SemaLookup.cpp revision 199482
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/LangOptions.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <set>
31#include <vector>
32#include <iterator>
33#include <utility>
34#include <algorithm>
35
36using namespace clang;
37
38namespace {
39  class UnqualUsingEntry {
40    const DeclContext *Nominated;
41    const DeclContext *CommonAncestor;
42
43  public:
44    UnqualUsingEntry(const DeclContext *Nominated,
45                     const DeclContext *CommonAncestor)
46      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
47    }
48
49    const DeclContext *getCommonAncestor() const {
50      return CommonAncestor;
51    }
52
53    const DeclContext *getNominatedNamespace() const {
54      return Nominated;
55    }
56
57    // Sort by the pointer value of the common ancestor.
58    struct Comparator {
59      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
60        return L.getCommonAncestor() < R.getCommonAncestor();
61      }
62
63      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
64        return E.getCommonAncestor() < DC;
65      }
66
67      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
68        return DC < E.getCommonAncestor();
69      }
70    };
71  };
72
73  /// A collection of using directives, as used by C++ unqualified
74  /// lookup.
75  class UnqualUsingDirectiveSet {
76    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
77
78    ListTy list;
79    llvm::SmallPtrSet<DeclContext*, 8> visited;
80
81  public:
82    UnqualUsingDirectiveSet() {}
83
84    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
85      // C++ [namespace.udir]p1:
86      //   During unqualified name lookup, the names appear as if they
87      //   were declared in the nearest enclosing namespace which contains
88      //   both the using-directive and the nominated namespace.
89      DeclContext *InnermostFileDC
90        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
91      assert(InnermostFileDC && InnermostFileDC->isFileContext());
92
93      for (; S; S = S->getParent()) {
94        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
95          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
96          visit(Ctx, EffectiveDC);
97        } else {
98          Scope::udir_iterator I = S->using_directives_begin(),
99                             End = S->using_directives_end();
100
101          for (; I != End; ++I)
102            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
103        }
104      }
105    }
106
107    // Visits a context and collect all of its using directives
108    // recursively.  Treats all using directives as if they were
109    // declared in the context.
110    //
111    // A given context is only every visited once, so it is important
112    // that contexts be visited from the inside out in order to get
113    // the effective DCs right.
114    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
115      if (!visited.insert(DC))
116        return;
117
118      addUsingDirectives(DC, EffectiveDC);
119    }
120
121    // Visits a using directive and collects all of its using
122    // directives recursively.  Treats all using directives as if they
123    // were declared in the effective DC.
124    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
125      DeclContext *NS = UD->getNominatedNamespace();
126      if (!visited.insert(NS))
127        return;
128
129      addUsingDirective(UD, EffectiveDC);
130      addUsingDirectives(NS, EffectiveDC);
131    }
132
133    // Adds all the using directives in a context (and those nominated
134    // by its using directives, transitively) as if they appeared in
135    // the given effective context.
136    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
137      llvm::SmallVector<DeclContext*,4> queue;
138      while (true) {
139        DeclContext::udir_iterator I, End;
140        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
141          UsingDirectiveDecl *UD = *I;
142          DeclContext *NS = UD->getNominatedNamespace();
143          if (visited.insert(NS)) {
144            addUsingDirective(UD, EffectiveDC);
145            queue.push_back(NS);
146          }
147        }
148
149        if (queue.empty())
150          return;
151
152        DC = queue.back();
153        queue.pop_back();
154      }
155    }
156
157    // Add a using directive as if it had been declared in the given
158    // context.  This helps implement C++ [namespace.udir]p3:
159    //   The using-directive is transitive: if a scope contains a
160    //   using-directive that nominates a second namespace that itself
161    //   contains using-directives, the effect is as if the
162    //   using-directives from the second namespace also appeared in
163    //   the first.
164    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
165      // Find the common ancestor between the effective context and
166      // the nominated namespace.
167      DeclContext *Common = UD->getNominatedNamespace();
168      while (!Common->Encloses(EffectiveDC))
169        Common = Common->getParent();
170      Common = Common->getPrimaryContext();
171
172      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
173    }
174
175    void done() {
176      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
177    }
178
179    typedef ListTy::iterator iterator;
180    typedef ListTy::const_iterator const_iterator;
181
182    iterator begin() { return list.begin(); }
183    iterator end() { return list.end(); }
184    const_iterator begin() const { return list.begin(); }
185    const_iterator end() const { return list.end(); }
186
187    std::pair<const_iterator,const_iterator>
188    getNamespacesFor(DeclContext *DC) const {
189      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
190                              UnqualUsingEntry::Comparator());
191    }
192  };
193}
194
195// Retrieve the set of identifier namespaces that correspond to a
196// specific kind of name lookup.
197inline unsigned
198getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
199                                          bool CPlusPlus) {
200  unsigned IDNS = 0;
201  switch (NameKind) {
202  case Sema::LookupOrdinaryName:
203  case Sema::LookupOperatorName:
204  case Sema::LookupRedeclarationWithLinkage:
205    IDNS = Decl::IDNS_Ordinary;
206    if (CPlusPlus)
207      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
208    break;
209
210  case Sema::LookupTagName:
211    IDNS = Decl::IDNS_Tag;
212    break;
213
214  case Sema::LookupMemberName:
215    IDNS = Decl::IDNS_Member;
216    if (CPlusPlus)
217      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
218    break;
219
220  case Sema::LookupNestedNameSpecifierName:
221  case Sema::LookupNamespaceName:
222    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
223    break;
224
225  case Sema::LookupObjCProtocolName:
226    IDNS = Decl::IDNS_ObjCProtocol;
227    break;
228
229  case Sema::LookupObjCImplementationName:
230    IDNS = Decl::IDNS_ObjCImplementation;
231    break;
232
233  case Sema::LookupObjCCategoryImplName:
234    IDNS = Decl::IDNS_ObjCCategoryImpl;
235    break;
236  }
237  return IDNS;
238}
239
240// Necessary because CXXBasePaths is not complete in Sema.h
241void LookupResult::deletePaths(CXXBasePaths *Paths) {
242  delete Paths;
243}
244
245void LookupResult::resolveKind() {
246  unsigned N = Decls.size();
247
248  // Fast case: no possible ambiguity.
249  if (N == 0) return;
250  if (N == 1) {
251    if (isa<UnresolvedUsingValueDecl>(Decls[0]))
252      ResultKind = FoundUnresolvedValue;
253    return;
254  }
255
256  // Don't do any extra resolution if we've already resolved as ambiguous.
257  if (ResultKind == Ambiguous) return;
258
259  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
260
261  bool Ambiguous = false;
262  bool HasTag = false, HasFunction = false, HasNonFunction = false;
263  bool HasUnresolved = false;
264
265  unsigned UniqueTagIndex = 0;
266
267  unsigned I = 0;
268  while (I < N) {
269    NamedDecl *D = Decls[I]->getUnderlyingDecl();
270    D = cast<NamedDecl>(D->getCanonicalDecl());
271
272    if (!Unique.insert(D)) {
273      // If it's not unique, pull something off the back (and
274      // continue at this index).
