIN_DELAY
97#define SCSI_MIN_DELAY 100
98#endif
99/*
100 * Make sure the user isn't using seconds instead of milliseconds.
101 */
102#if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
103#error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
104#endif
105
106int scsi_delay;
107
108static int	ascentrycomp(const void *key, const void *member);
109static int	senseentrycomp(const void *key, const void *member);
110static void	fetchtableentries(int sense_key, int asc, int ascq,
111				  struct scsi_inquiry_data *,
112				  const struct sense_key_table_entry **,
113				  const struct asc_table_entry **);
114
115#ifdef _KERNEL
116static void	init_scsi_delay(void);
117static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
118static int	set_scsi_delay(int delay);
119#endif
120
121#if !defined(SCSI_NO_OP_STRINGS)
122
123#define	D	(1 << T_DIRECT)
124#define	T	(1 << T_SEQUENTIAL)
125#define	L	(1 << T_PRINTER)
126#define	P	(1 << T_PROCESSOR)
127#define	W	(1 << T_WORM)
128#define	R	(1 << T_CDROM)
129#define	O	(1 << T_OPTICAL)
130#define	M	(1 << T_CHANGER)
131#define	A	(1 << T_STORARRAY)
132#define	E	(1 << T_ENCLOSURE)
133#define	B	(1 << T_RBC)
134#define	K	(1 << T_OCRW)
135#define	V	(1 << T_ADC)
136#define	F	(1 << T_OSD)
137#define	S	(1 << T_SCANNER)
138#define	C	(1 << T_COMM)
139
140#define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
141
142static struct op_table_entry plextor_cd_ops[] = {
143	{ 0xD8, R, "CD-DA READ" }
144};
145
146static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
147	{
148		/*
149		 * I believe that 0xD8 is the Plextor proprietary command
150		 * to read CD-DA data.  I'm not sure which Plextor CDROM
151		 * models support the command, though.  I know for sure
152		 * that the 4X, 8X, and 12X models do, and presumably the
153		 * 12-20X does.  I don't know about any earlier models,
154		 * though.  If anyone has any more complete information,
155		 * feel free to change this quirk entry.
156		 */
157		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
158		nitems(plextor_cd_ops),
159		plextor_cd_ops
160	}
161};
162
163static struct op_table_entry scsi_op_codes[] = {
164	/*
165	 * From: http://www.t10.org/lists/op-num.txt
166	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
167	 *              and Jung-uk Kim (jkim@FreeBSD.org)
168	 *
169	 * Note:  order is important in this table, scsi_op_desc() currently
170	 * depends on the opcodes in the table being in order to save
171	 * search time.
172	 * Note:  scanner and comm. devices are carried over from the previous
173	 * version because they were removed in the latest spec.
174	 */
175	/* File: OP-NUM.TXT
176	 *
177	 * SCSI Operation Codes
178	 * Numeric Sorted Listing
179	 * as of  5/26/15
180	 *
181	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
182	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
183	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
184	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
185	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
186	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
187	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
188	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
189	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
190	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
191	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
192	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
193	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
194	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
195	 * OP  DTLPWROMAEBKVF  Description
196	 * --  --------------  ---------------------------------------------- */
197	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
198	{ 0x00,	ALL, "TEST UNIT READY" },
199	/* 01   M              REWIND */
200	{ 0x01,	T, "REWIND" },
201	/* 01  Z V ZZZZ        REZERO UNIT */
202	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
203	/* 02  VVVVVV V */
204	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
205	{ 0x03,	ALL, "REQUEST SENSE" },
206	/* 04  M    OO         FORMAT UNIT */
207	{ 0x04,	D | R | O, "FORMAT UNIT" },
208	/* 04   O              FORMAT MEDIUM */
209	{ 0x04,	T, "FORMAT MEDIUM" },
210	/* 04    O             FORMAT */
211	{ 0x04,	L, "FORMAT" },
212	/* 05  VMVVVV V        READ BLOCK LIMITS */
213	{ 0x05,	T, "READ BLOCK LIMITS" },
214	/* 06  VVVVVV V */
215	/* 07  OVV O OV        REASSIGN BLOCKS */
216	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
217	/* 07         O        INITIALIZE ELEMENT STATUS */
218	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
219	/* 08  MOV O OV        READ(6) */
220	{ 0x08,	D | T | W | O, "READ(6)" },
221	/* 08     O            RECEIVE */
222	{ 0x08,	P, "RECEIVE" },
223	/* 08                  GET MESSAGE(6) */
224	{ 0x08, C, "GET MESSAGE(6)" },
225	/* 09  VVVVVV V */
226	/* 0A  OO  O OV        WRITE(6) */
227	{ 0x0A,	D | T | W | O, "WRITE(6)" },
228	/* 0A     M            SEND(6) */
229	{ 0x0A,	P, "SEND(6)" },
230	/* 0A                  SEND MESSAGE(6) */
231	{ 0x0A, C, "SEND MESSAGE(6)" },
232	/* 0A    M             PRINT */
233	{ 0x0A,	L, "PRINT" },
234	/* 0B  Z   ZOZV        SEEK(6) */
235	{ 0x0B,	D | W | R | O, "SEEK(6)" },
236	/* 0B   O              SET CAPACITY */
237	{ 0x0B,	T, "SET CAPACITY" },
238	/* 0B    O             SLEW AND PRINT */
239	{ 0x0B,	L, "SLEW AND PRINT" },
240	/* 0C  VVVVVV V */
241	/* 0D  VVVVVV V */
242	/* 0E  VVVVVV V */
243	/* 0F  VOVVVV V        READ REVERSE(6) */
244	{ 0x0F,	T, "READ REVERSE(6)" },
245	/* 10  VM VVV          WRITE FILEMARKS(6) */
246	{ 0x10,	T, "WRITE FILEMARKS(6)" },
247	/* 10    O             SYNCHRONIZE BUFFER */
248	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
249	/* 11  VMVVVV          SPACE(6) */
250	{ 0x11,	T, "SPACE(6)" },
251	/* 12  MMMMMMMMMMMMMM  INQUIRY */
252	{ 0x12,	ALL, "INQUIRY" },
253	/* 13  V VVVV */
254	/* 13   O              VERIFY(6) */
255	{ 0x13,	T, "VERIFY(6)" },
256	/* 14  VOOVVV          RECOVER BUFFERED DATA */
257	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
258	/* 15  OMO O OOOO OO   MODE SELECT(6) */
259	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
260	/* 16  ZZMZO OOOZ O    RESERVE(6) */
261	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
262	/* 16         Z        RESERVE ELEMENT(6) */
263	{ 0x16,	M, "RESERVE ELEMENT(6)" },
264	/* 17  ZZMZO OOOZ O    RELEASE(6) */
265	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
266	/* 17         Z        RELEASE ELEMENT(6) */
267	{ 0x17,	M, "RELEASE ELEMENT(6)" },
268	/* 18  ZZZZOZO    Z    COPY */
269	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
270	/* 19  VMVVVV          ERASE(6) */
271	{ 0x19,	T, "ERASE(6)" },
272	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
273	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
274	/* 1B  O   OOO O MO O  START STOP UNIT */
275	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
276	/* 1B   O          M   LOAD UNLOAD */
277	{ 0x1B,	T | V, "LOAD UNLOAD" },
278	/* 1B                  SCAN */
279	{ 0x1B, S, "SCAN" },
280	/* 1B    O             STOP PRINT */
281	{ 0x1B,	L, "STOP PRINT" },
282	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
283	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
284	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
285	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
286	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
287	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
288	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
289	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
290	/* 1F */
291	/* 20  V   VVV    V */
292	/* 21  V   VVV    V */
293	/* 22  V   VVV    V */
294	/* 23  V   V V    V */
295	/* 23       O          READ FORMAT CAPACITIES */
296	{ 0x23,	R, "READ FORMAT CAPACITIES" },
297	/* 24  V   VV          SET WINDOW */
298	{ 0x24, S, "SET WINDOW" },
299	/* 25  M   M M   M     READ CAPACITY(10) */
300	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
301	/* 25       O          READ CAPACITY */
302	{ 0x25,	R, "READ CAPACITY" },
303	/* 25             M    READ CARD CAPACITY */
304	{ 0x25,	K, "READ CARD CAPACITY" },
305	/* 25                  GET WINDOW */
306	{ 0x25, S, "GET WINDOW" },
307	/* 26  V   VV */
308	/* 27  V   VV */
309	/* 28  M   MOM   MM    READ(10) */
310	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
311	/* 28                  GET MESSAGE(10) */
312	{ 0x28, C, "GET MESSAGE(10)" },
313	/* 29  V   VVO         READ GENERATION */
314	{ 0x29,	O, "READ GENERATION" },
315	/* 2A  O   MOM   MO    WRITE(10) */
316	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
317	/* 2A                  SEND(10) */
318	{ 0x2A, S, "SEND(10)" },
319	/* 2A                  SEND MESSAGE(10) */
320	{ 0x2A, C, "SEND MESSAGE(10)" },
321	/* 2B  Z   OOO    O    SEEK(10) */
322	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
323	/* 2B   O              LOCATE(10) */
324	{ 0x2B,	T, "LOCATE(10)" },
325	/* 2B         O        POSITION TO ELEMENT */
326	{ 0x2B,	M, "POSITION TO ELEMENT" },
327	/* 2C  V    OO         ERASE(10) */
328	{ 0x2C,	R | O, "ERASE(10)" },
329	/* 2D        O         READ UPDATED BLOCK */
330	{ 0x2D,	O, "READ UPDATED BLOCK" },
331	/* 2D  V */
332	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
333	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
334	/* 2F  O   OOO         VERIFY(10) */
335	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
336	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
337	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
338	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
339	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
340	/* 31                  OBJECT POSITION */
341	{ 0x31, S, "OBJECT POSITION" },
342	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
343	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
344	/* 33  Z   OZO         SET LIMITS(10) */
345	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
346	/* 34  O   O O    O    PRE-FETCH(10) */
347	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
348	/* 34   M              READ POSITION */
349	{ 0x34,	T, "READ POSITION" },
350	/* 34                  GET DATA BUFFER STATUS */
351	{ 0x34, S, "GET DATA BUFFER STATUS" },
352	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
353	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
354	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
355	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
356	/* 37  O     O         READ DEFECT DATA(10) */
357	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
358	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
359	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
360	/* 38      O O    O    MEDIUM SCAN */
361	{ 0x38,	W | O | K, "MEDIUM SCAN" },
362	/* 39  ZZZZOZO    Z    COMPARE */
363	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
364	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
365	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
366	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
367	{ 0x3B,	ALL, "WRITE BUFFER" },
368	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
369	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
370	/* 3D        O         UPDATE BLOCK */
371	{ 0x3D,	O, "UPDATE BLOCK" },
372	/* 3E  O   O O         READ LONG(10) */
373	{ 0x3E,	D | W | O, "READ LONG(10)" },
374	/* 3F  O   O O         WRITE LONG(10) */
375	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
376	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
377	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
378	/* 41  O               WRITE SAME(10) */
379	{ 0x41,	D, "WRITE SAME(10)" },
380	/* 42       O          UNMAP */
381	{ 0x42,	D, "UNMAP" },
382	/* 42       O          READ SUB-CHANNEL */
383	{ 0x42,	R, "READ SUB-CHANNEL" },
384	/* 43       O          READ TOC/PMA/ATIP */
385	{ 0x43,	R, "READ TOC/PMA/ATIP" },
386	/* 44   M          M   REPORT DENSITY SUPPORT */
387	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
388	/* 44                  READ HEADER */
389	/* 45       O          PLAY AUDIO(10) */
390	{ 0x45,	R, "PLAY AUDIO(10)" },
391	/* 46       M          GET CONFIGURATION */
392	{ 0x46,	R, "GET CONFIGURATION" },
393	/* 47       O          PLAY AUDIO MSF */
394	{ 0x47,	R, "PLAY AUDIO MSF" },
395	/* 48 */
396	/* 49 */
397	/* 4A       M          GET EVENT STATUS NOTIFICATION */
398	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
399	/* 4B       O          PAUSE/RESUME */
400	{ 0x4B,	R, "PAUSE/RESUME" },
401	/* 4C  OOOOO OOOO OOO  LOG SELECT */
402	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
403	/* 4D  OOOOO OOOO OMO  LOG SENSE */
404	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
405	/* 4E       O          STOP PLAY/SCAN */
406	{ 0x4E,	R, "STOP PLAY/SCAN" },
407	/* 4F */
408	/* 50  O               XDWRITE(10) */
409	{ 0x50,	D, "XDWRITE(10)" },
410	/* 51  O               XPWRITE(10) */
411	{ 0x51,	D, "XPWRITE(10)" },
412	/* 51       O          READ DISC INFORMATION */
413	{ 0x51,	R, "READ DISC INFORMATION" },
414	/* 52  O               XDREAD(10) */
415	{ 0x52,	D, "XDREAD(10)" },
416	/* 52       O          READ TRACK INFORMATION */
417	{ 0x52,	R, "READ TRACK INFORMATION" },
418	/* 53       O          RESERVE TRACK */
419	{ 0x53,	R, "RESERVE TRACK" },
420	/* 54       O          SEND OPC INFORMATION */
421	{ 0x54,	R, "SEND OPC INFORMATION" },
422	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
423	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
424	/* 56  ZZMZO OOOZ      RESERVE(10) */
425	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
426	/* 56         Z        RESERVE ELEMENT(10) */
427	{ 0x56,	M, "RESERVE ELEMENT(10)" },
428	/* 57  ZZMZO OOOZ      RELEASE(10) */
429	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
430	/* 57         Z        RELEASE ELEMENT(10) */
431	{ 0x57,	M, "RELEASE ELEMENT(10)" },
432	/* 58       O          REPAIR TRACK */
433	{ 0x58,	R, "REPAIR TRACK" },
434	/* 59 */
435	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
436	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
437	/* 5B       O          CLOSE TRACK/SESSION */
438	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
439	/* 5C       O          READ BUFFER CAPACITY */
440	{ 0x5C,	R, "READ BUFFER CAPACITY" },
441	/* 5D       O          SEND CUE SHEET */
442	{ 0x5D,	R, "SEND CUE SHEET" },
443	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
444	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
445	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
446	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
447	/* 7E  OO   O OOOO O   extended CDB */
448	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
449	/* 7F  O            M  variable length CDB (more than 16 bytes) */
450	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
451	/* 80  Z               XDWRITE EXTENDED(16) */
452	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
453	/* 80   M              WRITE FILEMARKS(16) */
454	{ 0x80,	T, "WRITE FILEMARKS(16)" },
455	/* 81  Z               REBUILD(16) */
456	{ 0x81,	D, "REBUILD(16)" },
457	/* 81   O              READ REVERSE(16) */
458	{ 0x81,	T, "READ REVERSE(16)" },
459	/* 82  Z               REGENERATE(16) */
460	{ 0x82,	D, "REGENERATE(16)" },
461	/* 83  OOOOO O    OO   EXTENDED COPY */
462	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
463	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
464	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
465	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
466	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
467	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
468	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
469	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
470	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
471	/*
472	 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt
473	 * but we had it since r1.40.  Do we really want them?
474	 */
475	/* 88  MM  O O   O     READ(16) */
476	{ 0x88,	D | T | W | O | B, "READ(16)" },
477	/* 89  O               COMPARE AND WRITE*/
478	{ 0x89,	D, "COMPARE AND WRITE" },
479	/* 8A  OM  O O   O     WRITE(16) */
480	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
481	/* 8B  O               ORWRITE */
482	{ 0x8B,	D, "ORWRITE" },
483	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
484	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
485	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
486	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
487	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
488	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
489	/* 8F  OO  O O   O     VERIFY(16) */
490	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
491	/* 90  O   O O   O     PRE-FETCH(16) */
492	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
493	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
494	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
495	/* 91   O              SPACE(16) */
496	{ 0x91,	T, "SPACE(16)" },
497	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
498	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
499	/* 92   O              LOCATE(16) */
500	{ 0x92,	T, "LOCATE(16)" },
501	/* 93  O               WRITE SAME(16) */
502	{ 0x93,	D, "WRITE SAME(16)" },
503	/* 93   M              ERASE(16) */
504	{ 0x93,	T, "ERASE(16)" },
505	/* 94  O               ZBC OUT */
506	{ 0x94,	ALL, "ZBC OUT" },
507	/* 95  O               ZBC IN */
508	{ 0x95,	ALL, "ZBC IN" },
509	/* 96 */
510	/* 97 */
511	/* 98 */
512	/* 99 */
513	/* 9A  O               WRITE STREAM(16) */
514	{ 0x9A,	D, "WRITE STREAM(16)" },
515	/* 9B  OOOOOOOOOO OOO  READ BUFFER(16) */
516	{ 0x9B,	ALL & ~(B) , "READ BUFFER(16)" },
517	/* 9C  O              WRITE ATOMIC(16) */
518	{ 0x9C, D, "WRITE ATOMIC(16)" },
519	/* 9D                  SERVICE ACTION BIDIRECTIONAL */
520	{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
521	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
522	/* 9E                  SERVICE ACTION IN(16) */
523	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
524	/* 9F              M   SERVICE ACTION OUT(16) */
525	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
526	/* A0  MMOOO OMMM OMO  REPORT LUNS */
527	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
528	/* A1       O          BLANK */
529	{ 0xA1,	R, "BLANK" },
530	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
531	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
532	/* A2  OO   O      O   SECURITY PROTOCOL IN */
533	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
534	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
535	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536	/* A3       O          SEND KEY */
537	{ 0xA3,	R, "SEND KEY" },
538	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
539	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540	/* A4       O          REPORT KEY */
541	{ 0xA4,	R, "REPORT KEY" },
542	/* A5   O  O OM        MOVE MEDIUM */
543	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
544	/* A5       O          PLAY AUDIO(12) */
545	{ 0xA5,	R, "PLAY AUDIO(12)" },
546	/* A6         O        EXCHANGE MEDIUM */
547	{ 0xA6,	M, "EXCHANGE MEDIUM" },
548	/* A6       O          LOAD/UNLOAD C/DVD */
549	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
550	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
551	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
552	/* A7       O          SET READ AHEAD */
553	{ 0xA7,	R, "SET READ AHEAD" },
554	/* A8  O   OOO         READ(12) */
555	{ 0xA8,	D | W | R | O, "READ(12)" },
556	/* A8                  GET MESSAGE(12) */
557	{ 0xA8, C, "GET MESSAGE(12)" },
558	/* A9              O   SERVICE ACTION OUT(12) */
559	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
560	/* AA  O   OOO         WRITE(12) */
561	{ 0xAA,	D | W | R | O, "WRITE(12)" },
562	/* AA                  SEND MESSAGE(12) */
563	{ 0xAA, C, "SEND MESSAGE(12)" },
564	/* AB       O      O   SERVICE ACTION IN(12) */
565	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
566	/* AC        O         ERASE(12) */
567	{ 0xAC,	O, "ERASE(12)" },
568	/* AC       O          GET PERFORMANCE */
569	{ 0xAC,	R, "GET PERFORMANCE" },
570	/* AD       O          READ DVD STRUCTURE */
571	{ 0xAD,	R, "READ DVD STRUCTURE" },
572	/* AE  O   O O         WRITE AND VERIFY(12) */
573	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
574	/* AF  O   OZO         VERIFY(12) */
575	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
576	/* B0      ZZZ         SEARCH DATA HIGH(12) */
577	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
578	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
579	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
580	/* B2      ZZZ         SEARCH DATA LOW(12) */
581	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
582	/* B3  Z   OZO         SET LIMITS(12) */
583	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
584	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
585	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
587	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
588	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
589	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
590	/* B6         O        SEND VOLUME TAG */
591	{ 0xB6,	M, "SEND VOLUME TAG" },
592	/* B6       O          SET STREAMING */
593	{ 0xB6,	R, "SET STREAMING" },
594	/* B7  O     O         READ DEFECT DATA(12) */
595	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
596	/* B8   O  OZOM        READ ELEMENT STATUS */
597	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
598	/* B9       O          READ CD MSF */
599	{ 0xB9,	R, "READ CD MSF" },
600	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
601	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602	/* BA       O          SCAN */
603	{ 0xBA,	R, "SCAN" },
604	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
605	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606	/* BB       O          SET CD SPEED */
607	{ 0xBB,	R, "SET CD SPEED" },
608	/* BC  O   O OOMO      SPARE (IN) */
609	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
610	/* BD  O   O OOOO      SPARE (OUT) */
611	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
612	/* BD       O          MECHANISM STATUS */
613	{ 0xBD,	R, "MECHANISM STATUS" },
614	/* BE  O   O OOMO      VOLUME SET (IN) */
615	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
616	/* BE       O          READ CD */
617	{ 0xBE,	R, "READ CD" },
618	/* BF  O   O OOOO      VOLUME SET (OUT) */
619	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
620	/* BF       O          SEND DVD STRUCTURE */
621	{ 0xBF,	R, "SEND DVD STRUCTURE" }
622};
623
624const char *
625scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
626{
627	caddr_t match;
628	int i, j;
629	u_int32_t opmask;
630	u_int16_t pd_type;
631	int       num_ops[2];
632	struct op_table_entry *table[2];
633	int num_tables;
634
635	/*
636	 * If we've got inquiry data, use it to determine what type of
637	 * device we're dealing with here.  Otherwise, assume direct
638	 * access.
639	 */
640	if (inq_data == NULL) {
641		pd_type = T_DIRECT;
642		match = NULL;
643	} else {
644		pd_type = SID_TYPE(inq_data);
645
646		match = cam_quirkmatch((caddr_t)inq_data,
647				       (caddr_t)scsi_op_quirk_table,
648				       nitems(scsi_op_quirk_table),
649				       sizeof(*scsi_op_quirk_table),
650				       scsi_inquiry_match);
651	}
652
653	if (match != NULL) {
654		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
655		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
656		table[1] = scsi_op_codes;
657		num_ops[1] = nitems(scsi_op_codes);
658		num_tables = 2;
659	} else {
660		/*
661		 * If this is true, we have a vendor specific opcode that
662		 * wasn't covered in the quirk table.
663		 */
664		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
665			return("Vendor Specific Command");
666
667		table[0] = scsi_op_codes;
668		num_ops[0] = nitems(scsi_op_codes);
669		num_tables = 1;
670	}
671
672	/* RBC is 'Simplified' Direct Access Device */
673	if (pd_type == T_RBC)
674		pd_type = T_DIRECT;
675
676	/*
677	 * Host managed drives are direct access for the most part.
678	 */
679	if (pd_type == T_ZBC_HM)
680		pd_type = T_DIRECT;
681
682	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
683	if (pd_type == T_NODEVICE)
684		pd_type = T_DIRECT;
685
686	opmask = 1 << pd_type;
687
688	for (j = 0; j < num_tables; j++) {
689		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
690			if ((table[j][i].opcode == opcode)
691			 && ((table[j][i].opmask & opmask) != 0))
692				return(table[j][i].desc);
693		}
694	}
695
696	/*
697	 * If we can't find a match for the command in the table, we just
698	 * assume it's a vendor specifc command.
699	 */
700	return("Vendor Specific Command");
701
702}
703
704#else /* SCSI_NO_OP_STRINGS */
705
706const char *
707scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
708{
709	return("");
710}
711
712#endif
713
714
715#if !defined(SCSI_NO_SENSE_STRINGS)
716#define SST(asc, ascq, action, desc) \
717	asc, ascq, action, desc
718#else
719const char empty_string[] = "";
720
721#define SST(asc, ascq, action, desc) \
722	asc, ascq, action, empty_string
723#endif
724
725const struct sense_key_table_entry sense_key_table[] =
726{
727	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
728	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
729	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
730	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
731	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
732	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
733	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
734	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
735	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
736	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
737	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
738	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
739	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
740	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
741	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
742	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
743};
744
745static struct asc_table_entry quantum_fireball_entries[] = {
746	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
747	     "Logical unit not ready, initializing cmd. required") }
748};
749
750static struct asc_table_entry sony_mo_entries[] = {
751	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
752	     "Logical unit not ready, cause not reportable") }
753};
754
755static struct asc_table_entry hgst_entries[] = {
756	{ SST(0x04, 0xF0, SS_RDEF,
757	    "Vendor Unique - Logical Unit Not Ready") },
758	{ SST(0x0A, 0x01, SS_RDEF,
759	    "Unrecovered Super Certification Log Write Error") },
760	{ SST(0x0A, 0x02, SS_RDEF,
761	    "Unrecovered Super Certification Log Read Error") },
762	{ SST(0x15, 0x03, SS_RDEF,
763	    "Unrecovered Sector Error") },
764	{ SST(0x3E, 0x04, SS_RDEF,
765	    "Unrecovered Self-Test Hard-Cache Test Fail") },
766	{ SST(0x3E, 0x05, SS_RDEF,
767	    "Unrecovered Self-Test OTF-Cache Fail") },
768	{ SST(0x40, 0x00, SS_RDEF,
769	    "Unrecovered SAT No Buffer Overflow Error") },
770	{ SST(0x40, 0x01, SS_RDEF,
771	    "Unrecovered SAT Buffer Overflow Error") },
772	{ SST(0x40, 0x02, SS_RDEF,
773	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
774	{ SST(0x40, 0x03, SS_RDEF,
775	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
776	{ SST(0x40, 0x81, SS_RDEF,
777	    "DRAM Failure") },
778	{ SST(0x44, 0x0B, SS_RDEF,
779	    "Vendor Unique - Internal Target Failure") },
780	{ SST(0x44, 0xF2, SS_RDEF,
781	    "Vendor Unique - Internal Target Failure") },
782	{ SST(0x44, 0xF6, SS_RDEF,
783	    "Vendor Unique - Internal Target Failure") },
784	{ SST(0x44, 0xF9, SS_RDEF,
785	    "Vendor Unique - Internal Target Failure") },
786	{ SST(0x44, 0xFA, SS_RDEF,
787	    "Vendor Unique - Internal Target Failure") },
788	{ SST(0x5D, 0x22, SS_RDEF,
789	    "Extreme Over-Temperature Warning") },
790	{ SST(0x5D, 0x50, SS_RDEF,
791	    "Load/Unload cycle Count Warning") },
792	{ SST(0x81, 0x00, SS_RDEF,
793	    "Vendor Unique - Internal Logic Error") },
794	{ SST(0x85, 0x00, SS_RDEF,
795	    "Vendor Unique - Internal Key Seed Error") },
796};
797
798static struct asc_table_entry seagate_entries[] = {
799	{ SST(0x04, 0xF0, SS_RDEF,
800	    "Logical Unit Not Ready, super certify in Progress") },
801	{ SST(0x08, 0x86, SS_RDEF,
802	    "Write Fault Data Corruption") },
803	{ SST(0x09, 0x0D, SS_RDEF,
804	    "Tracking Failure") },
805	{ SST(0x09, 0x0E, SS_RDEF,
806	    "ETF Failure") },
807	{ SST(0x0B, 0x5D, SS_RDEF,
808	    "Pre-SMART Warning") },
809	{ SST(0x0B, 0x85, SS_RDEF,
810	    "5V Voltage Warning") },
811	{ SST(0x0B, 0x8C, SS_RDEF,
812	    "12V Voltage Warning") },
813	{ SST(0x0C, 0xFF, SS_RDEF,
814	    "Write Error - Too many error recovery revs") },
815	{ SST(0x11, 0xFF, SS_RDEF,
816	    "Unrecovered Read Error - Too many error recovery revs") },
817	{ SST(0x19, 0x0E, SS_RDEF,
818	    "Fewer than 1/2 defect list copies") },
819	{ SST(0x20, 0xF3, SS_RDEF,
820	    "Illegal CDB linked to skip mask cmd") },
821	{ SST(0x24, 0xF0, SS_RDEF,
822	    "Illegal byte in CDB, LBA not matching") },
823	{ SST(0x24, 0xF1, SS_RDEF,
824	    "Illegal byte in CDB, LEN not matching") },
825	{ SST(0x24, 0xF2, SS_RDEF,
826	    "Mask not matching transfer length") },
827	{ SST(0x24, 0xF3, SS_RDEF,
828	    "Drive formatted without plist") },
829	{ SST(0x26, 0x95, SS_RDEF,
830	    "Invalid Field Parameter - CAP File") },
831	{ SST(0x26, 0x96, SS_RDEF,
832	    "Invalid Field Parameter - RAP File") },
833	{ SST(0x26, 0x97, SS_RDEF,
834	    "Invalid Field Parameter - TMS Firmware Tag") },
835	{ SST(0x26, 0x98, SS_RDEF,
836	    "Invalid Field Parameter - Check Sum") },
837	{ SST(0x26, 0x99, SS_RDEF,
838	    "Invalid Field Parameter - Firmware Tag") },
839	{ SST(0x29, 0x08, SS_RDEF,
840	    "Write Log Dump data") },
841	{ SST(0x29, 0x09, SS_RDEF,
842	    "Write Log Dump data") },
843	{ SST(0x29, 0x0A, SS_RDEF,
844	    "Reserved disk space") },
845	{ SST(0x29, 0x0B, SS_RDEF,
846	    "SDBP") },
847	{ SST(0x29, 0x0C, SS_RDEF,
848	    "SDBP") },
849	{ SST(0x31, 0x91, SS_RDEF,
850	    "Format Corrupted World Wide Name (WWN) is Invalid") },
851	{ SST(0x32, 0x03, SS_RDEF,
852	    "Defect List - Length exceeds Command Allocated Length") },
853	{ SST(0x33, 0x00, SS_RDEF,
854	    "Flash not ready for access") },
855	{ SST(0x3F, 0x70, SS_RDEF,
856	    "Invalid RAP block") },
857	{ SST(0x3F, 0x71, SS_RDEF,
858	    "RAP/ETF mismatch") },
859	{ SST(0x3F, 0x90, SS_RDEF,
860	    "Invalid CAP block") },
861	{ SST(0x3F, 0x91, SS_RDEF,
862	    "World Wide Name (WWN) Mismatch") },
863	{ SST(0x40, 0x01, SS_RDEF,
864	    "DRAM Parity Error") },
865	{ SST(0x40, 0x02, SS_RDEF,
866	    "DRAM Parity Error") },
867	{ SST(0x42, 0x0A, SS_RDEF,
868	    "Loopback Test") },
869	{ SST(0x42, 0x0B, SS_RDEF,
870	    "Loopback Test") },
871	{ SST(0x44, 0xF2, SS_RDEF,
872	    "Compare error during data integrity check") },
873	{ SST(0x44, 0xF6, SS_RDEF,
874	    "Unrecoverable error during data integrity check") },
875	{ SST(0x47, 0x80, SS_RDEF,
876	    "Fibre Channel Sequence Error") },
877	{ SST(0x4E, 0x01, SS_RDEF,
878	    "Information Unit Too Short") },
879	{ SST(0x80, 0x00, SS_RDEF,
880	    "General Firmware Error / Command Timeout") },
881	{ SST(0x80, 0x01, SS_RDEF,
882	    "Command Timeout") },
883	{ SST(0x80, 0x02, SS_RDEF,
884	    "Command Timeout") },
885	{ SST(0x80, 0x80, SS_RDEF,
886	    "FC FIFO Error During Read Transfer") },
887	{ SST(0x80, 0x81, SS_RDEF,
888	    "FC FIFO Error During Write Transfer") },
889	{ SST(0x80, 0x82, SS_RDEF,
890	    "DISC FIFO Error During Read Transfer") },
891	{ SST(0x80, 0x83, SS_RDEF,
892	    "DISC FIFO Error During Write Transfer") },
893	{ SST(0x80, 0x84, SS_RDEF,
894	    "LBA Seeded LRC Error on Read") },
895	{ SST(0x80, 0x85, SS_RDEF,
896	    "LBA Seeded LRC Error on Write") },
897	{ SST(0x80, 0x86, SS_RDEF,
898	    "IOEDC Error on Read") },
899	{ SST(0x80, 0x87, SS_RDEF,
900	    "IOEDC Error on Write") },
901	{ SST(0x80, 0x88, SS_RDEF,
902	    "Host Parity Check Failed") },
903	{ SST(0x80, 0x89, SS_RDEF,
904	    "IOEDC error on read detected by formatter") },
905	{ SST(0x80, 0x8A, SS_RDEF,
906	    "Host Parity Errors / Host FIFO Initialization Failed") },
907	{ SST(0x80, 0x8B, SS_RDEF,
908	    "Host Parity Errors") },
909	{ SST(0x80, 0x8C, SS_RDEF,
910	    "Host Parity Errors") },
911	{ SST(0x80, 0x8D, SS_RDEF,
912	    "Host Parity Errors") },
913	{ SST(0x81, 0x00, SS_RDEF,
914	    "LA Check Failed") },
915	{ SST(0x82, 0x00, SS_RDEF,
916	    "Internal client detected insufficient buffer") },
917	{ SST(0x84, 0x00, SS_RDEF,
918	    "Scheduled Diagnostic And Repair") },
919};
920
921static struct scsi_sense_quirk_entry sense_quirk_table[] = {
922	{
923		/*
924		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
925		 * when they really should return 0x04 0x02.
926		 */
927		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
928		/*num_sense_keys*/0,
929		nitems(quantum_fireball_entries),
930		/*sense key entries*/NULL,
931		quantum_fireball_entries
932	},
933	{
934		/*
935		 * This Sony MO drive likes to return 0x04, 0x00 when it
936		 * isn't spun up.
