1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/Overload.h"
14#include "clang/AST/ASTLambda.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Lookup.h"
22#include "clang/Sema/Scope.h"
23#include "clang/Sema/ScopeInfo.h"
24#include "clang/Sema/SemaInternal.h"
25
26using namespace clang;
27using namespace sema;
28
29typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
30
31/// Determines if the given class is provably not derived from all of
32/// the prospective base classes.
33static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
34                                     const BaseSet &Bases) {
35  auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
36    return !Bases.count(Base->getCanonicalDecl());
37  };
38  return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
39}
40
41enum IMAKind {
42  /// The reference is definitely not an instance member access.
43  IMA_Static,
44
45  /// The reference may be an implicit instance member access.
46  IMA_Mixed,
47
48  /// The reference may be to an instance member, but it might be invalid if
49  /// so, because the context is not an instance method.
50  IMA_Mixed_StaticContext,
51
52  /// The reference may be to an instance member, but it is invalid if
53  /// so, because the context is from an unrelated class.
54  IMA_Mixed_Unrelated,
55
56  /// The reference is definitely an implicit instance member access.
57  IMA_Instance,
58
59  /// The reference may be to an unresolved using declaration.
60  IMA_Unresolved,
61
62  /// The reference is a contextually-permitted abstract member reference.
63  IMA_Abstract,
64
65  /// The reference may be to an unresolved using declaration and the
66  /// context is not an instance method.
67  IMA_Unresolved_StaticContext,
68
69  // The reference refers to a field which is not a member of the containing
70  // class, which is allowed because we're in C++11 mode and the context is
71  // unevaluated.
72  IMA_Field_Uneval_Context,
73
74  /// All possible referrents are instance members and the current
75  /// context is not an instance method.
76  IMA_Error_StaticContext,
77
78  /// All possible referrents are instance members of an unrelated
79  /// class.
80  IMA_Error_Unrelated
81};
82
83/// The given lookup names class member(s) and is not being used for
84/// an address-of-member expression.  Classify the type of access
85/// according to whether it's possible that this reference names an
86/// instance member.  This is best-effort in dependent contexts; it is okay to
87/// conservatively answer "yes", in which case some errors will simply
88/// not be caught until template-instantiation.
89static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
90                                            const LookupResult &R) {
91  assert(!R.empty() && (*R.begin())->isCXXClassMember());
92
93  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
94
95  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
96    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
97
98  if (R.isUnresolvableResult())
99    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
100
101  // Collect all the declaring classes of instance members we find.
102  bool hasNonInstance = false;
103  bool isField = false;
104  BaseSet Classes;
105  for (NamedDecl *D : R) {
106    // Look through any using decls.
107    D = D->getUnderlyingDecl();
108
109    if (D->isCXXInstanceMember()) {
110      isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
111                 isa<IndirectFieldDecl>(D);
112
113      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
114      Classes.insert(R->getCanonicalDecl());
115    } else
116      hasNonInstance = true;
117  }
118
119  // If we didn't find any instance members, it can't be an implicit
120  // member reference.
121  if (Classes.empty())
122    return IMA_Static;
123
124  // C++11 [expr.prim.general]p12:
125  //   An id-expression that denotes a non-static data member or non-static
126  //   member function of a class can only be used:
127  //   (...)
128  //   - if that id-expression denotes a non-static data member and it
129  //     appears in an unevaluated operand.
130  //
131  // This rule is specific to C++11.  However, we also permit this form
132  // in unevaluated inline assembly operands, like the operand to a SIZE.
133  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
134  assert(!AbstractInstanceResult);
135  switch (SemaRef.ExprEvalContexts.back().Context) {
136  case Sema::Unevaluated:
137    if (isField && SemaRef.getLangOpts().CPlusPlus11)
138      AbstractInstanceResult = IMA_Field_Uneval_Context;
139    break;
140
141  case Sema::UnevaluatedAbstract:
142    AbstractInstanceResult = IMA_Abstract;
143    break;
144
145  case Sema::ConstantEvaluated:
146  case Sema::PotentiallyEvaluated:
147  case Sema::PotentiallyEvaluatedIfUsed:
148    break;
149  }
150
151  // If the current context is not an instance method, it can't be
152  // an implicit member reference.
153  if (isStaticContext) {
154    if (hasNonInstance)
155      return IMA_Mixed_StaticContext;
156
157    return AbstractInstanceResult ? AbstractInstanceResult
158                                  : IMA_Error_StaticContext;
159  }
160
161  CXXRecordDecl *contextClass;
162  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
163    contextClass = MD->getParent()->getCanonicalDecl();
164  else
165    contextClass = cast<CXXRecordDecl>(DC);
166
167  // [class.mfct.non-static]p3:
168  // ...is used in the body of a non-static member function of class X,
169  // if name lookup (3.4.1) resolves the name in the id-expression to a
170  // non-static non-type member of some class C [...]
171  // ...if C is not X or a base class of X, the class member access expression
172  // is ill-formed.
173  if (R.getNamingClass() &&
174      contextClass->getCanonicalDecl() !=
175        R.getNamingClass()->getCanonicalDecl()) {
176    // If the naming class is not the current context, this was a qualified
177    // member name lookup, and it's sufficient to check that we have the naming
178    // class as a base class.
179    Classes.clear();
180    Classes.insert(R.getNamingClass()->getCanonicalDecl());
181  }
182
183  // If we can prove that the current context is unrelated to all the
184  // declaring classes, it can't be an implicit member reference (in
185  // which case it's an error if any of those members are selected).
186  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
187    return hasNonInstance ? IMA_Mixed_Unrelated :
188           AbstractInstanceResult ? AbstractInstanceResult :
189                                    IMA_Error_Unrelated;
190
191  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
192}
193
194/// Diagnose a reference to a field with no object available.
195static void diagnoseInstanceReference(Sema &SemaRef,
196                                      const CXXScopeSpec &SS,
197                                      NamedDecl *Rep,
198                                      const DeclarationNameInfo &nameInfo) {
199  SourceLocation Loc = nameInfo.getLoc();
200  SourceRange Range(Loc);
201  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
202
203  // Look through using shadow decls and aliases.
204  Rep = Rep->getUnderlyingDecl();
205
206  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
207  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
208  CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
209  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
210
211  bool InStaticMethod = Method && Method->isStatic();
212  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
213
214  if (IsField && InStaticMethod)
215    // "invalid use of member 'x' in static member function"
216    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
217        << Range << nameInfo.getName();
218  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
219           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
220    // Unqualified lookup in a non-static member function found a member of an
221    // enclosing class.
222    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
223      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
224  else if (IsField)
225    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
226      << nameInfo.getName() << Range;
227  else
228    SemaRef.Diag(Loc, diag::err_member_call_without_object)
229      << Range;
230}
231
232/// Builds an expression which might be an implicit member expression.
233ExprResult
234Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
235                                      SourceLocation TemplateKWLoc,
236                                      LookupResult &R,
237                                const TemplateArgumentListInfo *TemplateArgs,
238                                      const Scope *S) {
239  switch (ClassifyImplicitMemberAccess(*this, R)) {
240  case IMA_Instance:
241    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
242
243  case IMA_Mixed:
244  case IMA_Mixed_Unrelated:
245  case IMA_Unresolved:
246    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
247                                   S);
248
249  case IMA_Field_Uneval_Context:
250    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
251      << R.getLookupNameInfo().getName();
252    // Fall through.