275      Decls[I] = Decls[--N];
276    } else if (isa<UnresolvedUsingValueDecl>(D)) {
277      // FIXME: support unresolved using value declarations
278      Decls[I] = Decls[--N];
279    } else {
280      // Otherwise, do some decl type analysis and then continue.
281
282      if (isa<UnresolvedUsingValueDecl>(D)) {
283        HasUnresolved = true;
284      } else if (isa<TagDecl>(D)) {
285        if (HasTag)
286          Ambiguous = true;
287        UniqueTagIndex = I;
288        HasTag = true;
289      } else if (D->isFunctionOrFunctionTemplate()) {
290        HasFunction = true;
291      } else {
292        if (HasNonFunction)
293          Ambiguous = true;
294        HasNonFunction = true;
295      }
296      I++;
297    }
298  }
299
300  // C++ [basic.scope.hiding]p2:
301  //   A class name or enumeration name can be hidden by the name of
302  //   an object, function, or enumerator declared in the same
303  //   scope. If a class or enumeration name and an object, function,
304  //   or enumerator are declared in the same scope (in any order)
305  //   with the same name, the class or enumeration name is hidden
306  //   wherever the object, function, or enumerator name is visible.
307  // But it's still an error if there are distinct tag types found,
308  // even if they're not visible. (ref?)
309  if (HideTags && HasTag && !Ambiguous && !HasUnresolved &&
310      (HasFunction || HasNonFunction))
311    Decls[UniqueTagIndex] = Decls[--N];
312
313  Decls.set_size(N);
314
315  if (HasFunction && HasNonFunction)
316    Ambiguous = true;
317
318  if (Ambiguous)
319    setAmbiguous(LookupResult::AmbiguousReference);
320  else if (HasUnresolved)
321    ResultKind = LookupResult::FoundUnresolvedValue;
322  else if (N > 1)
323    ResultKind = LookupResult::FoundOverloaded;
324  else
325    ResultKind = LookupResult::Found;
326}
327
328/// @brief Converts the result of name lookup into a single (possible
329/// NULL) pointer to a declaration.
330///
331/// The resulting declaration will either be the declaration we found
332/// (if only a single declaration was found), an
333/// OverloadedFunctionDecl (if an overloaded function was found), or
334/// NULL (if no declaration was found). This conversion must not be
335/// used anywhere where name lookup could result in an ambiguity.
336///
337/// The OverloadedFunctionDecl conversion is meant as a stop-gap
338/// solution, since it causes the OverloadedFunctionDecl to be
339/// leaked. FIXME: Eventually, there will be a better way to iterate
340/// over the set of overloaded functions returned by name lookup.
341NamedDecl *LookupResult::getAsSingleDecl(ASTContext &C) const {
342  size_t size = Decls.size();
343  if (size == 0) return 0;
344  if (size == 1) return (*begin())->getUnderlyingDecl();
345
346  if (isAmbiguous()) return 0;
347
348  iterator I = begin(), E = end();
349
350  OverloadedFunctionDecl *Ovl
351    = OverloadedFunctionDecl::Create(C, (*I)->getDeclContext(),
352                                        (*I)->getDeclName());
353  for (; I != E; ++I) {
354    NamedDecl *ND = (*I)->getUnderlyingDecl();
355    assert(ND->isFunctionOrFunctionTemplate());
356    if (isa<FunctionDecl>(ND))
357      Ovl->addOverload(cast<FunctionDecl>(ND));
358    else
359      Ovl->addOverload(cast<FunctionTemplateDecl>(ND));
360    // FIXME: UnresolvedUsingDecls.
361  }
362
363  return Ovl;
364}
365
366void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
367  CXXBasePaths::paths_iterator I, E;
368  DeclContext::lookup_iterator DI, DE;
369  for (I = P.begin(), E = P.end(); I != E; ++I)
370    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
371      addDecl(*DI);
372}
373
374void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
375  Paths = new CXXBasePaths;
376  Paths->swap(P);
377  addDeclsFromBasePaths(*Paths);
378  resolveKind();
379  setAmbiguous(AmbiguousBaseSubobjects);
380}
381
382void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
383  Paths = new CXXBasePaths;
384  Paths->swap(P);
385  addDeclsFromBasePaths(*Paths);
386  resolveKind();
387  setAmbiguous(AmbiguousBaseSubobjectTypes);
388}
389
390void LookupResult::print(llvm::raw_ostream &Out) {
391  Out << Decls.size() << " result(s)";
392  if (isAmbiguous()) Out << ", ambiguous";
393  if (Paths) Out << ", base paths present";
394
395  for (iterator I = begin(), E = end(); I != E; ++I) {
396    Out << "\n";
397    (*I)->print(Out, 2);
398  }
399}
400
401// Adds all qualifying matches for a name within a decl context to the
402// given lookup result.  Returns true if any matches were found.
403static bool LookupDirect(LookupResult &R, const DeclContext *DC) {
404  bool Found = false;
405
406  DeclContext::lookup_const_iterator I, E;
407  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I)
408    if (Sema::isAcceptableLookupResult(*I, R.getLookupKind(),
409                                       R.getIdentifierNamespace()))
410      R.addDecl(*I), Found = true;
411
412  return Found;
413}
414
415// Performs C++ unqualified lookup into the given file context.
416static bool
417CppNamespaceLookup(LookupResult &R, ASTContext &Context, DeclContext *NS,
418                   UnqualUsingDirectiveSet &UDirs) {
419
420  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
421
422  // Perform direct name lookup into the LookupCtx.
423  bool Found = LookupDirect(R, NS);
424
425  // Perform direct name lookup into the namespaces nominated by the
426  // using directives whose common ancestor is this namespace.
427  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
428  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
429
430  for (; UI != UEnd; ++UI)
431    if (LookupDirect(R, UI->getNominatedNamespace()))
432      Found = true;
433
434  R.resolveKind();
435
436  return Found;
437}
438
439static bool isNamespaceOrTranslationUnitScope(Scope *S) {
440  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
441    return Ctx->isFileContext();
442  return false;
443}
444
445// Find the next outer declaration context corresponding to this scope.
446static DeclContext *findOuterContext(Scope *S) {
447  for (S = S->getParent(); S; S = S->getParent())
448    if (S->getEntity())
449      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
450
451  return 0;
452}
453
454bool Sema::CppLookupName(LookupResult &R, Scope *S) {
455  assert(getLangOptions().CPlusPlus &&
456         "Can perform only C++ lookup");
457  LookupNameKind NameKind = R.getLookupKind();
458  unsigned IDNS
459    = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
460
461  // If we're testing for redeclarations, also look in the friend namespaces.
462  if (R.isForRedeclaration()) {
463    if (IDNS & Decl::IDNS_Tag) IDNS |= Decl::IDNS_TagFriend;
464    if (IDNS & Decl::IDNS_Ordinary) IDNS |= Decl::IDNS_OrdinaryFriend;
465  }
466
467  R.setIdentifierNamespace(IDNS);
468
469  DeclarationName Name = R.getLookupName();
470
471  Scope *Initial = S;
472  IdentifierResolver::iterator
473    I = IdResolver.begin(Name),
474    IEnd = IdResolver.end();
475
476  // First we lookup local scope.