937		 */
938		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
939		/*num_sense_keys*/0,
940		nitems(sony_mo_entries),
941		/*sense key entries*/NULL,
942		sony_mo_entries
943	},
944	{
945		/*
946		 * HGST vendor-specific error codes
947		 */
948		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
949		/*num_sense_keys*/0,
950		nitems(hgst_entries),
951		/*sense key entries*/NULL,
952		hgst_entries
953	},
954	{
955		/*
956		 * SEAGATE vendor-specific error codes
957		 */
958		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
959		/*num_sense_keys*/0,
960		nitems(seagate_entries),
961		/*sense key entries*/NULL,
962		seagate_entries
963	}
964};
965
966const u_int sense_quirk_table_size = nitems(sense_quirk_table);
967
968static struct asc_table_entry asc_table[] = {
969	/*
970	 * From: http://www.t10.org/lists/asc-num.txt
971	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
972	 */
973	/*
974	 * File: ASC-NUM.TXT
975	 *
976	 * SCSI ASC/ASCQ Assignments
977	 * Numeric Sorted Listing
978	 * as of  8/12/15
979	 *
980	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
981	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
982	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
983	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
984	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
985	 * .  . R - CD DEVICE (MMC)
986	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
987	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
988	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
989	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
990	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
991	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
992	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
993	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
994	 * DTLPWROMAEBKVF
995	 * ASC      ASCQ  Action
996	 * Description
997	 */
998	/* DTLPWROMAEBKVF */
999	{ SST(0x00, 0x00, SS_NOP,
1000	    "No additional sense information") },
1001	/*  T             */
1002	{ SST(0x00, 0x01, SS_RDEF,
1003	    "Filemark detected") },
1004	/*  T             */
1005	{ SST(0x00, 0x02, SS_RDEF,
1006	    "End-of-partition/medium detected") },
1007	/*  T             */
1008	{ SST(0x00, 0x03, SS_RDEF,
1009	    "Setmark detected") },
1010	/*  T             */
1011	{ SST(0x00, 0x04, SS_RDEF,
1012	    "Beginning-of-partition/medium detected") },
1013	/*  TL            */
1014	{ SST(0x00, 0x05, SS_RDEF,
1015	    "End-of-data detected") },
1016	/* DTLPWROMAEBKVF */
1017	{ SST(0x00, 0x06, SS_RDEF,
1018	    "I/O process terminated") },
1019	/*  T             */
1020	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1021	    "Programmable early warning detected") },
1022	/*      R         */
1023	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1024	    "Audio play operation in progress") },
1025	/*      R         */
1026	{ SST(0x00, 0x12, SS_NOP,
1027	    "Audio play operation paused") },
1028	/*      R         */
1029	{ SST(0x00, 0x13, SS_NOP,
1030	    "Audio play operation successfully completed") },
1031	/*      R         */
1032	{ SST(0x00, 0x14, SS_RDEF,
1033	    "Audio play operation stopped due to error") },
1034	/*      R         */
1035	{ SST(0x00, 0x15, SS_NOP,
1036	    "No current audio status to return") },
1037	/* DTLPWROMAEBKVF */
1038	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1039	    "Operation in progress") },
1040	/* DTL WROMAEBKVF */
1041	{ SST(0x00, 0x17, SS_RDEF,
1042	    "Cleaning requested") },
1043	/*  T             */
1044	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1045	    "Erase operation in progress") },
1046	/*  T             */
1047	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1048	    "Locate operation in progress") },
1049	/*  T             */
1050	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1051	    "Rewind operation in progress") },
1052	/*  T             */
1053	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1054	    "Set capacity operation in progress") },
1055	/*  T             */
1056	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1057	    "Verify operation in progress") },
1058	/* DT        B    */
1059	{ SST(0x00, 0x1D, SS_RDEF,	/* XXX TBD */
1060	    "ATA pass through information available") },
1061	/* DT   R MAEBKV  */
1062	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1063	    "Conflicting SA creation request") },
1064	/* DT        B    */
1065	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1066	    "Logical unit transitioning to another power condition") },
1067	/* DT P      B    */
1068	{ SST(0x00, 0x20, SS_RDEF,	/* XXX TBD */
1069	    "Extended copy information available") },
1070	/* D              */
1071	{ SST(0x00, 0x21, SS_RDEF,	/* XXX TBD */
1072	    "Atomic command aborted due to ACA") },
1073	/* D   W O   BK   */
1074	{ SST(0x01, 0x00, SS_RDEF,
1075	    "No index/sector signal") },
1076	/* D   WRO   BK   */
1077	{ SST(0x02, 0x00, SS_RDEF,
1078	    "No seek complete") },
1079	/* DTL W O   BK   */
1080	{ SST(0x03, 0x00, SS_RDEF,
1081	    "Peripheral device write fault") },
1082	/*  T             */
1083	{ SST(0x03, 0x01, SS_RDEF,
1084	    "No write current") },
1085	/*  T             */
1086	{ SST(0x03, 0x02, SS_RDEF,
1087	    "Excessive write errors") },
1088	/* DTLPWROMAEBKVF */
1089	{ SST(0x04, 0x00, SS_RDEF,
1090	    "Logical unit not ready, cause not reportable") },
1091	/* DTLPWROMAEBKVF */
1092	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1093	    "Logical unit is in process of becoming ready") },
1094	/* DTLPWROMAEBKVF */
1095	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1096	    "Logical unit not ready, initializing command required") },
1097	/* DTLPWROMAEBKVF */
1098	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1099	    "Logical unit not ready, manual intervention required") },
1100	/* DTL  RO   B    */
1101	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1102	    "Logical unit not ready, format in progress") },
1103	/* DT  W O A BK F */
1104	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1105	    "Logical unit not ready, rebuild in progress") },
1106	/* DT  W O A BK   */
1107	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1108	    "Logical unit not ready, recalculation in progress") },
1109	/* DTLPWROMAEBKVF */
1110	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1111	    "Logical unit not ready, operation in progress") },
1112	/*      R         */
1113	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1114	    "Logical unit not ready, long write in progress") },
1115	/* DTLPWROMAEBKVF */
1116	{ SST(0x04, 0x09, SS_RDEF,	/* XXX TBD */
1117	    "Logical unit not ready, self-test in progress") },
1118	/* DTLPWROMAEBKVF */
1119	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1120	    "Logical unit not accessible, asymmetric access state transition")},
1121	/* DTLPWROMAEBKVF */
1122	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1123	    "Logical unit not accessible, target port in standby state") },
1124	/* DTLPWROMAEBKVF */
1125	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1126	    "Logical unit not accessible, target port in unavailable state") },
1127	/*              F */
1128	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1129	    "Logical unit not ready, structure check required") },
1130	/* DTL WR MAEBKVF */
1131	{ SST(0x04, 0x0E, SS_RDEF,	/* XXX TBD */
1132	    "Logical unit not ready, security session in progress") },
1133	/* DT  WROM  B    */
1134	{ SST(0x04, 0x10, SS_RDEF,	/* XXX TBD */
1135	    "Logical unit not ready, auxiliary memory not accessible") },
1136	/* DT  WRO AEB VF */
1137	{ SST(0x04, 0x11, SS_WAIT | EBUSY,
1138	    "Logical unit not ready, notify (enable spinup) required") },
1139	/*        M    V  */
1140	{ SST(0x04, 0x12, SS_RDEF,	/* XXX TBD */
1141	    "Logical unit not ready, offline") },
1142	/* DT   R MAEBKV  */
1143	{ SST(0x04, 0x13, SS_RDEF,	/* XXX TBD */
1144	    "Logical unit not ready, SA creation in progress") },
1145	/* D         B    */
1146	{ SST(0x04, 0x14, SS_RDEF,	/* XXX TBD */
1147	    "Logical unit not ready, space allocation in progress") },
1148	/*        M       */
1149	{ SST(0x04, 0x15, SS_RDEF,	/* XXX TBD */
1150	    "Logical unit not ready, robotics disabled") },
1151	/*        M       */
1152	{ SST(0x04, 0x16, SS_RDEF,	/* XXX TBD */
1153	    "Logical unit not ready, configuration required") },
1154	/*        M       */
1155	{ SST(0x04, 0x17, SS_RDEF,	/* XXX TBD */
1156	    "Logical unit not ready, calibration required") },
1157	/*        M       */
1158	{ SST(0x04, 0x18, SS_RDEF,	/* XXX TBD */
1159	    "Logical unit not ready, a door is open") },
1160	/*        M       */
1161	{ SST(0x04, 0x19, SS_RDEF,	/* XXX TBD */
1162	    "Logical unit not ready, operating in sequential mode") },
1163	/* DT        B    */
1164	{ SST(0x04, 0x1A, SS_RDEF,	/* XXX TBD */
1165	    "Logical unit not ready, START/STOP UNIT command in progress") },
1166	/* D         B    */
1167	{ SST(0x04, 0x1B, SS_RDEF,	/* XXX TBD */
1168	    "Logical unit not ready, sanitize in progress") },
1169	/* DT     MAEB    */
1170	{ SST(0x04, 0x1C, SS_RDEF,	/* XXX TBD */
1171	    "Logical unit not ready, additional power use not yet granted") },
1172	/* D              */
1173	{ SST(0x04, 0x1D, SS_RDEF,	/* XXX TBD */
1174	    "Logical unit not ready, configuration in progress") },
1175	/* D              */
1176	{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
1177	    "Logical unit not ready, microcode activation required") },
1178	/* DTLPWROMAEBKVF */
1179	{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
1180	    "Logical unit not ready, microcode download required") },
1181	/* DTLPWROMAEBKVF */
1182	{ SST(0x04, 0x20, SS_RDEF,	/* XXX TBD */
1183	    "Logical unit not ready, logical unit reset required") },
1184	/* DTLPWROMAEBKVF */
1185	{ SST(0x04, 0x21, SS_RDEF,	/* XXX TBD */
1186	    "Logical unit not ready, hard reset required") },
1187	/* DTLPWROMAEBKVF */
1188	{ SST(0x04, 0x22, SS_RDEF,	/* XXX TBD */
1189	    "Logical unit not ready, power cycle required") },
1190	/* DTL WROMAEBKVF */
1191	{ SST(0x05, 0x00, SS_RDEF,
1192	    "Logical unit does not respond to selection") },
1193	/* D   WROM  BK   */
1194	{ SST(0x06, 0x00, SS_RDEF,
1195	    "No reference position found") },
1196	/* DTL WROM  BK   */
1197	{ SST(0x07, 0x00, SS_RDEF,
1198	    "Multiple peripheral devices selected") },
1199	/* DTL WROMAEBKVF */
1200	{ SST(0x08, 0x00, SS_RDEF,
1201	    "Logical unit communication failure") },
1202	/* DTL WROMAEBKVF */
1203	{ SST(0x08, 0x01, SS_RDEF,
1204	    "Logical unit communication time-out") },
1205	/* DTL WROMAEBKVF */
1206	{ SST(0x08, 0x02, SS_RDEF,
1207	    "Logical unit communication parity error") },
1208	/* DT   ROM  BK   */
1209	{ SST(0x08, 0x03, SS_RDEF,
1210	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1211	/* DTLPWRO    K   */
1212	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1213	    "Unreachable copy target") },
1214	/* DT  WRO   B    */
1215	{ SST(0x09, 0x00, SS_RDEF,
1216	    "Track following error") },
1217	/*     WRO    K   */
1218	{ SST(0x09, 0x01, SS_RDEF,
1219	    "Tracking servo failure") },
1220	/*     WRO    K   */
1221	{ SST(0x09, 0x02, SS_RDEF,
1222	    "Focus servo failure") },
1223	/*     WRO        */
1224	{ SST(0x09, 0x03, SS_RDEF,
1225	    "Spindle servo failure") },
1226	/* DT  WRO   B    */
1227	{ SST(0x09, 0x04, SS_RDEF,
1228	    "Head select fault") },
1229	/* DT   RO   B    */
1230	{ SST(0x09, 0x05, SS_RDEF,
1231	    "Vibration induced tracking error") },
1232	/* DTLPWROMAEBKVF */
1233	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1234	    "Error log overflow") },
1235	/* DTLPWROMAEBKVF */
1236	{ SST(0x0B, 0x00, SS_RDEF,
1237	    "Warning") },
1238	/* DTLPWROMAEBKVF */
1239	{ SST(0x0B, 0x01, SS_RDEF,
1240	    "Warning - specified temperature exceeded") },
1241	/* DTLPWROMAEBKVF */
1242	{ SST(0x0B, 0x02, SS_RDEF,
1243	    "Warning - enclosure degraded") },
1244	/* DTLPWROMAEBKVF */
1245	{ SST(0x0B, 0x03, SS_RDEF,	/* XXX TBD */
1246	    "Warning - background self-test failed") },
1247	/* DTLPWRO AEBKVF */
1248	{ SST(0x0B, 0x04, SS_RDEF,	/* XXX TBD */
1249	    "Warning - background pre-scan detected medium error") },
1250	/* DTLPWRO AEBKVF */
1251	{ SST(0x0B, 0x05, SS_RDEF,	/* XXX TBD */
1252	    "Warning - background medium scan detected medium error") },
1253	/* DTLPWROMAEBKVF */
1254	{ SST(0x0B, 0x06, SS_RDEF,	/* XXX TBD */
1255	    "Warning - non-volatile cache now volatile") },
1256	/* DTLPWROMAEBKVF */
1257	{ SST(0x0B, 0x07, SS_RDEF,	/* XXX TBD */
1258	    "Warning - degraded power to non-volatile cache") },
1259	/* DTLPWROMAEBKVF */
1260	{ SST(0x0B, 0x08, SS_RDEF,	/* XXX TBD */
1261	    "Warning - power loss expected") },
1262	/* D              */
1263	{ SST(0x0B, 0x09, SS_RDEF,	/* XXX TBD */
1264	    "Warning - device statistics notification available") },
1265	/* DTLPWROMAEBKVF */
1266	{ SST(0x0B, 0x0A, SS_RDEF,	/* XXX TBD */
1267	    "Warning - High critical temperature limit exceeded") },
1268	/* DTLPWROMAEBKVF */
1269	{ SST(0x0B, 0x0B, SS_RDEF,	/* XXX TBD */
1270	    "Warning - Low critical temperature limit exceeded") },
1271	/* DTLPWROMAEBKVF */
1272	{ SST(0x0B, 0x0C, SS_RDEF,	/* XXX TBD */
1273	    "Warning - High operating temperature limit exceeded") },
1274	/* DTLPWROMAEBKVF */
1275	{ SST(0x0B, 0x0D, SS_RDEF,	/* XXX TBD */
1276	    "Warning - Low operating temperature limit exceeded") },
1277	/* DTLPWROMAEBKVF */
1278	{ SST(0x0B, 0x0E, SS_RDEF,	/* XXX TBD */
1279	    "Warning - High citical humidity limit exceeded") },
1280	/* DTLPWROMAEBKVF */
1281	{ SST(0x0B, 0x0F, SS_RDEF,	/* XXX TBD */
1282	    "Warning - Low citical humidity limit exceeded") },
1283	/* DTLPWROMAEBKVF */
1284	{ SST(0x0B, 0x10, SS_RDEF,	/* XXX TBD */
1285	    "Warning - High operating humidity limit exceeded") },
1286	/* DTLPWROMAEBKVF */
1287	{ SST(0x0B, 0x11, SS_RDEF,	/* XXX TBD */
1288	    "Warning - Low operating humidity limit exceeded") },
1289	/*  T   R         */
1290	{ SST(0x0C, 0x00, SS_RDEF,
1291	    "Write error") },
1292	/*            K   */
1293	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1294	    "Write error - recovered with auto reallocation") },
1295	/* D   W O   BK   */
1296	{ SST(0x0C, 0x02, SS_RDEF,
1297	    "Write error - auto reallocation failed") },
1298	/* D   W O   BK   */
1299	{ SST(0x0C, 0x03, SS_RDEF,
1300	    "Write error - recommend reassignment") },
1301	/* DT  W O   B    */
1302	{ SST(0x0C, 0x04, SS_RDEF,
1303	    "Compression check miscompare error") },
1304	/* DT  W O   B    */
1305	{ SST(0x0C, 0x05, SS_RDEF,
1306	    "Data expansion occurred during compression") },
1307	/* DT  W O   B    */
1308	{ SST(0x0C, 0x06, SS_RDEF,
1309	    "Block not compressible") },
1310	/*      R         */
1311	{ SST(0x0C, 0x07, SS_RDEF,
1312	    "Write error - recovery needed") },
1313	/*      R         */
1314	{ SST(0x0C, 0x08, SS_RDEF,
1315	    "Write error - recovery failed") },
1316	/*      R         */
1317	{ SST(0x0C, 0x09, SS_RDEF,
1318	    "Write error - loss of streaming") },
1319	/*      R         */
1320	{ SST(0x0C, 0x0A, SS_RDEF,
1321	    "Write error - padding blocks added") },
1322	/* DT  WROM  B    */
1323	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1324	    "Auxiliary memory write error") },
1325	/* DTLPWRO AEBKVF */
1326	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1327	    "Write error - unexpected unsolicited data") },
1328	/* DTLPWRO AEBKVF */
1329	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1330	    "Write error - not enough unsolicited data") },
1331	/* DT  W O   BK   */
1332	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1333	    "Multiple write errors") },
1334	/*      R         */
1335	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1336	    "Defects in error window") },
1337	/* D              */
1338	{ SST(0x0C, 0x10, SS_RDEF,	/* XXX TBD */
1339	    "Incomplete multiple atomic write operations") },
1340	/* D              */
1341	{ SST(0x0C, 0x11, SS_RDEF,	/* XXX TBD */
1342	    "Write error - recovery scan needed") },
1343	/* D              */
1344	{ SST(0x0C, 0x12, SS_RDEF,	/* XXX TBD */
1345	    "Write error - insufficient zone resources") },
1346	/* DTLPWRO A  K   */
1347	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1348	    "Error detected by third party temporary initiator") },
1349	/* DTLPWRO A  K   */
1350	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1351	    "Third party device failure") },
1352	/* DTLPWRO A  K   */
1353	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1354	    "Copy target device not reachable") },
1355	/* DTLPWRO A  K   */
1356	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1357	    "Incorrect copy target device type") },
1358	/* DTLPWRO A  K   */
1359	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1360	    "Copy target device data underrun") },
1361	/* DTLPWRO A  K   */
1362	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1363	    "Copy target device data overrun") },
1364	/* DT PWROMAEBK F */
1365	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1366	    "Invalid information unit") },
1367	/* DT PWROMAEBK F */
1368	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1369	    "Information unit too short") },
1370	/* DT PWROMAEBK F */
1371	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1372	    "Information unit too long") },
1373	/* DT P R MAEBK F */
1374	{ SST(0x0E, 0x03, SS_RDEF,	/* XXX TBD */
1375	    "Invalid field in command information unit") },
1376	/* D   W O   BK   */
1377	{ SST(0x10, 0x00, SS_RDEF,
1378	    "ID CRC or ECC error") },
1379	/* DT  W O        */
1380	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1381	    "Logical block guard check failed") },
1382	/* DT  W O        */
1383	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1384	    "Logical block application tag check failed") },
1385	/* DT  W O        */
1386	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1387	    "Logical block reference tag check failed") },
1388	/*  T             */
1389	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1390	    "Logical block protection error on recovered buffer data") },
1391	/*  T             */
1392	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1393	    "Logical block protection method error") },
1394	/* DT  WRO   BK   */
1395	{ SST(0x11, 0x00, SS_FATAL|EIO,
1396	    "Unrecovered read error") },
1397	/* DT  WRO   BK   */
1398	{ SST(0x11, 0x01, SS_FATAL|EIO,
1399	    "Read retries exhausted") },
1400	/* DT  WRO   BK   */
1401	{ SST(0x11, 0x02, SS_FATAL|EIO,
1402	    "Error too long to correct") },
1403	/* DT  W O   BK   */
1404	{ SST(0x11, 0x03, SS_FATAL|EIO,
1405	    "Multiple read errors") },
1406	/* D   W O   BK   */
1407	{ SST(0x11, 0x04, SS_FATAL|EIO,
1408	    "Unrecovered read error - auto reallocate failed") },
1409	/*     WRO   B    */
1410	{ SST(0x11, 0x05, SS_FATAL|EIO,
1411	    "L-EC uncorrectable error") },
1412	/*     WRO   B    */
1413	{ SST(0x11, 0x06, SS_FATAL|EIO,
1414	    "CIRC unrecovered error") },
1415	/*     W O   B    */
1416	{ SST(0x11, 0x07, SS_RDEF,
1417	    "Data re-synchronization error") },
1418	/*  T             */
1419	{ SST(0x11, 0x08, SS_RDEF,
1420	    "Incomplete block read") },
1421	/*  T             */
1422	{ SST(0x11, 0x09, SS_RDEF,
1423	    "No gap found") },
1424	/* DT    O   BK   */
1425	{ SST(0x11, 0x0A, SS_RDEF,
1426	    "Miscorrected error") },
1427	/* D   W O   BK   */
1428	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1429	    "Unrecovered read error - recommend reassignment") },
1430	/* D   W O   BK   */
1431	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1432	    "Unrecovered read error - recommend rewrite the data") },
1433	/* DT  WRO   B    */
1434	{ SST(0x11, 0x0D, SS_RDEF,
1435	    "De-compression CRC error") },
1436	/* DT  WRO   B    */
1437	{ SST(0x11, 0x0E, SS_RDEF,
1438	    "Cannot decompress using declared algorithm") },
1439	/*      R         */
1440	{ SST(0x11, 0x0F, SS_RDEF,
1441	    "Error reading UPC/EAN number") },
1442	/*      R         */
1443	{ SST(0x11, 0x10, SS_RDEF,
1444	    "Error reading ISRC number") },
1445	/*      R         */
1446	{ SST(0x11, 0x11, SS_RDEF,
1447	    "Read error - loss of streaming") },
1448	/* DT  WROM  B    */
1449	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1450	    "Auxiliary memory read error") },
1451	/* DTLPWRO AEBKVF */
1452	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1453	    "Read error - failed retransmission request") },
1454	/* D              */
1455	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1456	    "Read error - LBA marked bad by application client") },
1457	/* D              */
1458	{ SST(0x11, 0x15, SS_RDEF,	/* XXX TBD */
1459	    "Write after sanitize required") },
1460	/* D   W O   BK   */
1461	{ SST(0x12, 0x00, SS_RDEF,
1462	    "Address mark not found for ID field") },
1463	/* D   W O   BK   */
1464	{ SST(0x13, 0x00, SS_RDEF,
1465	    "Address mark not found for data field") },
1466	/* DTL WRO   BK   */
1467	{ SST(0x14, 0x00, SS_RDEF,
1468	    "Recorded entity not found") },
1469	/* DT  WRO   BK   */
1470	{ SST(0x14, 0x01, SS_RDEF,
1471	    "Record not found") },
1472	/*  T             */
1473	{ SST(0x14, 0x02, SS_RDEF,
1474	    "Filemark or setmark not found") },
1475	/*  T             */
1476	{ SST(0x14, 0x03, SS_RDEF,
1477	    "End-of-data not found") },
1478	/*  T             */
1479	{ SST(0x14, 0x04, SS_RDEF,
1480	    "Block sequence error") },
1481	/* DT  W O   BK   */
1482	{ SST(0x14, 0x05, SS_RDEF,
1483	    "Record not found - recommend reassignment") },
1484	/* DT  W O   BK   */
1485	{ SST(0x14, 0x06, SS_RDEF,
1486	    "Record not found - data auto-reallocated") },
1487	/*  T             */
1488	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1489	    "Locate operation failure") },
1490	/* DTL WROM  BK   */
1491	{ SST(0x15, 0x00, SS_RDEF,
1492	    "Random positioning error") },
1493	/* DTL WROM  BK   */
1494	{ SST(0x15, 0x01, SS_RDEF,
1495	    "Mechanical positioning error") },
1496	/* DT  WRO   BK   */
1497	{ SST(0x15, 0x02, SS_RDEF,
1498	    "Positioning error detected by read of medium") },
1499	/* D   W O   BK   */
1500	{ SST(0x16, 0x00, SS_RDEF,
1501	    "Data synchronization mark error") },
1502	/* D   W O   BK   */
1503	{ SST(0x16, 0x01, SS_RDEF,
1504	    "Data sync error - data rewritten") },
1505	/* D   W O   BK   */
1506	{ SST(0x16, 0x02, SS_RDEF,
1507	    "Data sync error - recommend rewrite") },
1508	/* D   W O   BK   */
1509	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1510	    "Data sync error - data auto-reallocated") },
1511	/* D   W O   BK   */
1512	{ SST(0x16, 0x04, SS_RDEF,
1513	    "Data sync error - recommend reassignment") },
1514	/* DT  WRO   BK   */
1515	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1516	    "Recovered data with no error correction applied") },
1517	/* DT  WRO   BK   */
1518	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1519	    "Recovered data with retries") },
1520	/* DT  WRO   BK   */
1521	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1522	    "Recovered data with positive head offset") },
1523	/* DT  WRO   BK   */
1524	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1525	    "Recovered data with negative head offset") },
1526	/*     WRO   B    */
1527	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1528	    "Recovered data with retries and/or CIRC applied") },
1529	/* D   WRO   BK   */
1530	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1531	    "Recovered data using previous sector ID") },
1532	/* D   W O   BK   */
1533	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1534	    "Recovered data without ECC - data auto-reallocated") },
1535	/* D   WRO   BK   */
1536	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1537	    "Recovered data without ECC - recommend reassignment") },
1538	/* D   WRO   BK   */
1539	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1540	    "Recovered data without ECC - recommend rewrite") },
1541	/* D   WRO   BK   */
1542	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1543	    "Recovered data without ECC - data rewritten") },
1544	/* DT  WRO   BK   */
1545	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1546	    "Recovered data with error correction applied") },
1547	/* D   WRO   BK   */
1548	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1549	    "Recovered data with error corr. & retries applied") },
1550	/* D   WRO   BK   */
1551	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1552	    "Recovered data - data auto-reallocated") },
1553	/*      R         */
1554	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1555	    "Recovered data with CIRC") },
1556	/*      R         */
1557	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1558	    "Recovered data with L-EC") },
1559	/* D   WRO   BK   */
1560	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1561	    "Recovered data - recommend reassignment") },
1562	/* D   WRO   BK   */
1563	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1564	    "Recovered data - recommend rewrite") },
1565	/* D   W O   BK   */
1566	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1567	    "Recovered data with ECC - data rewritten") },
1568	/*      R         */
1569	{ SST(0x18, 0x08, SS_RDEF,	/* XXX TBD */
1570	    "Recovered data with linking") },
1571	/* D     O    K   */
1572	{ SST(0x19, 0x00, SS_RDEF,
1573	    "Defect list error") },
1574	/* D     O    K   */
1575	{ SST(0x19, 0x01, SS_RDEF,
1576	    "Defect list not available") },
1577	/* D     O    K   */
1578	{ SST(0x19, 0x02, SS_RDEF,
1579	    "Defect list error in primary list") },
1580	/* D     O    K   */
1581	{ SST(0x19, 0x03, SS_RDEF,
1582	    "Defect list error in grown list") },
1583	/* DTLPWROMAEBKVF */
1584	{ SST(0x1A, 0x00, SS_RDEF,
1585	    "Parameter list length error") },
1586	/* DTLPWROMAEBKVF */
1587	{ SST(0x1B, 0x00, SS_RDEF,
1588	    "Synchronous data transfer error") },
1589	/* D     O   BK   */
1590	{ SST(0x1C, 0x00, SS_RDEF,
1591	    "Defect list not found") },
1592	/* D     O   BK   */
1593	{ SST(0x1C, 0x01, SS_RDEF,
1594	    "Primary defect list not found") },
1595	/* D     O   BK   */
1596	{ SST(0x1C, 0x02, SS_RDEF,
1597	    "Grown defect list not found") },
1598	/* DT  WRO   BK   */
1599	{ SST(0x1D, 0x00, SS_FATAL,
1600	    "Miscompare during verify operation") },
1601	/* D         B    */
1602	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1603	    "Miscomparable verify of unmapped LBA") },
1604	/* D   W O   BK   */
1605	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1606	    "Recovered ID with ECC correction") },
1607	/* D     O    K   */
1608	{ SST(0x1F, 0x00, SS_RDEF,
1609	    "Partial defect list transfer") },
1610	/* DTLPWROMAEBKVF */
1611	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1612	    "Invalid command operation code") },
1613	/* DT PWROMAEBK   */
1614	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1615	    "Access denied - initiator pending-enrolled") },
1616	/* DT PWROMAEBK   */
1617	{ SST(0x20, 0x02, SS_RDEF,	/* XXX TBD */
1618	    "Access denied - no access rights") },
1619	/* DT PWROMAEBK   */
1620	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1621	    "Access denied - invalid mgmt ID key") },
1622	/*  T             */
1623	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1624	    "Illegal command while in write capable state") },
1625	/*  T             */
1626	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1627	    "Obsolete") },
1628	/*  T             */
1629	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1630	    "Illegal command while in explicit address mode") },
1631	/*  T             */
1632	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1633	    "Illegal command while in implicit address mode") },
1634	/* DT PWROMAEBK   */
1635	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1636	    "Access denied - enrollment conflict") },
1637	/* DT PWROMAEBK   */
1638	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1639	    "Access denied - invalid LU identifier") },
1640	/* DT PWROMAEBK   */
1641	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1642	    "Access denied - invalid proxy token") },
1643	/* DT PWROMAEBK   */
1644	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1645	    "Access denied - ACL LUN conflict") },
1646	/*  T             */
1647	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1648	    "Illegal command when not in append-only mode") },
1649	/* DT  WRO   BK   */
1650	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1651	    "Logical block address out of range") },
1652	/* DT  WROM  BK   */
1653	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1654	    "Invalid element address") },
1655	/*      R         */
1656	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1657	    "Invalid address for write") },
1658	/*      R         */
1659	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1660	    "Invalid write crossing layer jump") },
1661	/* D              */
1662	{ SST(0x21, 0x04, SS_RDEF,	/* XXX TBD */
1663	    "Unaligned write command") },
1664	/* D              */
1665	{ SST(0x21, 0x05, SS_RDEF,	/* XXX TBD */
1666	    "Write boundary violation") },
1667	/* D              */
1668	{ SST(0x21, 0x06, SS_RDEF,	/* XXX TBD */
1669	    "Attempt to read invalid data") },
1670	/* D              */
1671	{ SST(0x21, 0x07, SS_RDEF,	/* XXX TBD */
1672	    "Read boundary violation") },
1673	/* D              */
1674	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1675	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1676	/* DT P      B    */
1677	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1678	    "Invalid token operation, cause not reportable") },
1679	/* DT P      B    */
1680	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1681	    "Invalid token operation, unsupported token type") },
1682	/* DT P      B    */
1683	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1684	    "Invalid token operation, remote token usage not supported") },
1685	/* DT P      B    */
1686	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1687	    "Invalid token operation, remote ROD token creation not supported") },
1688	/* DT P      B    */
1689	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1690	    "Invalid token operation, token unknown") },
1691	/* DT P      B    */
1692	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1693	    "Invalid token operation, token corrupt") },
1694	/* DT P      B    */
1695	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1696	    "Invalid token operation, token revoked") },
1697	/* DT P      B    */
1698	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1699	    "Invalid token operation, token expired") },
1700	/* DT P      B    */
1701	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1702	    "Invalid token operation, token cancelled") },
1703	/* DT P      B    */
1704	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1705	    "Invalid token operation, token deleted") },
1706	/* DT P      B    */
1707	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1708	    "Invalid token operation, invalid token length") },
1709	/* DTLPWROMAEBKVF */
1710	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1711	    "Invalid field in CDB") },
1712	/* DTLPWRO AEBKVF */
1713	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1714	    "CDB decryption error") },
1715	/*  T             */
1716	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1717	    "Obsolete") },
1718	/*  T             */
1719	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1720	    "Obsolete") },
1721	/*              F */
1722	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1723	    "Security audit value frozen") },
1724	/*              F */
1725	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1726	    "Security working key frozen") },
1727	/*              F */
1728	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1729	    "NONCE not unique") },
1730	/*              F */
1731	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1732	    "NONCE timestamp out of range") },
1733	/* DT   R MAEBKV  */
1734	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1735	    "Invalid XCDB") },
1736	/* DTLPWROMAEBKVF */
1737	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1738	    "Logical unit not supported") },
1739	/* DTLPWROMAEBKVF */
1740	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1741	    "Invalid field in parameter list") },
1742	/* DTLPWROMAEBKVF */
1743	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1744	    "Parameter not supported") },
1745	/* DTLPWROMAEBKVF */
1746	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1747	    "Parameter value invalid") },
1748	/* DTLPWROMAE K   */
1749	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1750	    "Threshold parameters not supported") },
1751	/* DTLPWROMAEBKVF */
1752	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1753	    "Invalid release of persistent reservation") },
1754	/* DTLPWRO A BK   */
1755	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1756	    "Data decryption error") },
1757	/* DTLPWRO    K   */
1758	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1759	    "Too many target descriptors") },
1760	/* DTLPWRO    K   */
1761	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1762	    "Unsupported target descriptor type code") },
1763	/* DTLPWRO    K   */
1764	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1765	    "Too many segment descriptors") },
1766	/* DTLPWRO    K   */
1767	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1768	    "Unsupported segment descriptor type code") },
1769	/* DTLPWRO    K   */
1770	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1771	    "Unexpected inexact segment") },
1772	/* DTLPWRO    K   */
1773	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1774	    "Inline data length exceeded") },
1775	/* DTLPWRO    K   */
1776	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1777	    "Invalid operation for copy source or destination") },
1778	/* DTLPWRO    K   */
1779	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1780	    "Copy segment granularity violation") },
1781	/* DT PWROMAEBK   */
1782	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1783	    "Invalid parameter while port is enabled") },
1784	/*              F */
1785	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1786	    "Invalid data-out buffer integrity check value") },
1787	/*  T             */
1788	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1789	    "Data decryption key fail limit reached") },
1790	/*  T             */
1791	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1792	    "Incomplete key-associated data set") },
1793	/*  T             */
1794	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1795	    "Vendor specific key reference not found") },
1796	/* D              */
1797	{ SST(0x26, 0x13, SS_RDEF,	/* XXX TBD */
1798	    "Application tag mode page is invalid") },
1799	/* DT  WRO   BK   */
1800	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1801	    "Write protected") },
1802	/* DT  WRO   BK   */
1803	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1804	    "Hardware write protected") },
1805	/* DT  WRO   BK   */
1806	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1807	    "Logical unit software write protected") },
1808	/*  T   R         */
1809	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1810	    "Associated write protect") },
1811	/*  T   R         */
1812	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1813	    "Persistent write protect") },
1814	/*  T   R         */
1815	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1816	    "Permanent write protect") },
1817	/*      R       F */
1818	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1819	    "Conditional write protect") },
1820	/* D         B    */
1821	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1822	    "Space allocation failed write protect") },
1823	/* D              */
1824	{ SST(0x27, 0x08, SS_FATAL | EACCES,
1825	    "Zone is read only") },
1826	/* DTLPWROMAEBKVF */
1827	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1828	    "Not ready to ready change, medium may have changed") },
1829	/* DT  WROM  B    */
1830	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1831	    "Import or export element accessed") },
1832	/*      R         */
1833	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1834	    "Format-layer may have changed") },
1835	/*        M       */
1836	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1837	    "Import/export element accessed, medium changed") },
1838	/*
1839	 * XXX JGibbs - All of these should use the same errno, but I don't
1840	 * think ENXIO is the correct choice.  Should we borrow from
1841	 * the networking errnos?  ECONNRESET anyone?
