SemaExprMember.cpp revision 280031
1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/Overload.h"
14#include "clang/AST/ASTLambda.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Lookup.h"
22#include "clang/Sema/Scope.h"
23#include "clang/Sema/ScopeInfo.h"
24#include "clang/Sema/SemaInternal.h"
25
26using namespace clang;
27using namespace sema;
28
29typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
30static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
31  const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
32  return !Bases.count(Base->getCanonicalDecl());
33}
34
35/// Determines if the given class is provably not derived from all of
36/// the prospective base classes.
37static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
38                                     const BaseSet &Bases) {
39  void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
40  return BaseIsNotInSet(Record, BasesPtr) &&
41         Record->forallBases(BaseIsNotInSet, BasesPtr);
42}
43
44enum IMAKind {
45  /// The reference is definitely not an instance member access.
46  IMA_Static,
47
48  /// The reference may be an implicit instance member access.
49  IMA_Mixed,
50
51  /// The reference may be to an instance member, but it might be invalid if
52  /// so, because the context is not an instance method.
53  IMA_Mixed_StaticContext,
54
55  /// The reference may be to an instance member, but it is invalid if
56  /// so, because the context is from an unrelated class.
57  IMA_Mixed_Unrelated,
58
59  /// The reference is definitely an implicit instance member access.
60  IMA_Instance,
61
62  /// The reference may be to an unresolved using declaration.
63  IMA_Unresolved,
64
65  /// The reference is a contextually-permitted abstract member reference.
66  IMA_Abstract,
67
68  /// The reference may be to an unresolved using declaration and the
69  /// context is not an instance method.
70  IMA_Unresolved_StaticContext,
71
72  // The reference refers to a field which is not a member of the containing
73  // class, which is allowed because we're in C++11 mode and the context is
74  // unevaluated.
75  IMA_Field_Uneval_Context,
76
77  /// All possible referrents are instance members and the current
78  /// context is not an instance method.
79  IMA_Error_StaticContext,
80
81  /// All possible referrents are instance members of an unrelated
82  /// class.
83  IMA_Error_Unrelated
84};
85
86/// The given lookup names class member(s) and is not being used for
87/// an address-of-member expression.  Classify the type of access
88/// according to whether it's possible that this reference names an
89/// instance member.  This is best-effort in dependent contexts; it is okay to
90/// conservatively answer "yes", in which case some errors will simply
91/// not be caught until template-instantiation.
92static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
93                                            const LookupResult &R) {
94  assert(!R.empty() && (*R.begin())->isCXXClassMember());
95
96  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
97
98  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
99    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
100
101  if (R.isUnresolvableResult())
102    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
103
104  // Collect all the declaring classes of instance members we find.
105  bool hasNonInstance = false;
106  bool isField = false;
107  BaseSet Classes;
108  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
109    NamedDecl *D = *I;
110
111    if (D->isCXXInstanceMember()) {
112      if (dyn_cast<FieldDecl>(D) || dyn_cast<MSPropertyDecl>(D)
113          || dyn_cast<IndirectFieldDecl>(D))
114        isField = true;
115
116      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
117      Classes.insert(R->getCanonicalDecl());
118    }
119    else
120      hasNonInstance = true;
121  }
122
123  // If we didn't find any instance members, it can't be an implicit
124  // member reference.
125  if (Classes.empty())
126    return IMA_Static;
127
128  // C++11 [expr.prim.general]p12:
129  //   An id-expression that denotes a non-static data member or non-static
130  //   member function of a class can only be used:
131  //   (...)
132  //   - if that id-expression denotes a non-static data member and it
133  //     appears in an unevaluated operand.
134  //
135  // This rule is specific to C++11.  However, we also permit this form
136  // in unevaluated inline assembly operands, like the operand to a SIZE.
137  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
138  assert(!AbstractInstanceResult);
139  switch (SemaRef.ExprEvalContexts.back().Context) {
140  case Sema::Unevaluated:
141    if (isField && SemaRef.getLangOpts().CPlusPlus11)
142      AbstractInstanceResult = IMA_Field_Uneval_Context;
143    break;
144
145  case Sema::UnevaluatedAbstract:
146    AbstractInstanceResult = IMA_Abstract;
147    break;
148
149  case Sema::ConstantEvaluated:
150  case Sema::PotentiallyEvaluated:
151  case Sema::PotentiallyEvaluatedIfUsed:
152    break;
153  }
154
155  // If the current context is not an instance method, it can't be
156  // an implicit member reference.
157  if (isStaticContext) {
158    if (hasNonInstance)
159      return IMA_Mixed_StaticContext;
160
161    return AbstractInstanceResult ? AbstractInstanceResult
162                                  : IMA_Error_StaticContext;
163  }
164
165  CXXRecordDecl *contextClass;
166  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
167    contextClass = MD->getParent()->getCanonicalDecl();
168  else
169    contextClass = cast<CXXRecordDecl>(DC);
170
171  // [class.mfct.non-static]p3:
172  // ...is used in the body of a non-static member function of class X,
173  // if name lookup (3.4.1) resolves the name in the id-expression to a
174  // non-static non-type member of some class C [...]
175  // ...if C is not X or a base class of X, the class member access expression
176  // is ill-formed.
177  if (R.getNamingClass() &&
178      contextClass->getCanonicalDecl() !=
179        R.getNamingClass()->getCanonicalDecl()) {
180    // If the naming class is not the current context, this was a qualified
181    // member name lookup, and it's sufficient to check that we have the naming
182    // class as a base class.
183    Classes.clear();
184    Classes.insert(R.getNamingClass()->getCanonicalDecl());
185  }
186
187  // If we can prove that the current context is unrelated to all the
188  // declaring classes, it can't be an implicit member reference (in
189  // which case it's an error if any of those members are selected).
190  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
191    return hasNonInstance ? IMA_Mixed_Unrelated :
192           AbstractInstanceResult ? AbstractInstanceResult :
193                                    IMA_Error_Unrelated;
194
195  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
196}
197
198/// Diagnose a reference to a field with no object available.
199static void diagnoseInstanceReference(Sema &SemaRef,
200                                      const CXXScopeSpec &SS,
201                                      NamedDecl *Rep,
202                                      const DeclarationNameInfo &nameInfo) {
203  SourceLocation Loc = nameInfo.getLoc();
204  SourceRange Range(Loc);
205  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
206
207  // Look through using shadow decls and aliases.
208  Rep = Rep->getUnderlyingDecl();
209
210  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
211  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
212  CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
213  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
214
215  bool InStaticMethod = Method && Method->isStatic();
216  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
217
218  if (IsField && InStaticMethod)
219    // "invalid use of member 'x' in static member function"
220    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
221        << Range << nameInfo.getName();
222  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
223           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
224    // Unqualified lookup in a non-static member function found a member of an
225    // enclosing class.
226    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
227      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
228  else if (IsField)
229    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
230      << nameInfo.getName() << Range;
231  else
232    SemaRef.Diag(Loc, diag::err_member_call_without_object)
233      << Range;
234}
235
236/// Builds an expression which might be an implicit member expression.