477  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
478  // ...During unqualified name lookup (3.4.1), the names appear as if
479  // they were declared in the nearest enclosing namespace which contains
480  // both the using-directive and the nominated namespace.
481  // [Note: in this context, "contains" means "contains directly or
482  // indirectly".
483  //
484  // For example:
485  // namespace A { int i; }
486  // void foo() {
487  //   int i;
488  //   {
489  //     using namespace A;
490  //     ++i; // finds local 'i', A::i appears at global scope
491  //   }
492  // }
493  //
494  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
495    // Check whether the IdResolver has anything in this scope.
496    bool Found = false;
497    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
498      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
499        Found = true;
500        R.addDecl(*I);
501      }
502    }
503    if (Found) {
504      R.resolveKind();
505      return true;
506    }
507
508    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
509      DeclContext *OuterCtx = findOuterContext(S);
510      for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
511           Ctx = Ctx->getLookupParent()) {
512        if (Ctx->isFunctionOrMethod())
513          continue;
514
515        // Perform qualified name lookup into this context.
516        // FIXME: In some cases, we know that every name that could be found by
517        // this qualified name lookup will also be on the identifier chain. For
518        // example, inside a class without any base classes, we never need to
519        // perform qualified lookup because all of the members are on top of the
520        // identifier chain.
521        if (LookupQualifiedName(R, Ctx))
522          return true;
523      }
524    }
525  }
526
527  // Stop if we ran out of scopes.
528  // FIXME:  This really, really shouldn't be happening.
529  if (!S) return false;
530
531  // Collect UsingDirectiveDecls in all scopes, and recursively all
532  // nominated namespaces by those using-directives.
533  //
534  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
535  // don't build it for each lookup!
536
537  UnqualUsingDirectiveSet UDirs;
538  UDirs.visitScopeChain(Initial, S);
539  UDirs.done();
540
541  // Lookup namespace scope, and global scope.
542  // Unqualified name lookup in C++ requires looking into scopes
543  // that aren't strictly lexical, and therefore we walk through the
544  // context as well as walking through the scopes.
545
546  for (; S; S = S->getParent()) {
547    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
548    if (Ctx->isTransparentContext())
549      continue;
550
551    assert(Ctx && Ctx->isFileContext() &&
552           "We should have been looking only at file context here already.");
553
554    // Check whether the IdResolver has anything in this scope.
555    bool Found = false;
556    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
557      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
558        // We found something.  Look for anything else in our scope
559        // with this same name and in an acceptable identifier
560        // namespace, so that we can construct an overload set if we
561        // need to.
562        Found = true;
563        R.addDecl(*I);
564      }
565    }
566
567    // Look into context considering using-directives.
568    if (CppNamespaceLookup(R, Context, Ctx, UDirs))
569      Found = true;
570
571    if (Found) {
572      R.resolveKind();
573      return true;
574    }
575
576    if (R.isForRedeclaration() && !Ctx->isTransparentContext())
577      return false;
578  }
579
580  return !R.empty();
581}
582
583/// @brief Perform unqualified name lookup starting from a given
584/// scope.
585///
586/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
587/// used to find names within the current scope. For example, 'x' in
588/// @code
589/// int x;
590/// int f() {
591///   return x; // unqualified name look finds 'x' in the global scope
592/// }
593/// @endcode
594///
595/// Different lookup criteria can find different names. For example, a
596/// particular scope can have both a struct and a function of the same
597/// name, and each can be found by certain lookup criteria. For more
598/// information about lookup criteria, see the documentation for the
599/// class LookupCriteria.
600///
601/// @param S        The scope from which unqualified name lookup will
602/// begin. If the lookup criteria permits, name lookup may also search
603/// in the parent scopes.
604///
605/// @param Name     The name of the entity that we are searching for.
606///
607/// @param Loc      If provided, the source location where we're performing
608/// name lookup. At present, this is only used to produce diagnostics when
609/// C library functions (like "malloc") are implicitly declared.
610///
611/// @returns The result of name lookup, which includes zero or more
612/// declarations and possibly additional information used to diagnose
613/// ambiguities.
614bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
615  DeclarationName Name = R.getLookupName();
616  if (!Name) return false;
617
618  LookupNameKind NameKind = R.getLookupKind();
619
620  if (!getLangOptions().CPlusPlus) {
621    // Unqualified name lookup in C/Objective-C is purely lexical, so
622    // search in the declarations attached to the name.
623    unsigned IDNS = 0;
624    switch (NameKind) {
625    case Sema::LookupOrdinaryName:
626      IDNS = Decl::IDNS_Ordinary;
627      break;
628
629    case Sema::LookupTagName:
630      IDNS = Decl::IDNS_Tag;
631      break;
632
633    case Sema::LookupMemberName:
634      IDNS = Decl::IDNS_Member;
635      break;
636
637    case Sema::LookupOperatorName:
638    case Sema::LookupNestedNameSpecifierName:
639    case Sema::LookupNamespaceName:
640      assert(false && "C does not perform these kinds of name lookup");
641      break;
642
643    case Sema::LookupRedeclarationWithLinkage:
644      // Find the nearest non-transparent declaration scope.
645      while (!(S->getFlags() & Scope::DeclScope) ||
646             (S->getEntity() &&
647              static_cast<DeclContext *>(S->getEntity())
648                ->isTransparentContext()))
649        S = S->getParent();
650      IDNS = Decl::IDNS_Ordinary;
651      break;
652
653    case Sema::LookupObjCProtocolName:
654      IDNS = Decl::IDNS_ObjCProtocol;
655      break;
656
657    case Sema::LookupObjCImplementationName:
658      IDNS = Decl::IDNS_ObjCImplementation;
659      break;
660
661    case Sema::LookupObjCCategoryImplName:
662      IDNS = Decl::IDNS_ObjCCategoryImpl;
663      break;
664    }
665
666    // Scan up the scope chain looking for a decl that matches this
667    // identifier that is in the appropriate namespace.  This search
668    // should not take long, as shadowing of names is uncommon, and
669    // deep shadowing is extremely uncommon.
670    bool LeftStartingScope = false;
671
672    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
673                                   IEnd = IdResolver.end();
674         I != IEnd; ++I)
675      if ((*I)->isInIdentifierNamespace(IDNS)) {
676        if (NameKind == LookupRedeclarationWithLinkage) {
677          // Determine whether this (or a previous) declaration is
678          // out-of-scope.
679          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
680            LeftStartingScope = true;
681
682          // If we found something outside of our starting scope that
683          // does not have linkage, skip it.
684          if (LeftStartingScope && !((*I)->hasLinkage()))
685            continue;
686        }
687
688        R.addDecl(*I);
689
690        if ((*I)->getAttr<OverloadableAttr>()) {
691          // If this declaration has the "overloadable" attribute, we
692          // might have a set of overloaded functions.
693
694          // Figure out what scope the identifier is in.
695          while (!(S->getFlags() & Scope::DeclScope) ||
696                 !S->isDeclScope(DeclPtrTy::make(*I)))
697            S = S->getParent();
698
699          // Find the last declaration in this scope (with the same
700          // name, naturally).