1842	 */
1843	/* DTLPWROMAEBKVF */
1844	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1845	    "Power on, reset, or bus device reset occurred") },
1846	/* DTLPWROMAEBKVF */
1847	{ SST(0x29, 0x01, SS_RDEF,
1848	    "Power on occurred") },
1849	/* DTLPWROMAEBKVF */
1850	{ SST(0x29, 0x02, SS_RDEF,
1851	    "SCSI bus reset occurred") },
1852	/* DTLPWROMAEBKVF */
1853	{ SST(0x29, 0x03, SS_RDEF,
1854	    "Bus device reset function occurred") },
1855	/* DTLPWROMAEBKVF */
1856	{ SST(0x29, 0x04, SS_RDEF,
1857	    "Device internal reset") },
1858	/* DTLPWROMAEBKVF */
1859	{ SST(0x29, 0x05, SS_RDEF,
1860	    "Transceiver mode changed to single-ended") },
1861	/* DTLPWROMAEBKVF */
1862	{ SST(0x29, 0x06, SS_RDEF,
1863	    "Transceiver mode changed to LVD") },
1864	/* DTLPWROMAEBKVF */
1865	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1866	    "I_T nexus loss occurred") },
1867	/* DTL WROMAEBKVF */
1868	{ SST(0x2A, 0x00, SS_RDEF,
1869	    "Parameters changed") },
1870	/* DTL WROMAEBKVF */
1871	{ SST(0x2A, 0x01, SS_RDEF,
1872	    "Mode parameters changed") },
1873	/* DTL WROMAE K   */
1874	{ SST(0x2A, 0x02, SS_RDEF,
1875	    "Log parameters changed") },
1876	/* DTLPWROMAE K   */
1877	{ SST(0x2A, 0x03, SS_RDEF,
1878	    "Reservations preempted") },
1879	/* DTLPWROMAE     */
1880	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1881	    "Reservations released") },
1882	/* DTLPWROMAE     */
1883	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1884	    "Registrations preempted") },
1885	/* DTLPWROMAEBKVF */
1886	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1887	    "Asymmetric access state changed") },
1888	/* DTLPWROMAEBKVF */
1889	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1890	    "Implicit asymmetric access state transition failed") },
1891	/* DT  WROMAEBKVF */
1892	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1893	    "Priority changed") },
1894	/* D              */
1895	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1896	    "Capacity data has changed") },
1897	/* DT             */
1898	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1899	    "Error history I_T nexus cleared") },
1900	/* DT             */
1901	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1902	    "Error history snapshot released") },
1903	/*              F */
1904	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1905	    "Error recovery attributes have changed") },
1906	/*  T             */
1907	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1908	    "Data encryption capabilities changed") },
1909	/* DT     M E  V  */
1910	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1911	    "Timestamp changed") },
1912	/*  T             */
1913	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1914	    "Data encryption parameters changed by another I_T nexus") },
1915	/*  T             */
1916	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1917	    "Data encryption parameters changed by vendor specific event") },
1918	/*  T             */
1919	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1920	    "Data encryption key instance counter has changed") },
1921	/* DT   R MAEBKV  */
1922	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1923	    "SA creation capabilities data has changed") },
1924	/*  T     M    V  */
1925	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1926	    "Medium removal prevention preempted") },
1927	/* DTLPWRO    K   */
1928	{ SST(0x2B, 0x00, SS_RDEF,
1929	    "Copy cannot execute since host cannot disconnect") },
1930	/* DTLPWROMAEBKVF */
1931	{ SST(0x2C, 0x00, SS_RDEF,
1932	    "Command sequence error") },
1933	/*                */
1934	{ SST(0x2C, 0x01, SS_RDEF,
1935	    "Too many windows specified") },
1936	/*                */
1937	{ SST(0x2C, 0x02, SS_RDEF,
1938	    "Invalid combination of windows specified") },
1939	/*      R         */
1940	{ SST(0x2C, 0x03, SS_RDEF,
1941	    "Current program area is not empty") },
1942	/*      R         */
1943	{ SST(0x2C, 0x04, SS_RDEF,
1944	    "Current program area is empty") },
1945	/*           B    */
1946	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
1947	    "Illegal power condition request") },
1948	/*      R         */
1949	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
1950	    "Persistent prevent conflict") },
1951	/* DTLPWROMAEBKVF */
1952	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
1953	    "Previous busy status") },
1954	/* DTLPWROMAEBKVF */
1955	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
1956	    "Previous task set full status") },
1957	/* DTLPWROM EBKVF */
1958	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
1959	    "Previous reservation conflict status") },
1960	/*              F */
1961	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
1962	    "Partition or collection contains user objects") },
1963	/*  T             */
1964	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
1965	    "Not reserved") },
1966	/* D              */
1967	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
1968	    "ORWRITE generation does not match") },
1969	/* D              */
1970	{ SST(0x2C, 0x0D, SS_RDEF,	/* XXX TBD */
1971	    "Reset write pointer not allowed") },
1972	/* D              */
1973	{ SST(0x2C, 0x0E, SS_RDEF,	/* XXX TBD */
1974	    "Zone is offline") },
1975	/* D              */
1976	{ SST(0x2C, 0x0F, SS_RDEF,	/* XXX TBD */
1977	    "Stream not open") },
1978	/* D              */
1979	{ SST(0x2C, 0x10, SS_RDEF,	/* XXX TBD */
1980	    "Unwritten data in zone") },
1981	/*  T             */
1982	{ SST(0x2D, 0x00, SS_RDEF,
1983	    "Overwrite error on update in place") },
1984	/*      R         */
1985	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
1986	    "Insufficient time for operation") },
1987	/* D              */
1988	{ SST(0x2E, 0x01, SS_RDEF,	/* XXX TBD */
1989	    "Command timeout before processing") },
1990	/* D              */
1991	{ SST(0x2E, 0x02, SS_RDEF,	/* XXX TBD */
1992	    "Command timeout during processing") },
1993	/* D              */
1994	{ SST(0x2E, 0x03, SS_RDEF,	/* XXX TBD */
1995	    "Command timeout during processing due to error recovery") },
1996	/* DTLPWROMAEBKVF */
1997	{ SST(0x2F, 0x00, SS_RDEF,
1998	    "Commands cleared by another initiator") },
1999	/* D              */
2000	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
2001	    "Commands cleared by power loss notification") },
2002	/* DTLPWROMAEBKVF */
2003	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
2004	    "Commands cleared by device server") },
2005	/* DTLPWROMAEBKVF */
2006	{ SST(0x2F, 0x03, SS_RDEF,	/* XXX TBD */
2007	    "Some commands cleared by queuing layer event") },
2008	/* DT  WROM  BK   */
2009	{ SST(0x30, 0x00, SS_RDEF,
2010	    "Incompatible medium installed") },
2011	/* DT  WRO   BK   */
2012	{ SST(0x30, 0x01, SS_RDEF,
2013	    "Cannot read medium - unknown format") },
2014	/* DT  WRO   BK   */
2015	{ SST(0x30, 0x02, SS_RDEF,
2016	    "Cannot read medium - incompatible format") },
2017	/* DT   R     K   */
2018	{ SST(0x30, 0x03, SS_RDEF,
2019	    "Cleaning cartridge installed") },
2020	/* DT  WRO   BK   */
2021	{ SST(0x30, 0x04, SS_RDEF,
2022	    "Cannot write medium - unknown format") },
2023	/* DT  WRO   BK   */
2024	{ SST(0x30, 0x05, SS_RDEF,
2025	    "Cannot write medium - incompatible format") },
2026	/* DT  WRO   B    */
2027	{ SST(0x30, 0x06, SS_RDEF,
2028	    "Cannot format medium - incompatible medium") },
2029	/* DTL WROMAEBKVF */
2030	{ SST(0x30, 0x07, SS_RDEF,
2031	    "Cleaning failure") },
2032	/*      R         */
2033	{ SST(0x30, 0x08, SS_RDEF,
2034	    "Cannot write - application code mismatch") },
2035	/*      R         */
2036	{ SST(0x30, 0x09, SS_RDEF,
2037	    "Current session not fixated for append") },
2038	/* DT  WRO AEBK   */
2039	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
2040	    "Cleaning request rejected") },
2041	/*  T             */
2042	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
2043	    "WORM medium - overwrite attempted") },
2044	/*  T             */
2045	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
2046	    "WORM medium - integrity check") },
2047	/*      R         */
2048	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
2049	    "Medium not formatted") },
2050	/*        M       */
2051	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
2052	    "Incompatible volume type") },
2053	/*        M       */
2054	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
2055	    "Incompatible volume qualifier") },
2056	/*        M       */
2057	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
2058	    "Cleaning volume expired") },
2059	/* DT  WRO   BK   */
2060	{ SST(0x31, 0x00, SS_RDEF,
2061	    "Medium format corrupted") },
2062	/* D L  RO   B    */
2063	{ SST(0x31, 0x01, SS_RDEF,
2064	    "Format command failed") },
2065	/*      R         */
2066	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
2067	    "Zoned formatting failed due to spare linking") },
2068	/* D         B    */
2069	{ SST(0x31, 0x03, SS_RDEF,	/* XXX TBD */
2070	    "SANITIZE command failed") },
2071	/* D   W O   BK   */
2072	{ SST(0x32, 0x00, SS_RDEF,
2073	    "No defect spare location available") },
2074	/* D   W O   BK   */
2075	{ SST(0x32, 0x01, SS_RDEF,
2076	    "Defect list update failure") },
2077	/*  T             */
2078	{ SST(0x33, 0x00, SS_RDEF,
2079	    "Tape length error") },
2080	/* DTLPWROMAEBKVF */
2081	{ SST(0x34, 0x00, SS_RDEF,
2082	    "Enclosure failure") },
2083	/* DTLPWROMAEBKVF */
2084	{ SST(0x35, 0x00, SS_RDEF,
2085	    "Enclosure services failure") },
2086	/* DTLPWROMAEBKVF */
2087	{ SST(0x35, 0x01, SS_RDEF,
2088	    "Unsupported enclosure function") },
2089	/* DTLPWROMAEBKVF */
2090	{ SST(0x35, 0x02, SS_RDEF,
2091	    "Enclosure services unavailable") },
2092	/* DTLPWROMAEBKVF */
2093	{ SST(0x35, 0x03, SS_RDEF,
2094	    "Enclosure services transfer failure") },
2095	/* DTLPWROMAEBKVF */
2096	{ SST(0x35, 0x04, SS_RDEF,
2097	    "Enclosure services transfer refused") },
2098	/* DTL WROMAEBKVF */
2099	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
2100	    "Enclosure services checksum error") },
2101	/*   L            */
2102	{ SST(0x36, 0x00, SS_RDEF,
2103	    "Ribbon, ink, or toner failure") },
2104	/* DTL WROMAEBKVF */
2105	{ SST(0x37, 0x00, SS_RDEF,
2106	    "Rounded parameter") },
2107	/*           B    */
2108	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
2109	    "Event status notification") },
2110	/*           B    */
2111	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2112	    "ESN - power management class event") },
2113	/*           B    */
2114	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2115	    "ESN - media class event") },
2116	/*           B    */
2117	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2118	    "ESN - device busy class event") },
2119	/* D              */
2120	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2121	    "Thin provisioning soft threshold reached") },
2122	/* DTL WROMAE K   */
2123	{ SST(0x39, 0x00, SS_RDEF,
2124	    "Saving parameters not supported") },
2125	/* DTL WROM  BK   */
2126	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2127	    "Medium not present") },
2128	/* DT  WROM  BK   */
2129	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2130	    "Medium not present - tray closed") },
2131	/* DT  WROM  BK   */
2132	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2133	    "Medium not present - tray open") },
2134	/* DT  WROM  B    */
2135	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2136	    "Medium not present - loadable") },
2137	/* DT  WRO   B    */
2138	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2139	    "Medium not present - medium auxiliary memory accessible") },
2140	/*  TL            */
2141	{ SST(0x3B, 0x00, SS_RDEF,
2142	    "Sequential positioning error") },
2143	/*  T             */
2144	{ SST(0x3B, 0x01, SS_RDEF,
2145	    "Tape position error at beginning-of-medium") },
2146	/*  T             */
2147	{ SST(0x3B, 0x02, SS_RDEF,
2148	    "Tape position error at end-of-medium") },
2149	/*   L            */
2150	{ SST(0x3B, 0x03, SS_RDEF,
2151	    "Tape or electronic vertical forms unit not ready") },
2152	/*   L            */
2153	{ SST(0x3B, 0x04, SS_RDEF,
2154	    "Slew failure") },
2155	/*   L            */
2156	{ SST(0x3B, 0x05, SS_RDEF,
2157	    "Paper jam") },
2158	/*   L            */
2159	{ SST(0x3B, 0x06, SS_RDEF,
2160	    "Failed to sense top-of-form") },
2161	/*   L            */
2162	{ SST(0x3B, 0x07, SS_RDEF,
2163	    "Failed to sense bottom-of-form") },
2164	/*  T             */
2165	{ SST(0x3B, 0x08, SS_RDEF,
2166	    "Reposition error") },
2167	/*                */
2168	{ SST(0x3B, 0x09, SS_RDEF,
2169	    "Read past end of medium") },
2170	/*                */
2171	{ SST(0x3B, 0x0A, SS_RDEF,
2172	    "Read past beginning of medium") },
2173	/*                */
2174	{ SST(0x3B, 0x0B, SS_RDEF,
2175	    "Position past end of medium") },
2176	/*  T             */
2177	{ SST(0x3B, 0x0C, SS_RDEF,
2178	    "Position past beginning of medium") },
2179	/* DT  WROM  BK   */
2180	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2181	    "Medium destination element full") },
2182	/* DT  WROM  BK   */
2183	{ SST(0x3B, 0x0E, SS_RDEF,
2184	    "Medium source element empty") },
2185	/*      R         */
2186	{ SST(0x3B, 0x0F, SS_RDEF,
2187	    "End of medium reached") },
2188	/* DT  WROM  BK   */
2189	{ SST(0x3B, 0x11, SS_RDEF,
2190	    "Medium magazine not accessible") },
2191	/* DT  WROM  BK   */
2192	{ SST(0x3B, 0x12, SS_RDEF,
2193	    "Medium magazine removed") },
2194	/* DT  WROM  BK   */
2195	{ SST(0x3B, 0x13, SS_RDEF,
2196	    "Medium magazine inserted") },
2197	/* DT  WROM  BK   */
2198	{ SST(0x3B, 0x14, SS_RDEF,
2199	    "Medium magazine locked") },
2200	/* DT  WROM  BK   */
2201	{ SST(0x3B, 0x15, SS_RDEF,
2202	    "Medium magazine unlocked") },
2203	/*      R         */
2204	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2205	    "Mechanical positioning or changer error") },
2206	/*              F */
2207	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2208	    "Read past end of user object") },
2209	/*        M       */
2210	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2211	    "Element disabled") },
2212	/*        M       */
2213	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2214	    "Element enabled") },
2215	/*        M       */
2216	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2217	    "Data transfer device removed") },
2218	/*        M       */
2219	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2220	    "Data transfer device inserted") },
2221	/*  T             */
2222	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2223	    "Too many logical objects on partition to support operation") },
2224	/* DTLPWROMAE K   */
2225	{ SST(0x3D, 0x00, SS_RDEF,
2226	    "Invalid bits in IDENTIFY message") },
2227	/* DTLPWROMAEBKVF */
2228	{ SST(0x3E, 0x00, SS_RDEF,
2229	    "Logical unit has not self-configured yet") },
2230	/* DTLPWROMAEBKVF */
2231	{ SST(0x3E, 0x01, SS_RDEF,
2232	    "Logical unit failure") },
2233	/* DTLPWROMAEBKVF */
2234	{ SST(0x3E, 0x02, SS_RDEF,
2235	    "Timeout on logical unit") },
2236	/* DTLPWROMAEBKVF */
2237	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2238	    "Logical unit failed self-test") },
2239	/* DTLPWROMAEBKVF */
2240	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2241	    "Logical unit unable to update self-test log") },
2242	/* DTLPWROMAEBKVF */
2243	{ SST(0x3F, 0x00, SS_RDEF,
2244	    "Target operating conditions have changed") },
2245	/* DTLPWROMAEBKVF */
2246	{ SST(0x3F, 0x01, SS_RDEF,
2247	    "Microcode has been changed") },
2248	/* DTLPWROM  BK   */
2249	{ SST(0x3F, 0x02, SS_RDEF,
2250	    "Changed operating definition") },
2251	/* DTLPWROMAEBKVF */
2252	{ SST(0x3F, 0x03, SS_RDEF,
2253	    "INQUIRY data has changed") },
2254	/* DT  WROMAEBK   */
2255	{ SST(0x3F, 0x04, SS_RDEF,
2256	    "Component device attached") },
2257	/* DT  WROMAEBK   */
2258	{ SST(0x3F, 0x05, SS_RDEF,
2259	    "Device identifier changed") },
2260	/* DT  WROMAEB    */
2261	{ SST(0x3F, 0x06, SS_RDEF,
2262	    "Redundancy group created or modified") },
2263	/* DT  WROMAEB    */
2264	{ SST(0x3F, 0x07, SS_RDEF,
2265	    "Redundancy group deleted") },
2266	/* DT  WROMAEB    */
2267	{ SST(0x3F, 0x08, SS_RDEF,
2268	    "Spare created or modified") },
2269	/* DT  WROMAEB    */
2270	{ SST(0x3F, 0x09, SS_RDEF,
2271	    "Spare deleted") },
2272	/* DT  WROMAEBK   */
2273	{ SST(0x3F, 0x0A, SS_RDEF,
2274	    "Volume set created or modified") },
2275	/* DT  WROMAEBK   */
2276	{ SST(0x3F, 0x0B, SS_RDEF,
2277	    "Volume set deleted") },
2278	/* DT  WROMAEBK   */
2279	{ SST(0x3F, 0x0C, SS_RDEF,
2280	    "Volume set deassigned") },
2281	/* DT  WROMAEBK   */
2282	{ SST(0x3F, 0x0D, SS_RDEF,
2283	    "Volume set reassigned") },
2284	/* DTLPWROMAE     */
2285	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2286	    "Reported LUNs data has changed") },
2287	/* DTLPWROMAEBKVF */
2288	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2289	    "Echo buffer overwritten") },
2290	/* DT  WROM  B    */
2291	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2292	    "Medium loadable") },
2293	/* DT  WROM  B    */
2294	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2295	    "Medium auxiliary memory accessible") },
2296	/* DTLPWR MAEBK F */
2297	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2298	    "iSCSI IP address added") },
2299	/* DTLPWR MAEBK F */
2300	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2301	    "iSCSI IP address removed") },
2302	/* DTLPWR MAEBK F */
2303	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2304	    "iSCSI IP address changed") },
2305	/* DTLPWR MAEBK   */
2306	{ SST(0x3F, 0x15, SS_RDEF,	/* XXX TBD */
2307	    "Inspect referrals sense descriptors") },
2308	/* DTLPWROMAEBKVF */
2309	{ SST(0x3F, 0x16, SS_RDEF,	/* XXX TBD */
2310	    "Microcode has been changed without reset") },
2311	/* D              */
2312	{ SST(0x3F, 0x17, SS_RDEF,	/* XXX TBD */
2313	    "Zone transition to full") },
2314	/* D              */
2315	{ SST(0x40, 0x00, SS_RDEF,
2316	    "RAM failure") },		/* deprecated - use 40 NN instead */
2317	/* DTLPWROMAEBKVF */
2318	{ SST(0x40, 0x80, SS_RDEF,
2319	    "Diagnostic failure: ASCQ = Component ID") },
2320	/* DTLPWROMAEBKVF */
2321	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2322	    NULL) },			/* Range 0x80->0xFF */
2323	/* D              */
2324	{ SST(0x41, 0x00, SS_RDEF,
2325	    "Data path failure") },	/* deprecated - use 40 NN instead */
2326	/* D              */
2327	{ SST(0x42, 0x00, SS_RDEF,
2328	    "Power-on or self-test failure") },
2329					/* deprecated - use 40 NN instead */
2330	/* DTLPWROMAEBKVF */
2331	{ SST(0x43, 0x00, SS_RDEF,
2332	    "Message error") },
2333	/* DTLPWROMAEBKVF */
2334	{ SST(0x44, 0x00, SS_RDEF,
2335	    "Internal target failure") },
2336	/* DT P   MAEBKVF */
2337	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2338	    "Persistent reservation information lost") },
2339	/* DT        B    */
2340	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2341	    "ATA device failed set features") },
2342	/* DTLPWROMAEBKVF */
2343	{ SST(0x45, 0x00, SS_RDEF,
2344	    "Select or reselect failure") },
2345	/* DTLPWROM  BK   */
2346	{ SST(0x46, 0x00, SS_RDEF,
2347	    "Unsuccessful soft reset") },
2348	/* DTLPWROMAEBKVF */
2349	{ SST(0x47, 0x00, SS_RDEF,
2350	    "SCSI parity error") },
2351	/* DTLPWROMAEBKVF */
2352	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2353	    "Data phase CRC error detected") },
2354	/* DTLPWROMAEBKVF */
2355	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2356	    "SCSI parity error detected during ST data phase") },
2357	/* DTLPWROMAEBKVF */
2358	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2359	    "Information unit iuCRC error detected") },
2360	/* DTLPWROMAEBKVF */
2361	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2362	    "Asynchronous information protection error detected") },
2363	/* DTLPWROMAEBKVF */
2364	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2365	    "Protocol service CRC error") },
2366	/* DT     MAEBKVF */
2367	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2368	    "PHY test function in progress") },
2369	/* DT PWROMAEBK   */
2370	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2371	    "Some commands cleared by iSCSI protocol event") },
2372	/* DTLPWROMAEBKVF */
2373	{ SST(0x48, 0x00, SS_RDEF,
2374	    "Initiator detected error message received") },
2375	/* DTLPWROMAEBKVF */
2376	{ SST(0x49, 0x00, SS_RDEF,
2377	    "Invalid message error") },
2378	/* DTLPWROMAEBKVF */
2379	{ SST(0x4A, 0x00, SS_RDEF,
2380	    "Command phase error") },
2381	/* DTLPWROMAEBKVF */
2382	{ SST(0x4B, 0x00, SS_RDEF,
2383	    "Data phase error") },
2384	/* DT PWROMAEBK   */
2385	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2386	    "Invalid target port transfer tag received") },
2387	/* DT PWROMAEBK   */
2388	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2389	    "Too much write data") },
2390	/* DT PWROMAEBK   */
2391	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2392	    "ACK/NAK timeout") },
2393	/* DT PWROMAEBK   */
2394	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2395	    "NAK received") },
2396	/* DT PWROMAEBK   */
2397	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2398	    "Data offset error") },
2399	/* DT PWROMAEBK   */
2400	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2401	    "Initiator response timeout") },
2402	/* DT PWROMAEBK F */
2403	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2404	    "Connection lost") },
2405	/* DT PWROMAEBK F */
2406	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2407	    "Data-in buffer overflow - data buffer size") },
2408	/* DT PWROMAEBK F */
2409	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2410	    "Data-in buffer overflow - data buffer descriptor area") },
2411	/* DT PWROMAEBK F */
2412	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2413	    "Data-in buffer error") },
2414	/* DT PWROMAEBK F */
2415	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2416	    "Data-out buffer overflow - data buffer size") },
2417	/* DT PWROMAEBK F */
2418	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2419	    "Data-out buffer overflow - data buffer descriptor area") },
2420	/* DT PWROMAEBK F */
2421	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2422	    "Data-out buffer error") },
2423	/* DT PWROMAEBK F */
2424	{ SST(0x4B, 0x0E, SS_RDEF,	/* XXX TBD */
2425	    "PCIe fabric error") },
2426	/* DT PWROMAEBK F */
2427	{ SST(0x4B, 0x0F, SS_RDEF,	/* XXX TBD */
2428	    "PCIe completion timeout") },
2429	/* DT PWROMAEBK F */
2430	{ SST(0x4B, 0x10, SS_RDEF,	/* XXX TBD */
2431	    "PCIe completer abort") },
2432	/* DT PWROMAEBK F */
2433	{ SST(0x4B, 0x11, SS_RDEF,	/* XXX TBD */
2434	    "PCIe poisoned TLP received") },
2435	/* DT PWROMAEBK F */
2436	{ SST(0x4B, 0x12, SS_RDEF,	/* XXX TBD */
2437	    "PCIe ECRC check failed") },
2438	/* DT PWROMAEBK F */
2439	{ SST(0x4B, 0x13, SS_RDEF,	/* XXX TBD */
2440	    "PCIe unsupported request") },
2441	/* DT PWROMAEBK F */
2442	{ SST(0x4B, 0x14, SS_RDEF,	/* XXX TBD */
2443	    "PCIe ACS violation") },
2444	/* DT PWROMAEBK F */
2445	{ SST(0x4B, 0x15, SS_RDEF,	/* XXX TBD */
2446	    "PCIe TLP prefix blocket") },
2447	/* DTLPWROMAEBKVF */
2448	{ SST(0x4C, 0x00, SS_RDEF,
2449	    "Logical unit failed self-configuration") },
2450	/* DTLPWROMAEBKVF */
2451	{ SST(0x4D, 0x00, SS_RDEF,
2452	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2453	/* DTLPWROMAEBKVF */
2454	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2455	    NULL) },			/* Range 0x00->0xFF */
2456	/* DTLPWROMAEBKVF */
2457	{ SST(0x4E, 0x00, SS_RDEF,
2458	    "Overlapped commands attempted") },
2459	/*  T             */
2460	{ SST(0x50, 0x00, SS_RDEF,
2461	    "Write append error") },
2462	/*  T             */
2463	{ SST(0x50, 0x01, SS_RDEF,
2464	    "Write append position error") },
2465	/*  T             */
2466	{ SST(0x50, 0x02, SS_RDEF,
2467	    "Position error related to timing") },
2468	/*  T   RO        */
2469	{ SST(0x51, 0x00, SS_RDEF,
2470	    "Erase failure") },
2471	/*      R         */
2472	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2473	    "Erase failure - incomplete erase operation detected") },
2474	/*  T             */
2475	{ SST(0x52, 0x00, SS_RDEF,
2476	    "Cartridge fault") },
2477	/* DTL WROM  BK   */
2478	{ SST(0x53, 0x00, SS_RDEF,
2479	    "Media load or eject failed") },
2480	/*  T             */
2481	{ SST(0x53, 0x01, SS_RDEF,
2482	    "Unload tape failure") },
2483	/* DT  WROM  BK   */
2484	{ SST(0x53, 0x02, SS_RDEF,
2485	    "Medium removal prevented") },
2486	/*        M       */
2487	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2488	    "Medium removal prevented by data transfer element") },
2489	/*  T             */
2490	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2491	    "Medium thread or unthread failure") },
2492	/*        M       */
2493	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2494	    "Volume identifier invalid") },
2495	/*  T             */
2496	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2497	    "Volume identifier missing") },
2498	/*        M       */
2499	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2500	    "Duplicate volume identifier") },
2501	/*        M       */
2502	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2503	    "Element status unknown") },
2504	/*        M       */
2505	{ SST(0x53, 0x09, SS_RDEF,	/* XXX TBD */
2506	    "Data transfer device error - load failed") },
2507	/*        M       */
2508	{ SST(0x53, 0x0A, SS_RDEF,	/* XXX TBD */
2509	    "Data transfer device error - unload failed") },
2510	/*        M       */
2511	{ SST(0x53, 0x0B, SS_RDEF,	/* XXX TBD */
2512	    "Data transfer device error - unload missing") },
2513	/*        M       */
2514	{ SST(0x53, 0x0C, SS_RDEF,	/* XXX TBD */
2515	    "Data transfer device error - eject failed") },
2516	/*        M       */
2517	{ SST(0x53, 0x0D, SS_RDEF,	/* XXX TBD */
2518	    "Data transfer device error - library communication failed") },
2519	/*    P           */
2520	{ SST(0x54, 0x00, SS_RDEF,
2521	    "SCSI to host system interface failure") },
2522	/*    P           */
2523	{ SST(0x55, 0x00, SS_RDEF,
2524	    "System resource failure") },
2525	/* D     O   BK   */
2526	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2527	    "System buffer full") },
2528	/* DTLPWROMAE K   */
2529	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2530	    "Insufficient reservation resources") },
2531	/* DTLPWROMAE K   */
2532	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2533	    "Insufficient resources") },
2534	/* DTLPWROMAE K   */
2535	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2536	    "Insufficient registration resources") },
2537	/* DT PWROMAEBK   */
2538	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2539	    "Insufficient access control resources") },
2540	/* DT  WROM  B    */
2541	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2542	    "Auxiliary memory out of space") },
2543	/*              F */
2544	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2545	    "Quota error") },
2546	/*  T             */
2547	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2548	    "Maximum number of supplemental decryption keys exceeded") },
2549	/*        M       */
2550	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2551	    "Medium auxiliary memory not accessible") },
2552	/*        M       */
2553	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2554	    "Data currently unavailable") },
2555	/* DTLPWROMAEBKVF */
2556	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2557	    "Insufficient power for operation") },
2558	/* DT P      B    */
2559	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2560	    "Insufficient resources to create ROD") },
2561	/* DT P      B    */
2562	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2563	    "Insufficient resources to create ROD token") },
2564	/* D              */
2565	{ SST(0x55, 0x0E, SS_RDEF,	/* XXX TBD */
2566	    "Insufficient zone resources") },
2567	/* D              */
2568	{ SST(0x55, 0x0F, SS_RDEF,	/* XXX TBD */
2569	    "Insufficient zone resources to complete write") },
2570	/* D              */
2571	{ SST(0x55, 0x10, SS_RDEF,	/* XXX TBD */
2572	    "Maximum number of streams open") },
2573	/*      R         */
2574	{ SST(0x57, 0x00, SS_RDEF,
2575	    "Unable to recover table-of-contents") },
2576	/*       O        */
2577	{ SST(0x58, 0x00, SS_RDEF,
2578	    "Generation does not exist") },
2579	/*       O        */
2580	{ SST(0x59, 0x00, SS_RDEF,
2581	    "Updated block read") },
2582	/* DTLPWRO   BK   */
2583	{ SST(0x5A, 0x00, SS_RDEF,
2584	    "Operator request or state change input") },
2585	/* DT  WROM  BK   */
2586	{ SST(0x5A, 0x01, SS_RDEF,
2587	    "Operator medium removal request") },
2588	/* DT  WRO A BK   */
2589	{ SST(0x5A, 0x02, SS_RDEF,
2590	    "Operator selected write protect") },
2591	/* DT  WRO A BK   */
2592	{ SST(0x5A, 0x03, SS_RDEF,
2593	    "Operator selected write permit") },
2594	/* DTLPWROM   K   */
2595	{ SST(0x5B, 0x00, SS_RDEF,
2596	    "Log exception") },
2597	/* DTLPWROM   K   */
2598	{ SST(0x5B, 0x01, SS_RDEF,
2599	    "Threshold condition met") },
2600	/* DTLPWROM   K   */
2601	{ SST(0x5B, 0x02, SS_RDEF,
2602	    "Log counter at maximum") },
2603	/* DTLPWROM   K   */
2604	{ SST(0x5B, 0x03, SS_RDEF,
2605	    "Log list codes exhausted") },
2606	/* D     O        */
2607	{ SST(0x5C, 0x00, SS_RDEF,
2608	    "RPL status change") },
2609	/* D     O        */
2610	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2611	    "Spindles synchronized") },
2612	/* D     O        */
2613	{ SST(0x5C, 0x02, SS_RDEF,
2614	    "Spindles not synchronized") },
2615	/* DTLPWROMAEBKVF */
2616	{ SST(0x5D, 0x00, SS_RDEF,
2617	    "Failure prediction threshold exceeded") },
2618	/*      R    B    */
2619	{ SST(0x5D, 0x01, SS_RDEF,	/* XXX TBD */
2620	    "Media failure prediction threshold exceeded") },
2621	/*      R         */
2622	{ SST(0x5D, 0x02, SS_RDEF,	/* XXX TBD */
2623	    "Logical unit failure prediction threshold exceeded") },
2624	/*      R         */
2625	{ SST(0x5D, 0x03, SS_RDEF,	/* XXX TBD */
2626	    "Spare area exhaustion prediction threshold exceeded") },
2627	/* D         B    */
2628	{ SST(0x5D, 0x10, SS_RDEF,	/* XXX TBD */
2629	    "Hardware impending failure general hard drive failure") },
2630	/* D         B    */
2631	{ SST(0x5D, 0x11, SS_RDEF,	/* XXX TBD */
2632	    "Hardware impending failure drive error rate too high") },
2633	/* D         B    */
2634	{ SST(0x5D, 0x12, SS_RDEF,	/* XXX TBD */
2635	    "Hardware impending failure data error rate too high") },
2636	/* D         B    */
2637	{ SST(0x5D, 0x13, SS_RDEF,	/* XXX TBD */
2638	    "Hardware impending failure seek error rate too high") },
2639	/* D         B    */
2640	{ SST(0x5D, 0x14, SS_RDEF,	/* XXX TBD */
2641	    "Hardware impending failure too many block reassigns") },
2642	/* D         B    */
2643	{ SST(0x5D, 0x15, SS_RDEF,	/* XXX TBD */
2644	    "Hardware impending failure access times too high") },
2645	/* D         B    */
2646	{ SST(0x5D, 0x16, SS_RDEF,	/* XXX TBD */
2647	    "Hardware impending failure start unit times too high") },
2648	/* D         B    */
2649	{ SST(0x5D, 0x17, SS_RDEF,	/* XXX TBD */
2650	    "Hardware impending failure channel parametrics") },
2651	/* D         B    */
2652	{ SST(0x5D, 0x18, SS_RDEF,	/* XXX TBD */
2653	    "Hardware impending failure controller detected") },
2654	/* D         B    */
2655	{ SST(0x5D, 0x19, SS_RDEF,	/* XXX TBD */
2656	    "Hardware impending failure throughput performance") },
2657	/* D         B    */
2658	{ SST(0x5D, 0x1A, SS_RDEF,	/* XXX TBD */
2659	    "Hardware impending failure seek time performance") },
2660	/* D         B    */
2661	{ SST(0x5D, 0x1B, SS_RDEF,	/* XXX TBD */
2662	    "Hardware impending failure spin-up retry count") },
2663	/* D         B    */
2664	{ SST(0x5D, 0x1C, SS_RDEF,	/* XXX TBD */
2665	    "Hardware impending failure drive calibration retry count") },
2666	/* D         B    */
2667	{ SST(0x5D, 0x20, SS_RDEF,	/* XXX TBD */
2668	    "Controller impending failure general hard drive failure") },
2669	/* D         B    */
2670	{ SST(0x5D, 0x21, SS_RDEF,	/* XXX TBD */
2671	    "Controller impending failure drive error rate too high") },
2672	/* D         B    */
2673	{ SST(0x5D, 0x22, SS_RDEF,	/* XXX TBD */
2674	    "Controller impending failure data error rate too high") },
2675	/* D         B    */
2676	{ SST(0x5D, 0x23, SS_RDEF,	/* XXX TBD */
2677	    "Controller impending failure seek error rate too high") },
2678	/* D         B    */
2679	{ SST(0x5D, 0x24, SS_RDEF,	/* XXX TBD */
2680	    "Controller impending failure too many block reassigns") },
2681	/* D         B    */
2682	{ SST(0x5D, 0x25, SS_RDEF,	/* XXX TBD */
2683	    "Controller impending failure access times too high") },
2684	/* D         B    */
2685	{ SST(0x5D, 0x26, SS_RDEF,	/* XXX TBD */
2686	    "Controller impending failure start unit times too high") },
2687	/* D         B    */
2688	{ SST(0x5D, 0x27, SS_RDEF,	/* XXX TBD */
2689	    "Controller impending failure channel parametrics") },
2690	/* D         B    */
2691	{ SST(0x5D, 0x28, SS_RDEF,	/* XXX TBD */
2692	    "Controller impending failure controller detected") },
2693	/* D         B    */
2694	{ SST(0x5D, 0x29, SS_RDEF,	/* XXX TBD */
2695	    "Controller impending failure throughput performance") },
2696	/* D         B    */
2697	{ SST(0x5D, 0x2A, SS_RDEF,	/* XXX TBD */
2698	    "Controller impending failure seek time performance") },
2699	/* D         B    */
2700	{ SST(0x5D, 0x2B, SS_RDEF,	/* XXX TBD */
2701	    "Controller impending failure spin-up retry count") },
2702	/* D         B    */
2703	{ SST(0x5D, 0x2C, SS_RDEF,	/* XXX TBD */
2704	    "Controller impending failure drive calibration retry count") },
2705	/* D         B    */
2706	{ SST(0x5D, 0x30, SS_RDEF,	/* XXX TBD */
2707	    "Data channel impending failure general hard drive failure") },
2708	/* D         B    */
2709	{ SST(0x5D, 0x31, SS_RDEF,	/* XXX TBD */
2710	    "Data channel impending failure drive error rate too high") },
2711	/* D         B    */
2712	{ SST(0x5D, 0x32, SS_RDEF,	/* XXX TBD */
2713	    "Data channel impending failure data error rate too high") },
2714	/* D         B    */
2715	{ SST(0x5D, 0x33, SS_RDEF,	/* XXX TBD */
2716	    "Data channel impending failure seek error rate too high") },
2717	/* D         B    */
2718	{ SST(0x5D, 0x34, SS_RDEF,	/* XXX TBD */
2719	    "Data channel impending failure too many block reassigns") },
2720	/* D         B    */
2721	{ SST(0x5D, 0x35, SS_RDEF,	/* XXX TBD */
2722	    "Data channel impending failure access times too high") },
2723	/* D         B    */
2724	{ SST(0x5D, 0x36, SS_RDEF,	/* XXX TBD */
2725	    "Data channel impending failure start unit times too high") },
2726	/* D         B    */
2727	{ SST(0x5D, 0x37, SS_RDEF,	/* XXX TBD */
2728	    "Data channel impending failure channel parametrics") },
2729	/* D         B    */
2730	{ SST(0x5D, 0x38, SS_RDEF,	/* XXX TBD */
2731	    "Data channel impending failure controller detected") },
2732	/* D         B    */
2733	{ SST(0x5D, 0x39, SS_RDEF,	/* XXX TBD */
2734	    "Data channel impending failure throughput performance") },
2735	/* D         B    */
2736	{ SST(0x5D, 0x3A, SS_RDEF,	/* XXX TBD */
2737	    "Data channel impending failure seek time performance") },
2738	/* D         B    */
2739	{ SST(0x5D, 0x3B, SS_RDEF,	/* XXX TBD */
2740	    "Data channel impending failure spin-up retry count") },
2741	/* D         B    */
2742	{ SST(0x5D, 0x3C, SS_RDEF,	/* XXX TBD */
2743	    "Data channel impending failure drive calibration retry count") },
2744	/* D         B    */
2745	{ SST(0x5D, 0x40, SS_RDEF,	/* XXX TBD */
2746	    "Servo impending failure general hard drive failure") },
2747	/* D         B    */
2748	{ SST(0x5D, 0x41, SS_RDEF,	/* XXX TBD */
2749	    "Servo impending failure drive error rate too high") },
2750	/* D         B    */
2751	{ SST(0x5D, 0x42, SS_RDEF,	/* XXX TBD */
2752	    "Servo impending failure data error rate too high") },
2753	/* D         B    */
2754	{ SST(0x5D, 0x43, SS_RDEF,	/* XXX TBD */
2755	    "Servo impending failure seek error rate too high") },
2756	/* D         B    */
2757	{ SST(0x5D, 0x44, SS_RDEF,	/* XXX TBD */
2758	    "Servo impending failure too many block reassigns") },
2759	/* D         B    */
2760	{ SST(0x5D, 0x45, SS_RDEF,	/* XXX TBD */
2761	    "Servo impending failure access times too high") },
2762	/* D         B    */
2763	{ SST(0x5D, 0x46, SS_RDEF,	/* XXX TBD */
2764	    "Servo impending failure start unit times too high") },
2765	/* D         B    */
2766	{ SST(0x5D, 0x47, SS_RDEF,	/* XXX TBD */
2767	    "Servo impending failure channel parametrics") },
2768	/* D         B    */
2769	{ SST(0x5D, 0x48, SS_RDEF,	/* XXX TBD */
2770	    "Servo impending failure controller detected") },
2771	/* D         B    */
2772	{ SST(0x5D, 0x49, SS_RDEF,	/* XXX TBD */
2773	    "Servo impending failure throughput performance") },
2774	/* D         B    */
2775	{ SST(0x5D, 0x4A, SS_RDEF,	/* XXX TBD */
2776	    "Servo impending failure seek time performance") },
2777	/* D         B    */
2778	{ SST(0x5D, 0x4B, SS_RDEF,	/* XXX TBD */
2779	    "Servo impending failure spin-up retry count") },
2780	/* D         B    */
2781	{ SST(0x5D, 0x4C, SS_RDEF,	/* XXX TBD */
2782	    "Servo impending failure drive calibration retry count") },
2783	/* D         B    */
2784	{ SST(0x5D, 0x50, SS_RDEF,	/* XXX TBD */
2785	    "Spindle impending failure general hard drive failure") },
2786	/* D         B    */
2787	{ SST(0x5D, 0x51, SS_RDEF,	/* XXX TBD */
2788	    "Spindle impending failure drive error rate too high") },
2789	/* D         B    */
2790	{ SST(0x5D, 0x52, SS_RDEF,	/* XXX TBD */
2791	    "Spindle impending failure data error rate too high") },
2792	/* D         B    */
2793	{ SST(0x5D, 0x53, SS_RDEF,	/* XXX TBD */
2794	    "Spindle impending failure seek error rate too high") },
2795	/* D         B    */
2796	{ SST(0x5D, 0x54, SS_RDEF,	/* XXX TBD */
2797	    "Spindle impending failure too many block reassigns") },
2798	/* D         B    */
2799	{ SST(0x5D, 0x55, SS_RDEF,	/* XXX TBD */
2800	    "Spindle impending failure access times too high") },
2801	/* D         B    */
2802	{ SST(0x5D, 0x56, SS_RDEF,	/* XXX TBD */
2803	    "Spindle impending failure start unit times too high") },
2804	/* D         B    */
2805	{ SST(0x5D, 0x57, SS_RDEF,	/* XXX TBD */
2806	    "Spindle impending failure channel parametrics") },
2807	/* D         B    */
2808	{ SST(0x5D, 0x58, SS_RDEF,	/* XXX TBD */
2809	    "Spindle impending failure controller detected") },
2810	/* D         B    */
2811	{ SST(0x5D, 0x59, SS_RDEF,	/* XXX TBD */
2812	    "Spindle impending failure throughput performance") },
2813	/* D         B    */
2814	{ SST(0x5D, 0x5A, SS_RDEF,	/* XXX TBD */
2815	    "Spindle impending failure seek time performance") },
2816	/* D         B    */
2817	{ SST(0x5D, 0x5B, SS_RDEF,	/* XXX TBD */
2818	    "Spindle impending failure spin-up retry count") },
2819	/* D         B    */
2820	{ SST(0x5D, 0x5C, SS_RDEF,	/* XXX TBD */
2821	    "Spindle impending failure drive calibration retry count") },