253  case IMA_Static:
254  case IMA_Abstract:
255  case IMA_Mixed_StaticContext:
256  case IMA_Unresolved_StaticContext:
257    if (TemplateArgs || TemplateKWLoc.isValid())
258      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
259    return BuildDeclarationNameExpr(SS, R, false);
260
261  case IMA_Error_StaticContext:
262  case IMA_Error_Unrelated:
263    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
264                              R.getLookupNameInfo());
265    return ExprError();
266  }
267
268  llvm_unreachable("unexpected instance member access kind");
269}
270
271/// Check an ext-vector component access expression.
272///
273/// VK should be set in advance to the value kind of the base
274/// expression.
275static QualType
276CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
277                        SourceLocation OpLoc, const IdentifierInfo *CompName,
278                        SourceLocation CompLoc) {
279  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
280  // see FIXME there.
281  //
282  // FIXME: This logic can be greatly simplified by splitting it along
283  // halving/not halving and reworking the component checking.
284  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
285
286  // The vector accessor can't exceed the number of elements.
287  const char *compStr = CompName->getNameStart();
288
289  // This flag determines whether or not the component is one of the four
290  // special names that indicate a subset of exactly half the elements are
291  // to be selected.
292  bool HalvingSwizzle = false;
293
294  // This flag determines whether or not CompName has an 's' char prefix,
295  // indicating that it is a string of hex values to be used as vector indices.
296  bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
297
298  bool HasRepeated = false;
299  bool HasIndex[16] = {};
300
301  int Idx;
302
303  // Check that we've found one of the special components, or that the component
304  // names must come from the same set.
305  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
306      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
307    HalvingSwizzle = true;
308  } else if (!HexSwizzle &&
309             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
310    do {
311      if (HasIndex[Idx]) HasRepeated = true;
312      HasIndex[Idx] = true;
313      compStr++;
314    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
315  } else {
316    if (HexSwizzle) compStr++;
317    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
318      if (HasIndex[Idx]) HasRepeated = true;
319      HasIndex[Idx] = true;
320      compStr++;
321    }
322  }
323
324  if (!HalvingSwizzle && *compStr) {
325    // We didn't get to the end of the string. This means the component names
326    // didn't come from the same set *or* we encountered an illegal name.
327    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
328      << StringRef(compStr, 1) << SourceRange(CompLoc);
329    return QualType();
330  }
331
332  // Ensure no component accessor exceeds the width of the vector type it
333  // operates on.
334  if (!HalvingSwizzle) {
335    compStr = CompName->getNameStart();
336
337    if (HexSwizzle)
338      compStr++;
339
340    while (*compStr) {
341      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
342        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
343          << baseType << SourceRange(CompLoc);
344        return QualType();
345      }
346    }
347  }
348
349  // The component accessor looks fine - now we need to compute the actual type.
350  // The vector type is implied by the component accessor. For example,
351  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
352  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
353  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
354  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
355                                     : CompName->getLength();
356  if (HexSwizzle)
357    CompSize--;
358
359  if (CompSize == 1)
360    return vecType->getElementType();
361
362  if (HasRepeated) VK = VK_RValue;
363
364  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
365  // Now look up the TypeDefDecl from the vector type. Without this,
366  // diagostics look bad. We want extended vector types to appear built-in.
367  for (Sema::ExtVectorDeclsType::iterator
368         I = S.ExtVectorDecls.begin(S.getExternalSource()),
369         E = S.ExtVectorDecls.end();
370       I != E; ++I) {
371    if ((*I)->getUnderlyingType() == VT)
372      return S.Context.getTypedefType(*I);
373  }
374
375  return VT; // should never get here (a typedef type should always be found).
376}
377
378static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
379                                                IdentifierInfo *Member,
380                                                const Selector &Sel,
381                                                ASTContext &Context) {
382  if (Member)
383    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
384      return PD;
385  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
386    return OMD;
387
388  for (const auto *I : PDecl->protocols()) {
389    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
390                                                           Context))
391      return D;
392  }
393  return nullptr;
394}
395
396static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
397                                      IdentifierInfo *Member,
398                                      const Selector &Sel,
399                                      ASTContext &Context) {
400  // Check protocols on qualified interfaces.
401  Decl *GDecl = nullptr;
402  for (const auto *I : QIdTy->quals()) {
403    if (Member)
404      if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
405        GDecl = PD;
406        break;
407      }
408    // Also must look for a getter or setter name which uses property syntax.
409    if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
410      GDecl = OMD;
411      break;
412    }
413  }
414  if (!GDecl) {
415    for (const auto *I : QIdTy->quals()) {
416      // Search in the protocol-qualifier list of current protocol.
417      GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
418      if (GDecl)
419        return GDecl;
420    }
421  }
422  return GDecl;
423}
424
425ExprResult
426Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
427                               bool IsArrow, SourceLocation OpLoc,
428                               const CXXScopeSpec &SS,
429                               SourceLocation TemplateKWLoc,
430                               NamedDecl *FirstQualifierInScope,
431                               const DeclarationNameInfo &NameInfo,
432                               const TemplateArgumentListInfo *TemplateArgs) {
433  // Even in dependent contexts, try to diagnose base expressions with
434  // obviously wrong types, e.g.:
435  //
436  // T* t;
437  // t.f;
438  //
439  // In Obj-C++, however, the above expression is valid, since it could be
440  // accessing the 'f' property if T is an Obj-C interface. The extra check
441  // allows this, while still reporting an error if T is a struct pointer.
442  if (!IsArrow) {
443    const PointerType *PT = BaseType->getAs<PointerType>();
444    if (PT && (!getLangOpts().ObjC1 ||
445               PT->getPointeeType()->isRecordType())) {
446      assert(BaseExpr && "cannot happen with implicit member accesses");
447      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
448        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
449      return ExprError();
450    }
451  }
452
453  assert(BaseType->isDependentType() ||
454         NameInfo.getName().isDependentName() ||
455         isDependentScopeSpecifier(SS));
456
457  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
458  // must have pointer type, and the accessed type is the pointee.
459  return CXXDependentScopeMemberExpr::Create(
460      Context, BaseExpr, BaseType, IsArrow, OpLoc,
461      SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
462      NameInfo, TemplateArgs);
463}
464
465/// We know that the given qualified member reference points only to
466/// declarations which do not belong to the static type of the base
467/// expression.  Diagnose the problem.
468static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
469                                             Expr *BaseExpr,
470                                             QualType BaseType,
471                                             const CXXScopeSpec &SS,
472                                             NamedDecl *rep,
473                                       const DeclarationNameInfo &nameInfo) {
474  // If this is an implicit member access, use a different set of
475  // diagnostics.