701          IdentifierResolver::iterator LastI = I;
702          for (++LastI; LastI != IEnd; ++LastI) {
703            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
704              break;
705            R.addDecl(*LastI);
706          }
707        }
708
709        R.resolveKind();
710
711        return true;
712      }
713  } else {
714    // Perform C++ unqualified name lookup.
715    if (CppLookupName(R, S))
716      return true;
717  }
718
719  // If we didn't find a use of this identifier, and if the identifier
720  // corresponds to a compiler builtin, create the decl object for the builtin
721  // now, injecting it into translation unit scope, and return it.
722  if (NameKind == LookupOrdinaryName ||
723      NameKind == LookupRedeclarationWithLinkage) {
724    IdentifierInfo *II = Name.getAsIdentifierInfo();
725    if (II && AllowBuiltinCreation) {
726      // If this is a builtin on this (or all) targets, create the decl.
727      if (unsigned BuiltinID = II->getBuiltinID()) {
728        // In C++, we don't have any predefined library functions like
729        // 'malloc'. Instead, we'll just error.
730        if (getLangOptions().CPlusPlus &&
731            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
732          return false;
733
734        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
735                                           S, R.isForRedeclaration(),
736                                           R.getNameLoc());
737        if (D) R.addDecl(D);
738        return (D != NULL);
739      }
740    }
741  }
742  return false;
743}
744
745/// @brief Perform qualified name lookup in the namespaces nominated by
746/// using directives by the given context.
747///
748/// C++98 [namespace.qual]p2:
749///   Given X::m (where X is a user-declared namespace), or given ::m
750///   (where X is the global namespace), let S be the set of all
751///   declarations of m in X and in the transitive closure of all
752///   namespaces nominated by using-directives in X and its used
753///   namespaces, except that using-directives are ignored in any
754///   namespace, including X, directly containing one or more
755///   declarations of m. No namespace is searched more than once in
756///   the lookup of a name. If S is the empty set, the program is
757///   ill-formed. Otherwise, if S has exactly one member, or if the
758///   context of the reference is a using-declaration
759///   (namespace.udecl), S is the required set of declarations of
760///   m. Otherwise if the use of m is not one that allows a unique
761///   declaration to be chosen from S, the program is ill-formed.
762/// C++98 [namespace.qual]p5:
763///   During the lookup of a qualified namespace member name, if the
764///   lookup finds more than one declaration of the member, and if one
765///   declaration introduces a class name or enumeration name and the
766///   other declarations either introduce the same object, the same
767///   enumerator or a set of functions, the non-type name hides the
768///   class or enumeration name if and only if the declarations are
769///   from the same namespace; otherwise (the declarations are from
770///   different namespaces), the program is ill-formed.
771static bool LookupQualifiedNameInUsingDirectives(LookupResult &R,
772                                                 DeclContext *StartDC) {
773  assert(StartDC->isFileContext() && "start context is not a file context");
774
775  DeclContext::udir_iterator I = StartDC->using_directives_begin();
776  DeclContext::udir_iterator E = StartDC->using_directives_end();
777
778  if (I == E) return false;
779
780  // We have at least added all these contexts to the queue.
781  llvm::DenseSet<DeclContext*> Visited;
782  Visited.insert(StartDC);
783
784  // We have not yet looked into these namespaces, much less added
785  // their "using-children" to the queue.
786  llvm::SmallVector<NamespaceDecl*, 8> Queue;
787
788  // We have already looked into the initial namespace; seed the queue
789  // with its using-children.
790  for (; I != E; ++I) {
791    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
792    if (Visited.insert(ND).second)
793      Queue.push_back(ND);
794  }
795
796  // The easiest way to implement the restriction in [namespace.qual]p5
797  // is to check whether any of the individual results found a tag
798  // and, if so, to declare an ambiguity if the final result is not
799  // a tag.
800  bool FoundTag = false;
801  bool FoundNonTag = false;
802
803  LookupResult LocalR(LookupResult::Temporary, R);
804
805  bool Found = false;
806  while (!Queue.empty()) {
807    NamespaceDecl *ND = Queue.back();
808    Queue.pop_back();
809
810    // We go through some convolutions here to avoid copying results
811    // between LookupResults.
812    bool UseLocal = !R.empty();
813    LookupResult &DirectR = UseLocal ? LocalR : R;
814    bool FoundDirect = LookupDirect(DirectR, ND);
815
816    if (FoundDirect) {
817      // First do any local hiding.
818      DirectR.resolveKind();
819
820      // If the local result is a tag, remember that.
821      if (DirectR.isSingleTagDecl())
822        FoundTag = true;
823      else
824        FoundNonTag = true;
825
826      // Append the local results to the total results if necessary.
827      if (UseLocal) {
828        R.addAllDecls(LocalR);
829        LocalR.clear();
830      }
831    }
832
833    // If we find names in this namespace, ignore its using directives.
834    if (FoundDirect) {
835      Found = true;
836      continue;
837    }
838
839    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
840      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
841      if (Visited.insert(Nom).second)
842        Queue.push_back(Nom);
843    }
844  }
845
846  if (Found) {
847    if (FoundTag && FoundNonTag)
848      R.setAmbiguousQualifiedTagHiding();
849    else
850      R.resolveKind();
851  }
852
853  return Found;
854}
855
856/// @brief Perform qualified name lookup into a given context.
857///
858/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
859/// names when the context of those names is explicit specified, e.g.,
860/// "std::vector" or "x->member".
861///
862/// Different lookup criteria can find different names. For example, a
863/// particular scope can have both a struct and a function of the same
864/// name, and each can be found by certain lookup criteria. For more
865/// information about lookup criteria, see the documentation for the
866/// class LookupCriteria.
867///
868/// @param LookupCtx The context in which qualified name lookup will
869/// search. If the lookup criteria permits, name lookup may also search
870/// in the parent contexts or (for C++ classes) base classes.
871///
872/// @param Name     The name of the entity that we are searching for.
873///
874/// @param Criteria The criteria that this routine will use to
875/// determine which names are visible and which names will be
876/// found. Note that name lookup will find a name that is visible by
877/// the given criteria, but the entity itself may not be semantically
878/// correct or even the kind of entity expected based on the
879/// lookup. For example, searching for a nested-name-specifier name
880/// might result in an EnumDecl, which is visible but is not permitted
881/// as a nested-name-specifier in C++03.
882///
883/// @returns The result of name lookup, which includes zero or more
884/// declarations and possibly additional information used to diagnose
885/// ambiguities.
886bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx) {
887  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
888
889  if (!R.getLookupName())
890    return false;
891
892  // If we're performing qualified name lookup (e.g., lookup into a
893  // struct), find fields as part of ordinary name lookup.
894  LookupNameKind NameKind = R.getLookupKind();
895  unsigned IDNS
896    = getIdentifierNamespacesFromLookupNameKind(NameKind,
897                                                getLangOptions().CPlusPlus);
898  if (NameKind == LookupOrdinaryName)
899    IDNS |= Decl::IDNS_Member;
900
901  R.setIdentifierNamespace(IDNS);
902
903  // Make sure that the declaration context is complete.