237ExprResult
238Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
239                                      SourceLocation TemplateKWLoc,
240                                      LookupResult &R,
241                                const TemplateArgumentListInfo *TemplateArgs) {
242  switch (ClassifyImplicitMemberAccess(*this, R)) {
243  case IMA_Instance:
244    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
245
246  case IMA_Mixed:
247  case IMA_Mixed_Unrelated:
248  case IMA_Unresolved:
249    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
250
251  case IMA_Field_Uneval_Context:
252    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
253      << R.getLookupNameInfo().getName();
254    // Fall through.
255  case IMA_Static:
256  case IMA_Abstract:
257  case IMA_Mixed_StaticContext:
258  case IMA_Unresolved_StaticContext:
259    if (TemplateArgs || TemplateKWLoc.isValid())
260      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
261    return BuildDeclarationNameExpr(SS, R, false);
262
263  case IMA_Error_StaticContext:
264  case IMA_Error_Unrelated:
265    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
266                              R.getLookupNameInfo());
267    return ExprError();
268  }
269
270  llvm_unreachable("unexpected instance member access kind");
271}
272
273/// Check an ext-vector component access expression.
274///
275/// VK should be set in advance to the value kind of the base
276/// expression.
277static QualType
278CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
279                        SourceLocation OpLoc, const IdentifierInfo *CompName,
280                        SourceLocation CompLoc) {
281  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
282  // see FIXME there.
283  //
284  // FIXME: This logic can be greatly simplified by splitting it along
285  // halving/not halving and reworking the component checking.
286  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
287
288  // The vector accessor can't exceed the number of elements.
289  const char *compStr = CompName->getNameStart();
290
291  // This flag determines whether or not the component is one of the four
292  // special names that indicate a subset of exactly half the elements are
293  // to be selected.
294  bool HalvingSwizzle = false;
295
296  // This flag determines whether or not CompName has an 's' char prefix,
297  // indicating that it is a string of hex values to be used as vector indices.
298  bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
299
300  bool HasRepeated = false;
301  bool HasIndex[16] = {};
302
303  int Idx;
304
305  // Check that we've found one of the special components, or that the component
306  // names must come from the same set.
307  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
308      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
309    HalvingSwizzle = true;
310  } else if (!HexSwizzle &&
311             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
312    do {
313      if (HasIndex[Idx]) HasRepeated = true;
314      HasIndex[Idx] = true;
315      compStr++;
316    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
317  } else {
318    if (HexSwizzle) compStr++;
319    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
320      if (HasIndex[Idx]) HasRepeated = true;
321      HasIndex[Idx] = true;
322      compStr++;
323    }
324  }
325
326  if (!HalvingSwizzle && *compStr) {
327    // We didn't get to the end of the string. This means the component names
328    // didn't come from the same set *or* we encountered an illegal name.
329    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
330      << StringRef(compStr, 1) << SourceRange(CompLoc);
331    return QualType();
332  }
333
334  // Ensure no component accessor exceeds the width of the vector type it
335  // operates on.
336  if (!HalvingSwizzle) {
337    compStr = CompName->getNameStart();
338
339    if (HexSwizzle)
340      compStr++;
341
342    while (*compStr) {
343      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
344        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
345          << baseType << SourceRange(CompLoc);
346        return QualType();
347      }
348    }
349  }
350
351  // The component accessor looks fine - now we need to compute the actual type.
352  // The vector type is implied by the component accessor. For example,
353  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
354  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
355  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
356  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
357                                     : CompName->getLength();
358  if (HexSwizzle)
359    CompSize--;
360
361  if (CompSize == 1)
362    return vecType->getElementType();
363
364  if (HasRepeated) VK = VK_RValue;
365
366  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
367  // Now look up the TypeDefDecl from the vector type. Without this,
368  // diagostics look bad. We want extended vector types to appear built-in.
369  for (Sema::ExtVectorDeclsType::iterator
370         I = S.ExtVectorDecls.begin(S.getExternalSource()),
371         E = S.ExtVectorDecls.end();
372       I != E; ++I) {
373    if ((*I)->getUnderlyingType() == VT)
374      return S.Context.getTypedefType(*I);
375  }
376
377  return VT; // should never get here (a typedef type should always be found).
378}
379
380static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
381                                                IdentifierInfo *Member,
382                                                const Selector &Sel,
383                                                ASTContext &Context) {
384  if (Member)
385    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
386      return PD;
387  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
388    return OMD;
389
390  for (const auto *I : PDecl->protocols()) {
391    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
392                                                           Context))
393      return D;
394  }
395  return nullptr;
396}
397
398static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
399                                      IdentifierInfo *Member,
400                                      const Selector &Sel,
401                                      ASTContext &Context) {
402  // Check protocols on qualified interfaces.
403  Decl *GDecl = nullptr;
404  for (const auto *I : QIdTy->quals()) {
405    if (Member)
406      if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
407        GDecl = PD;
408        break;
409      }
410    // Also must look for a getter or setter name which uses property syntax.
411    if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
412      GDecl = OMD;
413      break;
414    }
415  }
416  if (!GDecl) {
417    for (const auto *I : QIdTy->quals()) {
418      // Search in the protocol-qualifier list of current protocol.
419      GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
420      if (GDecl)
421        return GDecl;
422    }
423  }
424  return GDecl;
425}
426
427ExprResult
428Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
429                               bool IsArrow, SourceLocation OpLoc,
430                               const CXXScopeSpec &SS,
431                               SourceLocation TemplateKWLoc,
432                               NamedDecl *FirstQualifierInScope,
433                               const DeclarationNameInfo &NameInfo,
434                               const TemplateArgumentListInfo *TemplateArgs) {
435  // Even in dependent contexts, try to diagnose base expressions with
436  // obviously wrong types, e.g.:
437  //
438  // T* t;
439  // t.f;
440  //
441  // In Obj-C++, however, the above expression is valid, since it could be
442  // accessing the 'f' property if T is an Obj-C interface. The extra check
443  // allows this, while still reporting an error if T is a struct pointer.
444  if (!IsArrow) {
445    const PointerType *PT = BaseType->getAs<PointerType>();
446    if (PT && (!getLangOpts().ObjC1 ||
447               PT->getPointeeType()->isRecordType())) {
448      assert(BaseExpr && "cannot happen with implicit member accesses");
449      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
450        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
451      return ExprError();
452    }
453  }
454
455  assert(BaseType->isDependentType() ||
456         NameInfo.getName().isDependentName() ||
457         isDependentScopeSpecifier(SS));
458
459  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
460  // must have pointer type, and the accessed type is the pointee.
461  return CXXDependentScopeMemberExpr::Create(
462      Context, BaseExpr, BaseType, IsArrow, OpLoc,
463      SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
464      NameInfo, TemplateArgs);
465}
466
467/// We know that the given qualified member reference points only to
468/// declarations which do not belong to the static type of the base
469/// expression.  Diagnose the problem.
470static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
471                                             Expr *BaseExpr,
472                                             QualType BaseType,
473                                             const CXXScopeSpec &SS,
474                                             NamedDecl *rep,
475                                       const DeclarationNameInfo &nameInfo) {
476  // If this is an implicit member access, use a different set of
477  // diagnostics.