476  if (!BaseExpr)
477    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
478
479  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
480    << SS.getRange() << rep << BaseType;
481}
482
483// Check whether the declarations we found through a nested-name
484// specifier in a member expression are actually members of the base
485// type.  The restriction here is:
486//
487//   C++ [expr.ref]p2:
488//     ... In these cases, the id-expression shall name a
489//     member of the class or of one of its base classes.
490//
491// So it's perfectly legitimate for the nested-name specifier to name
492// an unrelated class, and for us to find an overload set including
493// decls from classes which are not superclasses, as long as the decl
494// we actually pick through overload resolution is from a superclass.
495bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
496                                         QualType BaseType,
497                                         const CXXScopeSpec &SS,
498                                         const LookupResult &R) {
499  CXXRecordDecl *BaseRecord =
500    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
501  if (!BaseRecord) {
502    // We can't check this yet because the base type is still
503    // dependent.
504    assert(BaseType->isDependentType());
505    return false;
506  }
507
508  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
509    // If this is an implicit member reference and we find a
510    // non-instance member, it's not an error.
511    if (!BaseExpr && !(*I)->isCXXInstanceMember())
512      return false;
513
514    // Note that we use the DC of the decl, not the underlying decl.
515    DeclContext *DC = (*I)->getDeclContext();
516    while (DC->isTransparentContext())
517      DC = DC->getParent();
518
519    if (!DC->isRecord())
520      continue;
521
522    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
523    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
524        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
525      return false;
526  }
527
528  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
529                                   R.getRepresentativeDecl(),
530                                   R.getLookupNameInfo());
531  return true;
532}
533
534namespace {
535
536// Callback to only accept typo corrections that are either a ValueDecl or a
537// FunctionTemplateDecl and are declared in the current record or, for a C++
538// classes, one of its base classes.
539class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
540public:
541  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
542      : Record(RTy->getDecl()) {
543    // Don't add bare keywords to the consumer since they will always fail
544    // validation by virtue of not being associated with any decls.
545    WantTypeSpecifiers = false;
546    WantExpressionKeywords = false;
547    WantCXXNamedCasts = false;
548    WantFunctionLikeCasts = false;
549    WantRemainingKeywords = false;
550  }
551
552  bool ValidateCandidate(const TypoCorrection &candidate) override {
553    NamedDecl *ND = candidate.getCorrectionDecl();
554    // Don't accept candidates that cannot be member functions, constants,
555    // variables, or templates.
556    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
557      return false;
558
559    // Accept candidates that occur in the current record.
560    if (Record->containsDecl(ND))
561      return true;
562
563    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
564      // Accept candidates that occur in any of the current class' base classes.
565      for (const auto &BS : RD->bases()) {
566        if (const RecordType *BSTy =
567                dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
568          if (BSTy->getDecl()->containsDecl(ND))
569            return true;
570        }
571      }
572    }
573
574    return false;
575  }
576
577private:
578  const RecordDecl *const Record;
579};
580
581}
582
583static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
584                                     Expr *BaseExpr,
585                                     const RecordType *RTy,
586                                     SourceLocation OpLoc, bool IsArrow,
587                                     CXXScopeSpec &SS, bool HasTemplateArgs,
588                                     TypoExpr *&TE) {
589  SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
590  RecordDecl *RDecl = RTy->getDecl();
591  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
592      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
593                                  diag::err_typecheck_incomplete_tag,
594                                  BaseRange))
595    return true;
596
597  if (HasTemplateArgs) {
598    // LookupTemplateName doesn't expect these both to exist simultaneously.
599    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
600
601    bool MOUS;
602    SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
603    return false;
604  }
605
606  DeclContext *DC = RDecl;
607  if (SS.isSet()) {
608    // If the member name was a qualified-id, look into the
609    // nested-name-specifier.
610    DC = SemaRef.computeDeclContext(SS, false);
611
612    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
613      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
614          << SS.getRange() << DC;
615      return true;
616    }
617
618    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
619
620    if (!isa<TypeDecl>(DC)) {
621      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
622          << DC << SS.getRange();
623      return true;
624    }
625  }
626
627  // The record definition is complete, now look up the member.
628  SemaRef.LookupQualifiedName(R, DC, SS);
629
630  if (!R.empty())
631    return false;
632
633  DeclarationName Typo = R.getLookupName();
634  SourceLocation TypoLoc = R.getNameLoc();
635
636  struct QueryState {
637    Sema &SemaRef;
638    DeclarationNameInfo NameInfo;
639    Sema::LookupNameKind LookupKind;
640    Sema::RedeclarationKind Redecl;
641  };
642  QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
643                  R.isForRedeclaration() ? Sema::ForRedeclaration
644                                         : Sema::NotForRedeclaration};
645  TE = SemaRef.CorrectTypoDelayed(
646      R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS,
647      llvm::make_unique<RecordMemberExprValidatorCCC>(RTy),
648      [=, &SemaRef](const TypoCorrection &TC) {
649        if (TC) {
650          assert(!TC.isKeyword() &&
651                 "Got a keyword as a correction for a member!");
652          bool DroppedSpecifier =
653              TC.WillReplaceSpecifier() &&
654              Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
655          SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
656                                       << Typo << DC << DroppedSpecifier
657                                       << SS.getRange());
658        } else {
659          SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
660        }
661      },
662      [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
663        LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
664        R.clear(); // Ensure there's no decls lingering in the shared state.
665        R.suppressDiagnostics();
666        R.setLookupName(TC.getCorrection());
667        for (NamedDecl *ND : TC)
668          R.addDecl(ND);
669        R.resolveKind();
670        return SemaRef.BuildMemberReferenceExpr(
671            BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
672            nullptr, R, nullptr, nullptr);
673      },
674      Sema::CTK_ErrorRecovery, DC);
675
676  return false;
677}
678
679static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
680                                   ExprResult &BaseExpr, bool &IsArrow,
681                                   SourceLocation OpLoc, CXXScopeSpec &SS,
682                                   Decl *ObjCImpDecl, bool HasTemplateArgs);
683
684ExprResult
685Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
686                               SourceLocation OpLoc, bool IsArrow,
687                               CXXScopeSpec &SS,
688                               SourceLocation TemplateKWLoc,
689                               NamedDecl *FirstQualifierInScope,
690                               const DeclarationNameInfo &NameInfo,
691                               const TemplateArgumentListInfo *TemplateArgs,
692                               const Scope *S,
693                               ActOnMemberAccessExtraArgs *ExtraArgs) {
694  if (BaseType->isDependentType() ||
695      (SS.isSet() && isDependentScopeSpecifier(SS)))
696    return ActOnDependentMemberExpr(Base, BaseType,
697                                    IsArrow, OpLoc,
698                                    SS, TemplateKWLoc, FirstQualifierInScope,
699                                    NameInfo, TemplateArgs);
700
701  LookupResult R(*this, NameInfo, LookupMemberName);
702
703  // Implicit member accesses.
704  if (!Base) {
705    TypoExpr *TE = nullptr;
706    QualType RecordTy = BaseType;
707    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
708    if (LookupMemberExprInRecord(*this, R, nullptr,
709                                 RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
710                                 SS, TemplateArgs != nullptr, TE))
711      return ExprError();
712    if (TE)
713      return TE;
714
715  // Explicit member accesses.