904  assert((!isa<TagDecl>(LookupCtx) ||
905          LookupCtx->isDependentContext() ||
906          cast<TagDecl>(LookupCtx)->isDefinition() ||
907          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
908            ->isBeingDefined()) &&
909         "Declaration context must already be complete!");
910
911  // Perform qualified name lookup into the LookupCtx.
912  if (LookupDirect(R, LookupCtx)) {
913    R.resolveKind();
914    return true;
915  }
916
917  // Don't descend into implied contexts for redeclarations.
918  // C++98 [namespace.qual]p6:
919  //   In a declaration for a namespace member in which the
920  //   declarator-id is a qualified-id, given that the qualified-id
921  //   for the namespace member has the form
922  //     nested-name-specifier unqualified-id
923  //   the unqualified-id shall name a member of the namespace
924  //   designated by the nested-name-specifier.
925  // See also [class.mfct]p5 and [class.static.data]p2.
926  if (R.isForRedeclaration())
927    return false;
928
929  // If this is a namespace, look it up in the implied namespaces.
930  if (LookupCtx->isFileContext())
931    return LookupQualifiedNameInUsingDirectives(R, LookupCtx);
932
933  // If this isn't a C++ class, we aren't allowed to look into base
934  // classes, we're done.
935  if (!isa<CXXRecordDecl>(LookupCtx))
936    return false;
937
938  // Perform lookup into our base classes.
939  CXXRecordDecl *LookupRec = cast<CXXRecordDecl>(LookupCtx);
940  CXXBasePaths Paths;
941  Paths.setOrigin(LookupRec);
942
943  // Look for this member in our base classes
944  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
945  switch (R.getLookupKind()) {
946    case LookupOrdinaryName:
947    case LookupMemberName:
948    case LookupRedeclarationWithLinkage:
949      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
950      break;
951
952    case LookupTagName:
953      BaseCallback = &CXXRecordDecl::FindTagMember;
954      break;
955
956    case LookupOperatorName:
957    case LookupNamespaceName:
958    case LookupObjCProtocolName:
959    case LookupObjCImplementationName:
960    case LookupObjCCategoryImplName:
961      // These lookups will never find a member in a C++ class (or base class).
962      return false;
963
964    case LookupNestedNameSpecifierName:
965      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
966      break;
967  }
968
969  if (!LookupRec->lookupInBases(BaseCallback,
970                                R.getLookupName().getAsOpaquePtr(), Paths))
971    return false;
972
973  // C++ [class.member.lookup]p2:
974  //   [...] If the resulting set of declarations are not all from
975  //   sub-objects of the same type, or the set has a nonstatic member
976  //   and includes members from distinct sub-objects, there is an
977  //   ambiguity and the program is ill-formed. Otherwise that set is
978  //   the result of the lookup.
979  // FIXME: support using declarations!
980  QualType SubobjectType;
981  int SubobjectNumber = 0;
982  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
983       Path != PathEnd; ++Path) {
984    const CXXBasePathElement &PathElement = Path->back();
985
986    // Determine whether we're looking at a distinct sub-object or not.
987    if (SubobjectType.isNull()) {
988      // This is the first subobject we've looked at. Record its type.
989      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
990      SubobjectNumber = PathElement.SubobjectNumber;
991    } else if (SubobjectType
992                 != Context.getCanonicalType(PathElement.Base->getType())) {
993      // We found members of the given name in two subobjects of
994      // different types. This lookup is ambiguous.
995      R.setAmbiguousBaseSubobjectTypes(Paths);
996      return true;
997    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
998      // We have a different subobject of the same type.
999
1000      // C++ [class.member.lookup]p5:
1001      //   A static member, a nested type or an enumerator defined in
1002      //   a base class T can unambiguously be found even if an object
1003      //   has more than one base class subobject of type T.
1004      Decl *FirstDecl = *Path->Decls.first;
1005      if (isa<VarDecl>(FirstDecl) ||
1006          isa<TypeDecl>(FirstDecl) ||
1007          isa<EnumConstantDecl>(FirstDecl))
1008        continue;
1009
1010      if (isa<CXXMethodDecl>(FirstDecl)) {
1011        // Determine whether all of the methods are static.
1012        bool AllMethodsAreStatic = true;
1013        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1014             Func != Path->Decls.second; ++Func) {
1015          if (!isa<CXXMethodDecl>(*Func)) {
1016            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1017            break;
1018          }
1019
1020          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1021            AllMethodsAreStatic = false;
1022            break;
1023          }
1024        }
1025
1026        if (AllMethodsAreStatic)
1027          continue;
1028      }
1029
1030      // We have found a nonstatic member name in multiple, distinct
1031      // subobjects. Name lookup is ambiguous.
1032      R.setAmbiguousBaseSubobjects(Paths);
1033      return true;
1034    }
1035  }
1036
1037  // Lookup in a base class succeeded; return these results.
1038
1039  DeclContext::lookup_iterator I, E;
1040  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I)
1041    R.addDecl(*I);
1042  R.resolveKind();
1043  return true;
1044}
1045
1046/// @brief Performs name lookup for a name that was parsed in the
1047/// source code, and may contain a C++ scope specifier.
1048///
1049/// This routine is a convenience routine meant to be called from
1050/// contexts that receive a name and an optional C++ scope specifier
1051/// (e.g., "N::M::x"). It will then perform either qualified or
1052/// unqualified name lookup (with LookupQualifiedName or LookupName,
1053/// respectively) on the given name and return those results.
1054///
1055/// @param S        The scope from which unqualified name lookup will
1056/// begin.
1057///
1058/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1059///
1060/// @param Name     The name of the entity that name lookup will
1061/// search for.
1062///
1063/// @param Loc      If provided, the source location where we're performing
1064/// name lookup. At present, this is only used to produce diagnostics when
1065/// C library functions (like "malloc") are implicitly declared.
1066///
1067/// @param EnteringContext Indicates whether we are going to enter the
1068/// context of the scope-specifier SS (if present).
1069///
1070/// @returns True if any decls were found (but possibly ambiguous)
1071bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
1072                            bool AllowBuiltinCreation, bool EnteringContext) {
1073  if (SS && SS->isInvalid()) {
1074    // When the scope specifier is invalid, don't even look for
1075    // anything.
1076    return false;
1077  }
1078
1079  if (SS && SS->isSet()) {
1080    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1081      // We have resolved the scope specifier to a particular declaration
1082      // contex, and will perform name lookup in that context.
1083      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
1084        return false;
1085
1086      R.setContextRange(SS->getRange());
1087
1088      return LookupQualifiedName(R, DC);
1089    }
1090
1091    // We could not resolve the scope specified to a specific declaration
1092    // context, which means that SS refers to an unknown specialization.
1093    // Name lookup can't find anything in this case.
1094    return false;
1095  }
1096
1097  // Perform unqualified name lookup starting in the given scope.
1098  return LookupName(R, S, AllowBuiltinCreation);
1099}
1100
1101
1102/// @brief Produce a diagnostic describing the ambiguity that resulted
1103/// from name lookup.
1104///
1105/// @param Result       The ambiguous name lookup result.
1106///
1107/// @param Name         The name of the entity that name lookup was
1108/// searching for.
1109///
1110/// @param NameLoc      The location of the name within the source code.