478  if (!BaseExpr)
479    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
480
481  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
482    << SS.getRange() << rep << BaseType;
483}
484
485// Check whether the declarations we found through a nested-name
486// specifier in a member expression are actually members of the base
487// type.  The restriction here is:
488//
489//   C++ [expr.ref]p2:
490//     ... In these cases, the id-expression shall name a
491//     member of the class or of one of its base classes.
492//
493// So it's perfectly legitimate for the nested-name specifier to name
494// an unrelated class, and for us to find an overload set including
495// decls from classes which are not superclasses, as long as the decl
496// we actually pick through overload resolution is from a superclass.
497bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
498                                         QualType BaseType,
499                                         const CXXScopeSpec &SS,
500                                         const LookupResult &R) {
501  CXXRecordDecl *BaseRecord =
502    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
503  if (!BaseRecord) {
504    // We can't check this yet because the base type is still
505    // dependent.
506    assert(BaseType->isDependentType());
507    return false;
508  }
509
510  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
511    // If this is an implicit member reference and we find a
512    // non-instance member, it's not an error.
513    if (!BaseExpr && !(*I)->isCXXInstanceMember())
514      return false;
515
516    // Note that we use the DC of the decl, not the underlying decl.
517    DeclContext *DC = (*I)->getDeclContext();
518    while (DC->isTransparentContext())
519      DC = DC->getParent();
520
521    if (!DC->isRecord())
522      continue;
523
524    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
525    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
526        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
527      return false;
528  }
529
530  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
531                                   R.getRepresentativeDecl(),
532                                   R.getLookupNameInfo());
533  return true;
534}
535
536namespace {
537
538// Callback to only accept typo corrections that are either a ValueDecl or a
539// FunctionTemplateDecl and are declared in the current record or, for a C++
540// classes, one of its base classes.
541class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
542public:
543  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
544      : Record(RTy->getDecl()) {
545    // Don't add bare keywords to the consumer since they will always fail
546    // validation by virtue of not being associated with any decls.
547    WantTypeSpecifiers = false;
548    WantExpressionKeywords = false;
549    WantCXXNamedCasts = false;
550    WantFunctionLikeCasts = false;
551    WantRemainingKeywords = false;
552  }
553
554  bool ValidateCandidate(const TypoCorrection &candidate) override {
555    NamedDecl *ND = candidate.getCorrectionDecl();
556    // Don't accept candidates that cannot be member functions, constants,
557    // variables, or templates.
558    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
559      return false;
560
561    // Accept candidates that occur in the current record.
562    if (Record->containsDecl(ND))
563      return true;
564
565    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
566      // Accept candidates that occur in any of the current class' base classes.
567      for (const auto &BS : RD->bases()) {
568        if (const RecordType *BSTy =
569                dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
570          if (BSTy->getDecl()->containsDecl(ND))
571            return true;
572        }
573      }
574    }
575
576    return false;
577  }
578
579private:
580  const RecordDecl *const Record;
581};
582
583}
584
585static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
586                                     Expr *BaseExpr,
587                                     const RecordType *RTy,
588                                     SourceLocation OpLoc, bool IsArrow,
589                                     CXXScopeSpec &SS, bool HasTemplateArgs,
590                                     TypoExpr *&TE) {
591  SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
592  RecordDecl *RDecl = RTy->getDecl();
593  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
594      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
595                                  diag::err_typecheck_incomplete_tag,
596                                  BaseRange))
597    return true;
598
599  if (HasTemplateArgs) {
600    // LookupTemplateName doesn't expect these both to exist simultaneously.
601    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
602
603    bool MOUS;
604    SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
605    return false;
606  }
607
608  DeclContext *DC = RDecl;
609  if (SS.isSet()) {
610    // If the member name was a qualified-id, look into the
611    // nested-name-specifier.
612    DC = SemaRef.computeDeclContext(SS, false);
613
614    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
615      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
616          << SS.getRange() << DC;
617      return true;
618    }
619
620    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
621
622    if (!isa<TypeDecl>(DC)) {
623      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
624          << DC << SS.getRange();
625      return true;
626    }
627  }
628
629  // The record definition is complete, now look up the member.
630  SemaRef.LookupQualifiedName(R, DC, SS);
631
632  if (!R.empty())
633    return false;
634
635  DeclarationName Typo = R.getLookupName();
636  SourceLocation TypoLoc = R.getNameLoc();
637  TE = SemaRef.CorrectTypoDelayed(
638      R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS,
639      llvm::make_unique<RecordMemberExprValidatorCCC>(RTy),
640      [=, &SemaRef](const TypoCorrection &TC) {
641        if (TC) {
642          assert(!TC.isKeyword() &&
643                 "Got a keyword as a correction for a member!");
644          bool DroppedSpecifier =
645              TC.WillReplaceSpecifier() &&
646              Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
647          SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
648                                       << Typo << DC << DroppedSpecifier
649                                       << SS.getRange());
650        } else {
651          SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
652        }
653      },
654      [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
655        R.clear(); // Ensure there's no decls lingering in the shared state.
656        R.suppressDiagnostics();
657        R.setLookupName(TC.getCorrection());
658        for (NamedDecl *ND : TC)
659          R.addDecl(ND);
660        R.resolveKind();
661        return SemaRef.BuildMemberReferenceExpr(
662            BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
663            nullptr, R, nullptr);
664      },
665      Sema::CTK_ErrorRecovery, DC);
666
667  return false;
668}
669
670static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
671                                   ExprResult &BaseExpr, bool &IsArrow,
672                                   SourceLocation OpLoc, CXXScopeSpec &SS,
673                                   Decl *ObjCImpDecl, bool HasTemplateArgs);
674
675ExprResult
676Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
677                               SourceLocation OpLoc, bool IsArrow,
678                               CXXScopeSpec &SS,
679                               SourceLocation TemplateKWLoc,
680                               NamedDecl *FirstQualifierInScope,
681                               const DeclarationNameInfo &NameInfo,
682                               const TemplateArgumentListInfo *TemplateArgs,
683                               ActOnMemberAccessExtraArgs *ExtraArgs) {
684  if (BaseType->isDependentType() ||
685      (SS.isSet() && isDependentScopeSpecifier(SS)))
686    return ActOnDependentMemberExpr(Base, BaseType,
687                                    IsArrow, OpLoc,
688                                    SS, TemplateKWLoc, FirstQualifierInScope,
689                                    NameInfo, TemplateArgs);
690
691  LookupResult R(*this, NameInfo, LookupMemberName);
692
693  // Implicit member accesses.
694  if (!Base) {
695    TypoExpr *TE = nullptr;
696    QualType RecordTy = BaseType;
697    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
698    if (LookupMemberExprInRecord(*this, R, nullptr,
699                                 RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
700                                 SS, TemplateArgs != nullptr, TE))
701      return ExprError();
702    if (TE)
703      return TE;
704
705  // Explicit member accesses.
