SemaExprMember.cpp revision 234982
1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/SemaInternal.h"
14#include "clang/Sema/Lookup.h"
15#include "clang/Sema/Scope.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Lex/Preprocessor.h"
22
23using namespace clang;
24using namespace sema;
25
26/// Determines if the given class is provably not derived from all of
27/// the prospective base classes.
28static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
29                                     CXXRecordDecl *Record,
30                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
31  if (Bases.count(Record->getCanonicalDecl()))
32    return false;
33
34  RecordDecl *RD = Record->getDefinition();
35  if (!RD) return false;
36  Record = cast<CXXRecordDecl>(RD);
37
38  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
39         E = Record->bases_end(); I != E; ++I) {
40    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
41    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
42    if (!BaseRT) return false;
43
44    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
45    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
46      return false;
47  }
48
49  return true;
50}
51
52enum IMAKind {
53  /// The reference is definitely not an instance member access.
54  IMA_Static,
55
56  /// The reference may be an implicit instance member access.
57  IMA_Mixed,
58
59  /// The reference may be to an instance member, but it might be invalid if
60  /// so, because the context is not an instance method.
61  IMA_Mixed_StaticContext,
62
63  /// The reference may be to an instance member, but it is invalid if
64  /// so, because the context is from an unrelated class.
65  IMA_Mixed_Unrelated,
66
67  /// The reference is definitely an implicit instance member access.
68  IMA_Instance,
69
70  /// The reference may be to an unresolved using declaration.
71  IMA_Unresolved,
72
73  /// The reference may be to an unresolved using declaration and the
74  /// context is not an instance method.
75  IMA_Unresolved_StaticContext,
76
77  // The reference refers to a field which is not a member of the containing
78  // class, which is allowed because we're in C++11 mode and the context is
79  // unevaluated.
80  IMA_Field_Uneval_Context,
81
82  /// All possible referrents are instance members and the current
83  /// context is not an instance method.
84  IMA_Error_StaticContext,
85
86  /// All possible referrents are instance members of an unrelated
87  /// class.
88  IMA_Error_Unrelated
89};
90
91/// The given lookup names class member(s) and is not being used for
92/// an address-of-member expression.  Classify the type of access
93/// according to whether it's possible that this reference names an
94/// instance member.  This is best-effort in dependent contexts; it is okay to
95/// conservatively answer "yes", in which case some errors will simply
96/// not be caught until template-instantiation.
97static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
98                                            Scope *CurScope,
99                                            const LookupResult &R) {
100  assert(!R.empty() && (*R.begin())->isCXXClassMember());
101
102  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
103
104  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
105    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
106
107  if (R.isUnresolvableResult())
108    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
109
110  // Collect all the declaring classes of instance members we find.
111  bool hasNonInstance = false;
112  bool isField = false;
113  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
114  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
115    NamedDecl *D = *I;
116
117    if (D->isCXXInstanceMember()) {
118      if (dyn_cast<FieldDecl>(D))
119        isField = true;
120
121      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
122      Classes.insert(R->getCanonicalDecl());
123    }
124    else
125      hasNonInstance = true;
126  }
127
128  // If we didn't find any instance members, it can't be an implicit
129  // member reference.
130  if (Classes.empty())
131    return IMA_Static;
132
133  bool IsCXX11UnevaluatedField = false;
134  if (SemaRef.getLangOpts().CPlusPlus0x && isField) {
135    // C++11 [expr.prim.general]p12:
136    //   An id-expression that denotes a non-static data member or non-static
137    //   member function of a class can only be used:
138    //   (...)
139    //   - if that id-expression denotes a non-static data member and it
140    //     appears in an unevaluated operand.
141    const Sema::ExpressionEvaluationContextRecord& record
142      = SemaRef.ExprEvalContexts.back();
143    if (record.Context == Sema::Unevaluated)
144      IsCXX11UnevaluatedField = true;
145  }
146
147  // If the current context is not an instance method, it can't be
148  // an implicit member reference.