2822	/* D         B    */
2823	{ SST(0x5D, 0x60, SS_RDEF,	/* XXX TBD */
2824	    "Firmware impending failure general hard drive failure") },
2825	/* D         B    */
2826	{ SST(0x5D, 0x61, SS_RDEF,	/* XXX TBD */
2827	    "Firmware impending failure drive error rate too high") },
2828	/* D         B    */
2829	{ SST(0x5D, 0x62, SS_RDEF,	/* XXX TBD */
2830	    "Firmware impending failure data error rate too high") },
2831	/* D         B    */
2832	{ SST(0x5D, 0x63, SS_RDEF,	/* XXX TBD */
2833	    "Firmware impending failure seek error rate too high") },
2834	/* D         B    */
2835	{ SST(0x5D, 0x64, SS_RDEF,	/* XXX TBD */
2836	    "Firmware impending failure too many block reassigns") },
2837	/* D         B    */
2838	{ SST(0x5D, 0x65, SS_RDEF,	/* XXX TBD */
2839	    "Firmware impending failure access times too high") },
2840	/* D         B    */
2841	{ SST(0x5D, 0x66, SS_RDEF,	/* XXX TBD */
2842	    "Firmware impending failure start unit times too high") },
2843	/* D         B    */
2844	{ SST(0x5D, 0x67, SS_RDEF,	/* XXX TBD */
2845	    "Firmware impending failure channel parametrics") },
2846	/* D         B    */
2847	{ SST(0x5D, 0x68, SS_RDEF,	/* XXX TBD */
2848	    "Firmware impending failure controller detected") },
2849	/* D         B    */
2850	{ SST(0x5D, 0x69, SS_RDEF,	/* XXX TBD */
2851	    "Firmware impending failure throughput performance") },
2852	/* D         B    */
2853	{ SST(0x5D, 0x6A, SS_RDEF,	/* XXX TBD */
2854	    "Firmware impending failure seek time performance") },
2855	/* D         B    */
2856	{ SST(0x5D, 0x6B, SS_RDEF,	/* XXX TBD */
2857	    "Firmware impending failure spin-up retry count") },
2858	/* D         B    */
2859	{ SST(0x5D, 0x6C, SS_RDEF,	/* XXX TBD */
2860	    "Firmware impending failure drive calibration retry count") },
2861	/* DTLPWROMAEBKVF */
2862	{ SST(0x5D, 0xFF, SS_RDEF,
2863	    "Failure prediction threshold exceeded (false)") },
2864	/* DTLPWRO A  K   */
2865	{ SST(0x5E, 0x00, SS_RDEF,
2866	    "Low power condition on") },
2867	/* DTLPWRO A  K   */
2868	{ SST(0x5E, 0x01, SS_RDEF,
2869	    "Idle condition activated by timer") },
2870	/* DTLPWRO A  K   */
2871	{ SST(0x5E, 0x02, SS_RDEF,
2872	    "Standby condition activated by timer") },
2873	/* DTLPWRO A  K   */
2874	{ SST(0x5E, 0x03, SS_RDEF,
2875	    "Idle condition activated by command") },
2876	/* DTLPWRO A  K   */
2877	{ SST(0x5E, 0x04, SS_RDEF,
2878	    "Standby condition activated by command") },
2879	/* DTLPWRO A  K   */
2880	{ SST(0x5E, 0x05, SS_RDEF,
2881	    "Idle-B condition activated by timer") },
2882	/* DTLPWRO A  K   */
2883	{ SST(0x5E, 0x06, SS_RDEF,
2884	    "Idle-B condition activated by command") },
2885	/* DTLPWRO A  K   */
2886	{ SST(0x5E, 0x07, SS_RDEF,
2887	    "Idle-C condition activated by timer") },
2888	/* DTLPWRO A  K   */
2889	{ SST(0x5E, 0x08, SS_RDEF,
2890	    "Idle-C condition activated by command") },
2891	/* DTLPWRO A  K   */
2892	{ SST(0x5E, 0x09, SS_RDEF,
2893	    "Standby-Y condition activated by timer") },
2894	/* DTLPWRO A  K   */
2895	{ SST(0x5E, 0x0A, SS_RDEF,
2896	    "Standby-Y condition activated by command") },
2897	/*           B    */
2898	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2899	    "Power state change to active") },
2900	/*           B    */
2901	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2902	    "Power state change to idle") },
2903	/*           B    */
2904	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2905	    "Power state change to standby") },
2906	/*           B    */
2907	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2908	    "Power state change to sleep") },
2909	/*           BK   */
2910	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
2911	    "Power state change to device control") },
2912	/*                */
2913	{ SST(0x60, 0x00, SS_RDEF,
2914	    "Lamp failure") },
2915	/*                */
2916	{ SST(0x61, 0x00, SS_RDEF,
2917	    "Video acquisition error") },
2918	/*                */
2919	{ SST(0x61, 0x01, SS_RDEF,
2920	    "Unable to acquire video") },
2921	/*                */
2922	{ SST(0x61, 0x02, SS_RDEF,
2923	    "Out of focus") },
2924	/*                */
2925	{ SST(0x62, 0x00, SS_RDEF,
2926	    "Scan head positioning error") },
2927	/*      R         */
2928	{ SST(0x63, 0x00, SS_RDEF,
2929	    "End of user area encountered on this track") },
2930	/*      R         */
2931	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
2932	    "Packet does not fit in available space") },
2933	/*      R         */
2934	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
2935	    "Illegal mode for this track") },
2936	/*      R         */
2937	{ SST(0x64, 0x01, SS_RDEF,
2938	    "Invalid packet size") },
2939	/* DTLPWROMAEBKVF */
2940	{ SST(0x65, 0x00, SS_RDEF,
2941	    "Voltage fault") },
2942	/*                */
2943	{ SST(0x66, 0x00, SS_RDEF,
2944	    "Automatic document feeder cover up") },
2945	/*                */
2946	{ SST(0x66, 0x01, SS_RDEF,
2947	    "Automatic document feeder lift up") },
2948	/*                */
2949	{ SST(0x66, 0x02, SS_RDEF,
2950	    "Document jam in automatic document feeder") },
2951	/*                */
2952	{ SST(0x66, 0x03, SS_RDEF,
2953	    "Document miss feed automatic in document feeder") },
2954	/*         A      */
2955	{ SST(0x67, 0x00, SS_RDEF,
2956	    "Configuration failure") },
2957	/*         A      */
2958	{ SST(0x67, 0x01, SS_RDEF,
2959	    "Configuration of incapable logical units failed") },
2960	/*         A      */
2961	{ SST(0x67, 0x02, SS_RDEF,
2962	    "Add logical unit failed") },
2963	/*         A      */
2964	{ SST(0x67, 0x03, SS_RDEF,
2965	    "Modification of logical unit failed") },
2966	/*         A      */
2967	{ SST(0x67, 0x04, SS_RDEF,
2968	    "Exchange of logical unit failed") },
2969	/*         A      */
2970	{ SST(0x67, 0x05, SS_RDEF,
2971	    "Remove of logical unit failed") },
2972	/*         A      */
2973	{ SST(0x67, 0x06, SS_RDEF,
2974	    "Attachment of logical unit failed") },
2975	/*         A      */
2976	{ SST(0x67, 0x07, SS_RDEF,
2977	    "Creation of logical unit failed") },
2978	/*         A      */
2979	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
2980	    "Assign failure occurred") },
2981	/*         A      */
2982	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
2983	    "Multiply assigned logical unit") },
2984	/* DTLPWROMAEBKVF */
2985	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
2986	    "Set target port groups command failed") },
2987	/* DT        B    */
2988	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
2989	    "ATA device feature not enabled") },
2990	/*         A      */
2991	{ SST(0x68, 0x00, SS_RDEF,
2992	    "Logical unit not configured") },
2993	/* D              */
2994	{ SST(0x68, 0x01, SS_RDEF,
2995	    "Subsidiary logical unit not configured") },
2996	/*         A      */
2997	{ SST(0x69, 0x00, SS_RDEF,
2998	    "Data loss on logical unit") },
2999	/*         A      */
3000	{ SST(0x69, 0x01, SS_RDEF,
3001	    "Multiple logical unit failures") },
3002	/*         A      */
3003	{ SST(0x69, 0x02, SS_RDEF,
3004	    "Parity/data mismatch") },
3005	/*         A      */
3006	{ SST(0x6A, 0x00, SS_RDEF,
3007	    "Informational, refer to log") },
3008	/*         A      */
3009	{ SST(0x6B, 0x00, SS_RDEF,
3010	    "State change has occurred") },
3011	/*         A      */
3012	{ SST(0x6B, 0x01, SS_RDEF,
3013	    "Redundancy level got better") },
3014	/*         A      */
3015	{ SST(0x6B, 0x02, SS_RDEF,
3016	    "Redundancy level got worse") },
3017	/*         A      */
3018	{ SST(0x6C, 0x00, SS_RDEF,
3019	    "Rebuild failure occurred") },
3020	/*         A      */
3021	{ SST(0x6D, 0x00, SS_RDEF,
3022	    "Recalculate failure occurred") },
3023	/*         A      */
3024	{ SST(0x6E, 0x00, SS_RDEF,
3025	    "Command to logical unit failed") },
3026	/*      R         */
3027	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
3028	    "Copy protection key exchange failure - authentication failure") },
3029	/*      R         */
3030	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
3031	    "Copy protection key exchange failure - key not present") },
3032	/*      R         */
3033	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
3034	    "Copy protection key exchange failure - key not established") },
3035	/*      R         */
3036	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
3037	    "Read of scrambled sector without authentication") },
3038	/*      R         */
3039	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
3040	    "Media region code is mismatched to logical unit region") },
3041	/*      R         */
3042	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
3043	    "Drive region must be permanent/region reset count error") },
3044	/*      R         */
3045	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
3046	    "Insufficient block count for binding NONCE recording") },
3047	/*      R         */
3048	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
3049	    "Conflict in binding NONCE recording") },
3050	/*  T             */
3051	{ SST(0x70, 0x00, SS_RDEF,
3052	    "Decompression exception short: ASCQ = Algorithm ID") },
3053	/*  T             */
3054	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3055	    NULL) },			/* Range 0x00 -> 0xFF */
3056	/*  T             */
3057	{ SST(0x71, 0x00, SS_RDEF,
3058	    "Decompression exception long: ASCQ = Algorithm ID") },
3059	/*  T             */
3060	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3061	    NULL) },			/* Range 0x00 -> 0xFF */
3062	/*      R         */
3063	{ SST(0x72, 0x00, SS_RDEF,
3064	    "Session fixation error") },
3065	/*      R         */
3066	{ SST(0x72, 0x01, SS_RDEF,
3067	    "Session fixation error writing lead-in") },
3068	/*      R         */
3069	{ SST(0x72, 0x02, SS_RDEF,
3070	    "Session fixation error writing lead-out") },
3071	/*      R         */
3072	{ SST(0x72, 0x03, SS_RDEF,
3073	    "Session fixation error - incomplete track in session") },
3074	/*      R         */
3075	{ SST(0x72, 0x04, SS_RDEF,
3076	    "Empty or partially written reserved track") },
3077	/*      R         */
3078	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
3079	    "No more track reservations allowed") },
3080	/*      R         */
3081	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
3082	    "RMZ extension is not allowed") },
3083	/*      R         */
3084	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
3085	    "No more test zone extensions are allowed") },
3086	/*      R         */
3087	{ SST(0x73, 0x00, SS_RDEF,
3088	    "CD control error") },
3089	/*      R         */
3090	{ SST(0x73, 0x01, SS_RDEF,
3091	    "Power calibration area almost full") },
3092	/*      R         */
3093	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
3094	    "Power calibration area is full") },
3095	/*      R         */
3096	{ SST(0x73, 0x03, SS_RDEF,
3097	    "Power calibration area error") },
3098	/*      R         */
3099	{ SST(0x73, 0x04, SS_RDEF,
3100	    "Program memory area update failure") },
3101	/*      R         */
3102	{ SST(0x73, 0x05, SS_RDEF,
3103	    "Program memory area is full") },
3104	/*      R         */
3105	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
3106	    "RMA/PMA is almost full") },
3107	/*      R         */
3108	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
3109	    "Current power calibration area almost full") },
3110	/*      R         */
3111	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
3112	    "Current power calibration area is full") },
3113	/*      R         */
3114	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
3115	    "RDZ is full") },
3116	/*  T             */
3117	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
3118	    "Security error") },
3119	/*  T             */
3120	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
3121	    "Unable to decrypt data") },
3122	/*  T             */
3123	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
3124	    "Unencrypted data encountered while decrypting") },
3125	/*  T             */
3126	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
3127	    "Incorrect data encryption key") },
3128	/*  T             */
3129	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
3130	    "Cryptographic integrity validation failed") },
3131	/*  T             */
3132	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
3133	    "Error decrypting data") },
3134	/*  T             */
3135	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
3136	    "Unknown signature verification key") },
3137	/*  T             */
3138	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
3139	    "Encryption parameters not useable") },
3140	/* DT   R M E  VF */
3141	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
3142	    "Digital signature validation failure") },
3143	/*  T             */
3144	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
3145	    "Encryption mode mismatch on read") },
3146	/*  T             */
3147	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
3148	    "Encrypted block not raw read enabled") },
3149	/*  T             */
3150	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
3151	    "Incorrect encryption parameters") },
3152	/* DT   R MAEBKV  */
3153	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
3154	    "Unable to decrypt parameter list") },
3155	/*  T             */
3156	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
3157	    "Encryption algorithm disabled") },
3158	/* DT   R MAEBKV  */
3159	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
3160	    "SA creation parameter value invalid") },
3161	/* DT   R MAEBKV  */
3162	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
3163	    "SA creation parameter value rejected") },
3164	/* DT   R MAEBKV  */
3165	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
3166	    "Invalid SA usage") },
3167	/*  T             */
3168	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
3169	    "Data encryption configuration prevented") },
3170	/* DT   R MAEBKV  */
3171	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3172	    "SA creation parameter not supported") },
3173	/* DT   R MAEBKV  */
3174	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3175	    "Authentication failed") },
3176	/*             V  */
3177	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3178	    "External data encryption key manager access error") },
3179	/*             V  */
3180	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3181	    "External data encryption key manager error") },
3182	/*             V  */
3183	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3184	    "External data encryption key not found") },
3185	/*             V  */
3186	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3187	    "External data encryption request not authorized") },
3188	/*  T             */
3189	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3190	    "External data encryption control timeout") },
3191	/*  T             */
3192	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3193	    "External data encryption control error") },
3194	/* DT   R M E  V  */
3195	{ SST(0x74, 0x71, SS_RDEF,	/* XXX TBD */
3196	    "Logical unit access not authorized") },
3197	/* D              */
3198	{ SST(0x74, 0x79, SS_RDEF,	/* XXX TBD */
3199	    "Security conflict in translated device") }
3200};
3201
3202const u_int asc_table_size = nitems(asc_table);
3203
3204struct asc_key
3205{
3206	int asc;
3207	int ascq;
3208};
3209
3210static int
3211ascentrycomp(const void *key, const void *member)
3212{
3213	int asc;
3214	int ascq;
3215	const struct asc_table_entry *table_entry;
3216
3217	asc = ((const struct asc_key *)key)->asc;
3218	ascq = ((const struct asc_key *)key)->ascq;
3219	table_entry = (const struct asc_table_entry *)member;
3220
3221	if (asc >= table_entry->asc) {
3222
3223		if (asc > table_entry->asc)
3224			return (1);
3225
3226		if (ascq <= table_entry->ascq) {
3227			/* Check for ranges */
3228			if (ascq == table_entry->ascq
3229		 	 || ((table_entry->action & SSQ_RANGE) != 0
3230		  	   && ascq >= (table_entry - 1)->ascq))
3231				return (0);
3232			return (-1);
3233		}
3234		return (1);
3235	}
3236	return (-1);
3237}
3238
3239static int
3240senseentrycomp(const void *key, const void *member)
3241{
3242	int sense_key;
3243	const struct sense_key_table_entry *table_entry;
3244
3245	sense_key = *((const int *)key);
3246	table_entry = (const struct sense_key_table_entry *)member;
3247
3248	if (sense_key >= table_entry->sense_key) {
3249		if (sense_key == table_entry->sense_key)
3250			return (0);
3251		return (1);
3252	}
3253	return (-1);
3254}
3255
3256static void
3257fetchtableentries(int sense_key, int asc, int ascq,
3258		  struct scsi_inquiry_data *inq_data,
3259		  const struct sense_key_table_entry **sense_entry,
3260		  const struct asc_table_entry **asc_entry)
3261{
3262	caddr_t match;
3263	const struct asc_table_entry *asc_tables[2];
3264	const struct sense_key_table_entry *sense_tables[2];
3265	struct asc_key asc_ascq;
3266	size_t asc_tables_size[2];
3267	size_t sense_tables_size[2];
3268	int num_asc_tables;
3269	int num_sense_tables;
3270	int i;
3271
3272	/* Default to failure */
3273	*sense_entry = NULL;
3274	*asc_entry = NULL;
3275	match = NULL;
3276	if (inq_data != NULL)
3277		match = cam_quirkmatch((caddr_t)inq_data,
3278				       (caddr_t)sense_quirk_table,
3279				       sense_quirk_table_size,
3280				       sizeof(*sense_quirk_table),
3281				       scsi_inquiry_match);
3282
3283	if (match != NULL) {
3284		struct scsi_sense_quirk_entry *quirk;
3285
3286		quirk = (struct scsi_sense_quirk_entry *)match;
3287		asc_tables[0] = quirk->asc_info;
3288		asc_tables_size[0] = quirk->num_ascs;
3289		asc_tables[1] = asc_table;
3290		asc_tables_size[1] = asc_table_size;
3291		num_asc_tables = 2;
3292		sense_tables[0] = quirk->sense_key_info;
3293		sense_tables_size[0] = quirk->num_sense_keys;
3294		sense_tables[1] = sense_key_table;
3295		sense_tables_size[1] = nitems(sense_key_table);
3296		num_sense_tables = 2;
3297	} else {
3298		asc_tables[0] = asc_table;
3299		asc_tables_size[0] = asc_table_size;
3300		num_asc_tables = 1;
3301		sense_tables[0] = sense_key_table;
3302		sense_tables_size[0] = nitems(sense_key_table);
3303		num_sense_tables = 1;
3304	}
3305
3306	asc_ascq.asc = asc;
3307	asc_ascq.ascq = ascq;
3308	for (i = 0; i < num_asc_tables; i++) {
3309		void *found_entry;
3310
3311		found_entry = bsearch(&asc_ascq, asc_tables[i],
3312				      asc_tables_size[i],
3313				      sizeof(**asc_tables),
3314				      ascentrycomp);
3315
3316		if (found_entry) {
3317			*asc_entry = (struct asc_table_entry *)found_entry;
3318			break;
3319		}
3320	}
3321
3322	for (i = 0; i < num_sense_tables; i++) {
3323		void *found_entry;
3324
3325		found_entry = bsearch(&sense_key, sense_tables[i],
3326				      sense_tables_size[i],
3327				      sizeof(**sense_tables),
3328				      senseentrycomp);
3329
3330		if (found_entry) {
3331			*sense_entry =
3332			    (struct sense_key_table_entry *)found_entry;
3333			break;
3334		}
3335	}
3336}
3337
3338void
3339scsi_sense_desc(int sense_key, int asc, int ascq,
3340		struct scsi_inquiry_data *inq_data,
3341		const char **sense_key_desc, const char **asc_desc)
3342{
3343	const struct asc_table_entry *asc_entry;
3344	const struct sense_key_table_entry *sense_entry;
3345
3346	fetchtableentries(sense_key, asc, ascq,
3347			  inq_data,
3348			  &sense_entry,
3349			  &asc_entry);
3350
3351	if (sense_entry != NULL)
3352		*sense_key_desc = sense_entry->desc;
3353	else
3354		*sense_key_desc = "Invalid Sense Key";
3355
3356	if (asc_entry != NULL)
3357		*asc_desc = asc_entry->desc;
3358	else if (asc >= 0x80 && asc <= 0xff)
3359		*asc_desc = "Vendor Specific ASC";
3360	else if (ascq >= 0x80 && ascq <= 0xff)
3361		*asc_desc = "Vendor Specific ASCQ";
3362	else
3363		*asc_desc = "Reserved ASC/ASCQ pair";
3364}
3365
3366/*
3367 * Given sense and device type information, return the appropriate action.
3368 * If we do not understand the specific error as identified by the ASC/ASCQ
3369 * pair, fall back on the more generic actions derived from the sense key.
3370 */
3371scsi_sense_action
3372scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3373		  u_int32_t sense_flags)
3374{
3375	const struct asc_table_entry *asc_entry;
3376	const struct sense_key_table_entry *sense_entry;
3377	int error_code, sense_key, asc, ascq;
3378	scsi_sense_action action;
3379
3380	if (!scsi_extract_sense_ccb((union ccb *)csio,
3381	    &error_code, &sense_key, &asc, &ascq)) {
3382		action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO;
3383	} else if ((error_code == SSD_DEFERRED_ERROR)
3384	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3385		/*
3386		 * XXX dufault@FreeBSD.org
3387		 * This error doesn't relate to the command associated
3388		 * with this request sense.  A deferred error is an error
3389		 * for a command that has already returned GOOD status
3390		 * (see SCSI2 8.2.14.2).
3391		 *
3392		 * By my reading of that section, it looks like the current
3393		 * command has been cancelled, we should now clean things up
3394		 * (hopefully recovering any lost data) and then retry the
3395		 * current command.  There are two easy choices, both wrong:
3396		 *
3397		 * 1. Drop through (like we had been doing), thus treating
3398		 *    this as if the error were for the current command and
3399		 *    return and stop the current command.
3400		 *
3401		 * 2. Issue a retry (like I made it do) thus hopefully
3402		 *    recovering the current transfer, and ignoring the
3403		 *    fact that we've dropped a command.
3404		 *
3405		 * These should probably be handled in a device specific
3406		 * sense handler or punted back up to a user mode daemon
3407		 */
3408		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3409	} else {
3410		fetchtableentries(sense_key, asc, ascq,
3411				  inq_data,
3412				  &sense_entry,
3413				  &asc_entry);
3414
3415		/*
3416		 * Override the 'No additional Sense' entry (0,0)
3417		 * with the error action of the sense key.
3418		 */
3419		if (asc_entry != NULL
3420		 && (asc != 0 || ascq != 0))
3421			action = asc_entry->action;
3422		else if (sense_entry != NULL)
3423			action = sense_entry->action;
3424		else
3425			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3426
3427		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3428			/*
3429			 * The action succeeded but the device wants
3430			 * the user to know that some recovery action
3431			 * was required.
3432			 */
3433			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3434			action |= SS_NOP|SSQ_PRINT_SENSE;
3435		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3436			if ((sense_flags & SF_QUIET_IR) != 0)
3437				action &= ~SSQ_PRINT_SENSE;
3438		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3439			if ((sense_flags & SF_RETRY_UA) != 0
3440			 && (action & SS_MASK) == SS_FAIL) {
3441				action &= ~(SS_MASK|SSQ_MASK);
3442				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3443					  SSQ_PRINT_SENSE;
3444			}
3445			action |= SSQ_UA;
3446		}
3447	}
3448	if ((action & SS_MASK) >= SS_START &&
3449	    (sense_flags & SF_NO_RECOVERY)) {
3450		action &= ~SS_MASK;
3451		action |= SS_FAIL;
3452	} else if ((action & SS_MASK) == SS_RETRY &&
3453	    (sense_flags & SF_NO_RETRY)) {
3454		action &= ~SS_MASK;
3455		action |= SS_FAIL;
3456	}
3457	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3458		action |= SSQ_PRINT_SENSE;
3459	else if ((sense_flags & SF_NO_PRINT) != 0)
3460		action &= ~SSQ_PRINT_SENSE;
3461
3462	return (action);
3463}
3464
3465char *
3466scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
3467{
3468	struct sbuf sb;
3469	int error;
3470
3471	if (len == 0)
3472		return ("");
3473
3474	sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3475
3476	scsi_cdb_sbuf(cdb_ptr, &sb);
3477
3478	/* ENOMEM just means that the fixed buffer is full, OK to ignore */
3479	error = sbuf_finish(&sb);
3480	if (error != 0 && error != ENOMEM)
3481		return ("");
3482
3483	return(sbuf_data(&sb));
3484}
3485
3486void
3487scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb)
3488{
3489	u_int8_t cdb_len;
3490	int i;
3491
3492	if (cdb_ptr == NULL)
3493		return;
3494
3495	/*
3496	 * This is taken from the SCSI-3 draft spec.
3497	 * (T10/1157D revision 0.3)
3498	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3499	 * are the command code.
3500	 * Group 0:  six byte commands
3501	 * Group 1:  ten byte commands
3502	 * Group 2:  ten byte commands
3503	 * Group 3:  reserved
3504	 * Group 4:  sixteen byte commands
3505	 * Group 5:  twelve byte commands
3506	 * Group 6:  vendor specific
3507	 * Group 7:  vendor specific
3508	 */
3509	switch((*cdb_ptr >> 5) & 0x7) {
3510		case 0:
3511			cdb_len = 6;
3512			break;
3513		case 1:
3514		case 2:
3515			cdb_len = 10;
3516			break;
3517		case 3:
3518		case 6:
3519		case 7:
3520			/* in this case, just print out the opcode */
3521			cdb_len = 1;
3522			break;
3523		case 4:
3524			cdb_len = 16;
3525			break;
3526		case 5:
3527			cdb_len = 12;
3528			break;
3529	}
3530
3531	for (i = 0; i < cdb_len; i++)
3532		sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3533
3534	return;
3535}
3536
3537const char *
3538scsi_status_string(struct ccb_scsiio *csio)
3539{
3540	switch(csio->scsi_status) {
3541	case SCSI_STATUS_OK:
3542		return("OK");
3543	case SCSI_STATUS_CHECK_COND:
3544		return("Check Condition");
3545	case SCSI_STATUS_BUSY:
3546		return("Busy");
3547	case SCSI_STATUS_INTERMED:
3548		return("Intermediate");
3549	case SCSI_STATUS_INTERMED_COND_MET:
3550		return("Intermediate-Condition Met");
3551	case SCSI_STATUS_RESERV_CONFLICT:
3552		return("Reservation Conflict");
3553	case SCSI_STATUS_CMD_TERMINATED:
3554		return("Command Terminated");
3555	case SCSI_STATUS_QUEUE_FULL:
3556		return("Queue Full");
3557	case SCSI_STATUS_ACA_ACTIVE:
3558		return("ACA Active");
3559	case SCSI_STATUS_TASK_ABORTED:
3560		return("Task Aborted");
3561	default: {
3562		static char unkstr[64];
3563		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3564			 csio->scsi_status);
3565		return(unkstr);
3566	}
3567	}
3568}
3569
3570/*
3571 * scsi_command_string() returns 0 for success and -1 for failure.
3572 */
3573#ifdef _KERNEL
3574int
3575scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3576#else /* !_KERNEL */
3577int
3578scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3579		    struct sbuf *sb)
3580#endif /* _KERNEL/!_KERNEL */
3581{
3582	struct scsi_inquiry_data *inq_data;
3583#ifdef _KERNEL
3584	struct	  ccb_getdev *cgd;
3585#endif /* _KERNEL */
3586
3587#ifdef _KERNEL
3588	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3589		return(-1);
3590	/*
3591	 * Get the device information.
3592	 */
3593	xpt_setup_ccb(&cgd->ccb_h,
3594		      csio->ccb_h.path,
3595		      CAM_PRIORITY_NORMAL);
3596	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3597	xpt_action((union ccb *)cgd);
3598
3599	/*
3600	 * If the device is unconfigured, just pretend that it is a hard
3601	 * drive.  scsi_op_desc() needs this.
3602	 */
3603	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3604		cgd->inq_data.device = T_DIRECT;
3605
3606	inq_data = &cgd->inq_data;
3607
3608#else /* !_KERNEL */
3609
3610	inq_data = &device->inq_data;
3611
3612#endif /* _KERNEL/!_KERNEL */
3613
3614	if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) {
3615		sbuf_printf(sb, "%s. CDB: ",
3616			    scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data));
3617		scsi_cdb_sbuf(csio->cdb_io.cdb_ptr, sb);
3618	} else {
3619		sbuf_printf(sb, "%s. CDB: ",
3620			    scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data));
3621		scsi_cdb_sbuf(csio->cdb_io.cdb_bytes, sb);
3622	}
3623
3624#ifdef _KERNEL
3625	xpt_free_ccb((union ccb *)cgd);
3626#endif
3627
3628	return(0);
3629}
3630
3631/*
3632 * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3633 * If iter_func() returns 0, list traversal continues.  If iter_func()
3634 * returns non-zero, list traversal is stopped.
3635 */
3636void
3637scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3638		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3639				   u_int, struct scsi_sense_desc_header *,
3640				   void *), void *arg)
3641{
3642	int cur_pos;
3643	int desc_len;
3644
3645	/*
3646	 * First make sure the extra length field is present.
3647	 */
3648	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3649		return;
3650
3651	/*
3652	 * The length of data actually returned may be different than the
3653	 * extra_len recorded in the structure.
3654	 */
3655	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3656
3657	/*
3658	 * Limit this further by the extra length reported, and the maximum
3659	 * allowed extra length.
3660	 */
3661	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3662
3663	/*
3664	 * Subtract the size of the header from the descriptor length.
3665	 * This is to ensure that we have at least the header left, so we
3666	 * don't have to check that inside the loop.  This can wind up
3667	 * being a negative value.
3668	 */
3669	desc_len -= sizeof(struct scsi_sense_desc_header);
3670
3671	for (cur_pos = 0; cur_pos < desc_len;) {
3672		struct scsi_sense_desc_header *header;
3673
3674		header = (struct scsi_sense_desc_header *)
3675			&sense->sense_desc[cur_pos];
3676
3677		/*
3678		 * Check to make sure we have the entire descriptor.  We
3679		 * don't call iter_func() unless we do.
3680		 *
3681		 * Note that although cur_pos is at the beginning of the
3682		 * descriptor, desc_len already has the header length
3683		 * subtracted.  So the comparison of the length in the
3684		 * header (which does not include the header itself) to
3685		 * desc_len - cur_pos is correct.
3686		 */
3687		if (header->length > (desc_len - cur_pos))
3688			break;
3689
3690		if (iter_func(sense, sense_len, header, arg) != 0)
3691			break;
3692
3693		cur_pos += sizeof(*header) + header->length;
3694	}
3695}
3696
3697struct scsi_find_desc_info {
3698	uint8_t desc_type;
3699	struct scsi_sense_desc_header *header;
3700};
3701
3702static int
3703scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3704		    struct scsi_sense_desc_header *header, void *arg)
3705{
3706	struct scsi_find_desc_info *desc_info;
3707
3708	desc_info = (struct scsi_find_desc_info *)arg;
3709
3710	if (header->desc_type == desc_info->desc_type) {
3711		desc_info->header = header;
3712
3713		/* We found the descriptor, tell the iterator to stop. */
3714		return (1);
3715	} else
3716		return (0);
3717}
3718
3719/*
3720 * Given a descriptor type, return a pointer to it if it is in the sense
3721 * data and not truncated.  Avoiding truncating sense data will simplify
3722 * things significantly for the caller.
3723 */
3724uint8_t *
3725scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3726	       uint8_t desc_type)
3727{
3728	struct scsi_find_desc_info desc_info;
3729
3730	desc_info.desc_type = desc_type;
3731	desc_info.header = NULL;
3732
3733	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3734
3735	return ((uint8_t *)desc_info.header);
3736}
3737
3738/*
3739 * Fill in SCSI sense data with the specified parameters.  This routine can
3740 * fill in either fixed or descriptor type sense data.
3741 */
3742void
3743scsi_set_sense_data_va(struct scsi_sense_data *sense_data,
3744		      scsi_sense_data_type sense_format, int current_error,
3745		      int sense_key, int asc, int ascq, va_list ap)
3746{
3747	int descriptor_sense;
3748	scsi_sense_elem_type elem_type;
3749
3750	/*
3751	 * Determine whether to return fixed or descriptor format sense
3752	 * data.  If the user specifies SSD_TYPE_NONE for some reason,
3753	 * they'll just get fixed sense data.
3754	 */
3755	if (sense_format == SSD_TYPE_DESC)
3756		descriptor_sense = 1;
3757	else
3758		descriptor_sense = 0;
3759
3760	/*
3761	 * Zero the sense data, so that we don't pass back any garbage data
3762	 * to the user.
3763	 */
3764	memset(sense_data, 0, sizeof(*sense_data));
3765
3766	if (descriptor_sense != 0) {
3767		struct scsi_sense_data_desc *sense;
3768
3769		sense = (struct scsi_sense_data_desc *)sense_data;
3770		/*
3771		 * The descriptor sense format eliminates the use of the
3772		 * valid bit.
3773		 */
3774		if (current_error != 0)
3775			sense->error_code = SSD_DESC_CURRENT_ERROR;
3776		else
3777			sense->error_code = SSD_DESC_DEFERRED_ERROR;
3778		sense->sense_key = sense_key;
3779		sense->add_sense_code = asc;
3780		sense->add_sense_code_qual = ascq;
3781		/*
3782		 * Start off with no extra length, since the above data
3783		 * fits in the standard descriptor sense information.
3784		 */
3785		sense->extra_len = 0;
3786		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3787			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3788			int sense_len, len_to_copy;
3789			uint8_t *data;
3790
3791			if (elem_type >= SSD_ELEM_MAX) {
3792				printf("%s: invalid sense type %d\n", __func__,
3793				       elem_type);
3794				break;
3795			}
3796
3797			sense_len = (int)va_arg(ap, int);
3798			len_to_copy = MIN(sense_len, SSD_EXTRA_MAX -
3799					  sense->extra_len);
3800			data = (uint8_t *)va_arg(ap, uint8_t *);
3801
3802			/*
3803			 * We've already consumed the arguments for this one.
3804			 */
3805			if (elem_type == SSD_ELEM_SKIP)
3806				continue;
3807
3808			switch (elem_type) {
3809			case SSD_ELEM_DESC: {
3810
3811				/*
3812				 * This is a straight descriptor.  All we
3813				 * need to do is copy the data in.
3814				 */
3815				bcopy(data, &sense->sense_desc[
3816				      sense->extra_len], len_to_copy);
3817				sense->extra_len += len_to_copy;
3818				break;
3819			}
3820			case SSD_ELEM_SKS: {
3821				struct scsi_sense_sks sks;
3822
3823				bzero(&sks, sizeof(sks));
3824
3825				/*
3826				 * This is already-formatted sense key
3827				 * specific data.  We just need to fill out
3828				 * the header and copy everything in.
3829				 */
3830				bcopy(data, &sks.sense_key_spec,
3831				      MIN(len_to_copy,
3832				          sizeof(sks.sense_key_spec)));
3833
3834				sks.desc_type = SSD_DESC_SKS;
3835				sks.length = sizeof(sks) -
3836				    offsetof(struct scsi_sense_sks, reserved1);
3837				bcopy(&sks,&sense->sense_desc[sense->extra_len],
3838				      sizeof(sks));
3839				sense->extra_len += sizeof(sks);
3840				break;
3841			}
3842			case SSD_ELEM_INFO:
3843			case SSD_ELEM_COMMAND: {
3844				struct scsi_sense_command cmd;
3845				struct scsi_sense_info info;
3846				uint8_t *data_dest;
3847				uint8_t *descriptor;
3848				int descriptor_size, i, copy_len;
3849
3850				bzero(&cmd, sizeof(cmd));
3851				bzero(&info, sizeof(info));
3852
3853				/*
3854				 * Command or information data.  The
3855				 * operate in pretty much the same way.
3856				 */
3857				if (elem_type == SSD_ELEM_COMMAND) {
3858					len_to_copy = MIN(len_to_copy,
3859					    sizeof(cmd.command_info));
3860					descriptor = (uint8_t *)&cmd;
3861					descriptor_size  = sizeof(cmd);
3862					data_dest =(uint8_t *)&cmd.command_info;
3863					cmd.desc_type = SSD_DESC_COMMAND;
3864					cmd.length = sizeof(cmd) -
3865					    offsetof(struct scsi_sense_command,
3866						     reserved);
3867				} else {
3868					len_to_copy = MIN(len_to_copy,
3869					    sizeof(info.info));
3870					descriptor = (uint8_t *)&info;
3871					descriptor_size = sizeof(cmd);
3872					data_dest = (uint8_t *)&info.info;
3873					info.desc_type = SSD_DESC_INFO;
3874					info.byte2 = SSD_INFO_VALID;
3875					info.length = sizeof(info) -
3876					    offsetof(struct scsi_sense_info,
3877						     byte2);
3878				}
3879
3880				/*
3881				 * Copy this in reverse because the spec
3882				 * (SPC-4) says that when 4 byte quantities
3883				 * are stored in this 8 byte field, the
3884				 * first four bytes shall be 0.
3885				 *
3886				 * So we fill the bytes in from the end, and
3887				 * if we have less than 8 bytes to copy,
3888				 * the initial, most significant bytes will
3889				 * be 0.
3890				 */
3891				for (i = sense_len - 1; i >= 0 &&
3892				     len_to_copy > 0; i--, len_to_copy--)
3893					data_dest[len_to_copy - 1] = data[i];
3894
3895				/*
3896				 * This calculation looks much like the
3897				 * initial len_to_copy calculation, but
3898				 * we have to do it again here, because
3899				 * we're looking at a larger amount that
3900				 * may or may not fit.  It's not only the
3901				 * data the user passed in, but also the
3902				 * rest of the descriptor.
3903				 */
3904				copy_len = MIN(descriptor_size,
3905				    SSD_EXTRA_MAX - sense->extra_len);
3906				bcopy(descriptor, &sense->sense_desc[
3907				      sense->extra_len], copy_len);
3908				sense->extra_len += copy_len;
3909				break;
3910			}
3911			case SSD_ELEM_FRU: {
3912				struct scsi_sense_fru fru;
3913				int copy_len;
3914
3915				bzero(&fru, sizeof(fru));
3916
3917				fru.desc_type = SSD_DESC_FRU;
3918				fru.length = sizeof(fru) -
3919				    offsetof(struct scsi_sense_fru, reserved);
3920				fru.fru = *data;
3921
3922				copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX -
3923					       sense->extra_len);
3924				bcopy(&fru, &sense->sense_desc[
3925				      sense->extra_len], copy_len);
3926				sense->extra_len += copy_len;
3927				break;
3928			}
3929			case SSD_ELEM_STREAM: {
3930				struct scsi_sense_stream stream_sense;
3931				int copy_len;
3932
3933				bzero(&stream_sense, sizeof(stream_sense));
3934				stream_sense.desc_type = SSD_DESC_STREAM;
3935				stream_sense.length = sizeof(stream_sense) -
3936				   offsetof(struct scsi_sense_stream, reserved);
3937				stream_sense.byte3 = *data;
3938
3939				copy_len = MIN(sizeof(stream_sense),
3940				    SSD_EXTRA_MAX - sense->extra_len);
3941				bcopy(&stream_sense, &sense->sense_desc[
3942				      sense->extra_len], copy_len);
3943				sense->extra_len += copy_len;
3944				break;
3945			}
3946			default:
3947				/*
3948				 * We shouldn't get here, but if we do, do
3949				 * nothing.  We've already consumed the
3950				 * arguments above.
3951				 */
3952				break;
3953			}
3954		}
3955	} else {
3956		struct scsi_sense_data_fixed *sense;
3957
3958		sense = (struct scsi_sense_data_fixed *)sense_data;
3959
3960		if (current_error != 0)
3961			sense->error_code = SSD_CURRENT_ERROR;
3962		else
3963			sense->error_code = SSD_DEFERRED_ERROR;
3964
3965		sense->flags = sense_key;
3966		sense->add_sense_code = asc;
3967		sense->add_sense_code_qual = ascq;
3968		/*
3969		 * We've set the ASC and ASCQ, so we have 6 more bytes of
3970		 * valid data.  If we wind up setting any of the other
3971		 * fields, we'll bump this to 10 extra bytes.
3972		 */
3973		sense->extra_len = 6;
3974
3975		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3976			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3977			int sense_len, len_to_copy;
3978			uint8_t *data;
3979
3980			if (elem_type >= SSD_ELEM_MAX) {
3981				printf("%s: invalid sense type %d\n", __func__,
3982				       elem_type);
3983				break;
3984			}
3985			/*
3986			 * If we get in here, just bump the extra length to
3987			 * 10 bytes.  That will encompass anything we're
3988			 * going to set here.
3989			 */
3990			sense->extra_len = 10;
3991			sense_len = (int)va_arg(ap, int);
3992			data = (uint8_t *)va_arg(ap, uint8_t *);
3993
3994			switch (elem_type) {
3995			case SSD_ELEM_SKS:
3996				/*
3997				 * The user passed in pre-formatted sense
3998				 * key specific data.