706  } else {
707    ExprResult BaseResult = Base;
708    ExprResult Result = LookupMemberExpr(
709        *this, R, BaseResult, IsArrow, OpLoc, SS,
710        ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
711        TemplateArgs != nullptr);
712
713    if (BaseResult.isInvalid())
714      return ExprError();
715    Base = BaseResult.get();
716
717    if (Result.isInvalid())
718      return ExprError();
719
720    if (Result.get())
721      return Result;
722
723    // LookupMemberExpr can modify Base, and thus change BaseType
724    BaseType = Base->getType();
725  }
726
727  return BuildMemberReferenceExpr(Base, BaseType,
728                                  OpLoc, IsArrow, SS, TemplateKWLoc,
729                                  FirstQualifierInScope, R, TemplateArgs,
730                                  false, ExtraArgs);
731}
732
733static ExprResult
734BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
735                        const CXXScopeSpec &SS, FieldDecl *Field,
736                        DeclAccessPair FoundDecl,
737                        const DeclarationNameInfo &MemberNameInfo);
738
739ExprResult
740Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
741                                               SourceLocation loc,
742                                               IndirectFieldDecl *indirectField,
743                                               DeclAccessPair foundDecl,
744                                               Expr *baseObjectExpr,
745                                               SourceLocation opLoc) {
746  // First, build the expression that refers to the base object.
747
748  bool baseObjectIsPointer = false;
749  Qualifiers baseQuals;
750
751  // Case 1:  the base of the indirect field is not a field.
752  VarDecl *baseVariable = indirectField->getVarDecl();
753  CXXScopeSpec EmptySS;
754  if (baseVariable) {
755    assert(baseVariable->getType()->isRecordType());
756
757    // In principle we could have a member access expression that
758    // accesses an anonymous struct/union that's a static member of
759    // the base object's class.  However, under the current standard,
760    // static data members cannot be anonymous structs or unions.
761    // Supporting this is as easy as building a MemberExpr here.
762    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
763
764    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
765
766    ExprResult result
767      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
768    if (result.isInvalid()) return ExprError();
769
770    baseObjectExpr = result.get();
771    baseObjectIsPointer = false;
772    baseQuals = baseObjectExpr->getType().getQualifiers();
773
774    // Case 2: the base of the indirect field is a field and the user
775    // wrote a member expression.
776  } else if (baseObjectExpr) {
777    // The caller provided the base object expression. Determine
778    // whether its a pointer and whether it adds any qualifiers to the
779    // anonymous struct/union fields we're looking into.
780    QualType objectType = baseObjectExpr->getType();
781
782    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
783      baseObjectIsPointer = true;
784      objectType = ptr->getPointeeType();
785    } else {
786      baseObjectIsPointer = false;
787    }
788    baseQuals = objectType.getQualifiers();
789
790    // Case 3: the base of the indirect field is a field and we should
791    // build an implicit member access.
792  } else {
793    // We've found a member of an anonymous struct/union that is
794    // inside a non-anonymous struct/union, so in a well-formed
795    // program our base object expression is "this".
796    QualType ThisTy = getCurrentThisType();
797    if (ThisTy.isNull()) {
798      Diag(loc, diag::err_invalid_member_use_in_static_method)
799        << indirectField->getDeclName();
800      return ExprError();
801    }
802
803    // Our base object expression is "this".
804    CheckCXXThisCapture(loc);
805    baseObjectExpr
806      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
807    baseObjectIsPointer = true;
808    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
809  }
810
811  // Build the implicit member references to the field of the
812  // anonymous struct/union.
813  Expr *result = baseObjectExpr;
814  IndirectFieldDecl::chain_iterator
815  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
816
817  // Build the first member access in the chain with full information.
818  if (!baseVariable) {
819    FieldDecl *field = cast<FieldDecl>(*FI);
820
821    // Make a nameInfo that properly uses the anonymous name.
822    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
823
824    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
825                                     EmptySS, field, foundDecl,
826                                     memberNameInfo).get();
827    if (!result)
828      return ExprError();
829
830    // FIXME: check qualified member access
831  }
832
833  // In all cases, we should now skip the first declaration in the chain.
834  ++FI;
835
836  while (FI != FEnd) {
837    FieldDecl *field = cast<FieldDecl>(*FI++);
838
839    // FIXME: these are somewhat meaningless
840    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
841    DeclAccessPair fakeFoundDecl =
842        DeclAccessPair::make(field, field->getAccess());
843
844    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
845                                     (FI == FEnd? SS : EmptySS), field,
846                                     fakeFoundDecl, memberNameInfo).get();
847  }
848
849  return result;
850}
851
852static ExprResult
853BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
854                       const CXXScopeSpec &SS,
855                       MSPropertyDecl *PD,
856                       const DeclarationNameInfo &NameInfo) {
857  // Property names are always simple identifiers and therefore never
858  // require any interesting additional storage.
859  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
860                                           S.Context.PseudoObjectTy, VK_LValue,
861                                           SS.getWithLocInContext(S.Context),
862                                           NameInfo.getLoc());
863}
864
865/// \brief Build a MemberExpr AST node.
866static MemberExpr *
867BuildMemberExpr(Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
868                const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
869                ValueDecl *Member, DeclAccessPair FoundDecl,
870                const DeclarationNameInfo &MemberNameInfo, QualType Ty,
871                ExprValueKind VK, ExprObjectKind OK,
872                const TemplateArgumentListInfo *TemplateArgs = nullptr) {
873  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
874  MemberExpr *E =
875      MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
876                         TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
877                         TemplateArgs, Ty, VK, OK);
878  SemaRef.MarkMemberReferenced(E);
879  return E;
880}
881
882ExprResult
883Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
884                               SourceLocation OpLoc, bool IsArrow,
885                               const CXXScopeSpec &SS,
886                               SourceLocation TemplateKWLoc,
887                               NamedDecl *FirstQualifierInScope,
888                               LookupResult &R,
889                               const TemplateArgumentListInfo *TemplateArgs,
890                               bool SuppressQualifierCheck,
891                               ActOnMemberAccessExtraArgs *ExtraArgs) {
892  QualType BaseType = BaseExprType;
893  if (IsArrow) {
894    assert(BaseType->isPointerType());
895    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
896  }
897  R.setBaseObjectType(BaseType);
898
899  LambdaScopeInfo *const CurLSI = getCurLambda();
900  // If this is an implicit member reference and the overloaded
901  // name refers to both static and non-static member functions
902  // (i.e. BaseExpr is null) and if we are currently processing a lambda,
903  // check if we should/can capture 'this'...
904  // Keep this example in mind:
905  //  struct X {
906  //   void f(int) { }
907  //   static void f(double) { }
908  //
909  //   int g() {
910  //     auto L = [=](auto a) {
911  //       return [](int i) {
912  //         return [=](auto b) {
913  //           f(b);
914  //           //f(decltype(a){});
915  //         };
916  //       };
917  //     };
918  //     auto M = L(0.0);
919  //     auto N = M(3);
920  //     N(5.32); // OK, must not error.