149  if (isStaticContext) {
150    if (hasNonInstance)
151      return IMA_Mixed_StaticContext;
152
153    return IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context
154                                   : IMA_Error_StaticContext;
155  }
156
157  CXXRecordDecl *contextClass;
158  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
159    contextClass = MD->getParent()->getCanonicalDecl();
160  else
161    contextClass = cast<CXXRecordDecl>(DC);
162
163  // [class.mfct.non-static]p3:
164  // ...is used in the body of a non-static member function of class X,
165  // if name lookup (3.4.1) resolves the name in the id-expression to a
166  // non-static non-type member of some class C [...]
167  // ...if C is not X or a base class of X, the class member access expression
168  // is ill-formed.
169  if (R.getNamingClass() &&
170      contextClass->getCanonicalDecl() !=
171        R.getNamingClass()->getCanonicalDecl() &&
172      contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
173    return hasNonInstance ? IMA_Mixed_Unrelated :
174           IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
175                                     IMA_Error_Unrelated;
176
177  // If we can prove that the current context is unrelated to all the
178  // declaring classes, it can't be an implicit member reference (in
179  // which case it's an error if any of those members are selected).
180  if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
181    return hasNonInstance ? IMA_Mixed_Unrelated :
182           IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
183                                     IMA_Error_Unrelated;
184
185  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
186}
187
188/// Diagnose a reference to a field with no object available.
189static void diagnoseInstanceReference(Sema &SemaRef,
190                                      const CXXScopeSpec &SS,
191                                      NamedDecl *Rep,
192                                      const DeclarationNameInfo &nameInfo) {
193  SourceLocation Loc = nameInfo.getLoc();
194  SourceRange Range(Loc);
195  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
196
197  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
198  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
199  CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0;
200  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
201
202  bool InStaticMethod = Method && Method->isStatic();
203  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
204
205  if (IsField && InStaticMethod)
206    // "invalid use of member 'x' in static member function"
207    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
208        << Range << nameInfo.getName();
209  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
210           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
211    // Unqualified lookup in a non-static member function found a member of an
212    // enclosing class.
213    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
214      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
215  else if (IsField)
216    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
217      << nameInfo.getName() << Range;
218  else
219    SemaRef.Diag(Loc, diag::err_member_call_without_object)
220      << Range;
221}
222
223/// Builds an expression which might be an implicit member expression.
224ExprResult
225Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
226                                      SourceLocation TemplateKWLoc,
227                                      LookupResult &R,
228                                const TemplateArgumentListInfo *TemplateArgs) {
229  switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
230  case IMA_Instance:
231    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
232
233  case IMA_Mixed:
234  case IMA_Mixed_Unrelated:
235  case IMA_Unresolved:
236    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
237
238  case IMA_Field_Uneval_Context:
239    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
240      << R.getLookupNameInfo().getName();
241    // Fall through.
242  case IMA_Static:
243  case IMA_Mixed_StaticContext:
244  case IMA_Unresolved_StaticContext:
245    if (TemplateArgs || TemplateKWLoc.isValid())
246      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
247    return BuildDeclarationNameExpr(SS, R, false);
248
249  case IMA_Error_StaticContext:
250  case IMA_Error_Unrelated:
251    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
252                              R.getLookupNameInfo());
253    return ExprError();
254  }
255
256  llvm_unreachable("unexpected instance member access kind");
257}
258
259/// Check an ext-vector component access expression.
260///
261/// VK should be set in advance to the value kind of the base
262/// expression.
263static QualType
264CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
265                        SourceLocation OpLoc, const IdentifierInfo *CompName,
266                        SourceLocation CompLoc) {
267  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
268  // see FIXME there.
269  //
270  // FIXME: This logic can be greatly simplified by splitting it along
271  // halving/not halving and reworking the component checking.
