//===--------------------- SemaLookup.cpp - Name Lookup ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements name lookup for C, C++, Objective-C, and // Objective-C++. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "Lookup.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/Parse/DeclSpec.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/LangOptions.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/ErrorHandling.h" #include #include #include #include #include using namespace clang; namespace { class UnqualUsingEntry { const DeclContext *Nominated; const DeclContext *CommonAncestor; public: UnqualUsingEntry(const DeclContext *Nominated, const DeclContext *CommonAncestor) : Nominated(Nominated), CommonAncestor(CommonAncestor) { } const DeclContext *getCommonAncestor() const { return CommonAncestor; } const DeclContext *getNominatedNamespace() const { return Nominated; } // Sort by the pointer value of the common ancestor. struct Comparator { bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { return L.getCommonAncestor() < R.getCommonAncestor(); } bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { return E.getCommonAncestor() < DC; } bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { return DC < E.getCommonAncestor(); } }; }; /// A collection of using directives, as used by C++ unqualified /// lookup. class UnqualUsingDirectiveSet { typedef llvm::SmallVector ListTy; ListTy list; llvm::SmallPtrSet visited; public: UnqualUsingDirectiveSet() {} void visitScopeChain(Scope *S, Scope *InnermostFileScope) { // C++ [namespace.udir]p1: // During unqualified name lookup, the names appear as if they // were declared in the nearest enclosing namespace which contains // both the using-directive and the nominated namespace. DeclContext *InnermostFileDC = static_cast(InnermostFileScope->getEntity()); assert(InnermostFileDC && InnermostFileDC->isFileContext()); for (; S; S = S->getParent()) { if (DeclContext *Ctx = static_cast(S->getEntity())) { DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC); visit(Ctx, EffectiveDC); } else { Scope::udir_iterator I = S->using_directives_begin(), End = S->using_directives_end(); for (; I != End; ++I) visit(I->getAs(), InnermostFileDC); } } } // Visits a context and collect all of its using directives // recursively. Treats all using directives as if they were // declared in the context. // // A given context is only every visited once, so it is important // that contexts be visited from the inside out in order to get // the effective DCs right. void visit(DeclContext *DC, DeclContext *EffectiveDC) { if (!visited.insert(DC)) return; addUsingDirectives(DC, EffectiveDC); } // Visits a using directive and collects all of its using // directives recursively. Treats all using directives as if they // were declared in the effective DC. void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { DeclContext *NS = UD->getNominatedNamespace(); if (!visited.insert(NS)) return; addUsingDirective(UD, EffectiveDC); addUsingDirectives(NS, EffectiveDC); } // Adds all the using directives in a context (and those nominated // by its using directives, transitively) as if they appeared in // the given effective context. void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { llvm::SmallVector queue; while (true) { DeclContext::udir_iterator I, End; for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) { UsingDirectiveDecl *UD = *I; DeclContext *NS = UD->getNominatedNamespace(); if (visited.insert(NS)) { addUsingDirective(UD, EffectiveDC); queue.push_back(NS); } } if (queue.empty()) return; DC = queue.back(); queue.pop_back(); } } // Add a using directive as if it had been declared in the given // context. This helps implement C++ [namespace.udir]p3: // The using-directive is transitive: if a scope contains a // using-directive that nominates a second namespace that itself // contains using-directives, the effect is as if the // using-directives from the second namespace also appeared in // the first. void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { // Find the common ancestor between the effective context and // the nominated namespace. DeclContext *Common = UD->getNominatedNamespace(); while (!Common->Encloses(EffectiveDC)) Common = Common->getParent(); Common = Common->getPrimaryContext(); list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); } void done() { std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator()); } typedef ListTy::iterator iterator; typedef ListTy::const_iterator const_iterator; iterator begin() { return list.begin(); } iterator end() { return list.end(); } const_iterator begin() const { return list.begin(); } const_iterator end() const { return list.end(); } std::pair getNamespacesFor(DeclContext *DC) const { return std::equal_range(begin(), end(), DC->getPrimaryContext(), UnqualUsingEntry::Comparator()); } }; } // Retrieve the set of identifier namespaces that correspond to a // specific kind of name lookup. inline unsigned getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind, bool CPlusPlus) { unsigned IDNS = 0; switch (NameKind) { case Sema::LookupOrdinaryName: case Sema::LookupOperatorName: case Sema::LookupRedeclarationWithLinkage: IDNS = Decl::IDNS_Ordinary; if (CPlusPlus) IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member; break; case Sema::LookupTagName: IDNS = Decl::IDNS_Tag; break; case Sema::LookupMemberName: IDNS = Decl::IDNS_Member; if (CPlusPlus) IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; break; case Sema::LookupNestedNameSpecifierName: case Sema::LookupNamespaceName: IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member; break; case Sema::LookupObjCProtocolName: IDNS = Decl::IDNS_ObjCProtocol; break; case Sema::LookupObjCImplementationName: IDNS = Decl::IDNS_ObjCImplementation; break; case Sema::LookupObjCCategoryImplName: IDNS = Decl::IDNS_ObjCCategoryImpl; break; } return IDNS; } // Necessary because CXXBasePaths is not complete in Sema.h void LookupResult::deletePaths(CXXBasePaths *Paths) { delete Paths; } void LookupResult::resolveKind() { unsigned N = Decls.size(); // Fast case: no possible ambiguity. if (N == 0) return; if (N == 1) { if (isa(Decls[0])) ResultKind = FoundUnresolvedValue; return; } // Don't do any extra resolution if we've already resolved as ambiguous. if (ResultKind == Ambiguous) return; llvm::SmallPtrSet Unique; bool Ambiguous = false; bool HasTag = false, HasFunction = false, HasNonFunction = false; bool HasUnresolved = false; unsigned UniqueTagIndex = 0; unsigned I = 0; while (I < N) { NamedDecl *D = Decls[I]->getUnderlyingDecl(); D = cast(D->getCanonicalDecl()); if (!Unique.insert(D)) { // If it's not unique, pull something off the back (and // continue at this index). Decls[I] = Decls[--N]; } else if (isa(D)) { // FIXME: support unresolved using value declarations Decls[I] = Decls[--N]; } else { // Otherwise, do some decl type analysis and then continue. if (isa(D)) { HasUnresolved = true; } else if (isa(D)) { if (HasTag) Ambiguous = true; UniqueTagIndex = I; HasTag = true; } else if (D->isFunctionOrFunctionTemplate()) { HasFunction = true; } else { if (HasNonFunction) Ambiguous = true; HasNonFunction = true; } I++; } } // C++ [basic.scope.hiding]p2: // A class name or enumeration name can be hidden by the name of // an object, function, or enumerator declared in the same // scope. If a class or enumeration name and an object, function, // or enumerator are declared in the same scope (in any order) // with the same name, the class or enumeration name is hidden // wherever the object, function, or enumerator name is visible. // But it's still an error if there are distinct tag types found, // even if they're not visible. (ref?) if (HideTags && HasTag && !Ambiguous && !HasUnresolved && (HasFunction || HasNonFunction)) Decls[UniqueTagIndex] = Decls[--N]; Decls.set_size(N); if (HasFunction && HasNonFunction) Ambiguous = true; if (Ambiguous) setAmbiguous(LookupResult::AmbiguousReference); else if (HasUnresolved) ResultKind = LookupResult::FoundUnresolvedValue; else if (N > 1) ResultKind = LookupResult::FoundOverloaded; else ResultKind = LookupResult::Found; } /// @brief Converts the result of name lookup into a single (possible /// NULL) pointer to a declaration. /// /// The resulting declaration will either be the declaration we found /// (if only a single declaration was found), an /// OverloadedFunctionDecl (if an overloaded function was found), or /// NULL (if no declaration was found). This conversion must not be /// used anywhere where name lookup could result in an ambiguity. /// /// The OverloadedFunctionDecl conversion is meant as a stop-gap /// solution, since it causes the OverloadedFunctionDecl to be /// leaked. FIXME: Eventually, there will be a better way to iterate /// over the set of overloaded functions returned by name lookup. NamedDecl *LookupResult::getAsSingleDecl(ASTContext &C) const { size_t size = Decls.size(); if (size == 0) return 0; if (size == 1) return (*begin())->getUnderlyingDecl(); if (isAmbiguous()) return 0; iterator I = begin(), E = end(); OverloadedFunctionDecl *Ovl = OverloadedFunctionDecl::Create(C, (*I)->getDeclContext(), (*I)->getDeclName()); for (; I != E; ++I) { NamedDecl *ND = (*I)->getUnderlyingDecl(); assert(ND->isFunctionOrFunctionTemplate()); if (isa(ND)) Ovl->addOverload(cast(ND)); else Ovl->addOverload(cast(ND)); // FIXME: UnresolvedUsingDecls. } return Ovl; } void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { CXXBasePaths::paths_iterator I, E; DeclContext::lookup_iterator DI, DE; for (I = P.begin(), E = P.end(); I != E; ++I) for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI) addDecl(*DI); } void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { Paths = new CXXBasePaths; Paths->swap(P); addDeclsFromBasePaths(*Paths); resolveKind(); setAmbiguous(AmbiguousBaseSubobjects); } void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { Paths = new CXXBasePaths; Paths->swap(P); addDeclsFromBasePaths(*Paths); resolveKind(); setAmbiguous(AmbiguousBaseSubobjectTypes); } void LookupResult::print(llvm::raw_ostream &Out) { Out << Decls.size() << " result(s)"; if (isAmbiguous()) Out << ", ambiguous"; if (Paths) Out << ", base paths present"; for (iterator I = begin(), E = end(); I != E; ++I) { Out << "\n"; (*I)->print(Out, 2); } } // Adds all qualifying matches for a name within a decl context to the // given lookup result. Returns true if any matches were found. static bool LookupDirect(LookupResult &R, const DeclContext *DC) { bool Found = false; DeclContext::lookup_const_iterator I, E; for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) if (Sema::isAcceptableLookupResult(*I, R.getLookupKind(), R.getIdentifierNamespace())) R.addDecl(*I), Found = true; return Found; } // Performs C++ unqualified lookup into the given file context. static bool CppNamespaceLookup(LookupResult &R, ASTContext &Context, DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); // Perform direct name lookup into the LookupCtx. bool Found = LookupDirect(R, NS); // Perform direct name lookup into the namespaces nominated by the // using directives whose common ancestor is this namespace. UnqualUsingDirectiveSet::const_iterator UI, UEnd; llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS); for (; UI != UEnd; ++UI) if (LookupDirect(R, UI->getNominatedNamespace())) Found = true; R.resolveKind(); return Found; } static bool isNamespaceOrTranslationUnitScope(Scope *S) { if (DeclContext *Ctx = static_cast(S->getEntity())) return Ctx->isFileContext(); return false; } // Find the next outer declaration context corresponding to this scope. static DeclContext *findOuterContext(Scope *S) { for (S = S->getParent(); S; S = S->getParent()) if (S->getEntity()) return static_cast(S->getEntity())->getPrimaryContext(); return 0; } bool Sema::CppLookupName(LookupResult &R, Scope *S) { assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup"); LookupNameKind NameKind = R.getLookupKind(); unsigned IDNS = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true); // If we're testing for redeclarations, also look in the friend namespaces. if (R.isForRedeclaration()) { if (IDNS & Decl::IDNS_Tag) IDNS |= Decl::IDNS_TagFriend; if (IDNS & Decl::IDNS_Ordinary) IDNS |= Decl::IDNS_OrdinaryFriend; } R.setIdentifierNamespace(IDNS); DeclarationName Name = R.getLookupName(); Scope *Initial = S; IdentifierResolver::iterator I = IdResolver.begin(Name), IEnd = IdResolver.end(); // First we lookup local scope. // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] // ...During unqualified name lookup (3.4.1), the names appear as if // they were declared in the nearest enclosing namespace which contains // both the using-directive and the nominated namespace. // [Note: in this context, "contains" means "contains directly or // indirectly". // // For example: // namespace A { int i; } // void foo() { // int i; // { // using namespace A; // ++i; // finds local 'i', A::i appears at global scope // } // } // for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { // Check whether the IdResolver has anything in this scope. bool Found = false; for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) { if (isAcceptableLookupResult(*I, NameKind, IDNS)) { Found = true; R.addDecl(*I); } } if (Found) { R.resolveKind(); return true; } if (DeclContext *Ctx = static_cast(S->getEntity())) { DeclContext *OuterCtx = findOuterContext(S); for (; Ctx && Ctx->getPrimaryContext() != OuterCtx; Ctx = Ctx->getLookupParent()) { if (Ctx->isFunctionOrMethod()) continue; // Perform qualified name lookup into this context. // FIXME: In some cases, we know that every name that could be found by // this qualified name lookup will also be on the identifier chain. For // example, inside a class without any base classes, we never need to // perform qualified lookup because all of the members are on top of the // identifier chain. if (LookupQualifiedName(R, Ctx)) return true; } } } // Stop if we ran out of scopes. // FIXME: This really, really shouldn't be happening. if (!S) return false; // Collect UsingDirectiveDecls in all scopes, and recursively all // nominated namespaces by those using-directives. // // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we // don't build it for each lookup! UnqualUsingDirectiveSet UDirs; UDirs.visitScopeChain(Initial, S); UDirs.done(); // Lookup namespace scope, and global scope. // Unqualified name lookup in C++ requires looking into scopes // that aren't strictly lexical, and therefore we walk through the // context as well as walking through the scopes. for (; S; S = S->getParent()) { DeclContext *Ctx = static_cast(S->getEntity()); if (Ctx->isTransparentContext()) continue; assert(Ctx && Ctx->isFileContext() && "We should have been looking only at file context here already."); // Check whether the IdResolver has anything in this scope. bool Found = false; for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) { if (isAcceptableLookupResult(*I, NameKind, IDNS)) { // We found something. Look for anything else in our scope // with this same name and in an acceptable identifier // namespace, so that we can construct an overload set if we // need to. Found = true; R.addDecl(*I); } } // Look into context considering using-directives. if (CppNamespaceLookup(R, Context, Ctx, UDirs)) Found = true; if (Found) { R.resolveKind(); return true; } if (R.isForRedeclaration() && !Ctx->isTransparentContext()) return false; } return !R.empty(); } /// @brief Perform unqualified name lookup starting from a given /// scope. /// /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is /// used to find names within the current scope. For example, 'x' in /// @code /// int x; /// int f() { /// return x; // unqualified name look finds 'x' in the global scope /// } /// @endcode /// /// Different lookup criteria can find different names. For example, a /// particular scope can have both a struct and a function of the same /// name, and each can be found by certain lookup criteria. For more /// information about lookup criteria, see the documentation for the /// class LookupCriteria. /// /// @param S The scope from which unqualified name lookup will /// begin. If the lookup criteria permits, name lookup may also search /// in the parent scopes. /// /// @param Name The name of the entity that we are searching for. /// /// @param Loc If provided, the source location where we're performing /// name lookup. At present, this is only used to produce diagnostics when /// C library functions (like "malloc") are implicitly declared. /// /// @returns The result of name lookup, which includes zero or more /// declarations and possibly additional information used to diagnose /// ambiguities. bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) { DeclarationName Name = R.getLookupName(); if (!Name) return false; LookupNameKind NameKind = R.getLookupKind(); if (!getLangOptions().CPlusPlus) { // Unqualified name lookup in C/Objective-C is purely lexical, so // search in the declarations attached to the name. unsigned IDNS = 0; switch (NameKind) { case Sema::LookupOrdinaryName: IDNS = Decl::IDNS_Ordinary; break; case Sema::LookupTagName: IDNS = Decl::IDNS_Tag; break; case Sema::LookupMemberName: IDNS = Decl::IDNS_Member; break; case Sema::LookupOperatorName: case Sema::LookupNestedNameSpecifierName: case Sema::LookupNamespaceName: assert(false && "C does not perform these kinds of name lookup"); break; case Sema::LookupRedeclarationWithLinkage: // Find the nearest non-transparent declaration scope. while (!(S->getFlags() & Scope::DeclScope) || (S->getEntity() && static_cast(S->getEntity()) ->isTransparentContext())) S = S->getParent(); IDNS = Decl::IDNS_Ordinary; break; case Sema::LookupObjCProtocolName: IDNS = Decl::IDNS_ObjCProtocol; break; case Sema::LookupObjCImplementationName: IDNS = Decl::IDNS_ObjCImplementation; break; case Sema::LookupObjCCategoryImplName: IDNS = Decl::IDNS_ObjCCategoryImpl; break; } // Scan up the scope chain looking for a decl that matches this // identifier that is in the appropriate namespace. This search // should not take long, as shadowing of names is uncommon, and // deep shadowing is extremely uncommon. bool LeftStartingScope = false; for (IdentifierResolver::iterator I = IdResolver.begin(Name), IEnd = IdResolver.end(); I != IEnd; ++I) if ((*I)->isInIdentifierNamespace(IDNS)) { if (NameKind == LookupRedeclarationWithLinkage) { // Determine whether this (or a previous) declaration is // out-of-scope. if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I))) LeftStartingScope = true; // If we found something outside of our starting scope that // does not have linkage, skip it. if (LeftStartingScope && !((*I)->hasLinkage())) continue; } R.addDecl(*I); if ((*I)->getAttr()) { // If this declaration has the "overloadable" attribute, we // might have a set of overloaded functions. // Figure out what scope the identifier is in. while (!