716  } else {
717    ExprResult BaseResult = Base;
718    ExprResult Result = LookupMemberExpr(
719        *this, R, BaseResult, IsArrow, OpLoc, SS,
720        ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
721        TemplateArgs != nullptr);
722
723    if (BaseResult.isInvalid())
724      return ExprError();
725    Base = BaseResult.get();
726
727    if (Result.isInvalid())
728      return ExprError();
729
730    if (Result.get())
731      return Result;
732
733    // LookupMemberExpr can modify Base, and thus change BaseType
734    BaseType = Base->getType();
735  }
736
737  return BuildMemberReferenceExpr(Base, BaseType,
738                                  OpLoc, IsArrow, SS, TemplateKWLoc,
739                                  FirstQualifierInScope, R, TemplateArgs, S,
740                                  false, ExtraArgs);
741}
742
743static ExprResult
744BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
745                        SourceLocation OpLoc, const CXXScopeSpec &SS,
746                        FieldDecl *Field, DeclAccessPair FoundDecl,
747                        const DeclarationNameInfo &MemberNameInfo);
748
749ExprResult
750Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
751                                               SourceLocation loc,
752                                               IndirectFieldDecl *indirectField,
753                                               DeclAccessPair foundDecl,
754                                               Expr *baseObjectExpr,
755                                               SourceLocation opLoc) {
756  // First, build the expression that refers to the base object.
757
758  bool baseObjectIsPointer = false;
759  Qualifiers baseQuals;
760
761  // Case 1:  the base of the indirect field is not a field.
762  VarDecl *baseVariable = indirectField->getVarDecl();
763  CXXScopeSpec EmptySS;
764  if (baseVariable) {
765    assert(baseVariable->getType()->isRecordType());
766
767    // In principle we could have a member access expression that
768    // accesses an anonymous struct/union that's a static member of
769    // the base object's class.  However, under the current standard,
770    // static data members cannot be anonymous structs or unions.
771    // Supporting this is as easy as building a MemberExpr here.
772    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
773
774    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
775
776    ExprResult result
777      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
778    if (result.isInvalid()) return ExprError();
779
780    baseObjectExpr = result.get();
781    baseObjectIsPointer = false;
782    baseQuals = baseObjectExpr->getType().getQualifiers();
783
784    // Case 2: the base of the indirect field is a field and the user
785    // wrote a member expression.
786  } else if (baseObjectExpr) {
787    // The caller provided the base object expression. Determine
788    // whether its a pointer and whether it adds any qualifiers to the
789    // anonymous struct/union fields we're looking into.
790    QualType objectType = baseObjectExpr->getType();
791
792    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
793      baseObjectIsPointer = true;
794      objectType = ptr->getPointeeType();
795    } else {
796      baseObjectIsPointer = false;
797    }
798    baseQuals = objectType.getQualifiers();
799
800    // Case 3: the base of the indirect field is a field and we should
801    // build an implicit member access.
802  } else {
803    // We've found a member of an anonymous struct/union that is
804    // inside a non-anonymous struct/union, so in a well-formed
805    // program our base object expression is "this".
806    QualType ThisTy = getCurrentThisType();
807    if (ThisTy.isNull()) {
808      Diag(loc, diag::err_invalid_member_use_in_static_method)
809        << indirectField->getDeclName();
810      return ExprError();
811    }
812
813    // Our base object expression is "this".
814    CheckCXXThisCapture(loc);
815    baseObjectExpr
816      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
817    baseObjectIsPointer = true;
818    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
819  }
820
821  // Build the implicit member references to the field of the
822  // anonymous struct/union.
823  Expr *result = baseObjectExpr;
824  IndirectFieldDecl::chain_iterator
825  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
826
827  // Build the first member access in the chain with full information.
828  if (!baseVariable) {
829    FieldDecl *field = cast<FieldDecl>(*FI);
830
831    // Make a nameInfo that properly uses the anonymous name.
832    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
833
834    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
835                                     SourceLocation(), EmptySS, field,
836                                     foundDecl, memberNameInfo).get();
837    if (!result)
838      return ExprError();
839
840    // FIXME: check qualified member access
841  }
842
843  // In all cases, we should now skip the first declaration in the chain.
844  ++FI;
845
846  while (FI != FEnd) {
847    FieldDecl *field = cast<FieldDecl>(*FI++);
848
849    // FIXME: these are somewhat meaningless
850    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
851    DeclAccessPair fakeFoundDecl =
852        DeclAccessPair::make(field, field->getAccess());
853
854    result =
855        BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
856                                SourceLocation(), (FI == FEnd ? SS : EmptySS),
857                                field, fakeFoundDecl, memberNameInfo).get();
858  }
859
860  return result;
861}
862
863static ExprResult
864BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
865                       const CXXScopeSpec &SS,
866                       MSPropertyDecl *PD,
867                       const DeclarationNameInfo &NameInfo) {
868  // Property names are always simple identifiers and therefore never
869  // require any interesting additional storage.
870  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
871                                           S.Context.PseudoObjectTy, VK_LValue,
872                                           SS.getWithLocInContext(S.Context),
873                                           NameInfo.getLoc());
874}
875
876/// \brief Build a MemberExpr AST node.
877static MemberExpr *BuildMemberExpr(
878    Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
879    SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
880    ValueDecl *Member, DeclAccessPair FoundDecl,
881    const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK,
882    ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr) {
883  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
884  MemberExpr *E = MemberExpr::Create(
885      C, Base, isArrow, OpLoc, SS.getWithLocInContext(C), TemplateKWLoc, Member,
886      FoundDecl, MemberNameInfo, TemplateArgs, Ty, VK, OK);
887  SemaRef.MarkMemberReferenced(E);
888  return E;
889}
890
891/// \brief Determine if the given scope is within a function-try-block handler.
892static bool IsInFnTryBlockHandler(const Scope *S) {
893  // Walk the scope stack until finding a FnTryCatchScope, or leave the
894  // function scope. If a FnTryCatchScope is found, check whether the TryScope
895  // flag is set. If it is not, it's a function-try-block handler.
896  for (; S != S->getFnParent(); S = S->getParent()) {
897    if (S->getFlags() & Scope::FnTryCatchScope)
898      return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
899  }
900  return false;
901}
902
903ExprResult
904Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
905                               SourceLocation OpLoc, bool IsArrow,
906                               const CXXScopeSpec &SS,
907                               SourceLocation TemplateKWLoc,
908                               NamedDecl *FirstQualifierInScope,
909                               LookupResult &R,
910                               const TemplateArgumentListInfo *TemplateArgs,
911                               const Scope *S,
912                               bool SuppressQualifierCheck,
913                               ActOnMemberAccessExtraArgs *ExtraArgs) {
914  QualType BaseType = BaseExprType;
915  if (IsArrow) {
916    assert(BaseType->isPointerType());
917    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
918  }
919  R.setBaseObjectType(BaseType);
920
921  LambdaScopeInfo *const CurLSI = getCurLambda();
922  // If this is an implicit member reference and the overloaded
923  // name refers to both static and non-static member functions
924  // (i.e. BaseExpr is null) and if we are currently processing a lambda,
925  // check if we should/can capture 'this'...