272  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
273
274  // The vector accessor can't exceed the number of elements.
275  const char *compStr = CompName->getNameStart();
276
277  // This flag determines whether or not the component is one of the four
278  // special names that indicate a subset of exactly half the elements are
279  // to be selected.
280  bool HalvingSwizzle = false;
281
282  // This flag determines whether or not CompName has an 's' char prefix,
283  // indicating that it is a string of hex values to be used as vector indices.
284  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
285
286  bool HasRepeated = false;
287  bool HasIndex[16] = {};
288
289  int Idx;
290
291  // Check that we've found one of the special components, or that the component
292  // names must come from the same set.
293  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
294      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
295    HalvingSwizzle = true;
296  } else if (!HexSwizzle &&
297             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
298    do {
299      if (HasIndex[Idx]) HasRepeated = true;
300      HasIndex[Idx] = true;
301      compStr++;
302    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
303  } else {
304    if (HexSwizzle) compStr++;
305    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
306      if (HasIndex[Idx]) HasRepeated = true;
307      HasIndex[Idx] = true;
308      compStr++;
309    }
310  }
311
312  if (!HalvingSwizzle && *compStr) {
313    // We didn't get to the end of the string. This means the component names
314    // didn't come from the same set *or* we encountered an illegal name.
315    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
316      << StringRef(compStr, 1) << SourceRange(CompLoc);
317    return QualType();
318  }
319
320  // Ensure no component accessor exceeds the width of the vector type it
321  // operates on.
322  if (!HalvingSwizzle) {
323    compStr = CompName->getNameStart();
324
325    if (HexSwizzle)
326      compStr++;
327
328    while (*compStr) {
329      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
330        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
331          << baseType << SourceRange(CompLoc);
332        return QualType();
333      }
334    }
335  }
336
337  // The component accessor looks fine - now we need to compute the actual type.
338  // The vector type is implied by the component accessor. For example,
339  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
340  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
341  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
342  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
343                                     : CompName->getLength();
344  if (HexSwizzle)
345    CompSize--;
346
347  if (CompSize == 1)
348    return vecType->getElementType();
349
350  if (HasRepeated) VK = VK_RValue;
351
352  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
353  // Now look up the TypeDefDecl from the vector type. Without this,
354  // diagostics look bad. We want extended vector types to appear built-in.
355  for (Sema::ExtVectorDeclsType::iterator
356         I = S.ExtVectorDecls.begin(S.ExternalSource),
357         E = S.ExtVectorDecls.end();
358       I != E; ++I) {
359    if ((*I)->getUnderlyingType() == VT)
360      return S.Context.getTypedefType(*I);
361  }
362
363  return VT; // should never get here (a typedef type should always be found).
364}
365
366static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
367                                                IdentifierInfo *Member,
368                                                const Selector &Sel,
369                                                ASTContext &Context) {
370  if (Member)
371    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
372      return PD;
373  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
374    return OMD;
375
376  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
377       E = PDecl->protocol_end(); I != E; ++I) {
378    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
379                                                           Context))
380      return D;
381  }
382  return 0;
383}
384
385static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
386                                      IdentifierInfo *Member,
387                                      const Selector &Sel,
388                                      ASTContext &Context) {
389  // Check protocols on qualified interfaces.
390  Decl *GDecl = 0;
391  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
392       E = QIdTy->qual_end(); I != E; ++I) {
393    if (Member)
394      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
395        GDecl = PD;
396        break;
397      }
398    // Also must look for a getter or setter name which uses property syntax.
399    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
400      GDecl = OMD;
401      break;
402    }
403  }
404  if (!GDecl) {
405    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
406         E = QIdTy->qual_end(); I != E; ++I) {
407      // Search in the protocol-qualifier list of current protocol.