(S->getFlags() & Scope::DeclScope) || !S->isDeclScope(DeclPtrTy::make(*I))) S = S->getParent(); // Find the last declaration in this scope (with the same // name, naturally). IdentifierResolver::iterator LastI = I; for (++LastI; LastI != IEnd; ++LastI) { if (!S->isDeclScope(DeclPtrTy::make(*LastI))) break; R.addDecl(*LastI); } } R.resolveKind(); return true; } } else { // Perform C++ unqualified name lookup. if (CppLookupName(R, S)) return true; } // If we didn't find a use of this identifier, and if the identifier // corresponds to a compiler builtin, create the decl object for the builtin // now, injecting it into translation unit scope, and return it. if (NameKind == LookupOrdinaryName || NameKind == LookupRedeclarationWithLinkage) { IdentifierInfo *II = Name.getAsIdentifierInfo(); if (II && AllowBuiltinCreation) { // If this is a builtin on this (or all) targets, create the decl. if (unsigned BuiltinID = II->getBuiltinID()) { // In C++, we don't have any predefined library functions like // 'malloc'. Instead, we'll just error. if (getLangOptions().CPlusPlus && Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return false; NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S, R.isForRedeclaration(), R.getNameLoc()); if (D) R.addDecl(D); return (D != NULL); } } } return false; } /// @brief Perform qualified name lookup in the namespaces nominated by /// using directives by the given context. /// /// C++98 [namespace.qual]p2: /// Given X::m (where X is a user-declared namespace), or given ::m /// (where X is the global namespace), let S be the set of all /// declarations of m in X and in the transitive closure of all /// namespaces nominated by using-directives in X and its used /// namespaces, except that using-directives are ignored in any /// namespace, including X, directly containing one or more /// declarations of m. No namespace is searched more than once in /// the lookup of a name. If S is the empty set, the program is /// ill-formed. Otherwise, if S has exactly one member, or if the /// context of the reference is a using-declaration /// (namespace.udecl), S is the required set of declarations of /// m. Otherwise if the use of m is not one that allows a unique /// declaration to be chosen from S, the program is ill-formed. /// C++98 [namespace.qual]p5: /// During the lookup of a qualified namespace member name, if the /// lookup finds more than one declaration of the member, and if one /// declaration introduces a class name or enumeration name and the /// other declarations either introduce the same object, the same /// enumerator or a set of functions, the non-type name hides the /// class or enumeration name if and only if the declarations are /// from the same namespace; otherwise (the declarations are from /// different namespaces), the program is ill-formed. static bool LookupQualifiedNameInUsingDirectives(LookupResult &R, DeclContext *StartDC) { assert(StartDC->isFileContext() && "start context is not a file context"); DeclContext::udir_iterator I = StartDC->using_directives_begin(); DeclContext::udir_iterator E = StartDC->using_directives_end(); if (I == E) return false; // We have at least added all these contexts to the queue. llvm::DenseSet Visited; Visited.insert(StartDC); // We have not yet looked into these namespaces, much less added // their "using-children" to the queue. llvm::SmallVector Queue; // We have already looked into the initial namespace; seed the queue // with its using-children. for (; I != E; ++I) { NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace(); if (Visited.insert(ND).second) Queue.push_back(ND); } // The easiest way to implement the restriction in [namespace.qual]p5 // is to check whether any of the individual results found a tag // and, if so, to declare an ambiguity if the final result is not // a tag. bool FoundTag = false; bool FoundNonTag = false; LookupResult LocalR(LookupResult::Temporary, R); bool Found = false; while (!Queue.empty()) { NamespaceDecl *ND = Queue.back(); Queue.pop_back(); // We go through some convolutions here to avoid copying results // between LookupResults. bool UseLocal = !R.empty(); LookupResult &DirectR = UseLocal ? LocalR : R; bool FoundDirect = LookupDirect(DirectR, ND); if (FoundDirect) { // First do any local hiding. DirectR.resolveKind(); // If the local result is a tag, remember that. if (DirectR.isSingleTagDecl()) FoundTag = true; else FoundNonTag = true; // Append the local results to the total results if necessary. if (UseLocal) { R.addAllDecls(LocalR); LocalR.clear(); } } // If we find names in this namespace, ignore its using directives. if (FoundDirect) { Found = true; continue; } for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) { NamespaceDecl *Nom = (*I)->getNominatedNamespace(); if (Visited.insert(Nom).second) Queue.push_back(Nom); } } if (Found) { if (FoundTag && FoundNonTag) R.setAmbiguousQualifiedTagHiding(); else R.resolveKind(); } return Found; } /// @brief Perform qualified name lookup into a given context. /// /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find /// names when the context of those names is explicit specified, e.g., /// "std::vector" or "x->member". /// /// Different lookup criteria can find different names. For example, a /// particular scope can have both a struct and a function of the same /// name, and each can be found by certain lookup criteria. For more /// information about lookup criteria, see the documentation for the /// class LookupCriteria. /// /// @param LookupCtx The context in which qualified name lookup will /// search. If the lookup criteria permits, name lookup may also search /// in the parent contexts or (for C++ classes) base classes. /// /// @param Name The name of the entity that we are searching for. /// /// @param Criteria The criteria that this routine will use to /// determine which names are visible and which names will be /// found. Note that name lookup will find a name that is visible by /// the given criteria, but the entity itself may not be semantically /// correct or even the kind of entity expected based on the /// lookup. For example, searching for a nested-name-specifier name /// might result in an EnumDecl, which is visible but is not permitted /// as a nested-name-specifier in C++03. /// /// @returns The result of name lookup, which includes zero or more /// declarations and possibly additional information used to diagnose /// ambiguities. bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx) { assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); if (!R.getLookupName()) return false; // If we're performing qualified name lookup (e.g., lookup into a // struct), find fields as part of ordinary name lookup. LookupNameKind NameKind = R.getLookupKind(); unsigned IDNS = getIdentifierNamespacesFromLookupNameKind(NameKind, getLangOptions().CPlusPlus); if (NameKind == LookupOrdinaryName) IDNS |= Decl::IDNS_Member; R.setIdentifierNamespace(IDNS); // Make sure that the declaration context is complete. assert((!isa(LookupCtx) || LookupCtx->isDependentContext() || cast(LookupCtx)->isDefinition() || Context.getTypeDeclType(cast(LookupCtx))->getAs() ->isBeingDefined()) && "Declaration context must already be complete!"); // Perform qualified name lookup into the LookupCtx. if (LookupDirect(R, LookupCtx)) { R.resolveKind(); return