1111///
1112/// @param LookupRange  A source range that provides more
1113/// source-location information concerning the lookup itself. For
1114/// example, this range might highlight a nested-name-specifier that
1115/// precedes the name.
1116///
1117/// @returns true
1118bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1119  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1120
1121  DeclarationName Name = Result.getLookupName();
1122  SourceLocation NameLoc = Result.getNameLoc();
1123  SourceRange LookupRange = Result.getContextRange();
1124
1125  switch (Result.getAmbiguityKind()) {
1126  case LookupResult::AmbiguousBaseSubobjects: {
1127    CXXBasePaths *Paths = Result.getBasePaths();
1128    QualType SubobjectType = Paths->front().back().Base->getType();
1129    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1130      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1131      << LookupRange;
1132
1133    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1134    while (isa<CXXMethodDecl>(*Found) &&
1135           cast<CXXMethodDecl>(*Found)->isStatic())
1136      ++Found;
1137
1138    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1139
1140    return true;
1141  }
1142
1143  case LookupResult::AmbiguousBaseSubobjectTypes: {
1144    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1145      << Name << LookupRange;
1146
1147    CXXBasePaths *Paths = Result.getBasePaths();
1148    std::set<Decl *> DeclsPrinted;
1149    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1150                                      PathEnd = Paths->end();
1151         Path != PathEnd; ++Path) {
1152      Decl *D = *Path->Decls.first;
1153      if (DeclsPrinted.insert(D).second)
1154        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1155    }
1156
1157    return true;
1158  }
1159
1160  case LookupResult::AmbiguousTagHiding: {
1161    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1162
1163    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1164
1165    LookupResult::iterator DI, DE = Result.end();
1166    for (DI = Result.begin(); DI != DE; ++DI)
1167      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1168        TagDecls.insert(TD);
1169        Diag(TD->getLocation(), diag::note_hidden_tag);
1170      }
1171
1172    for (DI = Result.begin(); DI != DE; ++DI)
1173      if (!isa<TagDecl>(*DI))
1174        Diag((*DI)->getLocation(), diag::note_hiding_object);
1175
1176    // For recovery purposes, go ahead and implement the hiding.
1177    Result.hideDecls(TagDecls);
1178
1179    return true;
1180  }
1181
1182  case LookupResult::AmbiguousReference: {
1183    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1184
1185    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1186    for (; DI != DE; ++DI)
1187      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1188
1189    return true;
1190  }
1191  }
1192
1193  llvm::llvm_unreachable("unknown ambiguity kind");
1194  return true;
1195}
1196
1197static void
1198addAssociatedClassesAndNamespaces(QualType T,
1199                                  ASTContext &Context,
1200                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1201                                  Sema::AssociatedClassSet &AssociatedClasses);
1202
1203static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1204                             DeclContext *Ctx) {
1205  if (Ctx->isFileContext())
1206    Namespaces.insert(Ctx);
1207}
1208
1209// \brief Add the associated classes and namespaces for argument-dependent
1210// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1211static void
1212addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1213                                  ASTContext &Context,
1214                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1215                                  Sema::AssociatedClassSet &AssociatedClasses) {
1216  // C++ [basic.lookup.koenig]p2, last bullet:
1217  //   -- [...] ;
1218  switch (Arg.getKind()) {
1219    case TemplateArgument::Null:
1220      break;
1221
1222    case TemplateArgument::Type:
1223      // [...] the namespaces and classes associated with the types of the
1224      // template arguments provided for template type parameters (excluding
1225      // template template parameters)
1226      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1227                                        AssociatedNamespaces,
1228                                        AssociatedClasses);
1229      break;
1230
1231    case TemplateArgument::Template: {
1232      // [...] the namespaces in which any template template arguments are
1233      // defined; and the classes in which any member templates used as
1234      // template template arguments are defined.
1235      TemplateName Template = Arg.getAsTemplate();
1236      if (ClassTemplateDecl *ClassTemplate
1237                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1238        DeclContext *Ctx = ClassTemplate->getDeclContext();
1239        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1240          AssociatedClasses.insert(EnclosingClass);
1241        // Add the associated namespace for this class.
1242        while (Ctx->isRecord())
1243          Ctx = Ctx->getParent();
1244        CollectNamespace(AssociatedNamespaces, Ctx);
1245      }
1246      break;
1247    }
1248
1249    case TemplateArgument::Declaration:
1250    case TemplateArgument::Integral:
1251    case TemplateArgument::Expression:
1252      // [Note: non-type template arguments do not contribute to the set of
1253      //  associated namespaces. ]
1254      break;
1255
1256    case TemplateArgument::Pack:
1257      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1258                                        PEnd = Arg.pack_end();
1259           P != PEnd; ++P)
1260        addAssociatedClassesAndNamespaces(*P, Context,
1261                                          AssociatedNamespaces,
1262                                          AssociatedClasses);
1263      break;
1264  }
1265}
1266
1267// \brief Add the associated classes and namespaces for
1268// argument-dependent lookup with an argument of class type
1269// (C++ [basic.lookup.koenig]p2).
1270static void
1271addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1272                                  ASTContext &Context,
1273                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1274                            Sema::AssociatedClassSet &AssociatedClasses) {
1275  // C++ [basic.lookup.koenig]p2:
1276  //   [...]
1277  //     -- If T is a class type (including unions), its associated
1278  //        classes are: the class itself; the class of which it is a
1279  //        member, if any; and its direct and indirect base
1280  //        classes. Its associated namespaces are the namespaces in
1281  //        which its associated classes are defined.
1282
1283  // Add the class of which it is a member, if any.
1284  DeclContext *Ctx = Class->getDeclContext();
1285  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1286    AssociatedClasses.insert(EnclosingClass);
1287  // Add the associated namespace for this class.
1288  while (Ctx->isRecord())
1289    Ctx = Ctx->getParent();
1290  CollectNamespace(AssociatedNamespaces, Ctx);
1291
1292  // Add the class itself. If we've already seen this class, we don't
1293  // need to visit base classes.
1294  if (!AssociatedClasses.insert(Class))
1295    return;
1296
1297  // -- If T is a template-id, its associated namespaces and classes are
1298  //    the namespace in which the template is defined; for member
1299  //    templates, the member template���s class; the namespaces and classes
1300  //    associated with the types of the template arguments provided for
1301  //    template type parameters (excluding template template parameters); the
1302  //    namespaces in which any template template arguments are defined; and
1303  //    the classes in which any member templates used as template template
1304  //    arguments are defined. [Note: non-type template arguments do not
1305  //    contribute to the set of associated namespaces. ]
1306  if (ClassTemplateSpecializationDecl *Spec
1307        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1308    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1309    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1310      AssociatedClasses.insert(EnclosingClass);
1311    // Add the associated namespace for this class.
1312    while (Ctx->isRecord())
1313      Ctx = Ctx->getParent();
1314    CollectNamespace(AssociatedNamespaces, Ctx);
1315
1316    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1317    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1318      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1319                                        AssociatedNamespaces,
1320                                        AssociatedClasses);
1321  }
1322
1323  // Add direct and indirect base classes along with their associated
1324  // namespaces.