408      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
409                                                       Context);
410      if (GDecl)
411        return GDecl;
412    }
413  }
414  return GDecl;
415}
416
417ExprResult
418Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
419                               bool IsArrow, SourceLocation OpLoc,
420                               const CXXScopeSpec &SS,
421                               SourceLocation TemplateKWLoc,
422                               NamedDecl *FirstQualifierInScope,
423                               const DeclarationNameInfo &NameInfo,
424                               const TemplateArgumentListInfo *TemplateArgs) {
425  // Even in dependent contexts, try to diagnose base expressions with
426  // obviously wrong types, e.g.:
427  //
428  // T* t;
429  // t.f;
430  //
431  // In Obj-C++, however, the above expression is valid, since it could be
432  // accessing the 'f' property if T is an Obj-C interface. The extra check
433  // allows this, while still reporting an error if T is a struct pointer.
434  if (!IsArrow) {
435    const PointerType *PT = BaseType->getAs<PointerType>();
436    if (PT && (!getLangOpts().ObjC1 ||
437               PT->getPointeeType()->isRecordType())) {
438      assert(BaseExpr && "cannot happen with implicit member accesses");
439      Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
440        << BaseType << BaseExpr->getSourceRange();
441      return ExprError();
442    }
443  }
444
445  assert(BaseType->isDependentType() ||
446         NameInfo.getName().isDependentName() ||
447         isDependentScopeSpecifier(SS));
448
449  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
450  // must have pointer type, and the accessed type is the pointee.
451  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
452                                                   IsArrow, OpLoc,
453                                               SS.getWithLocInContext(Context),
454                                                   TemplateKWLoc,
455                                                   FirstQualifierInScope,
456                                                   NameInfo, TemplateArgs));
457}
458
459/// We know that the given qualified member reference points only to
460/// declarations which do not belong to the static type of the base
461/// expression.  Diagnose the problem.
462static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
463                                             Expr *BaseExpr,
464                                             QualType BaseType,
465                                             const CXXScopeSpec &SS,
466                                             NamedDecl *rep,
467                                       const DeclarationNameInfo &nameInfo) {
468  // If this is an implicit member access, use a different set of
469  // diagnostics.
470  if (!BaseExpr)
471    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
472
473  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
474    << SS.getRange() << rep << BaseType;
475}
476
477// Check whether the declarations we found through a nested-name
478// specifier in a member expression are actually members of the base
479// type.  The restriction here is:
480//
481//   C++ [expr.ref]p2:
482//     ... In these cases, the id-expression shall name a
483//     member of the class or of one of its base classes.
484//
485// So it's perfectly legitimate for the nested-name specifier to name
486// an unrelated class, and for us to find an overload set including
487// decls from classes which are not superclasses, as long as the decl
488// we actually pick through overload resolution is from a superclass.
489bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
490                                         QualType BaseType,
491                                         const CXXScopeSpec &SS,
492                                         const LookupResult &R) {
493  const RecordType *BaseRT = BaseType->getAs<RecordType>();
494  if (!BaseRT) {
495    // We can't check this yet because the base type is still
496    // dependent.
497    assert(BaseType->isDependentType());
498    return false;
499  }
500  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
501
502  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
503    // If this is an implicit member reference and we find a
504    // non-instance member, it's not an error.
505    if (!BaseExpr && !(*I)->isCXXInstanceMember())
506      return false;
507
508    // Note that we use the DC of the decl, not the underlying decl.
509    DeclContext *DC = (*I)->getDeclContext();
510    while (DC->isTransparentContext())
511      DC = DC->getParent();
512
513    if (!DC->isRecord())
514      continue;
515
516    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
517    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
518
519    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
520      return false;
521  }
522
523  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
524                                   R.getRepresentativeDecl(),
525                                   R.getLookupNameInfo());
526  return true;
527}
528
529namespace {
530
531// Callback to only accept typo corrections that are either a ValueDecl or a
532// FunctionTemplateDecl.