3999				 */
4000				bcopy(data, &sense->sense_key_spec[0],
4001				      MIN(sizeof(sense->sense_key_spec),
4002				      sense_len));
4003				break;
4004			case SSD_ELEM_INFO:
4005			case SSD_ELEM_COMMAND: {
4006				uint8_t *data_dest;
4007				int i;
4008
4009				if (elem_type == SSD_ELEM_COMMAND) {
4010					data_dest = &sense->cmd_spec_info[0];
4011					len_to_copy = MIN(sense_len,
4012					    sizeof(sense->cmd_spec_info));
4013				} else {
4014					data_dest = &sense->info[0];
4015					len_to_copy = MIN(sense_len,
4016					    sizeof(sense->info));
4017					/*
4018					 * We're setting the info field, so
4019					 * set the valid bit.
4020					 */
4021					sense->error_code |= SSD_ERRCODE_VALID;
4022				}
4023
4024				/*
4025			 	 * Copy this in reverse so that if we have
4026				 * less than 4 bytes to fill, the least
4027				 * significant bytes will be at the end.
4028				 * If we have more than 4 bytes, only the
4029				 * least significant bytes will be included.
4030				 */
4031				for (i = sense_len - 1; i >= 0 &&
4032				     len_to_copy > 0; i--, len_to_copy--)
4033					data_dest[len_to_copy - 1] = data[i];
4034
4035				break;
4036			}
4037			case SSD_ELEM_FRU:
4038				sense->fru = *data;
4039				break;
4040			case SSD_ELEM_STREAM:
4041				sense->flags |= *data;
4042				break;
4043			case SSD_ELEM_DESC:
4044			default:
4045
4046				/*
4047				 * If the user passes in descriptor sense,
4048				 * we can't handle that in fixed format.
4049				 * So just skip it, and any unknown argument
4050				 * types.
4051				 */
4052				break;
4053			}
4054		}
4055	}
4056}
4057
4058void
4059scsi_set_sense_data(struct scsi_sense_data *sense_data,
4060		    scsi_sense_data_type sense_format, int current_error,
4061		    int sense_key, int asc, int ascq, ...)
4062{
4063	va_list ap;
4064
4065	va_start(ap, ascq);
4066	scsi_set_sense_data_va(sense_data, sense_format, current_error,
4067			       sense_key, asc, ascq, ap);
4068	va_end(ap);
4069}
4070
4071/*
4072 * Get sense information for three similar sense data types.
4073 */
4074int
4075scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4076		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
4077{
4078	scsi_sense_data_type sense_type;
4079
4080	if (sense_len == 0)
4081		goto bailout;
4082
4083	sense_type = scsi_sense_type(sense_data);
4084
4085	switch (sense_type) {
4086	case SSD_TYPE_DESC: {
4087		struct scsi_sense_data_desc *sense;
4088		uint8_t *desc;
4089
4090		sense = (struct scsi_sense_data_desc *)sense_data;
4091
4092		desc = scsi_find_desc(sense, sense_len, info_type);
4093		if (desc == NULL)
4094			goto bailout;
4095
4096		switch (info_type) {
4097		case SSD_DESC_INFO: {
4098			struct scsi_sense_info *info_desc;
4099
4100			info_desc = (struct scsi_sense_info *)desc;
4101			*info = scsi_8btou64(info_desc->info);
4102			if (signed_info != NULL)
4103				*signed_info = *info;
4104			break;
4105		}
4106		case SSD_DESC_COMMAND: {
4107			struct scsi_sense_command *cmd_desc;
4108
4109			cmd_desc = (struct scsi_sense_command *)desc;
4110
4111			*info = scsi_8btou64(cmd_desc->command_info);
4112			if (signed_info != NULL)
4113				*signed_info = *info;
4114			break;
4115		}
4116		case SSD_DESC_FRU: {
4117			struct scsi_sense_fru *fru_desc;
4118
4119			fru_desc = (struct scsi_sense_fru *)desc;
4120
4121			*info = fru_desc->fru;
4122			if (signed_info != NULL)
4123				*signed_info = (int8_t)fru_desc->fru;
4124			break;
4125		}
4126		default:
4127			goto bailout;
4128			break;
4129		}
4130		break;
4131	}
4132	case SSD_TYPE_FIXED: {
4133		struct scsi_sense_data_fixed *sense;
4134
4135		sense = (struct scsi_sense_data_fixed *)sense_data;
4136
4137		switch (info_type) {
4138		case SSD_DESC_INFO: {
4139			uint32_t info_val;
4140
4141			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4142				goto bailout;
4143
4144			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4145				goto bailout;
4146
4147			info_val = scsi_4btoul(sense->info);
4148
4149			*info = info_val;
4150			if (signed_info != NULL)
4151				*signed_info = (int32_t)info_val;
4152			break;
4153		}
4154		case SSD_DESC_COMMAND: {
4155			uint32_t cmd_val;
4156
4157			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4158			     cmd_spec_info) == 0)
4159			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4160				goto bailout;
4161
4162			cmd_val = scsi_4btoul(sense->cmd_spec_info);
4163			if (cmd_val == 0)
4164				goto bailout;
4165
4166			*info = cmd_val;
4167			if (signed_info != NULL)
4168				*signed_info = (int32_t)cmd_val;
4169			break;
4170		}
4171		case SSD_DESC_FRU:
4172			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4173			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4174				goto bailout;
4175
4176			if (sense->fru == 0)
4177				goto bailout;
4178
4179			*info = sense->fru;
4180			if (signed_info != NULL)
4181				*signed_info = (int8_t)sense->fru;
4182			break;
4183		default:
4184			goto bailout;
4185			break;
4186		}
4187		break;
4188	}
4189	default:
4190		goto bailout;
4191		break;
4192	}
4193
4194	return (0);
4195bailout:
4196	return (1);
4197}
4198
4199int
4200scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4201{
4202	scsi_sense_data_type sense_type;
4203
4204	if (sense_len == 0)
4205		goto bailout;
4206
4207	sense_type = scsi_sense_type(sense_data);
4208
4209	switch (sense_type) {
4210	case SSD_TYPE_DESC: {
4211		struct scsi_sense_data_desc *sense;
4212		struct scsi_sense_sks *desc;
4213
4214		sense = (struct scsi_sense_data_desc *)sense_data;
4215
4216		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4217							       SSD_DESC_SKS);
4218		if (desc == NULL)
4219			goto bailout;
4220
4221		/*
4222		 * No need to check the SKS valid bit for descriptor sense.
4223		 * If the descriptor is present, it is valid.
4224		 */
4225		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4226		break;
4227	}
4228	case SSD_TYPE_FIXED: {
4229		struct scsi_sense_data_fixed *sense;
4230
4231		sense = (struct scsi_sense_data_fixed *)sense_data;
4232
4233		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4234		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4235			goto bailout;
4236
4237		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4238			goto bailout;
4239
4240		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4241		break;
4242	}
4243	default:
4244		goto bailout;
4245		break;
4246	}
4247	return (0);
4248bailout:
4249	return (1);
4250}
4251
4252/*
4253 * Provide a common interface for fixed and descriptor sense to detect
4254 * whether we have block-specific sense information.  It is clear by the
4255 * presence of the block descriptor in descriptor mode, but we have to
4256 * infer from the inquiry data and ILI bit in fixed mode.
4257 */
4258int
4259scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4260		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4261{
4262	scsi_sense_data_type sense_type;
4263
4264	if (inq_data != NULL) {
4265		switch (SID_TYPE(inq_data)) {
4266		case T_DIRECT:
4267		case T_RBC:
4268		case T_ZBC_HM:
4269			break;
4270		default:
4271			goto bailout;
4272			break;
4273		}
4274	}
4275
4276	sense_type = scsi_sense_type(sense_data);
4277
4278	switch (sense_type) {
4279	case SSD_TYPE_DESC: {
4280		struct scsi_sense_data_desc *sense;
4281		struct scsi_sense_block *block;
4282
4283		sense = (struct scsi_sense_data_desc *)sense_data;
4284
4285		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4286		    sense_len, SSD_DESC_BLOCK);
4287		if (block == NULL)
4288			goto bailout;
4289
4290		*block_bits = block->byte3;
4291		break;
4292	}
4293	case SSD_TYPE_FIXED: {
4294		struct scsi_sense_data_fixed *sense;
4295
4296		sense = (struct scsi_sense_data_fixed *)sense_data;
4297
4298		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4299			goto bailout;
4300
4301		if ((sense->flags & SSD_ILI) == 0)
4302			goto bailout;
4303
4304		*block_bits = sense->flags & SSD_ILI;
4305		break;
4306	}
4307	default:
4308		goto bailout;
4309		break;
4310	}
4311	return (0);
4312bailout:
4313	return (1);
4314}
4315
4316int
4317scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4318		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4319{
4320	scsi_sense_data_type sense_type;
4321
4322	if (inq_data != NULL) {
4323		switch (SID_TYPE(inq_data)) {
4324		case T_SEQUENTIAL:
4325			break;
4326		default:
4327			goto bailout;
4328			break;
4329		}
4330	}
4331
4332	sense_type = scsi_sense_type(sense_data);
4333
4334	switch (sense_type) {
4335	case SSD_TYPE_DESC: {
4336		struct scsi_sense_data_desc *sense;
4337		struct scsi_sense_stream *stream;
4338
4339		sense = (struct scsi_sense_data_desc *)sense_data;
4340
4341		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4342		    sense_len, SSD_DESC_STREAM);
4343		if (stream == NULL)
4344			goto bailout;
4345
4346		*stream_bits = stream->byte3;
4347		break;
4348	}
4349	case SSD_TYPE_FIXED: {
4350		struct scsi_sense_data_fixed *sense;
4351
4352		sense = (struct scsi_sense_data_fixed *)sense_data;
4353
4354		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4355			goto bailout;
4356
4357		if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0)
4358			goto bailout;
4359
4360		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4361		break;
4362	}
4363	default:
4364		goto bailout;
4365		break;
4366	}
4367	return (0);
4368bailout:
4369	return (1);
4370}
4371
4372void
4373scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4374	       struct scsi_inquiry_data *inq_data, uint64_t info)
4375{
4376	sbuf_printf(sb, "Info: %#jx", info);
4377}
4378
4379void
4380scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4381		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4382{
4383	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4384}
4385
4386
4387void
4388scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4389{
4390	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4391		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4392		    progress, SSD_SKS_PROGRESS_DENOM);
4393}
4394
4395/*
4396 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4397 */
4398int
4399scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4400{
4401	if ((sks[0] & SSD_SKS_VALID) == 0)
4402		return (1);
4403
4404	switch (sense_key) {
4405	case SSD_KEY_ILLEGAL_REQUEST: {
4406		struct scsi_sense_sks_field *field;
4407		int bad_command;
4408		char tmpstr[40];
4409
4410		/*Field Pointer*/
4411		field = (struct scsi_sense_sks_field *)sks;
4412
4413		if (field->byte0 & SSD_SKS_FIELD_CMD)
4414			bad_command = 1;
4415		else
4416			bad_command = 0;
4417
4418		tmpstr[0] = '\0';
4419
4420		/* Bit pointer is valid */
4421		if (field->byte0 & SSD_SKS_BPV)
4422			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4423				 field->byte0 & SSD_SKS_BIT_VALUE);
4424
4425		sbuf_printf(sb, "%s byte %d %sis invalid",
4426			    bad_command ? "Command" : "Data",
4427			    scsi_2btoul(field->field), tmpstr);
4428		break;
4429	}
4430	case SSD_KEY_UNIT_ATTENTION: {
4431		struct scsi_sense_sks_overflow *overflow;
4432
4433		overflow = (struct scsi_sense_sks_overflow *)sks;
4434
4435		/*UA Condition Queue Overflow*/
4436		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4437			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4438			    "Overflowed" : "Did Not Overflow??");
4439		break;
4440	}
4441	case SSD_KEY_RECOVERED_ERROR:
4442	case SSD_KEY_HARDWARE_ERROR:
4443	case SSD_KEY_MEDIUM_ERROR: {
4444		struct scsi_sense_sks_retry *retry;
4445
4446		/*Actual Retry Count*/
4447		retry = (struct scsi_sense_sks_retry *)sks;
4448
4449		sbuf_printf(sb, "Actual Retry Count: %d",
4450			    scsi_2btoul(retry->actual_retry_count));
4451		break;
4452	}
4453	case SSD_KEY_NO_SENSE:
4454	case SSD_KEY_NOT_READY: {
4455		struct scsi_sense_sks_progress *progress;
4456		int progress_val;
4457
4458		/*Progress Indication*/
4459		progress = (struct scsi_sense_sks_progress *)sks;
4460		progress_val = scsi_2btoul(progress->progress);
4461
4462		scsi_progress_sbuf(sb, progress_val);
4463		break;
4464	}
4465	case SSD_KEY_COPY_ABORTED: {
4466		struct scsi_sense_sks_segment *segment;
4467		char tmpstr[40];
4468
4469		/*Segment Pointer*/
4470		segment = (struct scsi_sense_sks_segment *)sks;
4471
4472		tmpstr[0] = '\0';
4473
4474		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4475			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4476				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4477
4478		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4479			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4480			    scsi_2btoul(segment->field), tmpstr);
4481		break;
4482	}
4483	default:
4484		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4485			    scsi_2btoul(&sks[1]));
4486		break;
4487	}
4488
4489	return (0);
4490}
4491
4492void
4493scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4494{
4495	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4496}
4497
4498void
4499scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info)
4500{
4501	int need_comma;
4502
4503	need_comma = 0;
4504	/*
4505	 * XXX KDM this needs more descriptive decoding.
4506	 */
4507	if (stream_bits & SSD_DESC_STREAM_FM) {
4508		sbuf_printf(sb, "Filemark");
4509		need_comma = 1;
4510	}
4511
4512	if (stream_bits & SSD_DESC_STREAM_EOM) {
4513		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4514		need_comma = 1;
4515	}
4516
4517	if (stream_bits & SSD_DESC_STREAM_ILI)
4518		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4519
4520	sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info);
4521}
4522
4523void
4524scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info)
4525{
4526	if (block_bits & SSD_DESC_BLOCK_ILI)
4527		sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info);
4528}
4529
4530void
4531scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4532		     u_int sense_len, uint8_t *cdb, int cdb_len,
4533		     struct scsi_inquiry_data *inq_data,
4534		     struct scsi_sense_desc_header *header)
4535{
4536	struct scsi_sense_info *info;
4537
4538	info = (struct scsi_sense_info *)header;
4539
4540	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4541}
4542
4543void
4544scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4545			u_int sense_len, uint8_t *cdb, int cdb_len,
4546			struct scsi_inquiry_data *inq_data,
4547			struct scsi_sense_desc_header *header)
4548{
4549	struct scsi_sense_command *command;
4550
4551	command = (struct scsi_sense_command *)header;
4552
4553	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4554			  scsi_8btou64(command->command_info));
4555}
4556
4557void
4558scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4559		    u_int sense_len, uint8_t *cdb, int cdb_len,
4560		    struct scsi_inquiry_data *inq_data,
4561		    struct scsi_sense_desc_header *header)
4562{
4563	struct scsi_sense_sks *sks;
4564	int error_code, sense_key, asc, ascq;
4565
4566	sks = (struct scsi_sense_sks *)header;
4567
4568	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4569			       &asc, &ascq, /*show_errors*/ 1);
4570
4571	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4572}
4573
4574void
4575scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4576		    u_int sense_len, uint8_t *cdb, int cdb_len,
4577		    struct scsi_inquiry_data *inq_data,
4578		    struct scsi_sense_desc_header *header)
4579{
4580	struct scsi_sense_fru *fru;
4581
4582	fru = (struct scsi_sense_fru *)header;
4583
4584	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4585}
4586
4587void
4588scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4589		       u_int sense_len, uint8_t *cdb, int cdb_len,
4590		       struct scsi_inquiry_data *inq_data,
4591		       struct scsi_sense_desc_header *header)
4592{
4593	struct scsi_sense_stream *stream;
4594	uint64_t info;
4595
4596	stream = (struct scsi_sense_stream *)header;
4597	info = 0;
4598
4599	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4600
4601	scsi_stream_sbuf(sb, stream->byte3, info);
4602}
4603
4604void
4605scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4606		      u_int sense_len, uint8_t *cdb, int cdb_len,
4607		      struct scsi_inquiry_data *inq_data,
4608		      struct scsi_sense_desc_header *header)
4609{
4610	struct scsi_sense_block *block;
4611	uint64_t info;
4612
4613	block = (struct scsi_sense_block *)header;
4614	info = 0;
4615
4616	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4617
4618	scsi_block_sbuf(sb, block->byte3, info);
4619}
4620
4621void
4622scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4623			 u_int sense_len, uint8_t *cdb, int cdb_len,
4624			 struct scsi_inquiry_data *inq_data,
4625			 struct scsi_sense_desc_header *header)
4626{
4627	struct scsi_sense_progress *progress;
4628	const char *sense_key_desc;
4629	const char *asc_desc;
4630	int progress_val;
4631
4632	progress = (struct scsi_sense_progress *)header;
4633
4634	/*
4635	 * Get descriptions for the sense key, ASC, and ASCQ in the
4636	 * progress descriptor.  These could be different than the values
4637	 * in the overall sense data.
4638	 */
4639	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4640			progress->add_sense_code_qual, inq_data,
4641			&sense_key_desc, &asc_desc);
4642
4643	progress_val = scsi_2btoul(progress->progress);
4644
4645	/*
4646	 * The progress indicator is for the operation described by the
4647	 * sense key, ASC, and ASCQ in the descriptor.
4648	 */
4649	sbuf_cat(sb, sense_key_desc);
4650	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4651		    progress->add_sense_code_qual, asc_desc);
4652	scsi_progress_sbuf(sb, progress_val);
4653}
4654
4655/*
4656 * Generic sense descriptor printing routine.  This is used when we have
4657 * not yet implemented a specific printing routine for this descriptor.
4658 */
4659void
4660scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4661			u_int sense_len, uint8_t *cdb, int cdb_len,
4662			struct scsi_inquiry_data *inq_data,
4663			struct scsi_sense_desc_header *header)
4664{
4665	int i;
4666	uint8_t *buf_ptr;
4667
4668	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4669
4670	buf_ptr = (uint8_t *)&header[1];
4671
4672	for (i = 0; i < header->length; i++, buf_ptr++)
4673		sbuf_printf(sb, " %02x", *buf_ptr);
4674}
4675
4676/*
4677 * Keep this list in numeric order.  This speeds the array traversal.
4678 */
4679struct scsi_sense_desc_printer {
4680	uint8_t desc_type;
4681	/*
4682	 * The function arguments here are the superset of what is needed
4683	 * to print out various different descriptors.  Command and
4684	 * information descriptors need inquiry data and command type.
4685	 * Sense key specific descriptors need the sense key.
4686	 *
4687	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4688	 * information printed may not be fully decoded as a result.
4689	 */
4690	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4691			   u_int sense_len, uint8_t *cdb, int cdb_len,
4692			   struct scsi_inquiry_data *inq_data,
4693			   struct scsi_sense_desc_header *header);
4694} scsi_sense_printers[] = {
4695	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4696	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4697	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4698	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4699	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4700	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4701	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}
4702};
4703
4704void
4705scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4706		     u_int sense_len, uint8_t *cdb, int cdb_len,
4707		     struct scsi_inquiry_data *inq_data,
4708		     struct scsi_sense_desc_header *header)
4709{
4710	u_int i;
4711
4712	for (i = 0; i < nitems(scsi_sense_printers); i++) {
4713		struct scsi_sense_desc_printer *printer;
4714
4715		printer = &scsi_sense_printers[i];
4716
4717		/*
4718		 * The list is sorted, so quit if we've passed our
4719		 * descriptor number.
4720		 */
4721		if (printer->desc_type > header->desc_type)
4722			break;
4723
4724		if (printer->desc_type != header->desc_type)
4725			continue;
4726
4727		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4728				    inq_data, header);
4729
4730		return;
4731	}
4732
4733	/*
4734	 * No specific printing routine, so use the generic routine.
4735	 */
4736	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4737				inq_data, header);
4738}
4739
4740scsi_sense_data_type
4741scsi_sense_type(struct scsi_sense_data *sense_data)
4742{
4743	switch (sense_data->error_code & SSD_ERRCODE) {
4744	case SSD_DESC_CURRENT_ERROR:
4745	case SSD_DESC_DEFERRED_ERROR:
4746		return (SSD_TYPE_DESC);
4747		break;
4748	case SSD_CURRENT_ERROR:
4749	case SSD_DEFERRED_ERROR:
4750		return (SSD_TYPE_FIXED);
4751		break;
4752	default:
4753		break;
4754	}
4755
4756	return (SSD_TYPE_NONE);
4757}
4758
4759struct scsi_print_sense_info {
4760	struct sbuf *sb;
4761	char *path_str;
4762	uint8_t *cdb;
4763	int cdb_len;
4764	struct scsi_inquiry_data *inq_data;
4765};
4766
4767static int
4768scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4769		     struct scsi_sense_desc_header *header, void *arg)
4770{
4771	struct scsi_print_sense_info *print_info;
4772
4773	print_info = (struct scsi_print_sense_info *)arg;
4774
4775	switch (header->desc_type) {
4776	case SSD_DESC_INFO:
4777	case SSD_DESC_FRU:
4778	case SSD_DESC_COMMAND:
4779	case SSD_DESC_SKS:
4780	case SSD_DESC_BLOCK:
4781	case SSD_DESC_STREAM:
4782		/*
4783		 * We have already printed these descriptors, if they are
4784		 * present.
4785		 */
4786		break;
4787	default: {
4788		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4789		scsi_sense_desc_sbuf(print_info->sb,
4790				     (struct scsi_sense_data *)sense, sense_len,
4791				     print_info->cdb, print_info->cdb_len,
4792				     print_info->inq_data, header);
4793		sbuf_printf(print_info->sb, "\n");
4794		break;
4795	}
4796	}
4797
4798	/*
4799	 * Tell the iterator that we want to see more descriptors if they
4800	 * are present.
4801	 */
4802	return (0);
4803}
4804
4805void
4806scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4807		     struct sbuf *sb, char *path_str,
4808		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4809		     int cdb_len)
4810{
4811	int error_code, sense_key, asc, ascq;
4812
4813	sbuf_cat(sb, path_str);
4814
4815	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4816			       &asc, &ascq, /*show_errors*/ 1);
4817
4818	sbuf_printf(sb, "SCSI sense: ");
4819	switch (error_code) {
4820	case SSD_DEFERRED_ERROR:
4821	case SSD_DESC_DEFERRED_ERROR:
4822		sbuf_printf(sb, "Deferred error: ");
4823
4824		/* FALLTHROUGH */
4825	case SSD_CURRENT_ERROR:
4826	case SSD_DESC_CURRENT_ERROR:
4827	{
4828		struct scsi_sense_data_desc *desc_sense;
4829		struct scsi_print_sense_info print_info;
4830		const char *sense_key_desc;
4831		const char *asc_desc;
4832		uint8_t sks[3];
4833		uint64_t val;
4834		int info_valid;
4835
4836		/*
4837		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4838		 * these aren't present in the sense data (i.e. the sense
4839		 * data isn't long enough), the -1 values that
4840		 * scsi_extract_sense_len() returns will yield default
4841		 * or error descriptions.
4842		 */
4843		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4844				&sense_key_desc, &asc_desc);
4845
4846		/*
4847		 * We first print the sense key and ASC/ASCQ.
4848		 */
4849		sbuf_cat(sb, sense_key_desc);
4850		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4851
4852		/*
4853		 * Get the info field if it is valid.
4854		 */
4855		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
4856					&val, NULL) == 0)
4857			info_valid = 1;
4858		else
4859			info_valid = 0;
4860
4861		if (info_valid != 0) {
4862			uint8_t bits;
4863
4864			/*
4865			 * Determine whether we have any block or stream
4866			 * device-specific information.
4867			 */
4868			if (scsi_get_block_info(sense, sense_len, inq_data,
4869						&bits) == 0) {
4870				sbuf_cat(sb, path_str);
4871				scsi_block_sbuf(sb, bits, val);
4872				sbuf_printf(sb, "\n");
4873			} else if (scsi_get_stream_info(sense, sense_len,
4874							inq_data, &bits) == 0) {
4875				sbuf_cat(sb, path_str);
4876				scsi_stream_sbuf(sb, bits, val);
4877				sbuf_printf(sb, "\n");
4878			} else if (val != 0) {
4879				/*
4880				 * The information field can be valid but 0.
4881				 * If the block or stream bits aren't set,
4882				 * and this is 0, it isn't terribly useful
4883				 * to print it out.
4884				 */
4885				sbuf_cat(sb, path_str);
4886				scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
4887				sbuf_printf(sb, "\n");
4888			}
4889		}
4890
4891		/*
4892		 * Print the FRU.
4893		 */
4894		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
4895					&val, NULL) == 0) {
4896			sbuf_cat(sb, path_str);
4897			scsi_fru_sbuf(sb, val);
4898			sbuf_printf(sb, "\n");
4899		}
4900
4901		/*
4902		 * Print any command-specific information.
4903		 */
4904		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
4905					&val, NULL) == 0) {
4906			sbuf_cat(sb, path_str);
4907			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
4908			sbuf_printf(sb, "\n");
4909		}
4910
4911		/*
4912		 * Print out any sense-key-specific information.
4913		 */
4914		if (scsi_get_sks(sense, sense_len, sks) == 0) {
4915			sbuf_cat(sb, path_str);
4916			scsi_sks_sbuf(sb, sense_key, sks);
4917			sbuf_printf(sb, "\n");
4918		}
4919
4920		/*
4921		 * If this is fixed sense, we're done.  If we have
4922		 * descriptor sense, we might have more information
4923		 * available.
4924		 */
4925		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
4926			break;
4927
4928		desc_sense = (struct scsi_sense_data_desc *)sense;
4929
4930		print_info.sb = sb;
4931		print_info.path_str = path_str;
4932		print_info.cdb = cdb;
4933		print_info.cdb_len = cdb_len;
4934		print_info.inq_data = inq_data;
4935
4936		/*
4937		 * Print any sense descriptors that we have not already printed.
4938		 */
4939		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
4940				  &print_info);
4941		break;
4942
4943	}
4944	case -1:
4945		/*
4946		 * scsi_extract_sense_len() sets values to -1 if the
4947		 * show_errors flag is set and they aren't present in the
4948		 * sense data.  This means that sense_len is 0.
4949		 */
4950		sbuf_printf(sb, "No sense data present\n");
4951		break;
4952	default: {
4953		sbuf_printf(sb, "Error code 0x%x", error_code);
4954		if (sense->error_code & SSD_ERRCODE_VALID) {
4955			struct scsi_sense_data_fixed *fixed_sense;
4956
4957			fixed_sense = (struct scsi_sense_data_fixed *)sense;
4958
4959			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
4960				uint32_t info;
4961
4962				info = scsi_4btoul(fixed_sense->info);
4963
4964				sbuf_printf(sb, " at block no. %d (decimal)",
4965					    info);
4966			}
4967		}
4968		sbuf_printf(sb, "\n");
4969		break;
4970	}
4971	}
4972}
4973
4974/*
4975 * scsi_sense_sbuf() returns 0 for success and -1 for failure.
4976 */
4977#ifdef _KERNEL
4978int
4979scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
4980		scsi_sense_string_flags flags)
4981#else /* !_KERNEL */
4982int
4983scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
4984		struct sbuf *sb, scsi_sense_string_flags flags)
4985#endif /* _KERNEL/!_KERNEL */
4986{
4987	struct	  scsi_sense_data *sense;
4988	struct	  scsi_inquiry_data *inq_data;
4989#ifdef _KERNEL
4990	struct	  ccb_getdev *cgd;
4991#endif /* _KERNEL */
4992	char	  path_str[64];
4993	uint8_t	  *cdb;
4994
4995#ifndef _KERNEL
4996	if (device == NULL)
4997		return(-1);
4998#endif /* !_KERNEL */
4999	if ((csio == NULL) || (sb == NULL))
5000		return(-1);
5001
5002	/*
5003	 * If the CDB is a physical address, we can't deal with it..
5004	 */
5005	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5006		flags &= ~SSS_FLAG_PRINT_COMMAND;
5007
5008#ifdef _KERNEL
5009	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5010#else /* !_KERNEL */
5011	cam_path_string(device, path_str, sizeof(path_str));
5012#endif /* _KERNEL/!_KERNEL */
5013
5014#ifdef _KERNEL
5015	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5016		return(-1);
5017	/*
5018	 * Get the device information.
5019	 */
5020	xpt_setup_ccb(&cgd->ccb_h,
5021		      csio->ccb_h.path,
5022		      CAM_PRIORITY_NORMAL);
5023	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5024	xpt_action((union ccb *)cgd);
5025
5026	/*
5027	 * If the device is unconfigured, just pretend that it is a hard
5028	 * drive.  scsi_op_desc() needs this.
5029	 */
5030	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5031		cgd->inq_data.device = T_DIRECT;
5032
5033	inq_data = &cgd->inq_data;
5034
5035#else /* !_KERNEL */
5036
5037	inq_data = &device->inq_data;
5038
5039#endif /* _KERNEL/!_KERNEL */
5040
5041	sense = NULL;
5042
5043	if (flags & SSS_FLAG_PRINT_COMMAND) {
5044
5045		sbuf_cat(sb, path_str);
5046
5047#ifdef _KERNEL
5048		scsi_command_string(csio, sb);
5049#else /* !_KERNEL */
5050		scsi_command_string(device, csio, sb);
5051#endif /* _KERNEL/!_KERNEL */
5052		sbuf_printf(sb, "\n");
5053	}
5054
5055	/*
5056	 * If the sense data is a physical pointer, forget it.
5057	 */
5058	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5059		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5060#ifdef _KERNEL
5061			xpt_free_ccb((union ccb*)cgd);
5062#endif /* _KERNEL/!_KERNEL */
5063			return(-1);
5064		} else {
5065			/*
5066			 * bcopy the pointer to avoid unaligned access
5067			 * errors on finicky architectures.  We don't
5068			 * ensure that the sense data is pointer aligned.
5069			 */
5070			bcopy(&csio->sense_data, &sense,
5071			      sizeof(struct scsi_sense_data *));
5072		}
5073	} else {
5074		/*
5075		 * If the physical sense flag is set, but the sense pointer
5076		 * is not also set, we assume that the user is an idiot and
5077		 * return.  (Well, okay, it could be that somehow, the
5078		 * entire csio is physical, but we would have probably core
5079		 * dumped on one of the bogus pointer deferences above
5080		 * already.)
5081		 */
5082		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5083#ifdef _KERNEL
5084			xpt_free_ccb((union ccb*)cgd);
5085#endif /* _KERNEL/!_KERNEL */
5086			return(-1);
5087		} else
5088			sense = &csio->sense_data;
5089	}
5090
5091	if (csio->ccb_h.flags & CAM_CDB_POINTER)
5092		cdb = csio->cdb_io.cdb_ptr;
5093	else
5094		cdb = csio->cdb_io.cdb_bytes;
5095
5096	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5097			     path_str, inq_data, cdb, csio->cdb_len);
5098
5099#ifdef _KERNEL
5100	xpt_free_ccb((union ccb*)cgd);
5101#endif /* _KERNEL/!_KERNEL */
5102	return(0);
5103}
5104
5105
5106
5107#ifdef _KERNEL
5108char *
5109scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5110#else /* !_KERNEL */
5111char *
5112scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5113		  char *str, int str_len)
5114#endif /* _KERNEL/!_KERNEL */
5115{
5116	struct sbuf sb;
5117
5118	sbuf_new(&sb, str, str_len, 0);
5119
5120#ifdef _KERNEL
5121	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5122#else /* !_KERNEL */
5123	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5124#endif /* _KERNEL/!_KERNEL */
5125
5126	sbuf_finish(&sb);
5127
5128	return(sbuf_data(&sb));
5129}
5130
5131#ifdef _KERNEL
5132void
5133scsi_sense_print(struct ccb_scsiio *csio)
5134{
5135	struct sbuf sb;
5136	char str[512];
5137
5138	sbuf_new(&sb, str, sizeof(str), 0);
5139
5140	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5141
5142	sbuf_finish(&sb);
5143
5144	printf("%s", sbuf_data(&sb));
5145}
5146
5147#else /* !_KERNEL */
5148void
5149scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5150		 FILE *ofile)
5151{
5152	struct sbuf sb;
5153	char str[512];
5154
5155	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5156		return;
5157
5158	sbuf_new(&sb, str, sizeof(str), 0);
5159
5160	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5161
5162	sbuf_finish(&sb);
5163
5164	fprintf(ofile, "%s", sbuf_data(&sb));
5165}
5166
5167#endif /* _KERNEL/!_KERNEL */
5168
5169/*
5170 * Extract basic sense information.  This is backward-compatible with the
5171 * previous implementation.  For new implementations,
5172 * scsi_extract_sense_len() is recommended.
5173 */
5174void
5175scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5176		   int *sense_key, int *asc, int *ascq)
5177{
5178	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5179			       sense_key, asc, ascq, /*show_errors*/ 0);
5180}
5181
5182/*
5183 * Extract basic sense information from SCSI I/O CCB structure.
5184 */
5185int
5186scsi_extract_sense_ccb(union ccb *ccb,
5187    int *error_code, int *sense_key, int *asc, int *ascq)
5188{
5189	struct scsi_sense_data *sense_data;
5190
5191	/* Make sure there are some sense data we can access. */
5192	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5193	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5194	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5195	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5196	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5197		return (0);
5198
5199	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5200		bcopy(&ccb->csio.sense_data, &sense_data,
5201		    sizeof(struct scsi_sense_data *));
5202	else
5203		sense_data = &ccb->csio.sense_data;
5204	scsi_extract_sense_len(sense_data,
5205	    ccb->csio.sense_len - ccb->csio.sense_resid,
5206	    error_code, sense_key, asc, ascq, 1);
5207	if (*error_code == -1)
5208		return (0);
5209	return (1);
5210}
5211
5212/*
5213 * Extract basic sense information.  If show_errors is set, sense values
5214 * will be set to -1 if they are not present.
5215 */
5216void
5217scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5218		       int *error_code, int *sense_key, int *asc, int *ascq,
5219		       int show_errors)
5220{
5221	/*
5222	 * If we have no length, we have no sense.
5223	 */
5224	if (sense_len == 0) {
5225		if (show_errors == 0) {
5226			*error_code = 0;
5227			*sense_key = 0;
5228			*asc = 0;
5229			*ascq = 0;
5230		} else {
5231			*error_code = -1;
5232			*sense_key = -1;
5233			*asc = -1;
5234			*ascq = -1;
5235		}
5236		return;
5237	}
5238
5239	*error_code = sense_data->error_code & SSD_ERRCODE;
5240
5241	switch (*error_code) {
5242	case SSD_DESC_CURRENT_ERROR:
5243	case SSD_DESC_DEFERRED_ERROR: {
5244		struct scsi_sense_data_desc *sense;
5245
5246		sense = (struct scsi_sense_data_desc *)sense_data;
5247
5248		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5249			*sense_key = sense->sense_key & SSD_KEY;
5250		else
5251			*sense_key = (show_errors) ? -1 : 0;
5252
5253		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5254			*asc = sense->add_sense_code;
5255		else
5256			*asc = (show_errors) ? -1 : 0;
5257
5258		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5259			*ascq = sense->add_sense_code_qual;
5260		else
5261			*ascq = (show_errors) ? -1 : 0;
5262		break;
5263	}
5264	case SSD_CURRENT_ERROR:
5265	case SSD_DEFERRED_ERROR:
5266	default: {
5267		struct scsi_sense_data_fixed *sense;
5268
5269		sense = (struct scsi_sense_data_fixed *)sense_data;
5270
5271		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5272			*sense_key = sense->flags & SSD_KEY;
5273		else
5274			*sense_key = (show_errors) ? -1 : 0;
5275
5276		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5277		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5278			*asc = sense->add_sense_code;
5279		else
5280			*asc = (show_errors) ? -1 : 0;
5281
5282		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5283		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5284			*ascq = sense->add_sense_code_qual;
5285		else
5286			*ascq = (show_errors) ? -1 : 0;
5287		break;
5288	}
5289	}
5290}
5291
5292int
5293scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5294		   int show_errors)
5295{
5296	int error_code, sense_key, asc, ascq;
5297
5298	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5299			       &sense_key, &asc, &ascq, show_errors);
5300
5301	return (sense_key);
5302}
5303
5304int
5305scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5306	     int show_errors)
5307{
5308	int error_code, sense_key, asc, ascq;
5309
5310	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5311			       &sense_key, &asc, &ascq, show_errors);
5312
5313	return (asc);
5314}
5315
5316int
5317scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5318	      int show_errors)
5319{
5320	int error_code, sense_key, asc, ascq;
5321
5322	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5323			       &sense_key, &asc, &ascq, show_errors);
5324
5325	return (ascq);
5326}
5327
5328/*
5329 * This function currently requires at least 36 bytes, or
5330 * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5331 * function needs more or less data in the future, another length should be
5332 * defined in scsi_all.h to indicate the minimum amount of data necessary
5333 * for this routine to function properly.
5334 */
5335void
5336scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5337{
5338	u_int8_t type;
5339	char *dtype, *qtype;
5340	char vendor[16], product[48], revision[16], rstr[12];
5341
5342	type = SID_TYPE(inq_data);
5343
5344	/*
5345	 * Figure out basic device type and qualifier.