1325  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1326  Bases.push_back(Class);
1327  while (!Bases.empty()) {
1328    // Pop this class off the stack.
1329    Class = Bases.back();
1330    Bases.pop_back();
1331
1332    // Visit the base classes.
1333    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1334                                         BaseEnd = Class->bases_end();
1335         Base != BaseEnd; ++Base) {
1336      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1337      // In dependent contexts, we do ADL twice, and the first time around,
1338      // the base type might be a dependent TemplateSpecializationType, or a
1339      // TemplateTypeParmType. If that happens, simply ignore it.
1340      // FIXME: If we want to support export, we probably need to add the
1341      // namespace of the template in a TemplateSpecializationType, or even
1342      // the classes and namespaces of known non-dependent arguments.
1343      if (!BaseType)
1344        continue;
1345      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1346      if (AssociatedClasses.insert(BaseDecl)) {
1347        // Find the associated namespace for this base class.
1348        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1349        while (BaseCtx->isRecord())
1350          BaseCtx = BaseCtx->getParent();
1351        CollectNamespace(AssociatedNamespaces, BaseCtx);
1352
1353        // Make sure we visit the bases of this base class.
1354        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1355          Bases.push_back(BaseDecl);
1356      }
1357    }
1358  }
1359}
1360
1361// \brief Add the associated classes and namespaces for
1362// argument-dependent lookup with an argument of type T
1363// (C++ [basic.lookup.koenig]p2).
1364static void
1365addAssociatedClassesAndNamespaces(QualType T,
1366                                  ASTContext &Context,
1367                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1368                                  Sema::AssociatedClassSet &AssociatedClasses) {
1369  // C++ [basic.lookup.koenig]p2:
1370  //
1371  //   For each argument type T in the function call, there is a set
1372  //   of zero or more associated namespaces and a set of zero or more
1373  //   associated classes to be considered. The sets of namespaces and
1374  //   classes is determined entirely by the types of the function
1375  //   arguments (and the namespace of any template template
1376  //   argument). Typedef names and using-declarations used to specify
1377  //   the types do not contribute to this set. The sets of namespaces
1378  //   and classes are determined in the following way:
1379  T = Context.getCanonicalType(T).getUnqualifiedType();
1380
1381  //    -- If T is a pointer to U or an array of U, its associated
1382  //       namespaces and classes are those associated with U.
1383  //
1384  // We handle this by unwrapping pointer and array types immediately,
1385  // to avoid unnecessary recursion.
1386  while (true) {
1387    if (const PointerType *Ptr = T->getAs<PointerType>())
1388      T = Ptr->getPointeeType();
1389    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1390      T = Ptr->getElementType();
1391    else
1392      break;
1393  }
1394
1395  //     -- If T is a fundamental type, its associated sets of
1396  //        namespaces and classes are both empty.
1397  if (T->getAs<BuiltinType>())
1398    return;
1399
1400  //     -- If T is a class type (including unions), its associated
1401  //        classes are: the class itself; the class of which it is a
1402  //        member, if any; and its direct and indirect base
1403  //        classes. Its associated namespaces are the namespaces in
1404  //        which its associated classes are defined.
1405  if (const RecordType *ClassType = T->getAs<RecordType>())
1406    if (CXXRecordDecl *ClassDecl
1407        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1408      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1409                                        AssociatedNamespaces,
1410                                        AssociatedClasses);
1411      return;
1412    }
1413
1414  //     -- If T is an enumeration type, its associated namespace is
1415  //        the namespace in which it is defined. If it is class
1416  //        member, its associated class is the member���s class; else
1417  //        it has no associated class.
1418  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1419    EnumDecl *Enum = EnumT->getDecl();
1420
1421    DeclContext *Ctx = Enum->getDeclContext();
1422    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1423      AssociatedClasses.insert(EnclosingClass);
1424
1425    // Add the associated namespace for this class.
1426    while (Ctx->isRecord())
1427      Ctx = Ctx->getParent();
1428    CollectNamespace(AssociatedNamespaces, Ctx);
1429
1430    return;
1431  }
1432
1433  //     -- If T is a function type, its associated namespaces and
1434  //        classes are those associated with the function parameter
1435  //        types and those associated with the return type.
1436  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1437    // Return type
1438    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1439                                      Context,
1440                                      AssociatedNamespaces, AssociatedClasses);
1441
1442    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1443    if (!Proto)
1444      return;
1445
1446    // Argument types
1447    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1448                                           ArgEnd = Proto->arg_type_end();
1449         Arg != ArgEnd; ++Arg)
1450      addAssociatedClassesAndNamespaces(*Arg, Context,
1451                                        AssociatedNamespaces, AssociatedClasses);
1452
1453    return;
1454  }
1455
1456  //     -- If T is a pointer to a member function of a class X, its
1457  //        associated namespaces and classes are those associated
1458  //        with the function parameter types and return type,
1459  //        together with those associated with X.
1460  //
1461  //     -- If T is a pointer to a data member of class X, its
1462  //        associated namespaces and classes are those associated
1463  //        with the member type together with those associated with
1464  //        X.
1465  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1466    // Handle the type that the pointer to member points to.
1467    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1468                                      Context,
1469                                      AssociatedNamespaces,
1470                                      AssociatedClasses);
1471
1472    // Handle the class type into which this points.
1473    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1474      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1475                                        Context,
1476                                        AssociatedNamespaces,
1477                                        AssociatedClasses);
1478
1479    return;
1480  }
1481
1482  // FIXME: What about block pointers?
1483  // FIXME: What about Objective-C message sends?
1484}
1485
1486/// \brief Find the associated classes and namespaces for
1487/// argument-dependent lookup for a call with the given set of
1488/// arguments.
1489///
1490/// This routine computes the sets of associated classes and associated
1491/// namespaces searched by argument-dependent lookup
1492/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1493void
1494Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1495                                 AssociatedNamespaceSet &AssociatedNamespaces,
1496                                 AssociatedClassSet &AssociatedClasses) {
1497  AssociatedNamespaces.clear();
1498  AssociatedClasses.clear();
1499
1500  // C++ [basic.lookup.koenig]p2:
1501  //   For each argument type T in the function call, there is a set
1502  //   of zero or more associated namespaces and a set of zero or more
1503  //   associated classes to be considered. The sets of namespaces and
1504  //   classes is determined entirely by the types of the function
1505  //   arguments (and the namespace of any template template
1506  //   argument).
1507  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1508    Expr *Arg = Args[ArgIdx];
1509
1510    if (Arg->getType() != Context.OverloadTy) {
1511      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1512                                        AssociatedNamespaces,
1513                                        AssociatedClasses);
1514      continue;
1515    }
1516
1517    // [...] In addition, if the argument is the name or address of a
1518    // set of overloaded functions and/or function templates, its
1519    // associated classes and namespaces are the union of those
1520    // associated with each of the members of the set: the namespace
1521    // in which the function or function template is defined and the
1522    // classes and namespaces associated with its (non-dependent)
1523    // parameter types and return type.