926  // Keep this example in mind:
927  //  struct X {
928  //   void f(int) { }
929  //   static void f(double) { }
930  //
931  //   int g() {
932  //     auto L = [=](auto a) {
933  //       return [](int i) {
934  //         return [=](auto b) {
935  //           f(b);
936  //           //f(decltype(a){});
937  //         };
938  //       };
939  //     };
940  //     auto M = L(0.0);
941  //     auto N = M(3);
942  //     N(5.32); // OK, must not error.
943  //     return 0;
944  //   }
945  //  };
946  //
947  if (!BaseExpr && CurLSI) {
948    SourceLocation Loc = R.getNameLoc();
949    if (SS.getRange().isValid())
950      Loc = SS.getRange().getBegin();
951    DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
952    // If the enclosing function is not dependent, then this lambda is
953    // capture ready, so if we can capture this, do so.
954    if (!EnclosingFunctionCtx->isDependentContext()) {
955      // If the current lambda and all enclosing lambdas can capture 'this' -
956      // then go ahead and capture 'this' (since our unresolved overload set
957      // contains both static and non-static member functions).
958      if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
959        CheckCXXThisCapture(Loc);
960    } else if (CurContext->isDependentContext()) {
961      // ... since this is an implicit member reference, that might potentially
962      // involve a 'this' capture, mark 'this' for potential capture in
963      // enclosing lambdas.
964      if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
965        CurLSI->addPotentialThisCapture(Loc);
966    }
967  }
968  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
969  DeclarationName MemberName = MemberNameInfo.getName();
970  SourceLocation MemberLoc = MemberNameInfo.getLoc();
971
972  if (R.isAmbiguous())
973    return ExprError();
974
975  // [except.handle]p10: Referring to any non-static member or base class of an
976  // object in the handler for a function-try-block of a constructor or
977  // destructor for that object results in undefined behavior.
978  const auto *FD = getCurFunctionDecl();
979  if (S && BaseExpr && FD &&
980      (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
981      isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
982      IsInFnTryBlockHandler(S))
983    Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
984        << isa<CXXDestructorDecl>(FD);
985
986  if (R.empty()) {
987    // Rederive where we looked up.
988    DeclContext *DC = (SS.isSet()
989                       ? computeDeclContext(SS, false)
990                       : BaseType->getAs<RecordType>()->getDecl());
991
992    if (ExtraArgs) {
993      ExprResult RetryExpr;
994      if (!IsArrow && BaseExpr) {
995        SFINAETrap Trap(*this, true);
996        ParsedType ObjectType;
997        bool MayBePseudoDestructor = false;
998        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
999                                                 OpLoc, tok::arrow, ObjectType,
1000                                                 MayBePseudoDestructor);
1001        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1002          CXXScopeSpec TempSS(SS);
1003          RetryExpr = ActOnMemberAccessExpr(
1004              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1005              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1006        }
1007        if (Trap.hasErrorOccurred())
1008          RetryExpr = ExprError();
1009      }
1010      if (RetryExpr.isUsable()) {
1011        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1012          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1013        return RetryExpr;
1014      }
1015    }
1016
1017    Diag(R.getNameLoc(), diag::err_no_member)
1018      << MemberName << DC
1019      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1020    return ExprError();
1021  }
1022
1023  // Diagnose lookups that find only declarations from a non-base
1024  // type.  This is possible for either qualified lookups (which may
1025  // have been qualified with an unrelated type) or implicit member
1026  // expressions (which were found with unqualified lookup and thus
1027  // may have come from an enclosing scope).  Note that it's okay for
1028  // lookup to find declarations from a non-base type as long as those
1029  // aren't the ones picked by overload resolution.
1030  if ((SS.isSet() || !BaseExpr ||
1031       (isa<CXXThisExpr>(BaseExpr) &&
1032        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1033      !SuppressQualifierCheck &&
1034      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1035    return ExprError();
1036
1037  // Construct an unresolved result if we in fact got an unresolved
1038  // result.
1039  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1040    // Suppress any lookup-related diagnostics; we'll do these when we
1041    // pick a member.
1042    R.suppressDiagnostics();
1043
1044    UnresolvedMemberExpr *MemExpr
1045      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1046                                     BaseExpr, BaseExprType,
1047                                     IsArrow, OpLoc,
1048                                     SS.getWithLocInContext(Context),
1049                                     TemplateKWLoc, MemberNameInfo,
1050                                     TemplateArgs, R.begin(), R.end());
1051
1052    return MemExpr;
1053  }
1054
1055  assert(R.isSingleResult());
1056  DeclAccessPair FoundDecl = R.begin().getPair();
1057  NamedDecl *MemberDecl = R.getFoundDecl();
1058
1059  // FIXME: diagnose the presence of template arguments now.
1060
1061  // If the decl being referenced had an error, return an error for this
1062  // sub-expr without emitting another error, in order to avoid cascading
1063  // error cases.
1064  if (MemberDecl->isInvalidDecl())
1065    return ExprError();
1066
1067  // Handle the implicit-member-access case.
1068  if (!BaseExpr) {
1069    // If this is not an instance member, convert to a non-member access.
1070    if (!MemberDecl->isCXXInstanceMember())
1071      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
1072
1073    SourceLocation Loc = R.getNameLoc();
1074    if (SS.getRange().isValid())
1075      Loc = SS.getRange().getBegin();
1076    CheckCXXThisCapture(Loc);
1077    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
1078  }
1079
1080  // Check the use of this member.
1081  if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1082    return ExprError();
1083
1084  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1085    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow, OpLoc, SS, FD,
1086                                   FoundDecl, MemberNameInfo);
1087
1088  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1089    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1090                                  MemberNameInfo);
1091
1092  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1093    // We may have found a field within an anonymous union or struct
1094    // (C++ [class.union]).
1095    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1096                                                    FoundDecl, BaseExpr,
1097                                                    OpLoc);
1098
1099  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1100    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1101                           TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
1102                           Var->getType().getNonReferenceType(), VK_LValue,
1103                           OK_Ordinary);
1104  }
1105
1106  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1107    ExprValueKind valueKind;
1108    QualType type;
1109    if (MemberFn->isInstance()) {
1110      valueKind = VK_RValue;
1111      type = Context.BoundMemberTy;
1112    } else {
1113      valueKind = VK_LValue;
1114      type = MemberFn->getType();
1115    }
1116
1117    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1118                           TemplateKWLoc, MemberFn, FoundDecl, MemberNameInfo,
1119                           type, valueKind, OK_Ordinary);
1120  }
1121  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1122
1123  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1124    return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1125                           TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
1126                           Enum->getType(), VK_RValue, OK_Ordinary);
1127  }
1128
1129  // We found something that we didn't expect. Complain.
1130  if (isa<TypeDecl>(MemberDecl))
1131    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1132      << MemberName << BaseType << int(IsArrow);
1133  else
1134    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1135      << MemberName << BaseType << int(IsArrow);
1136
1137  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1138    << MemberName;
1139  R.suppressDiagnostics();
1140  return ExprError();
1141}
1142
1143/// Given that normal member access failed on the given expression,
1144/// and given that the expression's type involves builtin-id or
1145/// builtin-Class, decide whether substituting in the redefinition
1146/// types would be profitable.  The redefinition type is whatever
1147/// this translation unit tried to typedef to id/Class;  we store
1148/// it to the side and then re-use it in places like this.