533class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
534 public:
535  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
536    NamedDecl *ND = candidate.getCorrectionDecl();
537    return ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND));
538  }
539};
540
541}
542
543static bool
544LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
545                         SourceRange BaseRange, const RecordType *RTy,
546                         SourceLocation OpLoc, CXXScopeSpec &SS,
547                         bool HasTemplateArgs) {
548  RecordDecl *RDecl = RTy->getDecl();
549  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
550      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
551                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
552                                    << BaseRange))
553    return true;
554
555  if (HasTemplateArgs) {
556    // LookupTemplateName doesn't expect these both to exist simultaneously.
557    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
558
559    bool MOUS;
560    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
561    return false;
562  }
563
564  DeclContext *DC = RDecl;
565  if (SS.isSet()) {
566    // If the member name was a qualified-id, look into the
567    // nested-name-specifier.
568    DC = SemaRef.computeDeclContext(SS, false);
569
570    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
571      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
572        << SS.getRange() << DC;
573      return true;
574    }
575
576    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
577
578    if (!isa<TypeDecl>(DC)) {
579      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
580        << DC << SS.getRange();
581      return true;
582    }
583  }
584
585  // The record definition is complete, now look up the member.
586  SemaRef.LookupQualifiedName(R, DC);
587
588  if (!R.empty())
589    return false;
590
591  // We didn't find anything with the given name, so try to correct
592  // for typos.
593  DeclarationName Name = R.getLookupName();
594  RecordMemberExprValidatorCCC Validator;
595  TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
596                                                 R.getLookupKind(), NULL,
597                                                 &SS, Validator, DC);
598  R.clear();
599  if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
600    std::string CorrectedStr(
601        Corrected.getAsString(SemaRef.getLangOpts()));
602    std::string CorrectedQuotedStr(
603        Corrected.getQuoted(SemaRef.getLangOpts()));
604    R.setLookupName(Corrected.getCorrection());
605    R.addDecl(ND);
606    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
607      << Name << DC << CorrectedQuotedStr << SS.getRange()
608      << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
609    SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
610      << ND->getDeclName();
611  }
612
613  return false;
614}
615
616ExprResult
617Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
618                               SourceLocation OpLoc, bool IsArrow,
619                               CXXScopeSpec &SS,
620                               SourceLocation TemplateKWLoc,
621                               NamedDecl *FirstQualifierInScope,
622                               const DeclarationNameInfo &NameInfo,
623                               const TemplateArgumentListInfo *TemplateArgs) {
624  if (BaseType->isDependentType() ||
625      (SS.isSet() && isDependentScopeSpecifier(SS)))
626    return ActOnDependentMemberExpr(Base, BaseType,
627                                    IsArrow, OpLoc,
628                                    SS, TemplateKWLoc, FirstQualifierInScope,
629                                    NameInfo, TemplateArgs);
630
631  LookupResult R(*this, NameInfo, LookupMemberName);
632
633  // Implicit member accesses.
634  if (!Base) {
635    QualType RecordTy = BaseType;
636    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
637    if (LookupMemberExprInRecord(*this, R, SourceRange(),
638                                 RecordTy->getAs<RecordType>(),
639                                 OpLoc, SS, TemplateArgs != 0))
640      return ExprError();
641
642  // Explicit member accesses.
643  } else {
644    ExprResult BaseResult = Owned(Base);
645    ExprResult Result =
646      LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
647                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
648
649    if (BaseResult.isInvalid())
650      return ExprError();
651    Base = BaseResult.take();
652
653    if (Result.isInvalid()) {
654      Owned(Base);
655      return ExprError();
656    }
657
658    if (Result.get())
659      return move(Result);
660
661    // LookupMemberExpr can modify Base, and thus change BaseType
662    BaseType = Base->getType();
663  }
664
665  return BuildMemberReferenceExpr(Base, BaseType,
666                                  OpLoc, IsArrow, SS, TemplateKWLoc,
667                                  FirstQualifierInScope, R, TemplateArgs);
668}
669
670static ExprResult
671BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
672                        const CXXScopeSpec &SS, FieldDecl *Field,
673                        DeclAccessPair FoundDecl,
674                        const DeclarationNameInfo &MemberNameInfo);
675
676ExprResult
677Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
678                                               SourceLocation loc,
679                                               IndirectFieldDecl *indirectField,
680                                               Expr *baseObjectExpr,
681                                               SourceLocation opLoc) {
682  // First, build the expression that refers to the base object.