1524    DeclRefExpr *DRE = 0;
1525    TemplateIdRefExpr *TIRE = 0;
1526    Arg = Arg->IgnoreParens();
1527    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) {
1528      if (unaryOp->getOpcode() == UnaryOperator::AddrOf) {
1529        DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr());
1530        TIRE = dyn_cast<TemplateIdRefExpr>(unaryOp->getSubExpr());
1531      }
1532    } else {
1533      DRE = dyn_cast<DeclRefExpr>(Arg);
1534      TIRE = dyn_cast<TemplateIdRefExpr>(Arg);
1535    }
1536
1537    OverloadedFunctionDecl *Ovl = 0;
1538    if (DRE)
1539      Ovl = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl());
1540    else if (TIRE)
1541      Ovl = TIRE->getTemplateName().getAsOverloadedFunctionDecl();
1542    if (!Ovl)
1543      continue;
1544
1545    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
1546                                                FuncEnd = Ovl->function_end();
1547         Func != FuncEnd; ++Func) {
1548      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(*Func);
1549      if (!FDecl)
1550        FDecl = cast<FunctionTemplateDecl>(*Func)->getTemplatedDecl();
1551
1552      // Add the namespace in which this function was defined. Note
1553      // that, if this is a member function, we do *not* consider the
1554      // enclosing namespace of its class.
1555      DeclContext *Ctx = FDecl->getDeclContext();
1556      CollectNamespace(AssociatedNamespaces, Ctx);
1557
1558      // Add the classes and namespaces associated with the parameter
1559      // types and return type of this function.
1560      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1561                                        AssociatedNamespaces,
1562                                        AssociatedClasses);
1563    }
1564  }
1565}
1566
1567/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1568/// an acceptable non-member overloaded operator for a call whose
1569/// arguments have types T1 (and, if non-empty, T2). This routine
1570/// implements the check in C++ [over.match.oper]p3b2 concerning
1571/// enumeration types.
1572static bool
1573IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1574                                       QualType T1, QualType T2,
1575                                       ASTContext &Context) {
1576  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1577    return true;
1578
1579  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1580    return true;
1581
1582  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1583  if (Proto->getNumArgs() < 1)
1584    return false;
1585
1586  if (T1->isEnumeralType()) {
1587    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1588    if (Context.hasSameUnqualifiedType(T1, ArgType))
1589      return true;
1590  }
1591
1592  if (Proto->getNumArgs() < 2)
1593    return false;
1594
1595  if (!T2.isNull() && T2->isEnumeralType()) {
1596    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1597    if (Context.hasSameUnqualifiedType(T2, ArgType))
1598      return true;
1599  }
1600
1601  return false;
1602}
1603
1604NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
1605                                  LookupNameKind NameKind,
1606                                  RedeclarationKind Redecl) {
1607  LookupResult R(*this, Name, SourceLocation(), NameKind, Redecl);
1608  LookupName(R, S);
1609  return R.getAsSingleDecl(Context);
1610}
1611
1612/// \brief Find the protocol with the given name, if any.
1613ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1614  Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
1615  return cast_or_null<ObjCProtocolDecl>(D);
1616}
1617
1618/// \brief Find the Objective-C category implementation with the given
1619/// name, if any.
1620ObjCCategoryImplDecl *Sema::LookupObjCCategoryImpl(IdentifierInfo *II) {
1621  Decl *D = LookupSingleName(TUScope, II, LookupObjCCategoryImplName);
1622  return cast_or_null<ObjCCategoryImplDecl>(D);
1623}
1624
1625void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1626                                        QualType T1, QualType T2,
1627                                        FunctionSet &Functions) {
1628  // C++ [over.match.oper]p3:
1629  //     -- The set of non-member candidates is the result of the
1630  //        unqualified lookup of operator@ in the context of the
1631  //        expression according to the usual rules for name lookup in
1632  //        unqualified function calls (3.4.2) except that all member
1633  //        functions are ignored. However, if no operand has a class
1634  //        type, only those non-member functions in the lookup set
1635  //        that have a first parameter of type T1 or "reference to
1636  //        (possibly cv-qualified) T1", when T1 is an enumeration
1637  //        type, or (if there is a right operand) a second parameter
1638  //        of type T2 or "reference to (possibly cv-qualified) T2",
1639  //        when T2 is an enumeration type, are candidate functions.
1640  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1641  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
1642  LookupName(Operators, S);
1643
1644  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1645
1646  if (Operators.empty())
1647    return;
1648
1649  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1650       Op != OpEnd; ++Op) {
1651    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1652      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1653        Functions.insert(FD); // FIXME: canonical FD
1654    } else if (FunctionTemplateDecl *FunTmpl
1655                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1656      // FIXME: friend operators?
1657      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1658      // later?
1659      if (!FunTmpl->getDeclContext()->isRecord())
1660        Functions.insert(FunTmpl);
1661    }
1662  }
1663}
1664
1665static void CollectFunctionDecl(Sema::FunctionSet &Functions,
1666                                Decl *D) {
1667  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
1668    Functions.insert(Func);
1669  else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
1670    Functions.insert(FunTmpl);
1671}
1672
1673void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1674                                   Expr **Args, unsigned NumArgs,
1675                                   FunctionSet &Functions) {
1676  // Find all of the associated namespaces and classes based on the
1677  // arguments we have.
1678  AssociatedNamespaceSet AssociatedNamespaces;
1679  AssociatedClassSet AssociatedClasses;
1680  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1681                                     AssociatedNamespaces,
1682                                     AssociatedClasses);
1683
1684  QualType T1, T2;
1685  if (Operator) {
1686    T1 = Args[0]->getType();
1687    if (NumArgs >= 2)
1688      T2 = Args[1]->getType();
1689  }
1690
1691  // C++ [basic.lookup.argdep]p3:
1692  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1693  //   and let Y be the lookup set produced by argument dependent
1694  //   lookup (defined as follows). If X contains [...] then Y is
1695  //   empty. Otherwise Y is the set of declarations found in the
1696  //   namespaces associated with the argument types as described
1697  //   below. The set of declarations found by the lookup of the name
1698  //   is the union of X and Y.
1699  //
1700  // Here, we compute Y and add its members to the overloaded
1701  // candidate set.
1702  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1703                                     NSEnd = AssociatedNamespaces.end();
1704       NS != NSEnd; ++NS) {
1705    //   When considering an associated namespace, the lookup is the
1706    //   same as the lookup performed when the associated namespace is
1707    //   used as a qualifier (3.4.3.2) except that:
1708    //
1709    //     -- Any using-directives in the associated namespace are
1710    //        ignored.
1711    //
1712    //     -- Any namespace-scope friend functions declared in
1713    //        associated classes are visible within their respective
1714    //        namespaces even if they are not visible during an ordinary
1715    //        lookup (11.4).
1716    DeclContext::lookup_iterator I, E;
1717    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1718      Decl *D = *I;
1719      // If the only declaration here is an ordinary friend, consider
1720      // it only if it was declared in an associated classes.
1721      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1722        DeclContext *LexDC = D->getLexicalDeclContext();
1723        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1724          continue;
1725      }
1726
1727      FunctionDecl *Fn;
1728      if (!Operator || !(Fn = dyn_cast<FunctionDecl>(D)) ||
1729          IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context))
1730        CollectFunctionDecl(Functions, D);
1731    }
1732  }
1733}
1734