1149static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1150  const ObjCObjectPointerType *opty
1151    = base.get()->getType()->getAs<ObjCObjectPointerType>();
1152  if (!opty) return false;
1153
1154  const ObjCObjectType *ty = opty->getObjectType();
1155
1156  QualType redef;
1157  if (ty->isObjCId()) {
1158    redef = S.Context.getObjCIdRedefinitionType();
1159  } else if (ty->isObjCClass()) {
1160    redef = S.Context.getObjCClassRedefinitionType();
1161  } else {
1162    return false;
1163  }
1164
1165  // Do the substitution as long as the redefinition type isn't just a
1166  // possibly-qualified pointer to builtin-id or builtin-Class again.
1167  opty = redef->getAs<ObjCObjectPointerType>();
1168  if (opty && !opty->getObjectType()->getInterface())
1169    return false;
1170
1171  base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1172  return true;
1173}
1174
1175static bool isRecordType(QualType T) {
1176  return T->isRecordType();
1177}
1178static bool isPointerToRecordType(QualType T) {
1179  if (const PointerType *PT = T->getAs<PointerType>())
1180    return PT->getPointeeType()->isRecordType();
1181  return false;
1182}
1183
1184/// Perform conversions on the LHS of a member access expression.
1185ExprResult
1186Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1187  if (IsArrow && !Base->getType()->isFunctionType())
1188    return DefaultFunctionArrayLvalueConversion(Base);
1189
1190  return CheckPlaceholderExpr(Base);
1191}
1192
1193/// Look up the given member of the given non-type-dependent
1194/// expression.  This can return in one of two ways:
1195///  * If it returns a sentinel null-but-valid result, the caller will
1196///    assume that lookup was performed and the results written into
1197///    the provided structure.  It will take over from there.
1198///  * Otherwise, the returned expression will be produced in place of
1199///    an ordinary member expression.
1200///
1201/// The ObjCImpDecl bit is a gross hack that will need to be properly
1202/// fixed for ObjC++.
1203static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1204                                   ExprResult &BaseExpr, bool &IsArrow,
1205                                   SourceLocation OpLoc, CXXScopeSpec &SS,
1206                                   Decl *ObjCImpDecl, bool HasTemplateArgs) {
1207  assert(BaseExpr.get() && "no base expression");
1208
1209  // Perform default conversions.
1210  BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1211  if (BaseExpr.isInvalid())
1212    return ExprError();
1213
1214  QualType BaseType = BaseExpr.get()->getType();
1215  assert(!BaseType->isDependentType());
1216
1217  DeclarationName MemberName = R.getLookupName();
1218  SourceLocation MemberLoc = R.getNameLoc();
1219
1220  // For later type-checking purposes, turn arrow accesses into dot
1221  // accesses.  The only access type we support that doesn't follow
1222  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1223  // and those never use arrows, so this is unaffected.
1224  if (IsArrow) {
1225    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1226      BaseType = Ptr->getPointeeType();
1227    else if (const ObjCObjectPointerType *Ptr
1228               = BaseType->getAs<ObjCObjectPointerType>())
1229      BaseType = Ptr->getPointeeType();
1230    else if (BaseType->isRecordType()) {
1231      // Recover from arrow accesses to records, e.g.:
1232      //   struct MyRecord foo;
1233      //   foo->bar
1234      // This is actually well-formed in C++ if MyRecord has an
1235      // overloaded operator->, but that should have been dealt with
1236      // by now--or a diagnostic message already issued if a problem
1237      // was encountered while looking for the overloaded operator->.
1238      if (!S.getLangOpts().CPlusPlus) {
1239        S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1240          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1241          << FixItHint::CreateReplacement(OpLoc, ".");
1242      }
1243      IsArrow = false;
1244    } else if (BaseType->isFunctionType()) {
1245      goto fail;
1246    } else {
1247      S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1248        << BaseType << BaseExpr.get()->getSourceRange();
1249      return ExprError();
1250    }
1251  }
1252
1253  // Handle field access to simple records.
1254  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1255    TypoExpr *TE = nullptr;
1256    if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy,
1257                                 OpLoc, IsArrow, SS, HasTemplateArgs, TE))
1258      return ExprError();
1259
1260    // Returning valid-but-null is how we indicate to the caller that
1261    // the lookup result was filled in. If typo correction was attempted and
1262    // failed, the lookup result will have been cleared--that combined with the
1263    // valid-but-null ExprResult will trigger the appropriate diagnostics.
1264    return ExprResult(TE);
1265  }
1266
1267  // Handle ivar access to Objective-C objects.
1268  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1269    if (!SS.isEmpty() && !SS.isInvalid()) {
1270      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1271        << 1 << SS.getScopeRep()
1272        << FixItHint::CreateRemoval(SS.getRange());
1273      SS.clear();
1274    }
1275
1276    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1277
1278    // There are three cases for the base type:
1279    //   - builtin id (qualified or unqualified)
1280    //   - builtin Class (qualified or unqualified)
1281    //   - an interface
1282    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1283    if (!IDecl) {
1284      if (S.getLangOpts().ObjCAutoRefCount &&
1285          (OTy->isObjCId() || OTy->isObjCClass()))
1286        goto fail;
1287      // There's an implicit 'isa' ivar on all objects.
1288      // But we only actually find it this way on objects of type 'id',
1289      // apparently.
1290      if (OTy->isObjCId() && Member->isStr("isa"))
1291        return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1292                                           OpLoc, S.Context.getObjCClassType());
1293      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1294        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1295                                ObjCImpDecl, HasTemplateArgs);
1296      goto fail;
1297    }
1298
1299    if (S.RequireCompleteType(OpLoc, BaseType,
1300                              diag::err_typecheck_incomplete_tag,
1301                              BaseExpr.get()))
1302      return ExprError();
1303
1304    ObjCInterfaceDecl *ClassDeclared = nullptr;
1305    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1306
1307    if (!IV) {
1308      // Attempt to correct for typos in ivar names.
1309      auto Validator = llvm::make_unique<DeclFilterCCC<ObjCIvarDecl>>();
1310      Validator->IsObjCIvarLookup = IsArrow;
1311      if (TypoCorrection Corrected = S.CorrectTypo(
1312              R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1313              std::move(Validator), Sema::CTK_ErrorRecovery, IDecl)) {
1314        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1315        S.diagnoseTypo(
1316            Corrected,
1317            S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1318                << IDecl->getDeclName() << MemberName);
1319
1320        // Figure out the class that declares the ivar.