true; } // Don't descend into implied contexts for redeclarations. // C++98 [namespace.qual]p6: // In a declaration for a namespace member in which the // declarator-id is a qualified-id, given that the qualified-id // for the namespace member has the form // nested-name-specifier unqualified-id // the unqualified-id shall name a member of the namespace // designated by the nested-name-specifier. // See also [class.mfct]p5 and [class.static.data]p2. if (R.isForRedeclaration()) return false; // If this is a namespace, look it up in the implied namespaces. if (LookupCtx->isFileContext()) return LookupQualifiedNameInUsingDirectives(R, LookupCtx); // If this isn't a C++ class, we aren't allowed to look into base // classes, we're done. if (!isa(LookupCtx)) return false; // Perform lookup into our base classes. CXXRecordDecl *LookupRec = cast(LookupCtx); CXXBasePaths Paths; Paths.setOrigin(LookupRec); // Look for this member in our base classes CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0; switch (R.getLookupKind()) { case LookupOrdinaryName: case LookupMemberName: case LookupRedeclarationWithLinkage: BaseCallback = &CXXRecordDecl::FindOrdinaryMember; break; case LookupTagName: BaseCallback = &CXXRecordDecl::FindTagMember; break; case LookupOperatorName: case LookupNamespaceName: case LookupObjCProtocolName: case LookupObjCImplementationName: case LookupObjCCategoryImplName: // These lookups will never find a member in a C++ class (or base class). return false; case LookupNestedNameSpecifierName: BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember; break; } if (!LookupRec->lookupInBases(BaseCallback, R.getLookupName().getAsOpaquePtr(), Paths)) return false; // C++ [class.member.lookup]p2: // [...] If the resulting set of declarations are not all from // sub-objects of the same type, or the set has a nonstatic member // and includes members from distinct sub-objects, there is an // ambiguity and the program is ill-formed. Otherwise that set is // the result of the lookup. // FIXME: support using declarations! QualType SubobjectType; int SubobjectNumber = 0; for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); Path != PathEnd; ++Path) { const CXXBasePathElement &PathElement = Path->back(); // Determine whether we're looking at a distinct sub-object or not. if (SubobjectType.isNull()) { // This is the first subobject we've looked at. Record its type. SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); SubobjectNumber = PathElement.SubobjectNumber; } else if (SubobjectType != Context.getCanonicalType(PathElement.Base->getType())) { // We found members of the given name in two subobjects of // different types. This lookup is ambiguous. R.setAmbiguousBaseSubobjectTypes(Paths); return true; } else if (SubobjectNumber != PathElement.SubobjectNumber) { // We have a different subobject of the same type. // C++ [class.member.lookup]p5: // A static member, a nested type or an enumerator defined in // a base class T can unambiguously be found even if an object // has more than one base class subobject of type T. Decl *FirstDecl = *Path->Decls.first; if (isa(FirstDecl) || isa(FirstDecl) || isa(FirstDecl)) continue; if (isa(FirstDecl)) { // Determine whether all of the methods are static. bool AllMethodsAreStatic = true; for (DeclContext::lookup_iterator Func = Path->Decls.first; Func != Path->Decls.second; ++Func) { if (!isa(*Func)) { assert(isa(*Func) && "Non-function must be a tag decl"); break; } if (!cast(*Func)->isStatic()) { AllMethodsAreStatic = false; break; } } if (AllMethodsAreStatic) continue; } // We have found a nonstatic member name in multiple, distinct // subobjects. Name lookup is ambiguous. R.setAmbiguousBaseSubobjects(Paths); return true; } } // Lookup in a base class succeeded; return these results. DeclContext::lookup_iterator I, E; for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) R.addDecl(*I); R.resolveKind(); return true; } /// @brief Performs name lookup for a name that was parsed in the /// source code, and may contain a C++ scope specifier. /// /// This routine is a convenience routine meant to be called from /// contexts that receive a name and an optional C++ scope specifier /// (e.g., "N::M::x"). It will then perform either qualified or /// unqualified name lookup (with LookupQualifiedName or LookupName, /// respectively) on the given name and return those results. /// /// @param S The scope from which unqualified name lookup will /// begin. /// /// @param SS An optional C++ scope-specifier, e.g., "::N::M". /// /// @param Name The name of the entity that name lookup will /// search for. /// /// @param Loc If provided, the source location where we're performing /// name lookup. At present, this is only used to produce diagnostics when /// C library functions (like "malloc") are implicitly declared. /// /// @param EnteringContext Indicates whether we are going to enter the /// context of the scope-specifier SS (if present). /// /// @returns True if any decls were found (but possibly ambiguous) bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS, bool AllowBuiltinCreation, bool EnteringContext) { if (SS && SS->isInvalid()) { // When the scope specifier is invalid, don't even look for // anything. return false; } if (SS && SS->isSet()) { if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { // We have resolved the scope specifier to a particular declaration // contex, and will perform name lookup in that context. if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS)) return false; R.setContextRange(SS->getRange()); return LookupQualifiedName(R, DC); } // We could not resolve the scope specified to a specific declaration // context, which means that SS refers to an unknown specialization. // Name lookup can't find anything in this case. return false; } // Perform unqualified name lookup starting in the given scope. return LookupName(R, S, AllowBuiltinCreation); } /// @brief Produce a diagnostic describing the ambiguity that resulted /// from name lookup. /// /// @param Result The ambiguous name lookup result. /// /// @param Name The name of the entity that name lookup was /// searching for. /// /// @param NameLoc The location of the name within the source code. /// /// @param LookupRange A source range that provides more /// source-location information concerning the lookup itself. For /// example, this range might highlight a nested-name-specifier that /// precedes the name. /// /// @returns true bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); DeclarationName Name = Result.getLookupName(); SourceLocation