921  //     return 0;
922  //   }
923  //  };
924  //
925  if (!BaseExpr && CurLSI) {
926    SourceLocation Loc = R.getNameLoc();
927    if (SS.getRange().isValid())
928      Loc = SS.getRange().getBegin();
929    DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
930    // If the enclosing function is not dependent, then this lambda is
931    // capture ready, so if we can capture this, do so.
932    if (!EnclosingFunctionCtx->isDependentContext()) {
933      // If the current lambda and all enclosing lambdas can capture 'this' -
934      // then go ahead and capture 'this' (since our unresolved overload set
935      // contains both static and non-static member functions).
936      if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
937        CheckCXXThisCapture(Loc);
938    } else if (CurContext->isDependentContext()) {
939      // ... since this is an implicit member reference, that might potentially
940      // involve a 'this' capture, mark 'this' for potential capture in
941      // enclosing lambdas.
942      if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
943        CurLSI->addPotentialThisCapture(Loc);
944    }
945  }
946  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
947  DeclarationName MemberName = MemberNameInfo.getName();
948  SourceLocation MemberLoc = MemberNameInfo.getLoc();
949
950  if (R.isAmbiguous())
951    return ExprError();
952
953  if (R.empty()) {
954    // Rederive where we looked up.
955    DeclContext *DC = (SS.isSet()
956                       ? computeDeclContext(SS, false)
957                       : BaseType->getAs<RecordType>()->getDecl());
958
959    if (ExtraArgs) {
960      ExprResult RetryExpr;
961      if (!IsArrow && BaseExpr) {
962        SFINAETrap Trap(*this, true);
963        ParsedType ObjectType;
964        bool MayBePseudoDestructor = false;
965        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
966                                                 OpLoc, tok::arrow, ObjectType,
967                                                 MayBePseudoDestructor);
968        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
969          CXXScopeSpec TempSS(SS);
970          RetryExpr = ActOnMemberAccessExpr(
971              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
972              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
973              ExtraArgs->HasTrailingLParen);
974        }
975        if (Trap.hasErrorOccurred())
976          RetryExpr = ExprError();
977      }
978      if (RetryExpr.isUsable()) {
979        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
980          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
981        return RetryExpr;
982      }
983    }
984
985    Diag(R.getNameLoc(), diag::err_no_member)
986      << MemberName << DC
987      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
988    return ExprError();
989  }
990
991  // Diagnose lookups that find only declarations from a non-base
992  // type.  This is possible for either qualified lookups (which may
993  // have been qualified with an unrelated type) or implicit member
994  // expressions (which were found with unqualified lookup and thus
995  // may have come from an enclosing scope).  Note that it's okay for
996  // lookup to find declarations from a non-base type as long as those
997  // aren't the ones picked by overload resolution.
998  if ((SS.isSet() || !BaseExpr ||
999       (isa<CXXThisExpr>(BaseExpr) &&
1000        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1001      !SuppressQualifierCheck &&
1002      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1003    return ExprError();
1004
1005  // Construct an unresolved result if we in fact got an unresolved
1006  // result.
1007  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1008    // Suppress any lookup-related diagnostics; we'll do these when we
1009    // pick a member.
1010    R.suppressDiagnostics();
1011
1012    UnresolvedMemberExpr *MemExpr
1013      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1014                                     BaseExpr, BaseExprType,
1015                                     IsArrow, OpLoc,
1016                                     SS.getWithLocInContext(Context),
1017                                     TemplateKWLoc, MemberNameInfo,
1018                                     TemplateArgs, R.begin(), R.end());
1019
1020    return MemExpr;
1021  }
1022
1023  assert(R.isSingleResult());
1024  DeclAccessPair FoundDecl = R.begin().getPair();
1025  NamedDecl *MemberDecl = R.getFoundDecl();
1026
1027  // FIXME: diagnose the presence of template arguments now.
1028
1029  // If the decl being referenced had an error, return an error for this
1030  // sub-expr without emitting another error, in order to avoid cascading
1031  // error cases.
1032  if (MemberDecl->isInvalidDecl())
1033    return ExprError();
1034
1035  // Handle the implicit-member-access case.
1036  if (!BaseExpr) {
1037    // If this is not an instance member, convert to a non-member access.
1038    if (!MemberDecl->isCXXInstanceMember())
1039      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
1040
1041    SourceLocation Loc = R.getNameLoc();
1042    if (SS.getRange().isValid())
1043      Loc = SS.getRange().getBegin();
1044    CheckCXXThisCapture(Loc);
1045    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
1046  }
1047
1048  bool ShouldCheckUse = true;
1049  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1050    // Don't diagnose the use of a virtual member function unless it's
1051    // explicitly qualified.
1052    if (MD->isVirtual() && !SS.isSet())
1053      ShouldCheckUse = false;
1054  }
1055
1056  // Check the use of this member.
1057  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1058    return ExprError();
1059
1060  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1061    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
1062                                   SS, FD, FoundDecl, MemberNameInfo);
1063
1064  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1065    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1066                                  MemberNameInfo);
1067
1068  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1069    // We may have found a field within an anonymous union or struct
1070    // (C++ [class.union]).
1071    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1072                                                    FoundDecl, BaseExpr,
1073                                                    OpLoc);
1074
1075  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1076    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1077                           Var, FoundDecl, MemberNameInfo,
1078                           Var->getType().getNonReferenceType(), VK_LValue,
1079                           OK_Ordinary);
1080  }
1081
1082  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1083    ExprValueKind valueKind;
1084    QualType type;
1085    if (MemberFn->isInstance()) {
1086      valueKind = VK_RValue;
1087      type = Context.BoundMemberTy;
1088    } else {
1089      valueKind = VK_LValue;
1090      type = MemberFn->getType();
1091    }
1092
1093    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1094                           MemberFn, FoundDecl, MemberNameInfo, type, valueKind,
1095                           OK_Ordinary);
1096  }
1097  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1098
1099  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1100    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
1101                           Enum, FoundDecl, MemberNameInfo, Enum->getType(),
1102                           VK_RValue, OK_Ordinary);
1103  }
1104
1105  // We found something that we didn't expect. Complain.
1106  if (isa<TypeDecl>(MemberDecl))
1107    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1108      << MemberName << BaseType << int(IsArrow);
1109  else
1110    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1111      << MemberName << BaseType << int(IsArrow);
1112
1113  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1114    << MemberName;
1115  R.suppressDiagnostics();
1116  return ExprError();
1117}
1118
1119/// Given that normal member access failed on the given expression,
1120/// and given that the expression's type involves builtin-id or
1121/// builtin-Class, decide whether substituting in the redefinition
1122/// types would be profitable.  The redefinition type is whatever
1123/// this translation unit tried to typedef to id/Class;  we store
1124/// it to the side and then re-use it in places like this.
1125static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1126  const ObjCObjectPointerType *opty
1127    = base.get()->getType()->getAs<ObjCObjectPointerType>();
1128  if (!opty) return false;
1129
1130  const ObjCObjectType *ty = opty->getObjectType();
1131
1132  QualType redef;
1133  if (ty->isObjCId()) {
1134    redef = S.Context.getObjCIdRedefinitionType();
1135  } else if (ty->isObjCClass()) {
1136    redef = S.Context.getObjCClassRedefinitionType();
1137  } else {
1138    return false;
1139  }
1140
1141  // Do the substitution as long as the redefinition type isn't just a
1142  // possibly-qualified pointer to builtin-id or builtin-Class again.