1321        assert(!ClassDeclared);
1322        Decl *D = cast<Decl>(IV->getDeclContext());
1323        if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1324          D = CAT->getClassInterface();
1325        ClassDeclared = cast<ObjCInterfaceDecl>(D);
1326      } else {
1327        if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1328          S.Diag(MemberLoc, diag::err_property_found_suggest)
1329              << Member << BaseExpr.get()->getType()
1330              << FixItHint::CreateReplacement(OpLoc, ".");
1331          return ExprError();
1332        }
1333
1334        S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1335            << IDecl->getDeclName() << MemberName
1336            << BaseExpr.get()->getSourceRange();
1337        return ExprError();
1338      }
1339    }
1340
1341    assert(ClassDeclared);
1342
1343    // If the decl being referenced had an error, return an error for this
1344    // sub-expr without emitting another error, in order to avoid cascading
1345    // error cases.
1346    if (IV->isInvalidDecl())
1347      return ExprError();
1348
1349    // Check whether we can reference this field.
1350    if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1351      return ExprError();
1352    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1353        IV->getAccessControl() != ObjCIvarDecl::Package) {
1354      ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1355      if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1356        ClassOfMethodDecl =  MD->getClassInterface();
1357      else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1358        // Case of a c-function declared inside an objc implementation.
1359        // FIXME: For a c-style function nested inside an objc implementation
1360        // class, there is no implementation context available, so we pass
1361        // down the context as argument to this routine. Ideally, this context
1362        // need be passed down in the AST node and somehow calculated from the
1363        // AST for a function decl.
1364        if (ObjCImplementationDecl *IMPD =
1365              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1366          ClassOfMethodDecl = IMPD->getClassInterface();
1367        else if (ObjCCategoryImplDecl* CatImplClass =
1368                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1369          ClassOfMethodDecl = CatImplClass->getClassInterface();
1370      }
1371      if (!S.getLangOpts().DebuggerSupport) {
1372        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1373          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1374              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1375            S.Diag(MemberLoc, diag::error_private_ivar_access)
1376              << IV->getDeclName();
1377        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1378          // @protected
1379          S.Diag(MemberLoc, diag::error_protected_ivar_access)
1380              << IV->getDeclName();
1381      }
1382    }
1383    bool warn = true;
1384    if (S.getLangOpts().ObjCAutoRefCount) {
1385      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1386      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1387        if (UO->getOpcode() == UO_Deref)
1388          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1389
1390      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1391        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1392          S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1393          warn = false;
1394        }
1395    }
1396    if (warn) {
1397      if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1398        ObjCMethodFamily MF = MD->getMethodFamily();
1399        warn = (MF != OMF_init && MF != OMF_dealloc &&
1400                MF != OMF_finalize &&
1401                !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1402      }
1403      if (warn)
1404        S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1405    }
1406
1407    ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1408        IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1409        IsArrow);
1410
1411    if (S.getLangOpts().ObjCAutoRefCount) {
1412      if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1413        if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1414          S.recordUseOfEvaluatedWeak(Result);
1415      }
1416    }
1417
1418    return Result;
1419  }
1420
1421  // Objective-C property access.
1422  const ObjCObjectPointerType *OPT;
1423  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1424    if (!SS.isEmpty() && !SS.isInvalid()) {
1425      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1426          << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1427      SS.clear();
1428    }
1429
1430    // This actually uses the base as an r-value.
1431    BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1432    if (BaseExpr.isInvalid())
1433      return ExprError();
1434
1435    assert(S.Context.hasSameUnqualifiedType(BaseType,
1436                                            BaseExpr.get()->getType()));
1437
1438    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1439
1440    const ObjCObjectType *OT = OPT->getObjectType();
1441
1442    // id, with and without qualifiers.
1443    if (OT->isObjCId()) {
1444      // Check protocols on qualified interfaces.
1445      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1446      if (Decl *PMDecl =
1447              FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1448        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1449          // Check the use of this declaration
1450          if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1451            return ExprError();
1452
1453          return new (S.Context)
1454              ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1455                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1456        }
1457
1458        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1459          // Check the use of this method.
1460          if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
1461            return ExprError();
1462          Selector SetterSel =
1463            SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1464                                                   S.PP.getSelectorTable(),
1465                                                   Member);
1466          ObjCMethodDecl *SMD = nullptr;
1467          if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1468                                                     /*Property id*/ nullptr,
1469                                                     SetterSel, S.Context))
1470            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1471
1472          return new (S.Context)
1473              ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1474                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1475        }
1476      }
1477      // Use of id.member can only be for a property reference. Do not
1478      // use the 'id' redefinition in this case.
1479      if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1480        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1481                                ObjCImpDecl, HasTemplateArgs);
1482
1483      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1484                         << MemberName << BaseType);
1485    }
1486
1487    // 'Class', unqualified only.
1488    if (OT->isObjCClass()) {
1489      // Only works in a method declaration (??!).
1490      ObjCMethodDecl *MD = S.getCurMethodDecl();
1491      if (!MD) {
1492        if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1493          return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1494                                  ObjCImpDecl, HasTemplateArgs);
1495
1496        goto fail;
1497      }
1498
1499      // Also must look for a getter name which uses property syntax.
1500      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1501      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1502      ObjCMethodDecl *Getter;
1503      if ((Getter = IFace->lookupClassMethod(Sel))) {
1504        // Check the use of this method.
1505        if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1506          return ExprError();
1507      } else
1508        Getter = IFace->lookupPrivateMethod(Sel, false);
1509      // If we found a getter then this may be a valid dot-reference, we
1510      // will look for the matching setter, in case it is needed.
1511      Selector SetterSel =
1512        SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1513                                               S.PP.getSelectorTable(),
1514                                               Member);
1515      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1516      if (!Setter) {
1517        // If this reference is in an @implementation, also check for 'private'
1518        // methods.
1519        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1520      }
1521
1522      if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1523        return ExprError();
1524
1525      if (Getter || Setter) {
1526        return new (S.Context) ObjCPropertyRefExpr(
1527            Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1528            OK_ObjCProperty, MemberLoc, BaseExpr.get());
1529      }
1530
1531      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1532        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1533                                ObjCImpDecl, HasTemplateArgs);
1534
1535      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1536                         << MemberName << BaseType);
1537    }
1538
1539    // Normal property access.
1540    return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1541                                       MemberLoc, SourceLocation(), QualType(),
1542                                       false);
1543  }
1544
1545  // Handle 'field access' to vectors, such as 'V.xx'.
1546  if (BaseType->isExtVectorType()) {
1547    // FIXME: this expr should store IsArrow.
1548    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1549    ExprValueKind VK;
1550    if (IsArrow)
1551      VK = VK_LValue;
1552    else {
1553      if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
1554        VK = POE->getSyntacticForm()->getValueKind();
1555      else
1556        VK = BaseExpr.get()->getValueKind();
1557    }
1558    QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1559                                           Member, MemberLoc);
1560    if (ret.isNull())
1561      return ExprError();
1562
1563    return new (S.Context)
1564        ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1565  }
1566
1567  // Adjust builtin-sel to the appropriate redefinition type if that's
1568  // not just a pointer to builtin-sel again.
1569  if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1570      !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1571    BaseExpr = S.ImpCastExprToType(
1572        BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1573    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1574                            ObjCImpDecl, HasTemplateArgs);
1575  }
1576
1577  // Failure cases.