NameLoc = Result.getNameLoc(); SourceRange LookupRange = Result.getContextRange(); switch (Result.getAmbiguityKind()) { case LookupResult::AmbiguousBaseSubobjects: { CXXBasePaths *Paths = Result.getBasePaths(); QualType SubobjectType = Paths->front().back().Base->getType(); Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) << LookupRange; DeclContext::lookup_iterator Found = Paths->front().Decls.first; while (isa(*Found) && cast(*Found)->isStatic()) ++Found; Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); return true; } case LookupResult::AmbiguousBaseSubobjectTypes: { Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) << Name << LookupRange; CXXBasePaths *Paths = Result.getBasePaths(); std::set DeclsPrinted; for (CXXBasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end(); Path != PathEnd; ++Path) { Decl *D = *Path->Decls.first; if (DeclsPrinted.insert(D).second) Diag(D->getLocation(), diag::note_ambiguous_member_found); } return true; } case LookupResult::AmbiguousTagHiding: { Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; llvm::SmallPtrSet TagDecls; LookupResult::iterator DI, DE = Result.end(); for (DI = Result.begin(); DI != DE; ++DI) if (TagDecl *TD = dyn_cast(*DI)) { TagDecls.insert(TD); Diag(TD->getLocation(), diag::note_hidden_tag); } for (DI = Result.begin(); DI != DE; ++DI) if (!isa(*DI)) Diag((*DI)->getLocation(), diag::note_hiding_object); // For recovery purposes, go ahead and implement the hiding. Result.hideDecls(TagDecls); return true; } case LookupResult::AmbiguousReference: { Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; LookupResult::iterator DI = Result.begin(), DE = Result.end(); for (; DI != DE; ++DI) Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI; return true; } } llvm::llvm_unreachable("unknown ambiguity kind"); return true; } static void addAssociatedClassesAndNamespaces(QualType T, ASTContext &Context, Sema::AssociatedNamespaceSet &AssociatedNamespaces, Sema::AssociatedClassSet &AssociatedClasses); static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces, DeclContext *Ctx) { if (Ctx->isFileContext()) Namespaces.insert(Ctx); } // \brief Add the associated classes and namespaces for argument-dependent // lookup that involves a template argument (C++ [basic.lookup.koenig]p2). static void addAssociatedClassesAndNamespaces(const TemplateArgument &Arg, ASTContext &Context, Sema::AssociatedNamespaceSet &AssociatedNamespaces, Sema::AssociatedClassSet &AssociatedClasses) { // C++ [basic.lookup.koenig]p2, last bullet: // -- [...] ; switch (Arg.getKind()) { case TemplateArgument::Null: break; case TemplateArgument::Type: // [...] the namespaces and classes associated with the types of the // template arguments provided for template type parameters (excluding // template template parameters) addAssociatedClassesAndNamespaces(Arg.getAsType(), Context, AssociatedNamespaces, AssociatedClasses); break; case TemplateArgument::Template: { // [...] the namespaces in which any template template arguments are // defined; and the classes in which any member templates used as // template template arguments are defined. TemplateName Template = Arg.getAsTemplate(); if (ClassTemplateDecl *ClassTemplate = dyn_cast(Template.getAsTemplateDecl())) { DeclContext *Ctx = ClassTemplate->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast(Ctx)) AssociatedClasses.insert(EnclosingClass); // Add the associated namespace for this class. while (Ctx->isRecord()) Ctx = Ctx->getParent(); CollectNamespace(AssociatedNamespaces, Ctx); } break; } case TemplateArgument::Declaration: case TemplateArgument::Integral: case TemplateArgument::Expression: // [Note: non-type template arguments do not contribute to the set of // associated namespaces. ] break; case TemplateArgument::Pack: for (TemplateArgument::pack_iterator P = Arg.pack_begin(), PEnd = Arg.pack_end(); P != PEnd; ++P) addAssociatedClassesAndNamespaces(*P, Context, AssociatedNamespaces, AssociatedClasses); break; } } // \brief Add the associated classes and namespaces for // argument-dependent lookup with an argument of class type // (C++ [basic.lookup.koenig]p2). static void addAssociatedClassesAndNamespaces(CXXRecordDecl *Class, ASTContext &Context, Sema::AssociatedNamespaceSet &AssociatedNamespaces, Sema::AssociatedClassSet &AssociatedClasses) { // C++ [basic.lookup.koenig]p2: // [...] // -- If T is a class type (including unions), its associated // classes are: the class itself; the class of which it is a // member, if any; and its direct and indirect base // classes. Its associated namespaces are the namespaces in // which its associated classes are defined. // Add the class of which it is a member, if any. DeclContext *Ctx = Class->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast(Ctx)) AssociatedClasses.insert(EnclosingClass); // Add the associated namespace for this class. while (Ctx->isRecord()) Ctx = Ctx->getParent(); CollectNamespace(AssociatedNamespaces, Ctx); // Add the class itself. If we've already seen this class, we don't // need to visit base classes. if (!AssociatedClasses.insert(Class)) return; // -- If T is a template-id, its associated namespaces and classes are // the namespace in which the template is defined; for member // templates, the member template’s class; the namespaces and classes // associated with the types of the template arguments provided for // template type parameters (excluding template template parameters); the // namespaces in which any template template arguments are defined; and // the classes in which any member templates used as template template // arguments are defined. [Note: non-type template arguments do not // contribute to the set of associated namespaces. ] if (ClassTemplateSpecializationDecl *Spec = dyn_cast(Class)) { DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast(Ctx)) AssociatedClasses.insert(EnclosingClass); // Add the associated namespace for this class. while (Ctx->isRecord()) Ctx = Ctx->getParent(); CollectNamespace(AssociatedNamespaces, Ctx); const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) addAssociatedClassesAndNamespaces(TemplateArgs[I], Context, AssociatedNamespaces, AssociatedClasses); } // Add direct and indirect base classes along with their associated // namespaces. llvm::SmallVector Bases; Bases.push_back(Class); while (!Bases.empty()) { // Pop this class off the stack. Class = Bases.back(); Bases.pop_back(); // Visit the base classes. for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(), BaseEnd = Class->bases_end(); Base != BaseEnd; ++Base) { const