683
684  bool baseObjectIsPointer = false;
685  Qualifiers baseQuals;
686
687  // Case 1:  the base of the indirect field is not a field.
688  VarDecl *baseVariable = indirectField->getVarDecl();
689  CXXScopeSpec EmptySS;
690  if (baseVariable) {
691    assert(baseVariable->getType()->isRecordType());
692
693    // In principle we could have a member access expression that
694    // accesses an anonymous struct/union that's a static member of
695    // the base object's class.  However, under the current standard,
696    // static data members cannot be anonymous structs or unions.
697    // Supporting this is as easy as building a MemberExpr here.
698    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
699
700    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
701
702    ExprResult result
703      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
704    if (result.isInvalid()) return ExprError();
705
706    baseObjectExpr = result.take();
707    baseObjectIsPointer = false;
708    baseQuals = baseObjectExpr->getType().getQualifiers();
709
710    // Case 2: the base of the indirect field is a field and the user
711    // wrote a member expression.
712  } else if (baseObjectExpr) {
713    // The caller provided the base object expression. Determine
714    // whether its a pointer and whether it adds any qualifiers to the
715    // anonymous struct/union fields we're looking into.
716    QualType objectType = baseObjectExpr->getType();
717
718    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
719      baseObjectIsPointer = true;
720      objectType = ptr->getPointeeType();
721    } else {
722      baseObjectIsPointer = false;
723    }
724    baseQuals = objectType.getQualifiers();
725
726    // Case 3: the base of the indirect field is a field and we should
727    // build an implicit member access.
728  } else {
729    // We've found a member of an anonymous struct/union that is
730    // inside a non-anonymous struct/union, so in a well-formed
731    // program our base object expression is "this".
732    QualType ThisTy = getCurrentThisType();
733    if (ThisTy.isNull()) {
734      Diag(loc, diag::err_invalid_member_use_in_static_method)
735        << indirectField->getDeclName();
736      return ExprError();
737    }
738
739    // Our base object expression is "this".
740    CheckCXXThisCapture(loc);
741    baseObjectExpr
742      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
743    baseObjectIsPointer = true;
744    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
745  }
746
747  // Build the implicit member references to the field of the
748  // anonymous struct/union.
749  Expr *result = baseObjectExpr;
750  IndirectFieldDecl::chain_iterator
751  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
752
753  // Build the first member access in the chain with full information.
754  if (!baseVariable) {
755    FieldDecl *field = cast<FieldDecl>(*FI);
756
757    // FIXME: use the real found-decl info!
758    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
759
760    // Make a nameInfo that properly uses the anonymous name.
761    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
762
763    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
764                                     EmptySS, field, foundDecl,
765                                     memberNameInfo).take();
766    baseObjectIsPointer = false;
767
768    // FIXME: check qualified member access
769  }
770
771  // In all cases, we should now skip the first declaration in the chain.
772  ++FI;
773
774  while (FI != FEnd) {
775    FieldDecl *field = cast<FieldDecl>(*FI++);
776
777    // FIXME: these are somewhat meaningless
778    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
779    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
780
781    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
782                                     (FI == FEnd? SS : EmptySS), field,
783                                     foundDecl, memberNameInfo).take();
784  }
785
786  return Owned(result);
787}
788
789/// \brief Build a MemberExpr AST node.