1143  opty = redef->getAs<ObjCObjectPointerType>();
1144  if (opty && !opty->getObjectType()->getInterface())
1145    return false;
1146
1147  base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1148  return true;
1149}
1150
1151static bool isRecordType(QualType T) {
1152  return T->isRecordType();
1153}
1154static bool isPointerToRecordType(QualType T) {
1155  if (const PointerType *PT = T->getAs<PointerType>())
1156    return PT->getPointeeType()->isRecordType();
1157  return false;
1158}
1159
1160/// Perform conversions on the LHS of a member access expression.
1161ExprResult
1162Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1163  if (IsArrow && !Base->getType()->isFunctionType())
1164    return DefaultFunctionArrayLvalueConversion(Base);
1165
1166  return CheckPlaceholderExpr(Base);
1167}
1168
1169/// Look up the given member of the given non-type-dependent
1170/// expression.  This can return in one of two ways:
1171///  * If it returns a sentinel null-but-valid result, the caller will
1172///    assume that lookup was performed and the results written into
1173///    the provided structure.  It will take over from there.
1174///  * Otherwise, the returned expression will be produced in place of
1175///    an ordinary member expression.
1176///
1177/// The ObjCImpDecl bit is a gross hack that will need to be properly
1178/// fixed for ObjC++.
1179static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1180                                   ExprResult &BaseExpr, bool &IsArrow,
1181                                   SourceLocation OpLoc, CXXScopeSpec &SS,
1182                                   Decl *ObjCImpDecl, bool HasTemplateArgs) {
1183  assert(BaseExpr.get() && "no base expression");
1184
1185  // Perform default conversions.
1186  BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1187  if (BaseExpr.isInvalid())
1188    return ExprError();
1189
1190  QualType BaseType = BaseExpr.get()->getType();
1191  assert(!BaseType->isDependentType());
1192
1193  DeclarationName MemberName = R.getLookupName();
1194  SourceLocation MemberLoc = R.getNameLoc();
1195
1196  // For later type-checking purposes, turn arrow accesses into dot
1197  // accesses.  The only access type we support that doesn't follow
1198  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1199  // and those never use arrows, so this is unaffected.
1200  if (IsArrow) {
1201    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1202      BaseType = Ptr->getPointeeType();
1203    else if (const ObjCObjectPointerType *Ptr
1204               = BaseType->getAs<ObjCObjectPointerType>())
1205      BaseType = Ptr->getPointeeType();
1206    else if (BaseType->isRecordType()) {
1207      // Recover from arrow accesses to records, e.g.:
1208      //   struct MyRecord foo;
1209      //   foo->bar
1210      // This is actually well-formed in C++ if MyRecord has an
1211      // overloaded operator->, but that should have been dealt with
1212      // by now--or a diagnostic message already issued if a problem
1213      // was encountered while looking for the overloaded operator->.
1214      if (!S.getLangOpts().CPlusPlus) {
1215        S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1216          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1217          << FixItHint::CreateReplacement(OpLoc, ".");
1218      }
1219      IsArrow = false;
1220    } else if (BaseType->isFunctionType()) {
1221      goto fail;
1222    } else {
1223      S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1224        << BaseType << BaseExpr.get()->getSourceRange();
1225      return ExprError();
1226    }
1227  }
1228
1229  // Handle field access to simple records.
1230  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1231    TypoExpr *TE = nullptr;
1232    if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy,
1233                                 OpLoc, IsArrow, SS, HasTemplateArgs, TE))
1234      return ExprError();
1235
1236    // Returning valid-but-null is how we indicate to the caller that
1237    // the lookup result was filled in. If typo correction was attempted and
1238    // failed, the lookup result will have been cleared--that combined with the
1239    // valid-but-null ExprResult will trigger the appropriate diagnostics.
1240    return ExprResult(TE);
1241  }
1242
1243  // Handle ivar access to Objective-C objects.
1244  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1245    if (!SS.isEmpty() && !SS.isInvalid()) {
1246      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1247        << 1 << SS.getScopeRep()
1248        << FixItHint::CreateRemoval(SS.getRange());
1249      SS.clear();
1250    }
1251
1252    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1253
1254    // There are three cases for the base type:
1255    //   - builtin id (qualified or unqualified)
1256    //   - builtin Class (qualified or unqualified)
1257    //   - an interface
1258    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1259    if (!IDecl) {
1260      if (S.getLangOpts().ObjCAutoRefCount &&
1261          (OTy->isObjCId() || OTy->isObjCClass()))
1262        goto fail;
1263      // There's an implicit 'isa' ivar on all objects.
1264      // But we only actually find it this way on objects of type 'id',
1265      // apparently.
1266      if (OTy->isObjCId() && Member->isStr("isa"))
1267        return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1268                                           OpLoc, S.Context.getObjCClassType());
1269      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1270        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1271                                ObjCImpDecl, HasTemplateArgs);
1272      goto fail;
1273    }
1274
1275    if (S.RequireCompleteType(OpLoc, BaseType,
1276                              diag::err_typecheck_incomplete_tag,
1277                              BaseExpr.get()))
1278      return ExprError();
1279
1280    ObjCInterfaceDecl *ClassDeclared = nullptr;
1281    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1282
1283    if (!IV) {
1284      // Attempt to correct for typos in ivar names.
1285      auto Validator = llvm::make_unique<DeclFilterCCC<ObjCIvarDecl>>();
1286      Validator->IsObjCIvarLookup = IsArrow;
1287      if (TypoCorrection Corrected = S.CorrectTypo(
1288              R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1289              std::move(Validator), Sema::CTK_ErrorRecovery, IDecl)) {
1290        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1291        S.diagnoseTypo(
1292            Corrected,
1293            S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1294                << IDecl->getDeclName() << MemberName);
1295
1296        // Figure out the class that declares the ivar.
1297        assert(!ClassDeclared);
1298        Decl *D = cast<Decl>(IV->getDeclContext());
1299        if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1300          D = CAT->getClassInterface();
1301        ClassDeclared = cast<ObjCInterfaceDecl>(D);
1302      } else {
1303        if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1304          S.Diag(MemberLoc, diag::err_property_found_suggest)
1305              << Member << BaseExpr.get()->getType()
1306              << FixItHint::CreateReplacement(OpLoc, ".");
1307          return ExprError();
1308        }
1309
1310        S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1311            << IDecl->getDeclName() << MemberName
1312            << BaseExpr.get()->getSourceRange();
1313        return ExprError();
1314      }
1315    }
1316
1317    assert(ClassDeclared);
1318
1319    // If the decl being referenced had an error, return an error for this
1320    // sub-expr without emitting another error, in order to avoid cascading
1321    // error cases.
1322    if (IV->isInvalidDecl())
1323      return ExprError();
1324
1325    // Check whether we can reference this field.