5346	 */
5347	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5348		qtype = " (vendor-unique qualifier)";
5349	} else {
5350		switch (SID_QUAL(inq_data)) {
5351		case SID_QUAL_LU_CONNECTED:
5352			qtype = "";
5353			break;
5354
5355		case SID_QUAL_LU_OFFLINE:
5356			qtype = " (offline)";
5357			break;
5358
5359		case SID_QUAL_RSVD:
5360			qtype = " (reserved qualifier)";
5361			break;
5362		default:
5363		case SID_QUAL_BAD_LU:
5364			qtype = " (LUN not supported)";
5365			break;
5366		}
5367	}
5368
5369	switch (type) {
5370	case T_DIRECT:
5371		dtype = "Direct Access";
5372		break;
5373	case T_SEQUENTIAL:
5374		dtype = "Sequential Access";
5375		break;
5376	case T_PRINTER:
5377		dtype = "Printer";
5378		break;
5379	case T_PROCESSOR:
5380		dtype = "Processor";
5381		break;
5382	case T_WORM:
5383		dtype = "WORM";
5384		break;
5385	case T_CDROM:
5386		dtype = "CD-ROM";
5387		break;
5388	case T_SCANNER:
5389		dtype = "Scanner";
5390		break;
5391	case T_OPTICAL:
5392		dtype = "Optical";
5393		break;
5394	case T_CHANGER:
5395		dtype = "Changer";
5396		break;
5397	case T_COMM:
5398		dtype = "Communication";
5399		break;
5400	case T_STORARRAY:
5401		dtype = "Storage Array";
5402		break;
5403	case T_ENCLOSURE:
5404		dtype = "Enclosure Services";
5405		break;
5406	case T_RBC:
5407		dtype = "Simplified Direct Access";
5408		break;
5409	case T_OCRW:
5410		dtype = "Optical Card Read/Write";
5411		break;
5412	case T_OSD:
5413		dtype = "Object-Based Storage";
5414		break;
5415	case T_ADC:
5416		dtype = "Automation/Drive Interface";
5417		break;
5418	case T_ZBC_HM:
5419		dtype = "Host Managed Zoned Block";
5420		break;
5421	case T_NODEVICE:
5422		dtype = "Uninstalled";
5423		break;
5424	default:
5425		dtype = "unknown";
5426		break;
5427	}
5428
5429	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5430		   sizeof(vendor));
5431	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5432		   sizeof(product));
5433	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5434		   sizeof(revision));
5435
5436	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5437		snprintf(rstr, sizeof(rstr), "SCSI");
5438	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5439		snprintf(rstr, sizeof(rstr), "SCSI-%d",
5440		    SID_ANSI_REV(inq_data));
5441	} else {
5442		snprintf(rstr, sizeof(rstr), "SPC-%d SCSI",
5443		    SID_ANSI_REV(inq_data) - 2);
5444	}
5445	printf("<%s %s %s> %s %s %s device%s\n",
5446	       vendor, product, revision,
5447	       SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed",
5448	       dtype, rstr, qtype);
5449}
5450
5451void
5452scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5453{
5454	char vendor[16], product[48], revision[16];
5455
5456	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5457		   sizeof(vendor));
5458	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5459		   sizeof(product));
5460	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5461		   sizeof(revision));
5462
5463	printf("<%s %s %s>", vendor, product, revision);
5464}
5465
5466/*
5467 * Table of syncrates that don't follow the "divisible by 4"
5468 * rule. This table will be expanded in future SCSI specs.
5469 */
5470static struct {
5471	u_int period_factor;
5472	u_int period;	/* in 100ths of ns */
5473} scsi_syncrates[] = {
5474	{ 0x08, 625 },	/* FAST-160 */
5475	{ 0x09, 1250 },	/* FAST-80 */
5476	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5477	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5478	{ 0x0c, 5000 }	/* FAST-20 */
5479};
5480
5481/*
5482 * Return the frequency in kHz corresponding to the given
5483 * sync period factor.
5484 */
5485u_int
5486scsi_calc_syncsrate(u_int period_factor)
5487{
5488	u_int i;
5489	u_int num_syncrates;
5490
5491	/*
5492	 * It's a bug if period is zero, but if it is anyway, don't
5493	 * die with a divide fault- instead return something which
5494	 * 'approximates' async
5495	 */
5496	if (period_factor == 0) {
5497		return (3300);
5498	}
5499
5500	num_syncrates = nitems(scsi_syncrates);
5501	/* See if the period is in the "exception" table */
5502	for (i = 0; i < num_syncrates; i++) {
5503
5504		if (period_factor == scsi_syncrates[i].period_factor) {
5505			/* Period in kHz */
5506			return (100000000 / scsi_syncrates[i].period);
5507		}
5508	}
5509
5510	/*
5511	 * Wasn't in the table, so use the standard
5512	 * 4 times conversion.
5513	 */
5514	return (10000000 / (period_factor * 4 * 10));
5515}
5516
5517/*
5518 * Return the SCSI sync parameter that corresponds to
5519 * the passed in period in 10ths of ns.
5520 */
5521u_int
5522scsi_calc_syncparam(u_int period)
5523{
5524	u_int i;
5525	u_int num_syncrates;
5526
5527	if (period == 0)
5528		return (~0);	/* Async */
5529
5530	/* Adjust for exception table being in 100ths. */
5531	period *= 10;
5532	num_syncrates = nitems(scsi_syncrates);
5533	/* See if the period is in the "exception" table */
5534	for (i = 0; i < num_syncrates; i++) {
5535
5536		if (period <= scsi_syncrates[i].period) {
5537			/* Period in 100ths of ns */
5538			return (scsi_syncrates[i].period_factor);
5539		}
5540	}
5541
5542	/*
5543	 * Wasn't in the table, so use the standard
5544	 * 1/4 period in ns conversion.
5545	 */
5546	return (period/400);
5547}
5548
5549int
5550scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5551{
5552	struct scsi_vpd_id_descriptor *descr;
5553	struct scsi_vpd_id_naa_basic *naa;
5554
5555	descr = (struct scsi_vpd_id_descriptor *)bufp;
5556	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5557	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5558		return 0;
5559	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5560		return 0;
5561	if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG)
5562		return 0;
5563	return 1;
5564}
5565
5566int
5567scsi_devid_is_sas_target(uint8_t *bufp)
5568{
5569	struct scsi_vpd_id_descriptor *descr;
5570
5571	descr = (struct scsi_vpd_id_descriptor *)bufp;
5572	if (!scsi_devid_is_naa_ieee_reg(bufp))
5573		return 0;
5574	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5575		return 0;
5576	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5577		return 0;
5578	return 1;
5579}
5580
5581int
5582scsi_devid_is_lun_eui64(uint8_t *bufp)
5583{
5584	struct scsi_vpd_id_descriptor *descr;
5585
5586	descr = (struct scsi_vpd_id_descriptor *)bufp;
5587	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5588		return 0;
5589	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5590		return 0;
5591	return 1;
5592}
5593
5594int
5595scsi_devid_is_lun_naa(uint8_t *bufp)
5596{
5597	struct scsi_vpd_id_descriptor *descr;
5598
5599	descr = (struct scsi_vpd_id_descriptor *)bufp;
5600	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5601		return 0;
5602	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5603		return 0;
5604	return 1;
5605}
5606
5607int
5608scsi_devid_is_lun_t10(uint8_t *bufp)
5609{
5610	struct scsi_vpd_id_descriptor *descr;
5611
5612	descr = (struct scsi_vpd_id_descriptor *)bufp;
5613	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5614		return 0;
5615	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5616		return 0;
5617	return 1;
5618}
5619
5620int
5621scsi_devid_is_lun_name(uint8_t *bufp)
5622{
5623	struct scsi_vpd_id_descriptor *descr;
5624
5625	descr = (struct scsi_vpd_id_descriptor *)bufp;
5626	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5627		return 0;
5628	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5629		return 0;
5630	return 1;
5631}
5632
5633int
5634scsi_devid_is_port_naa(uint8_t *bufp)
5635{
5636	struct scsi_vpd_id_descriptor *descr;
5637
5638	descr = (struct scsi_vpd_id_descriptor *)bufp;
5639	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5640		return 0;
5641	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5642		return 0;
5643	return 1;
5644}
5645
5646struct scsi_vpd_id_descriptor *
5647scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5648    scsi_devid_checkfn_t ck_fn)
5649{
5650	uint8_t *desc_buf_end;
5651
5652	desc_buf_end = (uint8_t *)desc + len;
5653
5654	for (; desc->identifier <= desc_buf_end &&
5655	    desc->identifier + desc->length <= desc_buf_end;
5656	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5657						    + desc->length)) {
5658
5659		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5660			return (desc);
5661	}
5662	return (NULL);
5663}
5664
5665struct scsi_vpd_id_descriptor *
5666scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5667    scsi_devid_checkfn_t ck_fn)
5668{
5669	uint32_t len;
5670
5671	if (page_len < sizeof(*id))
5672		return (NULL);
5673	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5674	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5675	    id->desc_list, len, ck_fn));
5676}
5677
5678int
5679scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5680		      uint32_t valid_len)
5681{
5682	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5683	case SCSI_PROTO_FC: {
5684		struct scsi_transportid_fcp *fcp;
5685		uint64_t n_port_name;
5686
5687		fcp = (struct scsi_transportid_fcp *)hdr;
5688
5689		n_port_name = scsi_8btou64(fcp->n_port_name);
5690
5691		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5692		break;
5693	}
5694	case SCSI_PROTO_SPI: {
5695		struct scsi_transportid_spi *spi;
5696
5697		spi = (struct scsi_transportid_spi *)hdr;
5698
5699		sbuf_printf(sb, "SPI address: %u,%u",
5700			    scsi_2btoul(spi->scsi_addr),
5701			    scsi_2btoul(spi->rel_trgt_port_id));
5702		break;
5703	}
5704	case SCSI_PROTO_SSA:
5705		/*
5706		 * XXX KDM there is no transport ID defined in SPC-4 for
5707		 * SSA.
5708		 */
5709		break;
5710	case SCSI_PROTO_1394: {
5711		struct scsi_transportid_1394 *sbp;
5712		uint64_t eui64;
5713
5714		sbp = (struct scsi_transportid_1394 *)hdr;
5715
5716		eui64 = scsi_8btou64(sbp->eui64);
5717		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5718		break;
5719	}
5720	case SCSI_PROTO_RDMA: {
5721		struct scsi_transportid_rdma *rdma;
5722		unsigned int i;
5723
5724		rdma = (struct scsi_transportid_rdma *)hdr;
5725
5726		sbuf_printf(sb, "RDMA address: 0x");
5727		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5728			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5729		break;
5730	}
5731	case SCSI_PROTO_ISCSI: {
5732		uint32_t add_len, i;
5733		uint8_t *iscsi_name = NULL;
5734		int nul_found = 0;
5735
5736		sbuf_printf(sb, "iSCSI address: ");
5737		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5738		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5739			struct scsi_transportid_iscsi_device *dev;
5740
5741			dev = (struct scsi_transportid_iscsi_device *)hdr;
5742
5743			/*
5744			 * Verify how much additional data we really have.
5745			 */
5746			add_len = scsi_2btoul(dev->additional_length);
5747			add_len = MIN(add_len, valid_len -
5748				__offsetof(struct scsi_transportid_iscsi_device,
5749					   iscsi_name));
5750			iscsi_name = &dev->iscsi_name[0];
5751
5752		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5753			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5754			struct scsi_transportid_iscsi_port *port;
5755
5756			port = (struct scsi_transportid_iscsi_port *)hdr;
5757
5758			add_len = scsi_2btoul(port->additional_length);
5759			add_len = MIN(add_len, valid_len -
5760				__offsetof(struct scsi_transportid_iscsi_port,
5761					   iscsi_name));
5762			iscsi_name = &port->iscsi_name[0];
5763		} else {
5764			sbuf_printf(sb, "unknown format %x",
5765				    (hdr->format_protocol &
5766				     SCSI_TRN_FORMAT_MASK) >>
5767				     SCSI_TRN_FORMAT_SHIFT);
5768			break;
5769		}
5770		if (add_len == 0) {
5771			sbuf_printf(sb, "not enough data");
5772			break;
5773		}
5774		/*
5775		 * This is supposed to be a NUL-terminated ASCII
5776		 * string, but you never know.  So we're going to
5777		 * check.  We need to do this because there is no
5778		 * sbuf equivalent of strncat().
5779		 */
5780		for (i = 0; i < add_len; i++) {
5781			if (iscsi_name[i] == '\0') {
5782				nul_found = 1;
5783				break;
5784			}
5785		}
5786		/*
5787		 * If there is a NUL in the name, we can just use
5788		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5789		 */
5790		if (nul_found != 0)
5791			sbuf_cat(sb, iscsi_name);
5792		else
5793			sbuf_bcat(sb, iscsi_name, add_len);
5794		break;
5795	}
5796	case SCSI_PROTO_SAS: {
5797		struct scsi_transportid_sas *sas;
5798		uint64_t sas_addr;
5799
5800		sas = (struct scsi_transportid_sas *)hdr;
5801
5802		sas_addr = scsi_8btou64(sas->sas_address);
5803		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5804		break;
5805	}
5806	case SCSI_PROTO_ADITP:
5807	case SCSI_PROTO_ATA:
5808	case SCSI_PROTO_UAS:
5809		/*
5810		 * No Transport ID format for ADI, ATA or USB is defined in
5811		 * SPC-4.
5812		 */
5813		sbuf_printf(sb, "No known Transport ID format for protocol "
5814			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5815		break;
5816	case SCSI_PROTO_SOP: {
5817		struct scsi_transportid_sop *sop;
5818		struct scsi_sop_routing_id_norm *rid;
5819
5820		sop = (struct scsi_transportid_sop *)hdr;
5821		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5822
5823		/*
5824		 * Note that there is no alternate format specified in SPC-4
5825		 * for the PCIe routing ID, so we don't really have a way
5826		 * to know whether the second byte of the routing ID is
5827		 * a device and function or just a function.  So we just
5828		 * assume bus,device,function.
5829		 */
5830		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5831			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5832			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5833		break;
5834	}
5835	case SCSI_PROTO_NONE:
5836	default:
5837		sbuf_printf(sb, "Unknown protocol %#x",
5838			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5839		break;
5840	}
5841
5842	return (0);
5843}
5844
5845struct scsi_nv scsi_proto_map[] = {
5846	{ "fcp", SCSI_PROTO_FC },
5847	{ "spi", SCSI_PROTO_SPI },
5848	{ "ssa", SCSI_PROTO_SSA },
5849	{ "sbp", SCSI_PROTO_1394 },
5850	{ "1394", SCSI_PROTO_1394 },
5851	{ "srp", SCSI_PROTO_RDMA },
5852	{ "rdma", SCSI_PROTO_RDMA },
5853	{ "iscsi", SCSI_PROTO_ISCSI },
5854	{ "iqn", SCSI_PROTO_ISCSI },
5855	{ "sas", SCSI_PROTO_SAS },
5856	{ "aditp", SCSI_PROTO_ADITP },
5857	{ "ata", SCSI_PROTO_ATA },
5858	{ "uas", SCSI_PROTO_UAS },
5859	{ "usb", SCSI_PROTO_UAS },
5860	{ "sop", SCSI_PROTO_SOP }
5861};
5862
5863const char *
5864scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
5865{
5866	int i;
5867
5868	for (i = 0; i < num_table_entries; i++) {
5869		if (table[i].value == value)
5870			return (table[i].name);
5871	}
5872
5873	return (NULL);
5874}
5875
5876/*
5877 * Given a name/value table, find a value matching the given name.
5878 * Return values:
5879 *	SCSI_NV_FOUND - match found
5880 *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
5881 *	SCSI_NV_NOT_FOUND - no match found
5882 */
5883scsi_nv_status
5884scsi_get_nv(struct scsi_nv *table, int num_table_entries,
5885	    char *name, int *table_entry, scsi_nv_flags flags)
5886{
5887	int i, num_matches = 0;
5888
5889	for (i = 0; i < num_table_entries; i++) {
5890		size_t table_len, name_len;
5891
5892		table_len = strlen(table[i].name);
5893		name_len = strlen(name);
5894
5895		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
5896		  && (strncasecmp(table[i].name, name, name_len) == 0))
5897		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
5898		 && (strncmp(table[i].name, name, name_len) == 0))) {
5899			*table_entry = i;
5900
5901			/*
5902			 * Check for an exact match.  If we have the same
5903			 * number of characters in the table as the argument,
5904			 * and we already know they're the same, we have
5905			 * an exact match.
5906		 	 */
5907			if (table_len == name_len)
5908				return (SCSI_NV_FOUND);
5909
5910			/*
5911			 * Otherwise, bump up the number of matches.  We'll
5912			 * see later how many we have.
5913			 */
5914			num_matches++;
5915		}
5916	}
5917
5918	if (num_matches > 1)
5919		return (SCSI_NV_AMBIGUOUS);
5920	else if (num_matches == 1)
5921		return (SCSI_NV_FOUND);
5922	else
5923		return (SCSI_NV_NOT_FOUND);
5924}
5925
5926/*
5927 * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
5928 * all 64-bit numbers, the code is similar.
5929 */
5930int
5931scsi_parse_transportid_64bit(int proto_id, char *id_str,
5932			     struct scsi_transportid_header **hdr,
5933			     unsigned int *alloc_len,
5934#ifdef _KERNEL
5935			     struct malloc_type *type, int flags,
5936#endif
5937			     char *error_str, int error_str_len)
5938{
5939	uint64_t value;
5940	char *endptr;
5941	int retval;
5942	size_t alloc_size;
5943
5944	retval = 0;
5945
5946	value = strtouq(id_str, &endptr, 0);
5947	if (*endptr != '\0') {
5948		if (error_str != NULL) {
5949			snprintf(error_str, error_str_len, "%s: error "
5950				 "parsing ID %s, 64-bit number required",
5951				 __func__, id_str);
5952		}
5953		retval = 1;
5954		goto bailout;
5955	}
5956
5957	switch (proto_id) {
5958	case SCSI_PROTO_FC:
5959		alloc_size = sizeof(struct scsi_transportid_fcp);
5960		break;
5961	case SCSI_PROTO_1394:
5962		alloc_size = sizeof(struct scsi_transportid_1394);
5963		break;
5964	case SCSI_PROTO_SAS:
5965		alloc_size = sizeof(struct scsi_transportid_sas);
5966		break;
5967	default:
5968		if (error_str != NULL) {
5969			snprintf(error_str, error_str_len, "%s: unsupported "
5970				 "protocol %d", __func__, proto_id);
5971		}
5972		retval = 1;
5973		goto bailout;
5974		break; /* NOTREACHED */
5975	}
5976#ifdef _KERNEL
5977	*hdr = malloc(alloc_size, type, flags);
5978#else /* _KERNEL */
5979	*hdr = malloc(alloc_size);
5980#endif /*_KERNEL */
5981	if (*hdr == NULL) {
5982		if (error_str != NULL) {
5983			snprintf(error_str, error_str_len, "%s: unable to "
5984				 "allocate %zu bytes", __func__, alloc_size);
5985		}
5986		retval = 1;
5987		goto bailout;
5988	}
5989
5990	*alloc_len = alloc_size;
5991
5992	bzero(*hdr, alloc_size);
5993
5994	switch (proto_id) {
5995	case SCSI_PROTO_FC: {
5996		struct scsi_transportid_fcp *fcp;
5997
5998		fcp = (struct scsi_transportid_fcp *)(*hdr);
5999		fcp->format_protocol = SCSI_PROTO_FC |
6000				       SCSI_TRN_FCP_FORMAT_DEFAULT;
6001		scsi_u64to8b(value, fcp->n_port_name);
6002		break;
6003	}
6004	case SCSI_PROTO_1394: {
6005		struct scsi_transportid_1394 *sbp;
6006
6007		sbp = (struct scsi_transportid_1394 *)(*hdr);
6008		sbp->format_protocol = SCSI_PROTO_1394 |
6009				       SCSI_TRN_1394_FORMAT_DEFAULT;
6010		scsi_u64to8b(value, sbp->eui64);
6011		break;
6012	}
6013	case SCSI_PROTO_SAS: {
6014		struct scsi_transportid_sas *sas;
6015
6016		sas = (struct scsi_transportid_sas *)(*hdr);
6017		sas->format_protocol = SCSI_PROTO_SAS |
6018				       SCSI_TRN_SAS_FORMAT_DEFAULT;
6019		scsi_u64to8b(value, sas->sas_address);
6020		break;
6021	}
6022	default:
6023		break;
6024	}
6025bailout:
6026	return (retval);
6027}
6028
6029/*
6030 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6031 */
6032int
6033scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6034			   unsigned int *alloc_len,
6035#ifdef _KERNEL
6036			   struct malloc_type *type, int flags,
6037#endif
6038			   char *error_str, int error_str_len)
6039{
6040	unsigned long scsi_addr, target_port;
6041	struct scsi_transportid_spi *spi;
6042	char *tmpstr, *endptr;
6043	int retval;
6044
6045	retval = 0;
6046
6047	tmpstr = strsep(&id_str, ",");
6048	if (tmpstr == NULL) {
6049		if (error_str != NULL) {
6050			snprintf(error_str, error_str_len,
6051				 "%s: no ID found", __func__);
6052		}
6053		retval = 1;
6054		goto bailout;
6055	}
6056	scsi_addr = strtoul(tmpstr, &endptr, 0);
6057	if (*endptr != '\0') {
6058		if (error_str != NULL) {
6059			snprintf(error_str, error_str_len, "%s: error "
6060				 "parsing SCSI ID %s, number required",
6061				 __func__, tmpstr);
6062		}
6063		retval = 1;
6064		goto bailout;
6065	}
6066
6067	if (id_str == NULL) {
6068		if (error_str != NULL) {
6069			snprintf(error_str, error_str_len, "%s: no relative "
6070				 "target port found", __func__);
6071		}
6072		retval = 1;
6073		goto bailout;
6074	}
6075
6076	target_port = strtoul(id_str, &endptr, 0);
6077	if (*endptr != '\0') {
6078		if (error_str != NULL) {
6079			snprintf(error_str, error_str_len, "%s: error "
6080				 "parsing relative target port %s, number "
6081				 "required", __func__, id_str);
6082		}
6083		retval = 1;
6084		goto bailout;
6085	}
6086#ifdef _KERNEL
6087	spi = malloc(sizeof(*spi), type, flags);
6088#else
6089	spi = malloc(sizeof(*spi));
6090#endif
6091	if (spi == NULL) {
6092		if (error_str != NULL) {
6093			snprintf(error_str, error_str_len, "%s: unable to "
6094				 "allocate %zu bytes", __func__,
6095				 sizeof(*spi));
6096		}
6097		retval = 1;
6098		goto bailout;
6099	}
6100	*alloc_len = sizeof(*spi);
6101	bzero(spi, sizeof(*spi));
6102
6103	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6104	scsi_ulto2b(scsi_addr, spi->scsi_addr);
6105	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6106
6107	*hdr = (struct scsi_transportid_header *)spi;
6108bailout:
6109	return (retval);
6110}
6111
6112/*
6113 * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
6114 * optionally prefixed by "0x" or "0X".
6115 */
6116int
6117scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6118			    unsigned int *alloc_len,
6119#ifdef _KERNEL
6120			    struct malloc_type *type, int flags,
6121#endif
6122			    char *error_str, int error_str_len)
6123{
6124	struct scsi_transportid_rdma *rdma;
6125	int retval;
6126	size_t id_len, rdma_id_size;
6127	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6128	char *tmpstr;
6129	unsigned int i, j;
6130
6131	retval = 0;
6132	id_len = strlen(id_str);
6133	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6134
6135	/*
6136	 * Check the size.  It needs to be either 32 or 34 characters long.
6137	 */
6138	if ((id_len != (rdma_id_size * 2))
6139	 && (id_len != ((rdma_id_size * 2) + 2))) {
6140		if (error_str != NULL) {
6141			snprintf(error_str, error_str_len, "%s: RDMA ID "
6142				 "must be 32 hex digits (0x prefix "
6143				 "optional), only %zu seen", __func__, id_len);
6144		}
6145		retval = 1;
6146		goto bailout;
6147	}
6148
6149	tmpstr = id_str;
6150	/*
6151	 * If the user gave us 34 characters, the string needs to start
6152	 * with '0x'.
6153	 */
6154	if (id_len == ((rdma_id_size * 2) + 2)) {
6155	 	if ((tmpstr[0] == '0')
6156		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6157			tmpstr += 2;
6158		} else {
6159			if (error_str != NULL) {
6160				snprintf(error_str, error_str_len, "%s: RDMA "
6161					 "ID prefix, if used, must be \"0x\", "
6162					 "got %s", __func__, tmpstr);
6163			}
6164			retval = 1;
6165			goto bailout;
6166		}
6167	}
6168	bzero(rdma_id, sizeof(rdma_id));
6169
6170	/*
6171	 * Convert ASCII hex into binary bytes.  There is no standard
6172	 * 128-bit integer type, and so no strtou128t() routine to convert
6173	 * from hex into a large integer.  In the end, we're not going to
6174	 * an integer, but rather to a byte array, so that and the fact
6175	 * that we require the user to give us 32 hex digits simplifies the
6176	 * logic.
6177	 */
6178	for (i = 0; i < (rdma_id_size * 2); i++) {
6179		int cur_shift;
6180		unsigned char c;
6181
6182		/* Increment the byte array one for every 2 hex digits */
6183		j = i >> 1;
6184
6185		/*
6186		 * The first digit in every pair is the most significant
6187		 * 4 bits.  The second is the least significant 4 bits.
6188		 */
6189		if ((i % 2) == 0)
6190			cur_shift = 4;
6191		else
6192			cur_shift = 0;
6193
6194		c = tmpstr[i];
6195		/* Convert the ASCII hex character into a number */
6196		if (isdigit(c))
6197			c -= '0';
6198		else if (isalpha(c))
6199			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6200		else {
6201			if (error_str != NULL) {
6202				snprintf(error_str, error_str_len, "%s: "
6203					 "RDMA ID must be hex digits, got "
6204					 "invalid character %c", __func__,
6205					 tmpstr[i]);
6206			}
6207			retval = 1;
6208			goto bailout;
6209		}
6210		/*
6211		 * The converted number can't be less than 0; the type is
6212		 * unsigned, and the subtraction logic will not give us
6213		 * a negative number.  So we only need to make sure that
6214		 * the value is not greater than 0xf.  (i.e. make sure the
6215		 * user didn't give us a value like "0x12jklmno").
6216		 */
6217		if (c > 0xf) {
6218			if (error_str != NULL) {
6219				snprintf(error_str, error_str_len, "%s: "
6220					 "RDMA ID must be hex digits, got "
6221					 "invalid character %c", __func__,
6222					 tmpstr[i]);
6223			}
6224			retval = 1;
6225			goto bailout;
6226		}
6227
6228		rdma_id[j] |= c << cur_shift;
6229	}
6230
6231#ifdef _KERNEL
6232	rdma = malloc(sizeof(*rdma), type, flags);
6233#else
6234	rdma = malloc(sizeof(*rdma));
6235#endif
6236	if (rdma == NULL) {
6237		if (error_str != NULL) {
6238			snprintf(error_str, error_str_len, "%s: unable to "
6239				 "allocate %zu bytes", __func__,
6240				 sizeof(*rdma));
6241		}
6242		retval = 1;
6243		goto bailout;
6244	}
6245	*alloc_len = sizeof(*rdma);
6246	bzero(rdma, *alloc_len);
6247
6248	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6249	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6250
6251	*hdr = (struct scsi_transportid_header *)rdma;
6252
6253bailout:
6254	return (retval);
6255}
6256
6257/*
6258 * Parse an iSCSI name.  The format is either just the name:
6259 *
6260 *	iqn.2012-06.com.example:target0
6261 * or the name, separator and initiator session ID:
6262 *
6263 *	iqn.2012-06.com.example:target0,i,0x123
6264 *
6265 * The separator format is exact.
6266 */
6267int
6268scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6269			     unsigned int *alloc_len,
6270#ifdef _KERNEL
6271			     struct malloc_type *type, int flags,
6272#endif
6273			     char *error_str, int error_str_len)
6274{
6275	size_t id_len, sep_len, id_size, name_len;
6276	int retval;
6277	unsigned int i, sep_pos, sep_found;
6278	const char *sep_template = ",i,0x";
6279	const char *iqn_prefix = "iqn.";
6280	struct scsi_transportid_iscsi_device *iscsi;
6281
6282	retval = 0;
6283	sep_found = 0;
6284
6285	id_len = strlen(id_str);
6286	sep_len = strlen(sep_template);
6287
6288	/*
6289	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6290	 * or any other form, is an error.  So look for a comma, and once
6291	 * we find that, the next few characters must match the separator
6292	 * exactly.  Once we get through the separator, there should be at
6293	 * least one character.
6294	 */
6295	for (i = 0, sep_pos = 0; i < id_len; i++) {
6296		if (sep_pos == 0) {
6297		 	if (id_str[i] == sep_template[sep_pos])
6298				sep_pos++;
6299
6300			continue;
6301		}
6302		if (sep_pos < sep_len) {
6303			if (id_str[i] == sep_template[sep_pos]) {
6304				sep_pos++;
6305				continue;
6306			}
6307			if (error_str != NULL) {
6308				snprintf(error_str, error_str_len, "%s: "
6309					 "invalid separator in iSCSI name "
6310					 "\"%s\"",
6311					 __func__, id_str);
6312			}
6313			retval = 1;
6314			goto bailout;
6315		} else {
6316			sep_found = 1;
6317			break;
6318		}
6319	}
6320
6321	/*
6322	 * Check to see whether we have a separator but no digits after it.
6323	 */
6324	if ((sep_pos != 0)
6325	 && (sep_found == 0)) {
6326		if (error_str != NULL) {
6327			snprintf(error_str, error_str_len, "%s: no digits "
6328				 "found after separator in iSCSI name \"%s\"",
6329				 __func__, id_str);
6330		}
6331		retval = 1;
6332		goto bailout;
6333	}
6334
6335	/*
6336	 * The incoming ID string has the "iqn." prefix stripped off.  We
6337	 * need enough space for the base structure (the structures are the
6338	 * same for the two iSCSI forms), the prefix, the ID string and a
6339	 * terminating NUL.
6340	 */
6341	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6342
6343#ifdef _KERNEL
6344	iscsi = malloc(id_size, type, flags);
6345#else
6346	iscsi = malloc(id_size);
6347#endif
6348	if (iscsi == NULL) {
6349		if (error_str != NULL) {
6350			snprintf(error_str, error_str_len, "%s: unable to "
6351				 "allocate %zu bytes", __func__, id_size);
6352		}
6353		retval = 1;
6354		goto bailout;
6355	}
6356	*alloc_len = id_size;
6357	bzero(iscsi, id_size);
6358
6359	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6360	if (sep_found == 0)
6361		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6362	else
6363		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6364	name_len = id_size - sizeof(*iscsi);
6365	scsi_ulto2b(name_len, iscsi->additional_length);
6366	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6367
6368	*hdr = (struct scsi_transportid_header *)iscsi;
6369
6370bailout:
6371	return (retval);
6372}
6373
6374/*
6375 * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6376 * of the form 'bus,device,function' or 'bus,function'.
6377 */
6378int
6379scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6380			   unsigned int *alloc_len,
6381#ifdef _KERNEL
6382			   struct malloc_type *type, int flags,
6383#endif
6384			   char *error_str, int error_str_len)
6385{
6386	struct scsi_transportid_sop *sop;
6387	unsigned long bus, device, function;
6388	char *tmpstr, *endptr;
6389	int retval, device_spec;
6390
6391	retval = 0;
6392	device_spec = 0;
6393	device = 0;
6394
6395	tmpstr = strsep(&id_str, ",");
6396	if ((tmpstr == NULL)
6397	 || (*tmpstr == '\0')) {
6398		if (error_str != NULL) {
6399			snprintf(error_str, error_str_len, "%s: no ID found",
6400				 __func__);
6401		}
6402		retval = 1;
6403		goto bailout;
6404	}
6405	bus = strtoul(tmpstr, &endptr, 0);
6406	if (*endptr != '\0') {
6407		if (error_str != NULL) {
6408			snprintf(error_str, error_str_len, "%s: error "
6409				 "parsing PCIe bus %s, number required",
6410				 __func__, tmpstr);
6411		}
6412		retval = 1;
6413		goto bailout;
6414	}
6415	if ((id_str == NULL)
6416	 || (*id_str == '\0')) {
6417		if (error_str != NULL) {
6418			snprintf(error_str, error_str_len, "%s: no PCIe "
6419				 "device or function found", __func__);
6420		}
6421		retval = 1;
6422		goto bailout;
6423	}
6424	tmpstr = strsep(&id_str, ",");
6425	function = strtoul(tmpstr, &endptr, 0);
6426	if (*endptr != '\0') {
6427		if (error_str != NULL) {
6428			snprintf(error_str, error_str_len, "%s: error "
6429				 "parsing PCIe device/function %s, number "
6430				 "required", __func__, tmpstr);
6431		}
6432		retval = 1;
6433		goto bailout;
6434	}
6435	/*
6436	 * Check to see whether the user specified a third value.  If so,
6437	 * the second is the device.
6438	 */
6439	if (id_str != NULL) {
6440		if (*id_str == '\0') {
6441			if (error_str != NULL) {
6442				snprintf(error_str, error_str_len, "%s: "
6443					 "no PCIe function found", __func__);
6444			}
6445			retval = 1;
6446			goto bailout;
6447		}
6448		device = function;
6449		device_spec = 1;
6450		function = strtoul(id_str, &endptr, 0);
6451		if (*endptr != '\0') {
6452			if (error_str != NULL) {
6453				snprintf(error_str, error_str_len, "%s: "
6454					 "error parsing PCIe function %s, "
6455					 "number required", __func__, id_str);
6456			}
6457			retval = 1;
6458			goto bailout;
6459		}
6460	}
6461	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6462		if (error_str != NULL) {
6463			snprintf(error_str, error_str_len, "%s: bus value "
6464				 "%lu greater than maximum %u", __func__,
6465				 bus, SCSI_TRN_SOP_BUS_MAX);
6466		}
6467		retval = 1;
6468		goto bailout;
6469	}
6470
6471	if ((device_spec != 0)
6472	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6473		if (error_str != NULL) {
6474			snprintf(error_str, error_str_len, "%s: device value "
6475				 "%lu greater than maximum %u", __func__,
6476				 device, SCSI_TRN_SOP_DEV_MAX);
6477		}
6478		retval = 1;
6479		goto bailout;
6480	}
6481
6482	if (((device_spec != 0)
6483	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6484	 || ((device_spec == 0)
6485	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6486		if (error_str != NULL) {
6487			snprintf(error_str, error_str_len, "%s: function value "
6488				 "%lu greater than maximum %u", __func__,
6489				 function, (device_spec == 0) ?
6490				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6491				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6492		}
6493		retval = 1;
6494		goto bailout;
6495	}
6496
6497#ifdef _KERNEL
6498	sop = malloc(sizeof(*sop), type, flags);
6499#else
6500	sop = malloc(sizeof(*sop));
6501#endif
6502	if (sop == NULL) {
6503		if (error_str != NULL) {
6504			snprintf(error_str, error_str_len, "%s: unable to "
6505				 "allocate %zu bytes", __func__, sizeof(*sop));
6506		}
6507		retval = 1;
6508		goto bailout;
6509	}
6510	*alloc_len = sizeof(*sop);
6511	bzero(sop, sizeof(*sop));
6512	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6513	if (device_spec != 0) {
6514		struct scsi_sop_routing_id_norm rid;
6515
6516		rid.bus = bus;
6517		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6518		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6519		      sizeof(sop->routing_id)));
6520	} else {
6521		struct scsi_sop_routing_id_alt rid;
6522
6523		rid.bus = bus;
6524		rid.function = function;
6525		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6526		      sizeof(sop->routing_id)));
6527	}
6528
6529	*hdr = (struct scsi_transportid_header *)sop;
6530bailout:
6531	return (retval);
6532}
6533
6534/*
6535 * transportid_str: NUL-terminated string with format: protcol,id
6536 *		    The ID is protocol specific.
6537 * hdr:		    Storage will be allocated for the transport ID.
6538 * alloc_len:	    The amount of memory allocated is returned here.
6539 * type:	    Malloc bucket (kernel only).
6540 * flags:	    Malloc flags (kernel only).
6541 * error_str:	    If non-NULL, it will contain error information (without
6542 * 		    a terminating newline) if an error is returned.
6543 * error_str_len:   Allocated length of the error string.
6544 *
6545 * Returns 0 for success, non-zero for failure.
6546 */
6547int
6548scsi_parse_transportid(char *transportid_str,
6549		       struct scsi_transportid_header **hdr,
6550		       unsigned int *alloc_len,
6551#ifdef _KERNEL
6552		       struct malloc_type *type, int flags,
6553#endif
6554		       char *error_str, int error_str_len)
6555{
6556	char *tmpstr;
6557	scsi_nv_status status;
6558	u_int num_proto_entries;
6559	int retval, table_entry;
6560
6561	retval = 0;
6562	table_entry = 0;
6563
6564	/*
6565	 * We do allow a period as well as a comma to separate the protocol
6566	 * from the ID string.  This is to accommodate iSCSI names, which
6567	 * start with "iqn.".
6568	 */
6569	tmpstr = strsep(&transportid_str, ",.");
6570	if (tmpstr == NULL) {
6571		if (error_str != NULL) {
6572			snprintf(error_str, error_str_len,
6573				 "%s: transportid_str is NULL", __func__);
6574		}
6575		retval = 1;
6576		goto bailout;
6577	}
6578
6579	num_proto_entries = nitems(scsi_proto_map);
6580	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6581			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6582	if (status != SCSI_NV_FOUND) {
6583		if (error_str != NULL) {
6584			snprintf(error_str, error_str_len, "%s: %s protocol "
6585				 "name %s", __func__,
6586				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6587				 "invalid", tmpstr);
6588		}
6589		retval = 1;
6590		goto bailout;
6591	}
6592	switch (scsi_proto_map[table_entry].value) {
6593	case SCSI_PROTO_FC:
6594	case SCSI_PROTO_1394:
6595	case SCSI_PROTO_SAS:
6596		retval = scsi_parse_transportid_64bit(
6597		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6598		    alloc_len,
6599#ifdef _KERNEL
6600		    type, flags,
6601#endif
6602		    error_str, error_str_len);
6603		break;
6604	case SCSI_PROTO_SPI:
6605		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6606		    alloc_len,
6607#ifdef _KERNEL
6608		    type, flags,
6609#endif
6610		    error_str, error_str_len);
6611		break;
6612	case SCSI_PROTO_RDMA:
6613		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6614		    alloc_len,
6615#ifdef _KERNEL
6616		    type, flags,
6617#endif
6618		    error_str, error_str_len);
6619		break;
6620	case SCSI_PROTO_ISCSI:
6621		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6622		    alloc_len,
6623#ifdef _KERNEL
6624		    type, flags,
6625#endif
6626		    error_str, error_str_len);
6627		break;
6628	case SCSI_PROTO_SOP:
6629		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6630		    alloc_len,
6631#ifdef _KERNEL
6632		    type, flags,
6633#endif
6634		    error_str, error_str_len);
6635		break;
6636	case SCSI_PROTO_SSA:
6637	case SCSI_PROTO_ADITP:
6638	case SCSI_PROTO_ATA:
6639	case SCSI_PROTO_UAS:
6640	case SCSI_PROTO_NONE:
6641	default:
6642		/*
6643		 * There is no format defined for a Transport ID for these
6644		 * protocols.  So even if the user gives us something, we
6645		 * have no way to turn it into a standard SCSI Transport ID.