790static MemberExpr *BuildMemberExpr(Sema &SemaRef,
791                                   ASTContext &C, Expr *Base, bool isArrow,
792                                   const CXXScopeSpec &SS,
793                                   SourceLocation TemplateKWLoc,
794                                   ValueDecl *Member,
795                                   DeclAccessPair FoundDecl,
796                                   const DeclarationNameInfo &MemberNameInfo,
797                                   QualType Ty,
798                                   ExprValueKind VK, ExprObjectKind OK,
799                                   const TemplateArgumentListInfo *TemplateArgs = 0) {
800  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
801  MemberExpr *E =
802      MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
803                         TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
804                         TemplateArgs, Ty, VK, OK);
805  SemaRef.MarkMemberReferenced(E);
806  return E;
807}
808
809ExprResult
810Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
811                               SourceLocation OpLoc, bool IsArrow,
812                               const CXXScopeSpec &SS,
813                               SourceLocation TemplateKWLoc,
814                               NamedDecl *FirstQualifierInScope,
815                               LookupResult &R,
816                         const TemplateArgumentListInfo *TemplateArgs,
817                               bool SuppressQualifierCheck) {
818  QualType BaseType = BaseExprType;
819  if (IsArrow) {
820    assert(BaseType->isPointerType());
821    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
822  }
823  R.setBaseObjectType(BaseType);
824
825  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
826  DeclarationName MemberName = MemberNameInfo.getName();
827  SourceLocation MemberLoc = MemberNameInfo.getLoc();
828
829  if (R.isAmbiguous())
830    return ExprError();
831
832  if (R.empty()) {
833    // Rederive where we looked up.
834    DeclContext *DC = (SS.isSet()
835                       ? computeDeclContext(SS, false)
836                       : BaseType->getAs<RecordType>()->getDecl());
837
838    Diag(R.getNameLoc(), diag::err_no_member)
839      << MemberName << DC
840      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
841    return ExprError();
842  }
843
844  // Diagnose lookups that find only declarations from a non-base
845  // type.  This is possible for either qualified lookups (which may
846  // have been qualified with an unrelated type) or implicit member
847  // expressions (which were found with unqualified lookup and thus
848  // may have come from an enclosing scope).  Note that it's okay for
849  // lookup to find declarations from a non-base type as long as those
850  // aren't the ones picked by overload resolution.
851  if ((SS.isSet() || !BaseExpr ||
852       (isa<CXXThisExpr>(BaseExpr) &&
853        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
854      !SuppressQualifierCheck &&
855      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
856    return ExprError();
857
858  // Construct an unresolved result if we in fact got an unresolved
859  // result.
860  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
861    // Suppress any lookup-related diagnostics; we'll do these when we
862    // pick a member.
863    R.suppressDiagnostics();
864
865    UnresolvedMemberExpr *MemExpr
866      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
867                                     BaseExpr, BaseExprType,
868                                     IsArrow, OpLoc,
869                                     SS.getWithLocInContext(Context),
870                                     TemplateKWLoc, MemberNameInfo,
871                                     TemplateArgs, R.begin(), R.end());
872
873    return Owned(MemExpr);
874  }
875
876  assert(R.isSingleResult());
877  DeclAccessPair FoundDecl = R.begin().getPair();
878  NamedDecl *MemberDecl = R.getFoundDecl();
879
880  // FIXME: diagnose the presence of template arguments now.
881
882  // If the decl being referenced had an error, return an error for this
883  // sub-expr without emitting another error, in order to avoid cascading
884  // error cases.
885  if (MemberDecl->isInvalidDecl())
886    return ExprError();
887
888  // Handle the implicit-member-access case.
889  if (!BaseExpr) {
890    // If this is not an instance member, convert to a non-member access.