1326    if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1327      return ExprError();
1328    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1329        IV->getAccessControl() != ObjCIvarDecl::Package) {
1330      ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1331      if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1332        ClassOfMethodDecl =  MD->getClassInterface();
1333      else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1334        // Case of a c-function declared inside an objc implementation.
1335        // FIXME: For a c-style function nested inside an objc implementation
1336        // class, there is no implementation context available, so we pass
1337        // down the context as argument to this routine. Ideally, this context
1338        // need be passed down in the AST node and somehow calculated from the
1339        // AST for a function decl.
1340        if (ObjCImplementationDecl *IMPD =
1341              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1342          ClassOfMethodDecl = IMPD->getClassInterface();
1343        else if (ObjCCategoryImplDecl* CatImplClass =
1344                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1345          ClassOfMethodDecl = CatImplClass->getClassInterface();
1346      }
1347      if (!S.getLangOpts().DebuggerSupport) {
1348        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1349          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1350              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1351            S.Diag(MemberLoc, diag::error_private_ivar_access)
1352              << IV->getDeclName();
1353        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1354          // @protected
1355          S.Diag(MemberLoc, diag::error_protected_ivar_access)
1356              << IV->getDeclName();
1357      }
1358    }
1359    bool warn = true;
1360    if (S.getLangOpts().ObjCAutoRefCount) {
1361      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1362      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1363        if (UO->getOpcode() == UO_Deref)
1364          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1365
1366      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1367        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1368          S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1369          warn = false;
1370        }
1371    }
1372    if (warn) {
1373      if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1374        ObjCMethodFamily MF = MD->getMethodFamily();
1375        warn = (MF != OMF_init && MF != OMF_dealloc &&
1376                MF != OMF_finalize &&
1377                !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1378      }
1379      if (warn)
1380        S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1381    }
1382
1383    ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1384        IV, IV->getType(), MemberLoc, OpLoc, BaseExpr.get(), IsArrow);
1385
1386    if (S.getLangOpts().ObjCAutoRefCount) {
1387      if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1388        if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1389          S.recordUseOfEvaluatedWeak(Result);
1390      }
1391    }
1392
1393    return Result;
1394  }
1395
1396  // Objective-C property access.
1397  const ObjCObjectPointerType *OPT;
1398  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1399    if (!SS.isEmpty() && !SS.isInvalid()) {
1400      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1401          << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1402      SS.clear();
1403    }
1404
1405    // This actually uses the base as an r-value.
1406    BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1407    if (BaseExpr.isInvalid())
1408      return ExprError();
1409
1410    assert(S.Context.hasSameUnqualifiedType(BaseType,
1411                                            BaseExpr.get()->getType()));
1412
1413    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1414
1415    const ObjCObjectType *OT = OPT->getObjectType();
1416
1417    // id, with and without qualifiers.
1418    if (OT->isObjCId()) {
1419      // Check protocols on qualified interfaces.
1420      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1421      if (Decl *PMDecl =
1422              FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1423        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1424          // Check the use of this declaration
1425          if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1426            return ExprError();
1427
1428          return new (S.Context)
1429              ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1430                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1431        }
1432
1433        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1434          // Check the use of this method.
1435          if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
1436            return ExprError();
1437          Selector SetterSel =
1438            SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1439                                                   S.PP.getSelectorTable(),
1440                                                   Member);
1441          ObjCMethodDecl *SMD = nullptr;
1442          if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1443                                                     /*Property id*/ nullptr,
1444                                                     SetterSel, S.Context))
1445            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1446
1447          return new (S.Context)
1448              ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1449                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1450        }
1451      }
1452      // Use of id.member can only be for a property reference. Do not
1453      // use the 'id' redefinition in this case.
1454      if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1455        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1456                                ObjCImpDecl, HasTemplateArgs);
1457
1458      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1459                         << MemberName << BaseType);
1460    }
1461
1462    // 'Class', unqualified only.
1463    if (OT->isObjCClass()) {
1464      // Only works in a method declaration (??!).
1465      ObjCMethodDecl *MD = S.getCurMethodDecl();
1466      if (!MD) {
1467        if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1468          return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1469                                  ObjCImpDecl, HasTemplateArgs);
1470
1471        goto fail;
1472      }
1473
1474      // Also must look for a getter name which uses property syntax.
1475      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1476      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1477      ObjCMethodDecl *Getter;
1478      if ((Getter = IFace->lookupClassMethod(Sel))) {
1479        // Check the use of this method.
1480        if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1481          return ExprError();
1482      } else
1483        Getter = IFace->lookupPrivateMethod(Sel, false);
1484      // If we found a getter then this may be a valid dot-reference, we
1485      // will look for the matching setter, in case it is needed.
1486      Selector SetterSel =
1487        SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1488                                               S.PP.getSelectorTable(),
1489                                               Member);
1490      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1491      if (!Setter) {
1492        // If this reference is in an @implementation, also check for 'private'
1493        // methods.
1494        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1495      }
1496
1497      if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1498        return ExprError();
1499
1500      if (Getter || Setter) {
1501        return new (S.Context) ObjCPropertyRefExpr(
1502            Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1503            OK_ObjCProperty, MemberLoc, BaseExpr.get());
1504      }
1505
1506      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1507        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1508                                ObjCImpDecl, HasTemplateArgs);
1509
1510      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1511                         << MemberName << BaseType);
1512    }
1513
1514    // Normal property access.
1515    return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1516                                       MemberLoc, SourceLocation(), QualType(),
1517                                       false);
1518  }
1519
1520  // Handle 'field access' to vectors, such as 'V.xx'.
1521  if (BaseType->isExtVectorType()) {
1522    // FIXME: this expr should store IsArrow.
1523    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1524    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1525    QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1526                                           Member, MemberLoc);
1527    if (ret.isNull())
1528      return ExprError();
1529
1530    return new (S.Context)
1531        ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1532  }
1533
1534  // Adjust builtin-sel to the appropriate redefinition type if that's
1535  // not just a pointer to builtin-sel again.
1536  if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1537      !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1538    BaseExpr = S.ImpCastExprToType(
1539        BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1540    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1541                            ObjCImpDecl, HasTemplateArgs);
1542  }
1543
1544  // Failure cases.
1545 fail:
1546
1547  // Recover from dot accesses to pointers, e.g.:
1548  //   type *foo;
1549  //   foo.bar
1550  // This is actually well-formed in two cases:
1551  //   - 'type' is an Objective C type
1552  //   - 'bar' is a pseudo-destructor name which happens to refer to
1553  //     the appropriate pointer type
1554  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1555    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1556        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1557      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1558          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1559          << FixItHint::CreateReplacement(OpLoc, "->");
1560
1561      // Recurse as an -> access.
1562      IsArrow = true;
1563      return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1564                              ObjCImpDecl, HasTemplateArgs);
1565    }
1566  }
1567
1568  // If the user is trying to apply -> or . to a function name, it's probably
1569  // because they forgot parentheses to call that function.