6646		 */
6647		retval = 1;
6648		if (error_str != NULL) {
6649			snprintf(error_str, error_str_len, "%s: no Transport "
6650				 "ID format exists for protocol %s",
6651				 __func__, tmpstr);
6652		}
6653		goto bailout;
6654		break;	/* NOTREACHED */
6655	}
6656bailout:
6657	return (retval);
6658}
6659
6660struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6661	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6662	  "Remaining Capacity in Partition",
6663	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6664	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6665	  "Maximum Capacity in Partition",
6666	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6667	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6668	  "TapeAlert Flags",
6669	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6670	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6671	  "Load Count",
6672	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6673	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6674	  "MAM Space Remaining",
6675	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6676	  /*parse_str*/ NULL },
6677	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6678	  "Assigning Organization",
6679	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6680	  /*parse_str*/ NULL },
6681	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6682	  "Format Density Code",
6683	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6684	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6685	  "Initialization Count",
6686	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6687	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6688	  "Volume Identifier",
6689	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6690	  /*parse_str*/ NULL },
6691	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6692	  "Volume Change Reference",
6693	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6694	  /*parse_str*/ NULL },
6695	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6696	  "Device Vendor/Serial at Last Load",
6697	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6698	  /*parse_str*/ NULL },
6699	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6700	  "Device Vendor/Serial at Last Load - 1",
6701	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6702	  /*parse_str*/ NULL },
6703	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6704	  "Device Vendor/Serial at Last Load - 2",
6705	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6706	  /*parse_str*/ NULL },
6707	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6708	  "Device Vendor/Serial at Last Load - 3",
6709	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6710	  /*parse_str*/ NULL },
6711	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6712	  "Total MB Written in Medium Life",
6713	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6714	  /*parse_str*/ NULL },
6715	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6716	  "Total MB Read in Medium Life",
6717	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6718	  /*parse_str*/ NULL },
6719	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6720	  "Total MB Written in Current/Last Load",
6721	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6722	  /*parse_str*/ NULL },
6723	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6724	  "Total MB Read in Current/Last Load",
6725	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6726	  /*parse_str*/ NULL },
6727	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6728	  "Logical Position of First Encrypted Block",
6729	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6730	  /*parse_str*/ NULL },
6731	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6732	  "Logical Position of First Unencrypted Block after First "
6733	  "Encrypted Block",
6734	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6735	  /*parse_str*/ NULL },
6736	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6737	  "Medium Usage History",
6738	  /*suffix*/ NULL, /*to_str*/ NULL,
6739	  /*parse_str*/ NULL },
6740	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6741	  "Partition Usage History",
6742	  /*suffix*/ NULL, /*to_str*/ NULL,
6743	  /*parse_str*/ NULL },
6744	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6745	  "Medium Manufacturer",
6746	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6747	  /*parse_str*/ NULL },
6748	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6749	  "Medium Serial Number",
6750	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6751	  /*parse_str*/ NULL },
6752	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6753	  "Medium Length",
6754	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6755	  /*parse_str*/ NULL },
6756	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6757	  SCSI_ATTR_FLAG_FP_1DIGIT,
6758	  "Medium Width",
6759	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6760	  /*parse_str*/ NULL },
6761	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6762	  "Assigning Organization",
6763	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6764	  /*parse_str*/ NULL },
6765	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6766	  "Medium Density Code",
6767	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6768	  /*parse_str*/ NULL },
6769	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6770	  "Medium Manufacture Date",
6771	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6772	  /*parse_str*/ NULL },
6773	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6774	  "MAM Capacity",
6775	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6776	  /*parse_str*/ NULL },
6777	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6778	  "Medium Type",
6779	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6780	  /*parse_str*/ NULL },
6781	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6782	  "Medium Type Information",
6783	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6784	  /*parse_str*/ NULL },
6785	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6786	  "Medium Serial Number",
6787	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6788	  /*parse_str*/ NULL },
6789	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6790	  "Application Vendor",
6791	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6792	  /*parse_str*/ NULL },
6793	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6794	  "Application Name",
6795	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6796	  /*parse_str*/ NULL },
6797	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6798	  "Application Version",
6799	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6800	  /*parse_str*/ NULL },
6801	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6802	  "User Medium Text Label",
6803	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6804	  /*parse_str*/ NULL },
6805	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6806	  "Date and Time Last Written",
6807	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6808	  /*parse_str*/ NULL },
6809	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6810	  "Text Localization Identifier",
6811	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6812	  /*parse_str*/ NULL },
6813	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6814	  "Barcode",
6815	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6816	  /*parse_str*/ NULL },
6817	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6818	  "Owning Host Textual Name",
6819	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6820	  /*parse_str*/ NULL },
6821	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6822	  "Media Pool",
6823	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6824	  /*parse_str*/ NULL },
6825	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6826	  "Partition User Text Label",
6827	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6828	  /*parse_str*/ NULL },
6829	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6830	  "Load/Unload at Partition",
6831	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6832	  /*parse_str*/ NULL },
6833	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6834	  "Application Format Version",
6835	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6836	  /*parse_str*/ NULL },
6837	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6838	  "Volume Coherency Information",
6839	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6840	  /*parse_str*/ NULL },
6841	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6842	  "Spectra MLM Creation",
6843	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6844	  /*parse_str*/ NULL },
6845	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6846	  "Spectra MLM C3",
6847	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6848	  /*parse_str*/ NULL },
6849	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6850	  "Spectra MLM RW",
6851	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6852	  /*parse_str*/ NULL },
6853	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
6854	  "Spectra MLM SDC List",
6855	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6856	  /*parse_str*/ NULL },
6857	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
6858	  "Spectra MLM Post Scan",
6859	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6860	  /*parse_str*/ NULL },
6861	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
6862	  "Spectra MLM Checksum",
6863	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6864	  /*parse_str*/ NULL },
6865	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
6866	  "Spectra MLM Creation",
6867	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6868	  /*parse_str*/ NULL },
6869	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
6870	  "Spectra MLM C3",
6871	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6872	  /*parse_str*/ NULL },
6873	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
6874	  "Spectra MLM RW",
6875	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6876	  /*parse_str*/ NULL },
6877	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
6878	  "Spectra MLM SDC List",
6879	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6880	  /*parse_str*/ NULL },
6881	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
6882	  "Spectra MLM Post Scan",
6883	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6884	  /*parse_str*/ NULL },
6885	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
6886	  "Spectra MLM Checksum",
6887	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6888	  /*parse_str*/ NULL },
6889};
6890
6891/*
6892 * Print out Volume Coherency Information (Attribute 0x080c).
6893 * This field has two variable length members, including one at the
6894 * beginning, so it isn't practical to have a fixed structure definition.
6895 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
6896 * 2013.
6897 */
6898int
6899scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6900			 uint32_t valid_len, uint32_t flags,
6901			 uint32_t output_flags, char *error_str,
6902			 int error_str_len)
6903{
6904	size_t avail_len;
6905	uint32_t field_size;
6906	uint64_t tmp_val;
6907	uint8_t *cur_ptr;
6908	int retval;
6909	int vcr_len, as_len;
6910
6911	retval = 0;
6912	tmp_val = 0;
6913
6914	field_size = scsi_2btoul(hdr->length);
6915	avail_len = valid_len - sizeof(*hdr);
6916	if (field_size > avail_len) {
6917		if (error_str != NULL) {
6918			snprintf(error_str, error_str_len, "Available "
6919				 "length of attribute ID 0x%.4x %zu < field "
6920				 "length %u", scsi_2btoul(hdr->id), avail_len,
6921				 field_size);
6922		}
6923		retval = 1;
6924		goto bailout;
6925	} else if (field_size == 0) {
6926		/*
6927		 * It isn't clear from the spec whether a field length of
6928		 * 0 is invalid here.  It probably is, but be lenient here
6929		 * to avoid inconveniencing the user.
6930		 */
6931		goto bailout;
6932	}
6933	cur_ptr = hdr->attribute;
6934	vcr_len = *cur_ptr;
6935	cur_ptr++;
6936
6937	sbuf_printf(sb, "\n\tVolume Change Reference Value:");
6938
6939	switch (vcr_len) {
6940	case 0:
6941		if (error_str != NULL) {
6942			snprintf(error_str, error_str_len, "Volume Change "
6943				 "Reference value has length of 0");
6944		}
6945		retval = 1;
6946		goto bailout;
6947		break; /*NOTREACHED*/
6948	case 1:
6949		tmp_val = *cur_ptr;
6950		break;
6951	case 2:
6952		tmp_val = scsi_2btoul(cur_ptr);
6953		break;
6954	case 3:
6955		tmp_val = scsi_3btoul(cur_ptr);
6956		break;
6957	case 4:
6958		tmp_val = scsi_4btoul(cur_ptr);
6959		break;
6960	case 8:
6961		tmp_val = scsi_8btou64(cur_ptr);
6962		break;
6963	default:
6964		sbuf_printf(sb, "\n");
6965		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
6966		break;
6967	}
6968	if (vcr_len <= 8)
6969		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
6970
6971	cur_ptr += vcr_len;
6972	tmp_val = scsi_8btou64(cur_ptr);
6973	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
6974
6975	cur_ptr += sizeof(tmp_val);
6976	tmp_val = scsi_8btou64(cur_ptr);
6977	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
6978		    (uintmax_t)tmp_val);
6979
6980	/*
6981	 * Figure out how long the Application Client Specific Information
6982	 * is and produce a hexdump.
6983	 */
6984	cur_ptr += sizeof(tmp_val);
6985	as_len = scsi_2btoul(cur_ptr);
6986	cur_ptr += sizeof(uint16_t);
6987	sbuf_printf(sb, "\tApplication Client Specific Information: ");
6988	if (((as_len == SCSI_LTFS_VER0_LEN)
6989	  || (as_len == SCSI_LTFS_VER1_LEN))
6990	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
6991		sbuf_printf(sb, "LTFS\n");
6992		cur_ptr += SCSI_LTFS_STR_LEN + 1;
6993		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
6994			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
6995		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
6996		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
6997		/* XXX KDM check the length */
6998		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
6999	} else {
7000		sbuf_printf(sb, "Unknown\n");
7001		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7002	}
7003
7004bailout:
7005	return (retval);
7006}
7007
7008int
7009scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7010			 uint32_t valid_len, uint32_t flags,
7011			 uint32_t output_flags, char *error_str,
7012			 int error_str_len)
7013{
7014	size_t avail_len;
7015	uint32_t field_size;
7016	struct scsi_attrib_vendser *vendser;
7017	cam_strvis_flags strvis_flags;
7018	int retval = 0;
7019
7020	field_size = scsi_2btoul(hdr->length);
7021	avail_len = valid_len - sizeof(*hdr);
7022	if (field_size > avail_len) {
7023		if (error_str != NULL) {
7024			snprintf(error_str, error_str_len, "Available "
7025				 "length of attribute ID 0x%.4x %zu < field "
7026				 "length %u", scsi_2btoul(hdr->id), avail_len,
7027				 field_size);
7028		}
7029		retval = 1;
7030		goto bailout;
7031	} else if (field_size == 0) {
7032		/*
7033		 * A field size of 0 doesn't make sense here.  The device
7034		 * can at least give you the vendor ID, even if it can't
7035		 * give you the serial number.
7036		 */
7037		if (error_str != NULL) {
7038			snprintf(error_str, error_str_len, "The length of "
7039				 "attribute ID 0x%.4x is 0",
7040				 scsi_2btoul(hdr->id));
7041		}
7042		retval = 1;
7043		goto bailout;
7044	}
7045	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7046
7047	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7048	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7049		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7050		break;
7051	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7052		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7053		break;
7054	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7055	default:
7056		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7057		break;;
7058	}
7059	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7060	    strvis_flags);
7061	sbuf_putc(sb, ' ');
7062	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7063	    strvis_flags);
7064bailout:
7065	return (retval);
7066}
7067
7068int
7069scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7070			 uint32_t valid_len, uint32_t flags,
7071			 uint32_t output_flags, char *error_str,
7072			 int error_str_len)
7073{
7074	uint32_t field_size;
7075	ssize_t avail_len;
7076	uint32_t print_len;
7077	uint8_t *num_ptr;
7078	int retval = 0;
7079
7080	field_size = scsi_2btoul(hdr->length);
7081	avail_len = valid_len - sizeof(*hdr);
7082	print_len = MIN(avail_len, field_size);
7083	num_ptr = hdr->attribute;
7084
7085	if (print_len > 0) {
7086		sbuf_printf(sb, "\n");
7087		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7088	}
7089
7090	return (retval);
7091}
7092
7093int
7094scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7095		     uint32_t valid_len, uint32_t flags,
7096		     uint32_t output_flags, char *error_str,
7097		     int error_str_len)
7098{
7099	uint64_t print_number;
7100	size_t avail_len;
7101	uint32_t number_size;
7102	int retval = 0;
7103
7104	number_size = scsi_2btoul(hdr->length);
7105
7106	avail_len = valid_len - sizeof(*hdr);
7107	if (avail_len < number_size) {
7108		if (error_str != NULL) {
7109			snprintf(error_str, error_str_len, "Available "
7110				 "length of attribute ID 0x%.4x %zu < field "
7111				 "length %u", scsi_2btoul(hdr->id), avail_len,
7112				 number_size);
7113		}
7114		retval = 1;
7115		goto bailout;
7116	}
7117
7118	switch (number_size) {
7119	case 0:
7120		/*
7121		 * We don't treat this as an error, since there may be
7122		 * scenarios where a device reports a field but then gives
7123		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
7124		 */
7125		goto bailout;
7126		break; /*NOTREACHED*/
7127	case 1:
7128		print_number = hdr->attribute[0];
7129		break;
7130	case 2:
7131		print_number = scsi_2btoul(hdr->attribute);
7132		break;
7133	case 3:
7134		print_number = scsi_3btoul(hdr->attribute);
7135		break;
7136	case 4:
7137		print_number = scsi_4btoul(hdr->attribute);
7138		break;
7139	case 8:
7140		print_number = scsi_8btou64(hdr->attribute);
7141		break;
7142	default:
7143		/*
7144		 * If we wind up here, the number is too big to print
7145		 * normally, so just do a hexdump.
7146		 */
7147		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7148						  flags, output_flags,
7149						  error_str, error_str_len);
7150		goto bailout;
7151		break;
7152	}
7153
7154	if (flags & SCSI_ATTR_FLAG_FP) {
7155#ifndef _KERNEL
7156		long double num_float;
7157
7158		num_float = (long double)print_number;
7159
7160		if (flags & SCSI_ATTR_FLAG_DIV_10)
7161			num_float /= 10;
7162
7163		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7164			    1 : 0, num_float);
7165#else /* _KERNEL */
7166		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7167			    (print_number / 10) : print_number);
7168#endif /* _KERNEL */
7169	} else if (flags & SCSI_ATTR_FLAG_HEX) {
7170		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7171	} else
7172		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7173
7174bailout:
7175	return (retval);
7176}
7177
7178int
7179scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7180		       uint32_t valid_len, uint32_t flags,
7181		       uint32_t output_flags, char *error_str,
7182		       int error_str_len)
7183{
7184	size_t avail_len;
7185	uint32_t field_size, print_size;
7186	int retval = 0;
7187
7188	avail_len = valid_len - sizeof(*hdr);
7189	field_size = scsi_2btoul(hdr->length);
7190	print_size = MIN(avail_len, field_size);
7191
7192	if (print_size > 0) {
7193		cam_strvis_flags strvis_flags;
7194
7195		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7196		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7197			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7198			break;
7199		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7200			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7201			break;
7202		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7203		default:
7204			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7205			break;
7206		}
7207		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7208	} else if (avail_len < field_size) {
7209		/*
7210		 * We only report an error if the user didn't allocate
7211		 * enough space to hold the full value of this field.  If
7212		 * the field length is 0, that is allowed by the spec.
7213		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7214		 * "This attribute indicates the current volume identifier
7215		 * (see SMC-3) of the medium. If the device server supports
7216		 * this attribute but does not have access to the volume
7217		 * identifier, the device server shall report this attribute
7218		 * with an attribute length value of zero."
7219		 */
7220		if (error_str != NULL) {
7221			snprintf(error_str, error_str_len, "Available "
7222				 "length of attribute ID 0x%.4x %zu < field "
7223				 "length %u", scsi_2btoul(hdr->id), avail_len,
7224				 field_size);
7225		}
7226		retval = 1;
7227	}
7228
7229	return (retval);
7230}
7231
7232int
7233scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7234		      uint32_t valid_len, uint32_t flags,
7235		      uint32_t output_flags, char *error_str,
7236		      int error_str_len)
7237{
7238	size_t avail_len;
7239	uint32_t field_size, print_size;
7240	int retval = 0;
7241	int esc_text = 1;
7242
7243	avail_len = valid_len - sizeof(*hdr);
7244	field_size = scsi_2btoul(hdr->length);
7245	print_size = MIN(avail_len, field_size);
7246
7247	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7248	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7249		esc_text = 0;
7250
7251	if (print_size > 0) {
7252		uint32_t i;
7253
7254		for (i = 0; i < print_size; i++) {
7255			if (hdr->attribute[i] == '\0')
7256				continue;
7257			else if (((unsigned char)hdr->attribute[i] < 0x80)
7258			      || (esc_text == 0))
7259				sbuf_putc(sb, hdr->attribute[i]);
7260			else
7261				sbuf_printf(sb, "%%%02x",
7262				    (unsigned char)hdr->attribute[i]);
7263		}
7264	} else if (avail_len < field_size) {
7265		/*
7266		 * We only report an error if the user didn't allocate
7267		 * enough space to hold the full value of this field.
7268		 */
7269		if (error_str != NULL) {
7270			snprintf(error_str, error_str_len, "Available "
7271				 "length of attribute ID 0x%.4x %zu < field "
7272				 "length %u", scsi_2btoul(hdr->id), avail_len,
7273				 field_size);
7274		}
7275		retval = 1;
7276	}
7277
7278	return (retval);
7279}
7280
7281struct scsi_attrib_table_entry *
7282scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7283		       size_t num_table_entries, uint32_t id)
7284{
7285	uint32_t i;
7286
7287	for (i = 0; i < num_table_entries; i++) {
7288		if (table[i].id == id)
7289			return (&table[i]);
7290	}
7291
7292	return (NULL);
7293}
7294
7295struct scsi_attrib_table_entry *
7296scsi_get_attrib_entry(uint32_t id)
7297{
7298	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7299	    nitems(scsi_mam_attr_table), id));
7300}
7301
7302int
7303scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7304   struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7305   char *error_str, size_t error_str_len)
7306{
7307	int retval;
7308
7309	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7310	case SMA_FORMAT_ASCII:
7311		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7312		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7313		break;
7314	case SMA_FORMAT_BINARY:
7315		if (scsi_2btoul(hdr->length) <= 8)
7316			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7317			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7318			    error_str_len);
7319		else
7320			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7321			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7322			    error_str_len);
7323		break;
7324	case SMA_FORMAT_TEXT:
7325		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7326		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7327		    error_str_len);
7328		break;
7329	default:
7330		if (error_str != NULL) {
7331			snprintf(error_str, error_str_len, "Unknown attribute "
7332			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7333		}
7334		retval = 1;
7335		goto bailout;
7336		break; /*NOTREACHED*/
7337	}
7338
7339	sbuf_trim(sb);
7340
7341bailout:
7342
7343	return (retval);
7344}
7345
7346void
7347scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7348			struct scsi_mam_attribute_header *hdr,
7349			uint32_t valid_len, const char *desc)
7350{
7351	int need_space = 0;
7352	uint32_t len;
7353	uint32_t id;
7354
7355	/*
7356	 * We can't do anything if we don't have enough valid data for the
7357	 * header.
7358	 */
7359	if (valid_len < sizeof(*hdr))
7360		return;
7361
7362	id = scsi_2btoul(hdr->id);
7363	/*
7364	 * Note that we print out the value of the attribute listed in the
7365	 * header, regardless of whether we actually got that many bytes
7366	 * back from the device through the controller.  A truncated result
7367	 * could be the result of a failure to ask for enough data; the
7368	 * header indicates how many bytes are allocated for this attribute
7369	 * in the MAM.
7370	 */
7371	len = scsi_2btoul(hdr->length);
7372
7373	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7374	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7375		return;
7376
7377	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7378	 && (desc != NULL)) {
7379		sbuf_printf(sb, "%s", desc);
7380		need_space = 1;
7381	}
7382
7383	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7384		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7385		need_space = 0;
7386	}
7387
7388	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7389		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7390		need_space = 0;
7391	}
7392	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7393		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7394			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7395	}
7396	sbuf_printf(sb, ": ");
7397}
7398
7399int
7400scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7401		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7402		 size_t num_user_entries, int prefer_user_table,
7403		 uint32_t output_flags, char *error_str, int error_str_len)
7404{
7405	int retval;
7406	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7407	struct scsi_attrib_table_entry *entry = NULL;
7408	size_t table1_size = 0, table2_size = 0;
7409	uint32_t id;
7410
7411	retval = 0;
7412
7413	if (valid_len < sizeof(*hdr)) {
7414		retval = 1;
7415		goto bailout;
7416	}
7417
7418	id = scsi_2btoul(hdr->id);
7419
7420	if (user_table != NULL) {
7421		if (prefer_user_table != 0) {
7422			table1 = user_table;
7423			table1_size = num_user_entries;
7424			table2 = scsi_mam_attr_table;
7425			table2_size = nitems(scsi_mam_attr_table);
7426		} else {
7427			table1 = scsi_mam_attr_table;
7428			table1_size = nitems(scsi_mam_attr_table);
7429			table2 = user_table;
7430			table2_size = num_user_entries;
7431		}
7432	} else {
7433		table1 = scsi_mam_attr_table;
7434		table1_size = nitems(scsi_mam_attr_table);
7435	}
7436
7437	entry = scsi_find_attrib_entry(table1, table1_size, id);
7438	if (entry != NULL) {
7439		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7440					entry->desc);
7441		if (entry->to_str == NULL)
7442			goto print_default;
7443		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7444				       output_flags, error_str, error_str_len);
7445		goto bailout;
7446	}
7447	if (table2 != NULL) {
7448		entry = scsi_find_attrib_entry(table2, table2_size, id);
7449		if (entry != NULL) {
7450			if (entry->to_str == NULL)
7451				goto print_default;
7452
7453			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7454						valid_len, entry->desc);
7455			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7456					       output_flags, error_str,
7457					       error_str_len);
7458			goto bailout;
7459		}
7460	}
7461
7462	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7463
7464print_default:
7465	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7466	    error_str, error_str_len);
7467bailout:
7468	if (retval == 0) {
7469	 	if ((entry != NULL)
7470		 && (entry->suffix != NULL))
7471			sbuf_printf(sb, " %s", entry->suffix);
7472
7473		sbuf_trim(sb);
7474		sbuf_printf(sb, "\n");
7475	}
7476
7477	return (retval);
7478}
7479
7480void
7481scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
7482		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7483		     u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
7484{
7485	struct scsi_test_unit_ready *scsi_cmd;
7486
7487	cam_fill_csio(csio,
7488		      retries,
7489		      cbfcnp,
7490		      CAM_DIR_NONE,
7491		      tag_action,
7492		      /*data_ptr*/NULL,
7493		      /*dxfer_len*/0,
7494		      sense_len,
7495		      sizeof(*scsi_cmd),
7496		      timeout);
7497
7498	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7499	bzero(scsi_cmd, sizeof(*scsi_cmd));
7500	scsi_cmd->opcode = TEST_UNIT_READY;
7501}
7502
7503void
7504scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
7505		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7506		   void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
7507		   u_int8_t sense_len, u_int32_t timeout)
7508{
7509	struct scsi_request_sense *scsi_cmd;
7510
7511	cam_fill_csio(csio,
7512		      retries,
7513		      cbfcnp,
7514		      CAM_DIR_IN,
7515		      tag_action,
7516		      data_ptr,
7517		      dxfer_len,
7518		      sense_len,
7519		      sizeof(*scsi_cmd),
7520		      timeout);
7521
7522	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7523	bzero(scsi_cmd, sizeof(*scsi_cmd));
7524	scsi_cmd->opcode = REQUEST_SENSE;
7525	scsi_cmd->length = dxfer_len;
7526}
7527
7528void
7529scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
7530	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7531	     u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
7532	     int evpd, u_int8_t page_code, u_int8_t sense_len,
7533	     u_int32_t timeout)
7534{
7535	struct scsi_inquiry *scsi_cmd;
7536
7537	cam_fill_csio(csio,
7538		      retries,
7539		      cbfcnp,
7540		      /*flags*/CAM_DIR_IN,
7541		      tag_action,
7542		      /*data_ptr*/inq_buf,
7543		      /*dxfer_len*/inq_len,
7544		      sense_len,
7545		      sizeof(*scsi_cmd),
7546		      timeout);
7547
7548	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7549	bzero(scsi_cmd, sizeof(*scsi_cmd));
7550	scsi_cmd->opcode = INQUIRY;
7551	if (evpd) {
7552		scsi_cmd->byte2 |= SI_EVPD;
7553		scsi_cmd->page_code = page_code;
7554	}
7555	scsi_ulto2b(inq_len, scsi_cmd->length);
7556}
7557
7558void
7559scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries,
7560		void (*cbfcnp)(struct cam_periph *, union ccb *),
7561		u_int8_t tag_action, int dbd, u_int8_t page_code,
7562		u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7563		u_int8_t sense_len, u_int32_t timeout)
7564{
7565
7566	scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd,
7567			    page_code, page, param_buf, param_len, 0,
7568			    sense_len, timeout);
7569}
7570
7571void
7572scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries,
7573		    void (*cbfcnp)(struct cam_periph *, union ccb *),
7574		    u_int8_t tag_action, int dbd, u_int8_t page_code,
7575		    u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7576		    int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
7577{
7578	u_int8_t cdb_len;
7579
7580	/*
7581	 * Use the smallest possible command to perform the operation.
7582	 */
7583	if ((param_len < 256)
7584	 && (minimum_cmd_size < 10)) {
7585		/*
7586		 * We can fit in a 6 byte cdb.
7587		 */
7588		struct scsi_mode_sense_6 *scsi_cmd;
7589
7590		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7591		bzero(scsi_cmd, sizeof(*scsi_cmd));
7592		scsi_cmd->opcode = MODE_SENSE_6;
7593		if (dbd != 0)
7594			scsi_cmd->byte2 |= SMS_DBD;
7595		scsi_cmd->page = page_code | page;
7596		scsi_cmd->length = param_len;
7597		cdb_len = sizeof(*scsi_cmd);
7598	} else {
7599		/*
7600		 * Need a 10 byte cdb.
7601		 */
7602		struct scsi_mode_sense_10 *scsi_cmd;
7603
7604		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7605		bzero(scsi_cmd, sizeof(*scsi_cmd));
7606		scsi_cmd->opcode = MODE_SENSE_10;
7607		if (dbd != 0)
7608			scsi_cmd->byte2 |= SMS_DBD;
7609		scsi_cmd->page = page_code | page;
7610		scsi_ulto2b(param_len, scsi_cmd->length);
7611		cdb_len = sizeof(*scsi_cmd);
7612	}
7613	cam_fill_csio(csio,
7614		      retries,
7615		      cbfcnp,
7616		      CAM_DIR_IN,
7617		      tag_action,
7618		      param_buf,
7619		      param_len,
7620		      sense_len,
7621		      cdb_len,
7622		      timeout);
7623}
7624
7625void
7626scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
7627		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7628		 u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7629		 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7630		 u_int32_t timeout)
7631{
7632	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7633			     scsi_page_fmt, save_pages, param_buf,
7634			     param_len, 0, sense_len, timeout);
7635}
7636
7637void
7638scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
7639		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7640		     u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7641		     u_int8_t *param_buf, u_int32_t param_len,
7642		     int minimum_cmd_size, u_int8_t sense_len,
7643		     u_int32_t timeout)
7644{
7645	u_int8_t cdb_len;
7646
7647	/*
7648	 * Use the smallest possible command to perform the operation.
7649	 */
7650	if ((param_len < 256)
7651	 && (minimum_cmd_size < 10)) {
7652		/*
7653		 * We can fit in a 6 byte cdb.
7654		 */
7655		struct scsi_mode_select_6 *scsi_cmd;
7656
7657		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7658		bzero(scsi_cmd, sizeof(*scsi_cmd));
7659		scsi_cmd->opcode = MODE_SELECT_6;
7660		if (scsi_page_fmt != 0)
7661			scsi_cmd->byte2 |= SMS_PF;
7662		if (save_pages != 0)
7663			scsi_cmd->byte2 |= SMS_SP;
7664		scsi_cmd->length = param_len;
7665		cdb_len = sizeof(*scsi_cmd);
7666	} else {
7667		/*
7668		 * Need a 10 byte cdb.
7669		 */
7670		struct scsi_mode_select_10 *scsi_cmd;
7671
7672		scsi_cmd =
7673		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7674		bzero(scsi_cmd, sizeof(*scsi_cmd));
7675		scsi_cmd->opcode = MODE_SELECT_10;
7676		if (scsi_page_fmt != 0)
7677			scsi_cmd->byte2 |= SMS_PF;
7678		if (save_pages != 0)
7679			scsi_cmd->byte2 |= SMS_SP;
7680		scsi_ulto2b(param_len, scsi_cmd->length);
7681		cdb_len = sizeof(*scsi_cmd);
7682	}
7683	cam_fill_csio(csio,
7684		      retries,
7685		      cbfcnp,
7686		      CAM_DIR_OUT,
7687		      tag_action,
7688		      param_buf,
7689		      param_len,
7690		      sense_len,
7691		      cdb_len,
7692		      timeout);
7693}
7694
7695void
7696scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
7697	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7698	       u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
7699	       int save_pages, int ppc, u_int32_t paramptr,
7700	       u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7701	       u_int32_t timeout)
7702{
7703	struct scsi_log_sense *scsi_cmd;
7704	u_int8_t cdb_len;
7705
7706	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7707	bzero(scsi_cmd, sizeof(*scsi_cmd));
7708	scsi_cmd->opcode = LOG_SENSE;
7709	scsi_cmd->page = page_code | page;
7710	if (save_pages != 0)
7711		scsi_cmd->byte2 |= SLS_SP;
7712	if (ppc != 0)
7713		scsi_cmd->byte2 |= SLS_PPC;
7714	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7715	scsi_ulto2b(param_len, scsi_cmd->length);
7716	cdb_len = sizeof(*scsi_cmd);
7717
7718	cam_fill_csio(csio,
7719		      retries,
7720		      cbfcnp,
7721		      /*flags*/CAM_DIR_IN,
7722		      tag_action,
7723		      /*data_ptr*/param_buf,
7724		      /*dxfer_len*/param_len,
7725		      sense_len,
7726		      cdb_len,
7727		      timeout);
7728}
7729
7730void
7731scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
7732		void (*cbfcnp)(struct cam_periph *, union ccb *),
7733		u_int8_t tag_action, u_int8_t page_code, int save_pages,
7734		int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
7735		u_int8_t sense_len, u_int32_t timeout)
7736{
7737	struct scsi_log_select *scsi_cmd;
7738	u_int8_t cdb_len;
7739
7740	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7741	bzero(scsi_cmd, sizeof(*scsi_cmd));
7742	scsi_cmd->opcode = LOG_SELECT;
7743	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7744	if (save_pages != 0)
7745		scsi_cmd->byte2 |= SLS_SP;
7746	if (pc_reset != 0)
7747		scsi_cmd->byte2 |= SLS_PCR;
7748	scsi_ulto2b(param_len, scsi_cmd->length);
7749	cdb_len = sizeof(*scsi_cmd);
7750
7751	cam_fill_csio(csio,
7752		      retries,
7753		      cbfcnp,
7754		      /*flags*/CAM_DIR_OUT,
7755		      tag_action,
7756		      /*data_ptr*/param_buf,
7757		      /*dxfer_len*/param_len,
7758		      sense_len,
7759		      cdb_len,
7760		      timeout);
7761}
7762
7763/*
7764 * Prevent or allow the user to remove the media
7765 */
7766void
7767scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
7768	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7769	     u_int8_t tag_action, u_int8_t action,
7770	     u_int8_t sense_len, u_int32_t timeout)
7771{
7772	struct scsi_prevent *scsi_cmd;
7773
7774	cam_fill_csio(csio,
7775		      retries,
7776		      cbfcnp,
7777		      /*flags*/CAM_DIR_NONE,
7778		      tag_action,
7779		      /*data_ptr*/NULL,
7780		      /*dxfer_len*/0,
7781		      sense_len,
7782		      sizeof(*scsi_cmd),
7783		      timeout);
7784
7785	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7786	bzero(scsi_cmd, sizeof(*scsi_cmd));
7787	scsi_cmd->opcode = PREVENT_ALLOW;
7788	scsi_cmd->how = action;
7789}
7790
7791/* XXX allow specification of address and PMI bit and LBA */
7792void
7793scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
7794		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7795		   u_int8_t tag_action,
7796		   struct scsi_read_capacity_data *rcap_buf,
7797		   u_int8_t sense_len, u_int32_t timeout)
7798{
7799	struct scsi_read_capacity *scsi_cmd;
7800
7801	cam_fill_csio(csio,
7802		      retries,
7803		      cbfcnp,
7804		      /*flags*/CAM_DIR_IN,
7805		      tag_action,
7806		      /*data_ptr*/(u_int8_t *)rcap_buf,
7807		      /*dxfer_len*/sizeof(*rcap_buf),
7808		      sense_len,
7809		      sizeof(*scsi_cmd),
7810		      timeout);
7811
7812	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7813	bzero(scsi_cmd, sizeof(*scsi_cmd));
7814	scsi_cmd->opcode = READ_CAPACITY;
7815}
7816
7817void
7818scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7819		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7820		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7821		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7822		      uint32_t timeout)
7823{
7824	struct scsi_read_capacity_16 *scsi_cmd;
7825
7826
7827	cam_fill_csio(csio,
7828		      retries,
7829		      cbfcnp,
7830		      /*flags*/CAM_DIR_IN,
7831		      tag_action,
7832		      /*data_ptr*/(u_int8_t *)rcap_buf,
7833		      /*dxfer_len*/rcap_buf_len,
7834		      sense_len,
7835		      sizeof(*scsi_cmd),
7836		      timeout);
7837	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7838	bzero(scsi_cmd, sizeof(*scsi_cmd));
7839	scsi_cmd->opcode = SERVICE_ACTION_IN;
7840	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
7841	scsi_u64to8b(lba, scsi_cmd->addr);
7842	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
7843	if (pmi)
7844		reladr |= SRC16_PMI;
7845	if (reladr)
7846		reladr |= SRC16_RELADR;
7847}
7848
7849void
7850scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
7851		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7852		 u_int8_t tag_action, u_int8_t select_report,
7853		 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
7854		 u_int8_t sense_len, u_int32_t timeout)
7855{
7856	struct scsi_report_luns *scsi_cmd;
7857
7858	cam_fill_csio(csio,
7859		      retries,
7860		      cbfcnp,
7861		      /*flags*/CAM_DIR_IN,
7862		      tag_action,
7863		      /*data_ptr*/(u_int8_t *)rpl_buf,
7864		      /*dxfer_len*/alloc_len,
7865		      sense_len,
7866		      sizeof(*scsi_cmd),
7867		      timeout);
7868	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
7869	bzero(scsi_cmd, sizeof(*scsi_cmd));
7870	scsi_cmd->opcode = REPORT_LUNS;
7871	scsi_cmd->select_report = select_report;
7872	scsi_ulto4b(alloc_len, scsi_cmd->length);
7873}
7874
7875void
7876scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7877		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7878		 u_int8_t tag_action, u_int8_t pdf,
7879		 void *buf, u_int32_t alloc_len,
7880		 u_int8_t sense_len, u_int32_t timeout)
7881{
7882	struct scsi_target_group *scsi_cmd;
7883
7884	cam_fill_csio(csio,
7885		      retries,
7886		      cbfcnp,
7887		      /*flags*/CAM_DIR_IN,
7888		      tag_action,
7889		      /*data_ptr*/(u_int8_t *)buf,
7890		      /*dxfer_len*/alloc_len,
7891		      sense_len,
7892		      sizeof(*scsi_cmd),
7893		      timeout);
7894	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7895	bzero(scsi_cmd, sizeof(*scsi_cmd));
7896	scsi_cmd->opcode = MAINTENANCE_IN;
7897	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
7898	scsi_ulto4b(alloc_len, scsi_cmd->length);
7899}
7900
7901void
7902scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7903		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7904		 u_int8_t tag_action, void *buf, u_int32_t alloc_len,
7905		 u_int8_t sense_len, u_int32_t timeout)
7906{
7907	struct scsi_target_group *scsi_cmd;
7908
7909	cam_fill_csio(csio,
7910		      retries,
7911		      cbfcnp,
7912		      /*flags*/CAM_DIR_OUT,
7913		      tag_action,
7914		      /*data_ptr*/(u_int8_t *)buf,
7915		      /*dxfer_len*/alloc_len,
7916		      sense_len,
7917		      sizeof(*scsi_cmd),
7918		      timeout);
7919	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7920	bzero(scsi_cmd, sizeof(*scsi_cmd));
7921	scsi_cmd->opcode = MAINTENANCE_OUT;
7922	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
7923	scsi_ulto4b(alloc_len, scsi_cmd->length);
7924}
7925
7926/*
7927 * Syncronize the media to the contents of the cache for
7928 * the given lba/count pair.  Specifying 0/0 means sync
7929 * the whole cache.