RecordType *BaseType = Base->getType()->getAs(); // In dependent contexts, we do ADL twice, and the first time around, // the base type might be a dependent TemplateSpecializationType, or a // TemplateTypeParmType. If that happens, simply ignore it. // FIXME: If we want to support export, we probably need to add the // namespace of the template in a TemplateSpecializationType, or even // the classes and namespaces of known non-dependent arguments. if (!BaseType) continue; CXXRecordDecl *BaseDecl = cast(BaseType->getDecl()); if (AssociatedClasses.insert(BaseDecl)) { // Find the associated namespace for this base class. DeclContext *BaseCtx = BaseDecl->getDeclContext(); while (BaseCtx->isRecord()) BaseCtx = BaseCtx->getParent(); CollectNamespace(AssociatedNamespaces, BaseCtx); // Make sure we visit the bases of this base class. if (BaseDecl->bases_begin() != BaseDecl->bases_end()) Bases.push_back(BaseDecl); } } } } // \brief Add the associated classes and namespaces for // argument-dependent lookup with an argument of type T // (C++ [basic.lookup.koenig]p2). static void addAssociatedClassesAndNamespaces(QualType T, ASTContext &Context, Sema::AssociatedNamespaceSet &AssociatedNamespaces, Sema::AssociatedClassSet &AssociatedClasses) { // C++ [basic.lookup.koenig]p2: // // For each argument type T in the function call, there is a set // of zero or more associated namespaces and a set of zero or more // associated classes to be considered. The sets of namespaces and // classes is determined entirely by the types of the function // arguments (and the namespace of any template template // argument). Typedef names and using-declarations used to specify // the types do not contribute to this set. The sets of namespaces // and classes are determined in the following way: T = Context.getCanonicalType(T).getUnqualifiedType(); // -- If T is a pointer to U or an array of U, its associated // namespaces and classes are those associated with U. // // We handle this by unwrapping pointer and array types immediately, // to avoid unnecessary recursion. while (true) { if (const PointerType *Ptr = T->getAs()) T = Ptr->getPointeeType(); else if (const ArrayType *Ptr = Context.getAsArrayType(T)) T = Ptr->getElementType(); else break; } // -- If T is a fundamental type, its associated sets of // namespaces and classes are both empty. if (T->getAs()) return; // -- If T is a class type (including unions), its associated // classes are: the class itself; the class of which it is a // member, if any; and its direct and indirect base // classes. Its associated namespaces are the namespaces in // which its associated classes are defined. if (const RecordType *ClassType = T->getAs()) if (CXXRecordDecl *ClassDecl = dyn_cast(ClassType->getDecl())) { addAssociatedClassesAndNamespaces(ClassDecl, Context, AssociatedNamespaces, AssociatedClasses); return; } // -- If T is an enumeration type, its associated namespace is // the namespace in which it is defined. If it is class // member, its associated class is the member’s class; else // it has no associated class. if (const EnumType *EnumT = T->getAs()) { EnumDecl *Enum = EnumT->getDecl(); DeclContext *Ctx = Enum->getDeclContext(); if (CXXRecordDecl *EnclosingClass = dyn_cast(Ctx)) AssociatedClasses.insert(EnclosingClass); // Add the associated namespace for this class. while (Ctx->isRecord()) Ctx = Ctx->getParent(); CollectNamespace(AssociatedNamespaces, Ctx); return; } // -- If T is a function type, its associated namespaces and // classes are those associated with the function parameter // types and those associated with the return type. if (const FunctionType *FnType = T->getAs()) { // Return type addAssociatedClassesAndNamespaces(FnType->getResultType(), Context, AssociatedNamespaces, AssociatedClasses); const FunctionProtoType *Proto = dyn_cast(FnType); if (!Proto) return; // Argument types for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), ArgEnd = Proto->arg_type_end(); Arg != ArgEnd; ++Arg) addAssociatedClassesAndNamespaces(*Arg, Context, AssociatedNamespaces, AssociatedClasses); return; } // -- If T is a pointer to a member function of a class X, its // associated namespaces and classes are those associated // with the function parameter types and return type, // together with those associated with X. // // -- If T is a pointer to a data member of class X, its // associated namespaces and classes are those associated // with the member type together with those associated with // X. if (const MemberPointerType *MemberPtr = T->getAs()) { // Handle the type that the pointer to member points to. addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(), Context, AssociatedNamespaces, AssociatedClasses); // Handle the class type into which this points. if (const RecordType *Class = MemberPtr->getClass()->getAs()) addAssociatedClassesAndNamespaces(cast(Class->getDecl()), Context, AssociatedNamespaces, AssociatedClasses); return; } // FIXME: What about block pointers? // FIXME: What about Objective-C message sends? } /// \brief Find the associated classes and namespaces for /// argument-dependent lookup for a call with the given set of /// arguments. /// /// This routine computes the sets of associated classes and associated /// namespaces searched by argument-dependent lookup /// (C++ [basic.lookup.argdep]) for a given set of arguments. void Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses) { AssociatedNamespaces.clear(); AssociatedClasses.clear(); // C++ [basic.lookup.koenig]p2: // For each argument type T in the function call, there is a set // of zero or more associated namespaces and a set of zero or more // associated classes to be considered. The sets of namespaces and // classes is determined entirely by the types of the function // arguments (and the namespace of any template template // argument). for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) { Expr *Arg = Args[ArgIdx]; if (Arg->getType() != Context.OverloadTy) { addAssociatedClassesAndNamespaces(Arg->getType(), Context, AssociatedNamespaces, AssociatedClasses); continue; } // [...] In addition, if the argument is the name or address of a // set of overloaded functions and/or function templates, its // associated classes and namespaces are the union of those // associated with each of the members of the set: the namespace // in which the function or function template is defined and the // classes and namespaces associated with its (non-dependent) // parameter types and return type. DeclRefExpr *DRE = 0; TemplateIdRefExpr *TIRE = 0; Arg = Arg->IgnoreParens(); if (UnaryOperator *unaryOp = dyn_cast(Arg)) { if (unaryOp->getOpcode() == UnaryOperator::AddrOf) { DRE = dyn_cast(unaryOp->getSubExpr()); TIRE = dyn_cast(unaryOp->getSubExpr()); } } else { DRE = dyn_cast(Arg); TIRE = dyn_cast(Arg); } OverloadedFunctionDecl *Ovl = 0; if (DRE) Ovl = dyn_cast(DRE->getDecl()); else if (TIRE) Ovl = TIRE->getTemplateName().getAsOverloadedFunctionDecl(); if (!Ovl) continue; for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), FuncEnd = Ovl->function_end(); Func != FuncEnd; ++Func) { FunctionDecl *FDecl = dyn_cast(*Func); if (!FDecl) FDecl = cast(*Func)->getTemplatedDecl(); // Add the namespace in which this function was defined. Note // that, if this is a member function, we do *not* consider the // enclosing namespace of its class. DeclContext *Ctx = FDecl->getDeclContext(); CollectNamespace(AssociatedNamespaces, Ctx); // Add the classes and namespaces associated with the parameter // types and return type of this function. addAssociatedClassesAndNamespaces(FDecl->getType(), Context, AssociatedNamespaces, AssociatedClasses); } } } /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is /// an acceptable non-member overloaded operator for a call whose /// arguments have types T1 (and, if non-empty, T2). This routine /// implements the check in C++ [over.match.oper]p3b2 concerning /// enumeration types. static bool IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn, QualType T1, QualType T2, ASTContext &Context) { if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) return true; if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) return true; const FunctionProtoType *Proto = Fn->getType()->getAs(); if (Proto->getNumArgs() < 1) return false; if (T1->isEnumeralType()) { QualType ArgType = Proto->getArgType(0).getNonReferenceType(); if (Context.hasSameUnqualifiedType(T1, ArgType)) return true; } if (Proto->getNumArgs() < 2) return false; if (!T2.isNull() && T2->isEnumeralType()) { QualType ArgType = Proto->getArgType(1).getNonReferenceType(); if (Context.hasSameUnqualifiedType(T2, ArgType)) return true; } return false; } NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, LookupNameKind NameKind, RedeclarationKind Redecl) { LookupResult R(*this, Name, SourceLocation(), NameKind, Redecl); LookupName(R, S); return R.getAsSingleDecl(Context); } /// \brief Find the protocol with the given name, if any. ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) { Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName); return cast_or_null(D); } /// \brief Find the Objective-C category implementation with the given /// name, if any. ObjCCategoryImplDecl *Sema::LookupObjCCategoryImpl(IdentifierInfo *II) { Decl *D = LookupSingleName(TUScope, II, LookupObjCCategoryImplName); return cast_or_null(D); } void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, QualType T1, QualType T2, FunctionSet &Functions) { // C++ [over.match.oper]p3: // -- The set of non-member candidates is the result of the // unqualified lookup of operator@ in the context of the // expression according to the usual rules for name lookup in // unqualified function calls (3.4.2) except that all member // functions are ignored. However, if no operand has a class // type, only those non-member functions in the lookup set // that have a first parameter of type T1 or "reference to // (possibly cv-qualified) T1", when T1 is an enumeration // type, or (if there is a right operand) a second parameter // of type T2 or "reference to (possibly cv-qualified) T2", // when T2 is an enumeration type, are candidate functions. DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); LookupName(Operators, S); assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); if (Operators.empty()) return; for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end(); Op != OpEnd; ++Op) { if (FunctionDecl *FD = dyn_cast(*Op)) { if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context)) Functions.insert(FD); // FIXME: canonical FD } else if (FunctionTemplateDecl *FunTmpl = dyn_cast(*Op)) { // FIXME: friend operators? // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate, // later? if (!FunTmpl->getDeclContext()->isRecord()) Functions.insert(FunTmpl); } } } static void CollectFunctionDecl(Sema::FunctionSet &Functions, Decl *D) { if (FunctionDecl *Func = dyn_cast(D)) Functions.insert(Func); else if (FunctionTemplateDecl *FunTmpl = dyn_cast(D)) Functions.insert(FunTmpl); } void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator, Expr **Args, unsigned NumArgs, FunctionSet &Functions) { // Find all of the associated namespaces and classes based on the // arguments we have. AssociatedNamespaceSet AssociatedNamespaces; AssociatedClassSet AssociatedClasses; FindAssociatedClassesAndNamespaces(Args, NumArgs, AssociatedNamespaces, AssociatedClasses); QualType T1, T2; if (Operator) { T1 = Args[0]->getType(); if (NumArgs >= 2) T2 = Args[1]->getType(); } // C++ [basic.lookup.argdep]p3: // Let X be the lookup set produced by unqualified lookup (3.4.1) // and let Y be the lookup set produced by argument dependent // lookup (defined as follows). If X contains [...] then Y is // empty. Otherwise Y is the set of declarations found in the // namespaces associated with the argument types as described // below. The set of declarations found by the lookup of the name // is the union of X and Y. // // Here, we compute Y and add its members to the overloaded // candidate set. for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(), NSEnd = AssociatedNamespaces.end(); NS != NSEnd; ++NS) { // When considering an associated namespace, the lookup is the // same as the lookup performed when the associated namespace is // used as a qualifier (3.4.3.2) except that: // // -- Any using-directives in the associated namespace are // ignored. // // -- Any namespace-scope friend functions declared in // associated classes are visible within their respective // namespaces even if they are not visible during an ordinary // lookup (11.4). DeclContext::lookup_iterator I, E; for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) { Decl *D = *I; // If the only declaration here is an ordinary friend, consider // it only if it was declared in an associated classes. if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) { DeclContext *LexDC = D->getLexicalDeclContext(); if (!AssociatedClasses.count(cast(LexDC))) continue; } FunctionDecl *Fn; if (!Operator || !(Fn = dyn_cast(D)) || IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context)) CollectFunctionDecl(Functions, D); } } }