1570  if (S.tryToRecoverWithCall(
1571          BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1572          /*complain*/ false,
1573          IsArrow ? &isPointerToRecordType : &isRecordType)) {
1574    if (BaseExpr.isInvalid())
1575      return ExprError();
1576    BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1577    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1578                            ObjCImpDecl, HasTemplateArgs);
1579  }
1580
1581  S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1582    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1583
1584  return ExprError();
1585}
1586
1587/// The main callback when the parser finds something like
1588///   expression . [nested-name-specifier] identifier
1589///   expression -> [nested-name-specifier] identifier
1590/// where 'identifier' encompasses a fairly broad spectrum of
1591/// possibilities, including destructor and operator references.
1592///
1593/// \param OpKind either tok::arrow or tok::period
1594/// \param HasTrailingLParen whether the next token is '(', which
1595///   is used to diagnose mis-uses of special members that can
1596///   only be called
1597/// \param ObjCImpDecl the current Objective-C \@implementation
1598///   decl; this is an ugly hack around the fact that Objective-C
1599///   \@implementations aren't properly put in the context chain
1600ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1601                                       SourceLocation OpLoc,
1602                                       tok::TokenKind OpKind,
1603                                       CXXScopeSpec &SS,
1604                                       SourceLocation TemplateKWLoc,
1605                                       UnqualifiedId &Id,
1606                                       Decl *ObjCImpDecl,
1607                                       bool HasTrailingLParen) {
1608  if (SS.isSet() && SS.isInvalid())
1609    return ExprError();
1610
1611  // The only way a reference to a destructor can be used is to
1612  // immediately call it. If the next token is not a '(', produce
1613  // a diagnostic and build the call now.
1614  if (!HasTrailingLParen &&
1615      Id.getKind() == UnqualifiedId::IK_DestructorName) {
1616    ExprResult DtorAccess =
1617        ActOnMemberAccessExpr(S, Base, OpLoc, OpKind, SS, TemplateKWLoc, Id,
1618                              ObjCImpDecl, /*HasTrailingLParen*/true);
1619    if (DtorAccess.isInvalid())
1620      return DtorAccess;
1621    return DiagnoseDtorReference(Id.getLocStart(), DtorAccess.get());
1622  }
1623
1624  // Warn about the explicit constructor calls Microsoft extension.
1625  if (getLangOpts().MicrosoftExt &&
1626      Id.getKind() == UnqualifiedId::IK_ConstructorName)
1627    Diag(Id.getSourceRange().getBegin(),
1628         diag::ext_ms_explicit_constructor_call);
1629
1630  TemplateArgumentListInfo TemplateArgsBuffer;
1631
1632  // Decompose the name into its component parts.
1633  DeclarationNameInfo NameInfo;
1634  const TemplateArgumentListInfo *TemplateArgs;
1635  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1636                         NameInfo, TemplateArgs);
1637
1638  DeclarationName Name = NameInfo.getName();
1639  bool IsArrow = (OpKind == tok::arrow);
1640
1641  NamedDecl *FirstQualifierInScope
1642    = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1643
1644  // This is a postfix expression, so get rid of ParenListExprs.
1645  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1646  if (Result.isInvalid()) return ExprError();
1647  Base = Result.get();
1648
1649  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1650      isDependentScopeSpecifier(SS)) {
1651    return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1652                                    TemplateKWLoc, FirstQualifierInScope,
1653                                    NameInfo, TemplateArgs);
1654  }
1655
1656  ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl,
1657                                          HasTrailingLParen};
1658  return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
1659                                  TemplateKWLoc, FirstQualifierInScope,
1660                                  NameInfo, TemplateArgs, &ExtraArgs);
1661}
1662
1663static ExprResult
1664BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1665                        const CXXScopeSpec &SS, FieldDecl *Field,
1666                        DeclAccessPair FoundDecl,
1667                        const DeclarationNameInfo &MemberNameInfo) {
1668  // x.a is an l-value if 'a' has a reference type. Otherwise:
1669  // x.a is an l-value/x-value/pr-value if the base is (and note
1670  //   that *x is always an l-value), except that if the base isn't
1671  //   an ordinary object then we must have an rvalue.
1672  ExprValueKind VK = VK_LValue;
1673  ExprObjectKind OK = OK_Ordinary;
1674  if (!IsArrow) {
1675    if (BaseExpr->getObjectKind() == OK_Ordinary)
1676      VK = BaseExpr->getValueKind();
1677    else
1678      VK = VK_RValue;
1679  }
1680  if (VK != VK_RValue && Field->isBitField())
1681    OK = OK_BitField;
1682
1683  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1684  QualType MemberType = Field->getType();
1685  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1686    MemberType = Ref->getPointeeType();
1687    VK = VK_LValue;
1688  } else {
1689    QualType BaseType = BaseExpr->getType();
1690    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1691
1692    Qualifiers BaseQuals = BaseType.getQualifiers();
1693
1694    // GC attributes are never picked up by members.
1695    BaseQuals.removeObjCGCAttr();
1696
1697    // CVR attributes from the base are picked up by members,
1698    // except that 'mutable' members don't pick up 'const'.
1699    if (Field->isMutable()) BaseQuals.removeConst();
1700
1701    Qualifiers MemberQuals
1702    = S.Context.getCanonicalType(MemberType).getQualifiers();
1703
1704    assert(!MemberQuals.hasAddressSpace());
1705
1706
1707    Qualifiers Combined = BaseQuals + MemberQuals;
1708    if (Combined != MemberQuals)
1709      MemberType = S.Context.getQualifiedType(MemberType, Combined);
1710  }
1711
1712  S.UnusedPrivateFields.remove(Field);
1713
1714  ExprResult Base =
1715  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1716                                  FoundDecl, Field);
1717  if (Base.isInvalid())
1718    return ExprError();
1719  return BuildMemberExpr(S, S.Context, Base.get(), IsArrow, SS,
1720                         /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1721                         MemberNameInfo, MemberType, VK, OK);
1722}
1723
1724/// Builds an implicit member access expression.  The current context
1725/// is known to be an instance method, and the given unqualified lookup
1726/// set is known to contain only instance members, at least one of which
1727/// is from an appropriate type.
1728ExprResult
1729Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1730                              SourceLocation TemplateKWLoc,
1731                              LookupResult &R,
1732                              const TemplateArgumentListInfo *TemplateArgs,
1733                              bool IsKnownInstance) {
1734  assert(!R.empty() && !R.isAmbiguous());
1735
1736  SourceLocation loc = R.getNameLoc();
1737
1738  // If this is known to be an instance access, go ahead and build an
1739  // implicit 'this' expression now.
1740  // 'this' expression now.
1741  QualType ThisTy = getCurrentThisType();
1742  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1743
1744  Expr *baseExpr = nullptr; // null signifies implicit access
1745  if (IsKnownInstance) {
1746    SourceLocation Loc = R.getNameLoc();
1747    if (SS.getRange().isValid())
1748      Loc = SS.getRange().getBegin();
1749    CheckCXXThisCapture(Loc);
1750    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1751  }
1752
1753  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1754                                  /*OpLoc*/ SourceLocation(),
1755                                  /*IsArrow*/ true,
1756                                  SS, TemplateKWLoc,
1757                                  /*FirstQualifierInScope*/ nullptr,
1758                                  R, TemplateArgs);
1759}
1760