7930 */
7931void
7932scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
7933		       void (*cbfcnp)(struct cam_periph *, union ccb *),
7934		       u_int8_t tag_action, u_int32_t begin_lba,
7935		       u_int16_t lb_count, u_int8_t sense_len,
7936		       u_int32_t timeout)
7937{
7938	struct scsi_sync_cache *scsi_cmd;
7939
7940	cam_fill_csio(csio,
7941		      retries,
7942		      cbfcnp,
7943		      /*flags*/CAM_DIR_NONE,
7944		      tag_action,
7945		      /*data_ptr*/NULL,
7946		      /*dxfer_len*/0,
7947		      sense_len,
7948		      sizeof(*scsi_cmd),
7949		      timeout);
7950
7951	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
7952	bzero(scsi_cmd, sizeof(*scsi_cmd));
7953	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
7954	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
7955	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
7956}
7957
7958void
7959scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
7960		void (*cbfcnp)(struct cam_periph *, union ccb *),
7961		u_int8_t tag_action, int readop, u_int8_t byte2,
7962		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
7963		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
7964		u_int32_t timeout)
7965{
7966	int read;
7967	u_int8_t cdb_len;
7968
7969	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
7970
7971	/*
7972	 * Use the smallest possible command to perform the operation
7973	 * as some legacy hardware does not support the 10 byte commands.
7974	 * If any of the bits in byte2 is set, we have to go with a larger
7975	 * command.
7976	 */
7977	if ((minimum_cmd_size < 10)
7978	 && ((lba & 0x1fffff) == lba)
7979	 && ((block_count & 0xff) == block_count)
7980	 && (byte2 == 0)) {
7981		/*
7982		 * We can fit in a 6 byte cdb.
7983		 */
7984		struct scsi_rw_6 *scsi_cmd;
7985
7986		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
7987		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
7988		scsi_ulto3b(lba, scsi_cmd->addr);
7989		scsi_cmd->length = block_count & 0xff;
7990		scsi_cmd->control = 0;
7991		cdb_len = sizeof(*scsi_cmd);
7992
7993		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
7994			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
7995			   scsi_cmd->addr[1], scsi_cmd->addr[2],
7996			   scsi_cmd->length, dxfer_len));
7997	} else if ((minimum_cmd_size < 12)
7998		&& ((block_count & 0xffff) == block_count)
7999		&& ((lba & 0xffffffff) == lba)) {
8000		/*
8001		 * Need a 10 byte cdb.
8002		 */
8003		struct scsi_rw_10 *scsi_cmd;
8004
8005		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8006		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8007		scsi_cmd->byte2 = byte2;
8008		scsi_ulto4b(lba, scsi_cmd->addr);
8009		scsi_cmd->reserved = 0;
8010		scsi_ulto2b(block_count, scsi_cmd->length);
8011		scsi_cmd->control = 0;
8012		cdb_len = sizeof(*scsi_cmd);
8013
8014		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8015			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8016			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8017			   scsi_cmd->addr[3], scsi_cmd->length[0],
8018			   scsi_cmd->length[1], dxfer_len));
8019	} else if ((minimum_cmd_size < 16)
8020		&& ((block_count & 0xffffffff) == block_count)
8021		&& ((lba & 0xffffffff) == lba)) {
8022		/*
8023		 * The block count is too big for a 10 byte CDB, use a 12
8024		 * byte CDB.
8025		 */
8026		struct scsi_rw_12 *scsi_cmd;
8027
8028		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8029		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8030		scsi_cmd->byte2 = byte2;
8031		scsi_ulto4b(lba, scsi_cmd->addr);
8032		scsi_cmd->reserved = 0;
8033		scsi_ulto4b(block_count, scsi_cmd->length);
8034		scsi_cmd->control = 0;
8035		cdb_len = sizeof(*scsi_cmd);
8036
8037		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8038			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8039			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8040			   scsi_cmd->addr[3], scsi_cmd->length[0],
8041			   scsi_cmd->length[1], scsi_cmd->length[2],
8042			   scsi_cmd->length[3], dxfer_len));
8043	} else {
8044		/*
8045		 * 16 byte CDB.  We'll only get here if the LBA is larger
8046		 * than 2^32, or if the user asks for a 16 byte command.
8047		 */
8048		struct scsi_rw_16 *scsi_cmd;
8049
8050		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8051		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8052		scsi_cmd->byte2 = byte2;
8053		scsi_u64to8b(lba, scsi_cmd->addr);
8054		scsi_cmd->reserved = 0;
8055		scsi_ulto4b(block_count, scsi_cmd->length);
8056		scsi_cmd->control = 0;
8057		cdb_len = sizeof(*scsi_cmd);
8058	}
8059	cam_fill_csio(csio,
8060		      retries,
8061		      cbfcnp,
8062		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8063		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8064		      tag_action,
8065		      data_ptr,
8066		      dxfer_len,
8067		      sense_len,
8068		      cdb_len,
8069		      timeout);
8070}
8071
8072void
8073scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
8074		void (*cbfcnp)(struct cam_periph *, union ccb *),
8075		u_int8_t tag_action, u_int8_t byte2,
8076		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8077		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8078		u_int32_t timeout)
8079{
8080	u_int8_t cdb_len;
8081	if ((minimum_cmd_size < 16) &&
8082	    ((block_count & 0xffff) == block_count) &&
8083	    ((lba & 0xffffffff) == lba)) {
8084		/*
8085		 * Need a 10 byte cdb.
8086		 */
8087		struct scsi_write_same_10 *scsi_cmd;
8088
8089		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8090		scsi_cmd->opcode = WRITE_SAME_10;
8091		scsi_cmd->byte2 = byte2;
8092		scsi_ulto4b(lba, scsi_cmd->addr);
8093		scsi_cmd->group = 0;
8094		scsi_ulto2b(block_count, scsi_cmd->length);
8095		scsi_cmd->control = 0;
8096		cdb_len = sizeof(*scsi_cmd);
8097
8098		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8099			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8100			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8101			   scsi_cmd->addr[3], scsi_cmd->length[0],
8102			   scsi_cmd->length[1], dxfer_len));
8103	} else {
8104		/*
8105		 * 16 byte CDB.  We'll only get here if the LBA is larger
8106		 * than 2^32, or if the user asks for a 16 byte command.
8107		 */
8108		struct scsi_write_same_16 *scsi_cmd;
8109
8110		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8111		scsi_cmd->opcode = WRITE_SAME_16;
8112		scsi_cmd->byte2 = byte2;
8113		scsi_u64to8b(lba, scsi_cmd->addr);
8114		scsi_ulto4b(block_count, scsi_cmd->length);
8115		scsi_cmd->group = 0;
8116		scsi_cmd->control = 0;
8117		cdb_len = sizeof(*scsi_cmd);
8118
8119		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8120			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8121			   scsi_cmd->addr[0], scsi_cmd->addr[1],
8122			   scsi_cmd->addr[2], scsi_cmd->addr[3],
8123			   scsi_cmd->addr[4], scsi_cmd->addr[5],
8124			   scsi_cmd->addr[6], scsi_cmd->addr[7],
8125			   scsi_cmd->length[0], scsi_cmd->length[1],
8126			   scsi_cmd->length[2], scsi_cmd->length[3],
8127			   dxfer_len));
8128	}
8129	cam_fill_csio(csio,
8130		      retries,
8131		      cbfcnp,
8132		      /*flags*/CAM_DIR_OUT,
8133		      tag_action,
8134		      data_ptr,
8135		      dxfer_len,
8136		      sense_len,
8137		      cdb_len,
8138		      timeout);
8139}
8140
8141void
8142scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
8143		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8144		  u_int8_t tag_action, u_int8_t *data_ptr,
8145		  u_int16_t dxfer_len, u_int8_t sense_len,
8146		  u_int32_t timeout)
8147{
8148	scsi_ata_pass(csio,
8149		      retries,
8150		      cbfcnp,
8151		      /*flags*/CAM_DIR_IN,
8152		      tag_action,
8153		      /*protocol*/AP_PROTO_PIO_IN,
8154		      /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8155				   AP_FLAG_BYT_BLOK_BYTES |
8156				   AP_FLAG_TLEN_SECT_CNT,
8157		      /*features*/0,
8158		      /*sector_count*/dxfer_len,
8159		      /*lba*/0,
8160		      /*command*/ATA_ATA_IDENTIFY,
8161		      /*device*/ 0,
8162		      /*icc*/ 0,
8163		      /*auxiliary*/ 0,
8164		      /*control*/0,
8165		      data_ptr,
8166		      dxfer_len,
8167		      /*cdb_storage*/ NULL,
8168		      /*cdb_storage_len*/ 0,
8169		      /*minimum_cmd_size*/ 0,
8170		      sense_len,
8171		      timeout);
8172}
8173
8174void
8175scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
8176	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8177	      u_int8_t tag_action, u_int16_t block_count,
8178	      u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8179	      u_int32_t timeout)
8180{
8181	scsi_ata_pass_16(csio,
8182			 retries,
8183			 cbfcnp,
8184			 /*flags*/CAM_DIR_OUT,
8185			 tag_action,
8186			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8187			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8188			 /*features*/ATA_DSM_TRIM,
8189			 /*sector_count*/block_count,
8190			 /*lba*/0,
8191			 /*command*/ATA_DATA_SET_MANAGEMENT,
8192			 /*control*/0,
8193			 data_ptr,
8194			 dxfer_len,
8195			 sense_len,
8196			 timeout);
8197}
8198
8199int
8200scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8201		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8202		  uint8_t tag_action, uint32_t log_address,
8203		  uint32_t page_number, uint16_t block_count,
8204		  uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8205		  uint8_t sense_len, uint32_t timeout)
8206{
8207	uint8_t command, protocol_out;
8208	uint16_t count_out;
8209	uint64_t lba;
8210	int retval;
8211
8212	retval = 0;
8213
8214	switch (protocol) {
8215	case AP_PROTO_DMA:
8216		count_out = block_count;
8217		command = ATA_READ_LOG_DMA_EXT;
8218		protocol_out = AP_PROTO_DMA;
8219		break;
8220	case AP_PROTO_PIO_IN:
8221	default:
8222		count_out = block_count;
8223		command = ATA_READ_LOG_EXT;
8224		protocol_out = AP_PROTO_PIO_IN;
8225		break;
8226	}
8227
8228	lba = (((uint64_t)page_number & 0xff00) << 32) |
8229	      ((page_number & 0x00ff) << 8) |
8230	      (log_address & 0xff);
8231
8232	protocol_out |= AP_EXTEND;
8233
8234	retval = scsi_ata_pass(csio,
8235			       retries,
8236			       cbfcnp,
8237			       /*flags*/CAM_DIR_IN,
8238			       tag_action,
8239			       /*protocol*/ protocol_out,
8240			       /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8241					    AP_FLAG_BYT_BLOK_BLOCKS |
8242					    AP_FLAG_TDIR_FROM_DEV,
8243			       /*feature*/ 0,
8244			       /*sector_count*/ count_out,
8245			       /*lba*/ lba,
8246			       /*command*/ command,
8247			       /*device*/ 0,
8248			       /*icc*/ 0,
8249			       /*auxiliary*/ 0,
8250			       /*control*/0,
8251			       data_ptr,
8252			       dxfer_len,
8253			       /*cdb_storage*/ NULL,
8254			       /*cdb_storage_len*/ 0,
8255			       /*minimum_cmd_size*/ 0,
8256			       sense_len,
8257			       timeout);
8258
8259	return (retval);
8260}
8261
8262/*
8263 * Note! This is an unusual CDB building function because it can return
8264 * an error in the event that the command in question requires a variable
8265 * length CDB, but the caller has not given storage space for one or has not
8266 * given enough storage space.  If there is enough space available in the
8267 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8268 */
8269int
8270scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8271	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8272	      uint32_t flags, uint8_t tag_action,
8273	      uint8_t protocol, uint8_t ata_flags, uint16_t features,
8274	      uint16_t sector_count, uint64_t lba, uint8_t command,
8275	      uint8_t device, uint8_t icc, uint32_t auxiliary,
8276	      uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len,
8277	      uint8_t *cdb_storage, size_t cdb_storage_len,
8278	      int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
8279{
8280	uint32_t cam_flags;
8281	uint8_t *cdb_ptr;
8282	int cmd_size;
8283	int retval;
8284	uint8_t cdb_len;
8285
8286	retval = 0;
8287	cam_flags = flags;
8288
8289	/*
8290	 * Round the user's request to the nearest command size that is at
8291	 * least as big as what he requested.
8292	 */
8293	if (minimum_cmd_size <= 12)
8294		cmd_size = 12;
8295	else if (minimum_cmd_size > 16)
8296		cmd_size = 32;
8297	else
8298		cmd_size = 16;
8299
8300	/*
8301	 * If we have parameters that require a 48-bit ATA command, we have to
8302	 * use the 16 byte ATA PASS-THROUGH command at least.
8303	 */
8304	if (((lba > ATA_MAX_28BIT_LBA)
8305	  || (sector_count > 255)
8306	  || (features > 255)
8307	  || (protocol & AP_EXTEND))
8308	 && ((cmd_size < 16)
8309	  || ((protocol & AP_EXTEND) == 0))) {
8310		if (cmd_size < 16)
8311			cmd_size = 16;
8312		protocol |= AP_EXTEND;
8313	}
8314
8315	/*
8316	 * The icc and auxiliary ATA registers are only supported in the
8317	 * 32-byte version of the ATA PASS-THROUGH command.
8318	 */
8319	if ((icc != 0)
8320	 || (auxiliary != 0)) {
8321		cmd_size = 32;
8322		protocol |= AP_EXTEND;
8323	}
8324
8325
8326	if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8327	 && ((cdb_storage == NULL)
8328	  || (cdb_storage_len < cmd_size))) {
8329		retval = 1;
8330		goto bailout;
8331	}
8332
8333	/*
8334	 * At this point we know we have enough space to store the command
8335	 * in one place or another.  We prefer the built-in array, but used
8336	 * the passed in storage if necessary.
8337	 */
8338	if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8339		cdb_ptr = csio->cdb_io.cdb_bytes;
8340	else {
8341		cdb_ptr = cdb_storage;
8342		cam_flags |= CAM_CDB_POINTER;
8343	}
8344
8345	if (cmd_size <= 12) {
8346		struct ata_pass_12 *cdb;
8347
8348		cdb = (struct ata_pass_12 *)cdb_ptr;
8349		cdb_len = sizeof(*cdb);
8350		bzero(cdb, cdb_len);
8351
8352		cdb->opcode = ATA_PASS_12;
8353		cdb->protocol = protocol;
8354		cdb->flags = ata_flags;
8355		cdb->features = features;
8356		cdb->sector_count = sector_count;
8357		cdb->lba_low = lba & 0xff;
8358		cdb->lba_mid = (lba >> 8) & 0xff;
8359		cdb->lba_high = (lba >> 16) & 0xff;
8360		cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8361		cdb->command = command;
8362		cdb->control = control;
8363	} else if (cmd_size <= 16) {
8364		struct ata_pass_16 *cdb;
8365
8366		cdb = (struct ata_pass_16 *)cdb_ptr;
8367		cdb_len = sizeof(*cdb);
8368		bzero(cdb, cdb_len);
8369
8370		cdb->opcode = ATA_PASS_16;
8371		cdb->protocol = protocol;
8372		cdb->flags = ata_flags;
8373		cdb->features = features & 0xff;
8374		cdb->sector_count = sector_count & 0xff;
8375		cdb->lba_low = lba & 0xff;
8376		cdb->lba_mid = (lba >> 8) & 0xff;
8377		cdb->lba_high = (lba >> 16) & 0xff;
8378		/*
8379		 * If AP_EXTEND is set, we're sending a 48-bit command.
8380		 * Otherwise it's a 28-bit command.
8381		 */
8382		if (protocol & AP_EXTEND) {
8383			cdb->lba_low_ext = (lba >> 24) & 0xff;
8384			cdb->lba_mid_ext = (lba >> 32) & 0xff;
8385			cdb->lba_high_ext = (lba >> 40) & 0xff;
8386			cdb->features_ext = (features >> 8) & 0xff;
8387			cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8388			cdb->device = device | ATA_DEV_LBA;
8389		} else {
8390			cdb->lba_low_ext = (lba >> 24) & 0xf;
8391			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8392		}
8393		cdb->command = command;
8394		cdb->control = control;
8395	} else {
8396		struct ata_pass_32 *cdb;
8397		uint8_t tmp_lba[8];
8398
8399		cdb = (struct ata_pass_32 *)cdb_ptr;
8400		cdb_len = sizeof(*cdb);
8401		bzero(cdb, cdb_len);
8402		cdb->opcode = VARIABLE_LEN_CDB;
8403		cdb->control = control;
8404		cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8405							service_action);
8406		scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8407		cdb->protocol = protocol;
8408		cdb->flags = ata_flags;
8409
8410		if ((protocol & AP_EXTEND) == 0) {
8411			lba &= 0x0fffffff;
8412			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8413			features &= 0xff;
8414			sector_count &= 0xff;
8415		} else {
8416			cdb->device = device | ATA_DEV_LBA;
8417		}
8418		scsi_u64to8b(lba, tmp_lba);
8419		bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8420		scsi_ulto2b(features, cdb->features);
8421		scsi_ulto2b(sector_count, cdb->count);
8422		cdb->command = command;
8423		cdb->icc = icc;
8424		scsi_ulto4b(auxiliary, cdb->auxiliary);
8425	}
8426
8427	cam_fill_csio(csio,
8428		      retries,
8429		      cbfcnp,
8430		      cam_flags,
8431		      tag_action,
8432		      data_ptr,
8433		      dxfer_len,
8434		      sense_len,
8435		      cmd_size,
8436		      timeout);
8437bailout:
8438	return (retval);
8439}
8440
8441void
8442scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
8443		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8444		 u_int32_t flags, u_int8_t tag_action,
8445		 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
8446		 u_int16_t sector_count, uint64_t lba, u_int8_t command,
8447		 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
8448		 u_int8_t sense_len, u_int32_t timeout)
8449{
8450	struct ata_pass_16 *ata_cmd;
8451
8452	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8453	ata_cmd->opcode = ATA_PASS_16;
8454	ata_cmd->protocol = protocol;
8455	ata_cmd->flags = ata_flags;
8456	ata_cmd->features_ext = features >> 8;
8457	ata_cmd->features = features;
8458	ata_cmd->sector_count_ext = sector_count >> 8;
8459	ata_cmd->sector_count = sector_count;
8460	ata_cmd->lba_low = lba;
8461	ata_cmd->lba_mid = lba >> 8;
8462	ata_cmd->lba_high = lba >> 16;
8463	ata_cmd->device = ATA_DEV_LBA;
8464	if (protocol & AP_EXTEND) {
8465		ata_cmd->lba_low_ext = lba >> 24;
8466		ata_cmd->lba_mid_ext = lba >> 32;
8467		ata_cmd->lba_high_ext = lba >> 40;
8468	} else
8469		ata_cmd->device |= (lba >> 24) & 0x0f;
8470	ata_cmd->command = command;
8471	ata_cmd->control = control;
8472
8473	cam_fill_csio(csio,
8474		      retries,
8475		      cbfcnp,
8476		      flags,
8477		      tag_action,
8478		      data_ptr,
8479		      dxfer_len,
8480		      sense_len,
8481		      sizeof(*ata_cmd),
8482		      timeout);
8483}
8484
8485void
8486scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
8487	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8488	   u_int8_t tag_action, u_int8_t byte2,
8489	   u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8490	   u_int32_t timeout)
8491{
8492	struct scsi_unmap *scsi_cmd;
8493
8494	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8495	scsi_cmd->opcode = UNMAP;
8496	scsi_cmd->byte2 = byte2;
8497	scsi_ulto4b(0, scsi_cmd->reserved);
8498	scsi_cmd->group = 0;
8499	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8500	scsi_cmd->control = 0;
8501
8502	cam_fill_csio(csio,
8503		      retries,
8504		      cbfcnp,
8505		      /*flags*/CAM_DIR_OUT,
8506		      tag_action,
8507		      data_ptr,
8508		      dxfer_len,
8509		      sense_len,
8510		      sizeof(*scsi_cmd),
8511		      timeout);
8512}
8513
8514void
8515scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
8516				void (*cbfcnp)(struct cam_periph *, union ccb*),
8517				uint8_t tag_action, int pcv, uint8_t page_code,
8518				uint8_t *data_ptr, uint16_t allocation_length,
8519				uint8_t sense_len, uint32_t timeout)
8520{
8521	struct scsi_receive_diag *scsi_cmd;
8522
8523	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8524	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8525	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8526	if (pcv) {
8527		scsi_cmd->byte2 |= SRD_PCV;
8528		scsi_cmd->page_code = page_code;
8529	}
8530	scsi_ulto2b(allocation_length, scsi_cmd->length);
8531
8532	cam_fill_csio(csio,
8533		      retries,
8534		      cbfcnp,
8535		      /*flags*/CAM_DIR_IN,
8536		      tag_action,
8537		      data_ptr,
8538		      allocation_length,
8539		      sense_len,
8540		      sizeof(*scsi_cmd),
8541		      timeout);
8542}
8543
8544void
8545scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
8546		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8547		     uint8_t tag_action, int unit_offline, int device_offline,
8548		     int self_test, int page_format, int self_test_code,
8549		     uint8_t *data_ptr, uint16_t param_list_length,
8550		     uint8_t sense_len, uint32_t timeout)
8551{
8552	struct scsi_send_diag *scsi_cmd;
8553
8554	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8555	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8556	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8557
8558	/*
8559	 * The default self-test mode control and specific test
8560	 * control are mutually exclusive.
8561	 */
8562	if (self_test)
8563		self_test_code = SSD_SELF_TEST_CODE_NONE;
8564
8565	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8566			 & SSD_SELF_TEST_CODE_MASK)
8567			| (unit_offline   ? SSD_UNITOFFL : 0)
8568			| (device_offline ? SSD_DEVOFFL  : 0)
8569			| (self_test      ? SSD_SELFTEST : 0)
8570			| (page_format    ? SSD_PF       : 0);
8571	scsi_ulto2b(param_list_length, scsi_cmd->length);
8572
8573	cam_fill_csio(csio,
8574		      retries,
8575		      cbfcnp,
8576		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8577		      tag_action,
8578		      data_ptr,
8579		      param_list_length,
8580		      sense_len,
8581		      sizeof(*scsi_cmd),
8582		      timeout);
8583}
8584
8585void
8586scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8587			void (*cbfcnp)(struct cam_periph *, union ccb*),
8588			uint8_t tag_action, int mode,
8589			uint8_t buffer_id, u_int32_t offset,
8590			uint8_t *data_ptr, uint32_t allocation_length,
8591			uint8_t sense_len, uint32_t timeout)
8592{
8593	struct scsi_read_buffer *scsi_cmd;
8594
8595	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8596	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8597	scsi_cmd->opcode = READ_BUFFER;
8598	scsi_cmd->byte2 = mode;
8599	scsi_cmd->buffer_id = buffer_id;
8600	scsi_ulto3b(offset, scsi_cmd->offset);
8601	scsi_ulto3b(allocation_length, scsi_cmd->length);
8602
8603	cam_fill_csio(csio,
8604		      retries,
8605		      cbfcnp,
8606		      /*flags*/CAM_DIR_IN,
8607		      tag_action,
8608		      data_ptr,
8609		      allocation_length,
8610		      sense_len,
8611		      sizeof(*scsi_cmd),
8612		      timeout);
8613}
8614
8615void
8616scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8617			void (*cbfcnp)(struct cam_periph *, union ccb *),
8618			uint8_t tag_action, int mode,
8619			uint8_t buffer_id, u_int32_t offset,
8620			uint8_t *data_ptr, uint32_t param_list_length,
8621			uint8_t sense_len, uint32_t timeout)
8622{
8623	struct scsi_write_buffer *scsi_cmd;
8624
8625	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8626	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8627	scsi_cmd->opcode = WRITE_BUFFER;
8628	scsi_cmd->byte2 = mode;
8629	scsi_cmd->buffer_id = buffer_id;
8630	scsi_ulto3b(offset, scsi_cmd->offset);
8631	scsi_ulto3b(param_list_length, scsi_cmd->length);
8632
8633	cam_fill_csio(csio,
8634		      retries,
8635		      cbfcnp,
8636		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8637		      tag_action,
8638		      data_ptr,
8639		      param_list_length,
8640		      sense_len,
8641		      sizeof(*scsi_cmd),
8642		      timeout);
8643}
8644
8645void
8646scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
8647		void (*cbfcnp)(struct cam_periph *, union ccb *),
8648		u_int8_t tag_action, int start, int load_eject,
8649		int immediate, u_int8_t sense_len, u_int32_t timeout)
8650{
8651	struct scsi_start_stop_unit *scsi_cmd;
8652	int extra_flags = 0;
8653
8654	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8655	bzero(scsi_cmd, sizeof(*scsi_cmd));
8656	scsi_cmd->opcode = START_STOP_UNIT;
8657	if (start != 0) {
8658		scsi_cmd->how |= SSS_START;
8659		/* it takes a lot of power to start a drive */
8660		extra_flags |= CAM_HIGH_POWER;
8661	}
8662	if (load_eject != 0)
8663		scsi_cmd->how |= SSS_LOEJ;
8664	if (immediate != 0)
8665		scsi_cmd->byte2 |= SSS_IMMED;
8666
8667	cam_fill_csio(csio,
8668		      retries,
8669		      cbfcnp,
8670		      /*flags*/CAM_DIR_NONE | extra_flags,
8671		      tag_action,
8672		      /*data_ptr*/NULL,
8673		      /*dxfer_len*/0,
8674		      sense_len,
8675		      sizeof(*scsi_cmd),
8676		      timeout);
8677}
8678
8679void
8680scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8681		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8682		    u_int8_t tag_action, u_int8_t service_action,
8683		    uint32_t element, u_int8_t elem_type, int logical_volume,
8684		    int partition, u_int32_t first_attribute, int cache,
8685		    u_int8_t *data_ptr, u_int32_t length, int sense_len,
8686		    u_int32_t timeout)
8687{
8688	struct scsi_read_attribute *scsi_cmd;
8689
8690	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
8691	bzero(scsi_cmd, sizeof(*scsi_cmd));
8692
8693	scsi_cmd->opcode = READ_ATTRIBUTE;
8694	scsi_cmd->service_action = service_action,
8695	scsi_ulto2b(element, scsi_cmd->element);
8696	scsi_cmd->elem_type = elem_type;
8697	scsi_cmd->logical_volume = logical_volume;
8698	scsi_cmd->partition = partition;
8699	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
8700	scsi_ulto4b(length, scsi_cmd->length);
8701	if (cache != 0)
8702		scsi_cmd->cache |= SRA_CACHE;
8703
8704	cam_fill_csio(csio,
8705		      retries,
8706		      cbfcnp,
8707		      /*flags*/CAM_DIR_IN,
8708		      tag_action,
8709		      /*data_ptr*/data_ptr,
8710		      /*dxfer_len*/length,
8711		      sense_len,
8712		      sizeof(*scsi_cmd),
8713		      timeout);
8714}
8715
8716void
8717scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8718		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8719		    u_int8_t tag_action, uint32_t element, int logical_volume,
8720		    int partition, int wtc, u_int8_t *data_ptr,
8721		    u_int32_t length, int sense_len, u_int32_t timeout)
8722{
8723	struct scsi_write_attribute *scsi_cmd;
8724
8725	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
8726	bzero(scsi_cmd, sizeof(*scsi_cmd));
8727
8728	scsi_cmd->opcode = WRITE_ATTRIBUTE;
8729	if (wtc != 0)
8730		scsi_cmd->byte2 = SWA_WTC;
8731	scsi_ulto3b(element, scsi_cmd->element);
8732	scsi_cmd->logical_volume = logical_volume;
8733	scsi_cmd->partition = partition;
8734	scsi_ulto4b(length, scsi_cmd->length);
8735
8736	cam_fill_csio(csio,
8737		      retries,
8738		      cbfcnp,
8739		      /*flags*/CAM_DIR_OUT,
8740		      tag_action,
8741		      /*data_ptr*/data_ptr,
8742		      /*dxfer_len*/length,
8743		      sense_len,
8744		      sizeof(*scsi_cmd),
8745		      timeout);
8746}
8747
8748void
8749scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
8750			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8751			   uint8_t tag_action, int service_action,
8752			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8753			   int timeout)
8754{
8755	struct scsi_per_res_in *scsi_cmd;
8756
8757	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
8758	bzero(scsi_cmd, sizeof(*scsi_cmd));
8759
8760	scsi_cmd->opcode = PERSISTENT_RES_IN;
8761	scsi_cmd->action = service_action;
8762	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8763
8764	cam_fill_csio(csio,
8765		      retries,
8766		      cbfcnp,
8767		      /*flags*/CAM_DIR_IN,
8768		      tag_action,
8769		      data_ptr,
8770		      dxfer_len,
8771		      sense_len,
8772		      sizeof(*scsi_cmd),
8773		      timeout);
8774}
8775
8776void
8777scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
8778			    void (*cbfcnp)(struct cam_periph *, union ccb *),
8779			    uint8_t tag_action, int service_action,
8780			    int scope, int res_type, uint8_t *data_ptr,
8781			    uint32_t dxfer_len, int sense_len, int timeout)
8782{
8783	struct scsi_per_res_out *scsi_cmd;
8784
8785	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
8786	bzero(scsi_cmd, sizeof(*scsi_cmd));
8787
8788	scsi_cmd->opcode = PERSISTENT_RES_OUT;
8789	scsi_cmd->action = service_action;
8790	scsi_cmd->scope_type = scope | res_type;
8791	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8792
8793	cam_fill_csio(csio,
8794		      retries,
8795		      cbfcnp,
8796		      /*flags*/CAM_DIR_OUT,
8797		      tag_action,
8798		      /*data_ptr*/data_ptr,
8799		      /*dxfer_len*/dxfer_len,
8800		      sense_len,
8801		      sizeof(*scsi_cmd),
8802		      timeout);
8803}
8804
8805void
8806scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
8807			  void (*cbfcnp)(struct cam_periph *, union ccb *),
8808			  uint8_t tag_action, uint32_t security_protocol,
8809			  uint32_t security_protocol_specific, int byte4,
8810			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8811			  int timeout)
8812{
8813	struct scsi_security_protocol_in *scsi_cmd;
8814
8815	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
8816	bzero(scsi_cmd, sizeof(*scsi_cmd));
8817
8818	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
8819
8820	scsi_cmd->security_protocol = security_protocol;
8821	scsi_ulto2b(security_protocol_specific,
8822		    scsi_cmd->security_protocol_specific);
8823	scsi_cmd->byte4 = byte4;
8824	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8825
8826	cam_fill_csio(csio,
8827		      retries,
8828		      cbfcnp,
8829		      /*flags*/CAM_DIR_IN,
8830		      tag_action,
8831		      data_ptr,
8832		      dxfer_len,
8833		      sense_len,
8834		      sizeof(*scsi_cmd),
8835		      timeout);
8836}
8837
8838void
8839scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
8840			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8841			   uint8_t tag_action, uint32_t security_protocol,
8842			   uint32_t security_protocol_specific, int byte4,
8843			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8844			   int timeout)
8845{
8846	struct scsi_security_protocol_out *scsi_cmd;
8847
8848	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
8849	bzero(scsi_cmd, sizeof(*scsi_cmd));
8850
8851	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
8852
8853	scsi_cmd->security_protocol = security_protocol;
8854	scsi_ulto2b(security_protocol_specific,
8855		    scsi_cmd->security_protocol_specific);
8856	scsi_cmd->byte4 = byte4;
8857	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8858
8859	cam_fill_csio(csio,
8860		      retries,
8861		      cbfcnp,
8862		      /*flags*/CAM_DIR_OUT,
8863		      tag_action,
8864		      data_ptr,
8865		      dxfer_len,
8866		      sense_len,
8867		      sizeof(*scsi_cmd),
8868		      timeout);
8869}
8870
8871void
8872scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
8873			      void (*cbfcnp)(struct cam_periph *, union ccb *),
8874			      uint8_t tag_action, int options, int req_opcode,
8875			      int req_service_action, uint8_t *data_ptr,
8876			      uint32_t dxfer_len, int sense_len, int timeout)
8877{
8878	struct scsi_report_supported_opcodes *scsi_cmd;
8879
8880	scsi_cmd = (struct scsi_report_supported_opcodes *)
8881	    &csio->cdb_io.cdb_bytes;
8882	bzero(scsi_cmd, sizeof(*scsi_cmd));
8883
8884	scsi_cmd->opcode = MAINTENANCE_IN;
8885	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
8886	scsi_cmd->options = options;
8887	scsi_cmd->requested_opcode = req_opcode;
8888	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
8889	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8890
8891	cam_fill_csio(csio,
8892		      retries,
8893		      cbfcnp,
8894		      /*flags*/CAM_DIR_IN,
8895		      tag_action,
8896		      data_ptr,
8897		      dxfer_len,
8898		      sense_len,
8899		      sizeof(*scsi_cmd),
8900		      timeout);
8901}
8902
8903/*
8904 * Try make as good a match as possible with
8905 * available sub drivers
8906 */
8907int
8908scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8909{
8910	struct scsi_inquiry_pattern *entry;
8911	struct scsi_inquiry_data *inq;
8912
8913	entry = (struct scsi_inquiry_pattern *)table_entry;
8914	inq = (struct scsi_inquiry_data *)inqbuffer;
8915
8916	if (((SID_TYPE(inq) == entry->type)
8917	  || (entry->type == T_ANY))
8918	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8919				   : entry->media_type & SIP_MEDIA_FIXED)
8920	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8921	 && (cam_strmatch(inq->product, entry->product,
8922			  sizeof(inq->product)) == 0)
8923	 && (cam_strmatch(inq->revision, entry->revision,
8924			  sizeof(inq->revision)) == 0)) {
8925		return (0);
8926	}
8927        return (-1);
8928}
8929
8930/*
8931 * Try make as good a match as possible with
8932 * available sub drivers
8933 */
8934int
8935scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8936{
8937	struct scsi_static_inquiry_pattern *entry;
8938	struct scsi_inquiry_data *inq;
8939
8940	entry = (struct scsi_static_inquiry_pattern *)table_entry;
8941	inq = (struct scsi_inquiry_data *)inqbuffer;
8942
8943	if (((SID_TYPE(inq) == entry->type)
8944	  || (entry->type == T_ANY))
8945	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8946				   : entry->media_type & SIP_MEDIA_FIXED)
8947	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8948	 && (cam_strmatch(inq->product, entry->product,
8949			  sizeof(inq->product)) == 0)
8950	 && (cam_strmatch(inq->revision, entry->revision,
8951			  sizeof(inq->revision)) == 0)) {
8952		return (0);
8953	}
8954        return (-1);
8955}
8956
8957/**
8958 * Compare two buffers of vpd device descriptors for a match.
8959 *
8960 * \param lhs      Pointer to first buffer of descriptors to compare.
8961 * \param lhs_len  The length of the first buffer.
8962 * \param rhs	   Pointer to second buffer of descriptors to compare.
8963 * \param rhs_len  The length of the second buffer.
8964 *
8965 * \return  0 on a match, -1 otherwise.
8966 *
8967 * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
8968 * against each element in rhs until all data are exhausted or we have found
8969 * a match.
8970 */
8971int
8972scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
8973{
8974	struct scsi_vpd_id_descriptor *lhs_id;
8975	struct scsi_vpd_id_descriptor *lhs_last;
8976	struct scsi_vpd_id_descriptor *rhs_last;
8977	uint8_t *lhs_end;
8978	uint8_t *rhs_end;
8979
8980	lhs_end = lhs + lhs_len;
8981	rhs_end = rhs + rhs_len;
8982
8983	/*
8984	 * rhs_last and lhs_last are the last posible position of a valid
8985	 * descriptor assuming it had a zero length identifier.  We use
8986	 * these variables to insure we can safely dereference the length
8987	 * field in our loop termination tests.
8988	 */
8989	lhs_last = (struct scsi_vpd_id_descriptor *)
8990	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8991	rhs_last = (struct scsi_vpd_id_descriptor *)
8992	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8993
8994	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
8995	while (lhs_id <= lhs_last
8996	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
8997		struct scsi_vpd_id_descriptor *rhs_id;
8998
8999		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9000		while (rhs_id <= rhs_last
9001		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9002
9003			if ((rhs_id->id_type &
9004			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9005			    (lhs_id->id_type &
9006			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9007			 && rhs_id->length == lhs_id->length
9008			 && memcmp(rhs_id->identifier, lhs_id->identifier,
9009				   rhs_id->length) == 0)
9010				return (0);
9011
9012			rhs_id = (struct scsi_vpd_id_descriptor *)
9013			   (rhs_id->identifier + rhs_id->length);
9014		}
9015		lhs_id = (struct scsi_vpd_id_descriptor *)
9016		   (lhs_id->identifier + lhs_id->length);
9017	}
9018	return (-1);
9019}
9020
9021#ifdef _KERNEL
9022int
9023scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9024{
9025	struct cam_ed *device;
9026	struct scsi_vpd_supported_pages *vpds;
9027	int i, num_pages;
9028
9029	device = periph->path->device;
9030	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9031
9032	if (vpds != NULL) {
9033		num_pages = device->supported_vpds_len -
9034		    SVPD_SUPPORTED_PAGES_HDR_LEN;
9035		for (i = 0; i < num_pages; i++) {
9036			if (vpds->page_list[i] == page_id)
9037				return (1);
9038		}
9039	}
9040
9041	return (0);
9042}
9043
9044static void
9045init_scsi_delay(void)
9046{
9047	int delay;
9048
9049	delay = SCSI_DELAY;
9050	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9051
9052	if (set_scsi_delay(delay) != 0) {
9053		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9054		set_scsi_delay(SCSI_DELAY);
9055	}
9056}
9057SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9058
9059static int
9060sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9061{
9062	int error, delay;
9063
9064	delay = scsi_delay;
9065	error = sysctl_handle_int(oidp, &delay, 0, req);
9066	if (error != 0 || req->newptr == NULL)
9067		return (error);
9068	return (set_scsi_delay(delay));
9069}
9070SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW,
9071    0, 0, sysctl_scsi_delay, "I",
9072    "Delay to allow devices to settle after a SCSI bus reset (ms)");
9073
9074static int
9075set_scsi_delay(int delay)
9076{
9077	/*
9078         * If someone sets this to 0, we assume that they want the
9079         * minimum allowable bus settle delay.
9080	 */
9081	if (delay == 0) {
9082		printf("cam: using minimum scsi_delay (%dms)\n",
9083		    SCSI_MIN_DELAY);
9084		delay = SCSI_MIN_DELAY;
9085	}
9086	if (delay < SCSI_MIN_DELAY)
9087		return (EINVAL);
9088	scsi_delay = delay;
9089	return (0);
9090}
9091#endif /* _KERNEL */
9092