1578 fail:
1579
1580  // Recover from dot accesses to pointers, e.g.:
1581  //   type *foo;
1582  //   foo.bar
1583  // This is actually well-formed in two cases:
1584  //   - 'type' is an Objective C type
1585  //   - 'bar' is a pseudo-destructor name which happens to refer to
1586  //     the appropriate pointer type
1587  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1588    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1589        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1590      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1591          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1592          << FixItHint::CreateReplacement(OpLoc, "->");
1593
1594      // Recurse as an -> access.
1595      IsArrow = true;
1596      return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1597                              ObjCImpDecl, HasTemplateArgs);
1598    }
1599  }
1600
1601  // If the user is trying to apply -> or . to a function name, it's probably
1602  // because they forgot parentheses to call that function.
1603  if (S.tryToRecoverWithCall(
1604          BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1605          /*complain*/ false,
1606          IsArrow ? &isPointerToRecordType : &isRecordType)) {
1607    if (BaseExpr.isInvalid())
1608      return ExprError();
1609    BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1610    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1611                            ObjCImpDecl, HasTemplateArgs);
1612  }
1613
1614  S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1615    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1616
1617  return ExprError();
1618}
1619
1620/// The main callback when the parser finds something like
1621///   expression . [nested-name-specifier] identifier
1622///   expression -> [nested-name-specifier] identifier
1623/// where 'identifier' encompasses a fairly broad spectrum of
1624/// possibilities, including destructor and operator references.
1625///
1626/// \param OpKind either tok::arrow or tok::period
1627/// \param ObjCImpDecl the current Objective-C \@implementation
1628///   decl; this is an ugly hack around the fact that Objective-C
1629///   \@implementations aren't properly put in the context chain
1630ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1631                                       SourceLocation OpLoc,
1632                                       tok::TokenKind OpKind,
1633                                       CXXScopeSpec &SS,
1634                                       SourceLocation TemplateKWLoc,
1635                                       UnqualifiedId &Id,
1636                                       Decl *ObjCImpDecl) {
1637  if (SS.isSet() && SS.isInvalid())
1638    return ExprError();
1639
1640  // Warn about the explicit constructor calls Microsoft extension.
1641  if (getLangOpts().MicrosoftExt &&
1642      Id.getKind() == UnqualifiedId::IK_ConstructorName)
1643    Diag(Id.getSourceRange().getBegin(),
1644         diag::ext_ms_explicit_constructor_call);
1645
1646  TemplateArgumentListInfo TemplateArgsBuffer;
1647
1648  // Decompose the name into its component parts.
1649  DeclarationNameInfo NameInfo;
1650  const TemplateArgumentListInfo *TemplateArgs;
1651  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1652                         NameInfo, TemplateArgs);
1653
1654  DeclarationName Name = NameInfo.getName();
1655  bool IsArrow = (OpKind == tok::arrow);
1656
1657  NamedDecl *FirstQualifierInScope
1658    = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1659
1660  // This is a postfix expression, so get rid of ParenListExprs.
1661  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1662  if (Result.isInvalid()) return ExprError();
1663  Base = Result.get();
1664
1665  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1666      isDependentScopeSpecifier(SS)) {
1667    return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1668                                    TemplateKWLoc, FirstQualifierInScope,
1669                                    NameInfo, TemplateArgs);
1670  }
1671
1672  ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1673  return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
1674                                  TemplateKWLoc, FirstQualifierInScope,
1675                                  NameInfo, TemplateArgs, S, &ExtraArgs);
1676}
1677
1678static ExprResult
1679BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1680                        SourceLocation OpLoc, const CXXScopeSpec &SS,
1681                        FieldDecl *Field, DeclAccessPair FoundDecl,
1682                        const DeclarationNameInfo &MemberNameInfo) {
1683  // x.a is an l-value if 'a' has a reference type. Otherwise:
1684  // x.a is an l-value/x-value/pr-value if the base is (and note
1685  //   that *x is always an l-value), except that if the base isn't
1686  //   an ordinary object then we must have an rvalue.
1687  ExprValueKind VK = VK_LValue;
1688  ExprObjectKind OK = OK_Ordinary;
1689  if (!IsArrow) {
1690    if (BaseExpr->getObjectKind() == OK_Ordinary)
1691      VK = BaseExpr->getValueKind();
1692    else
1693      VK = VK_RValue;
1694  }
1695  if (VK != VK_RValue && Field->isBitField())
1696    OK = OK_BitField;
1697
1698  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1699  QualType MemberType = Field->getType();
1700  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1701    MemberType = Ref->getPointeeType();
1702    VK = VK_LValue;
1703  } else {
1704    QualType BaseType = BaseExpr->getType();
1705    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1706
1707    Qualifiers BaseQuals = BaseType.getQualifiers();
1708
1709    // GC attributes are never picked up by members.
1710    BaseQuals.removeObjCGCAttr();
1711
1712    // CVR attributes from the base are picked up by members,
1713    // except that 'mutable' members don't pick up 'const'.
1714    if (Field->isMutable()) BaseQuals.removeConst();
1715
1716    Qualifiers MemberQuals
1717    = S.Context.getCanonicalType(MemberType).getQualifiers();
1718
1719    assert(!MemberQuals.hasAddressSpace());
1720
1721
1722    Qualifiers Combined = BaseQuals + MemberQuals;
1723    if (Combined != MemberQuals)
1724      MemberType = S.Context.getQualifiedType(MemberType, Combined);
1725  }
1726
1727  S.UnusedPrivateFields.remove(Field);
1728
1729  ExprResult Base =
1730  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1731                                  FoundDecl, Field);
1732  if (Base.isInvalid())
1733    return ExprError();
1734  return BuildMemberExpr(S, S.Context, Base.get(), IsArrow, OpLoc, SS,
1735                         /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1736                         MemberNameInfo, MemberType, VK, OK);
1737}
1738
1739/// Builds an implicit member access expression.  The current context
1740/// is known to be an instance method, and the given unqualified lookup
1741/// set is known to contain only instance members, at least one of which
1742/// is from an appropriate type.
1743ExprResult
1744Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1745                              SourceLocation TemplateKWLoc,
1746                              LookupResult &R,
1747                              const TemplateArgumentListInfo *TemplateArgs,
1748                              bool IsKnownInstance, const Scope *S) {
1749  assert(!R.empty() && !R.isAmbiguous());
1750
1751  SourceLocation loc = R.getNameLoc();
1752
1753  // If this is known to be an instance access, go ahead and build an
1754  // implicit 'this' expression now.
1755  // 'this' expression now.
1756  QualType ThisTy = getCurrentThisType();
1757  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1758
1759  Expr *baseExpr = nullptr; // null signifies implicit access
1760  if (IsKnownInstance) {
1761    SourceLocation Loc = R.getNameLoc();
1762    if (SS.getRange().isValid())
1763      Loc = SS.getRange().getBegin();
1764    CheckCXXThisCapture(Loc);
1765    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1766  }
1767
1768  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1769                                  /*OpLoc*/ SourceLocation(),
1770                                  /*IsArrow*/ true,
1771                                  SS, TemplateKWLoc,
1772                                  /*FirstQualifierInScope*/ nullptr,
1773                                  R, TemplateArgs, S);
1774}
1775