891    if (!MemberDecl->isCXXInstanceMember())
892      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
893
894    SourceLocation Loc = R.getNameLoc();
895    if (SS.getRange().isValid())
896      Loc = SS.getRange().getBegin();
897    CheckCXXThisCapture(Loc);
898    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
899  }
900
901  bool ShouldCheckUse = true;
902  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
903    // Don't diagnose the use of a virtual member function unless it's
904    // explicitly qualified.
905    if (MD->isVirtual() && !SS.isSet())
906      ShouldCheckUse = false;
907  }
908
909  // Check the use of this member.
910  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
911    Owned(BaseExpr);
912    return ExprError();
913  }
914
915  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
916    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
917                                   SS, FD, FoundDecl, MemberNameInfo);
918
919  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
920    // We may have found a field within an anonymous union or struct
921    // (C++ [class.union]).
922    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
923                                                    BaseExpr, OpLoc);
924
925  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
926    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
927                                 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
928                                 Var->getType().getNonReferenceType(),
929                                 VK_LValue, OK_Ordinary));
930  }
931
932  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
933    ExprValueKind valueKind;
934    QualType type;
935    if (MemberFn->isInstance()) {
936      valueKind = VK_RValue;
937      type = Context.BoundMemberTy;
938    } else {
939      valueKind = VK_LValue;
940      type = MemberFn->getType();
941    }
942
943    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
944                                 TemplateKWLoc, MemberFn, FoundDecl,
945                                 MemberNameInfo, type, valueKind,
946                                 OK_Ordinary));
947  }
948  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
949
950  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
951    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
952                                 TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
953                                 Enum->getType(), VK_RValue, OK_Ordinary));
954  }
955
956  Owned(BaseExpr);
957
958  // We found something that we didn't expect. Complain.
959  if (isa<TypeDecl>(MemberDecl))
960    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
961      << MemberName << BaseType << int(IsArrow);
962  else
963    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
964      << MemberName << BaseType << int(IsArrow);
965
966  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
967    << MemberName;
968  R.suppressDiagnostics();
969  return ExprError();
970}
971
972/// Given that normal member access failed on the given expression,
973/// and given that the expression's type involves builtin-id or
974/// builtin-Class, decide whether substituting in the redefinition
975/// types would be profitable.  The redefinition type is whatever
976/// this translation unit tried to typedef to id/Class;  we store
977/// it to the side and then re-use it in places like this.
978static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
979  const ObjCObjectPointerType *opty
980    = base.get()->getType()->getAs<ObjCObjectPointerType>();
981  if (!opty) return false;
982
983  const ObjCObjectType *ty = opty->getObjectType();
984
985  QualType redef;
986  if (ty->isObjCId()) {
987    redef = S.Context.getObjCIdRedefinitionType();
988  } else if (ty->isObjCClass()) {
989    redef = S.Context.getObjCClassRedefinitionType();
990  } else {
991    return false;
992  }
993
994  // Do the substitution as long as the redefinition type isn't just a
995  // possibly-qualified pointer to builtin-id or builtin-Class again.
996  opty = redef->getAs<ObjCObjectPointerType>();
997  if (opty && !opty->getObjectType()->getInterface() != 0)
998    return false;
999
1000  base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
1001  return true;
1002}
1003
1004static bool isRecordType(QualType T) {
1005  return T->isRecordType();
1006}
1007static bool isPointerToRecordType(QualType T) {
1008  if (const PointerType *PT = T->getAs<PointerType>())
1009    return PT->getPointeeType()->isRecordType();
1010  return false;
1011}
1012
1013/// Perform conversions on the LHS of a member access expression.
1014ExprResult
1015Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1016  if (IsArrow && !Base->getType()->isFunctionType())
1017    return DefaultFunctionArrayLvalueConversion(Base);
1018
1019  return CheckPlaceholderExpr(Base);
1020}
1021
1022/// Look up the given member of the given non-type-dependent
1023/// expression.  This can return in one of two ways:
1024///  * If it returns a sentinel null-but-valid result, the caller will
1025///    assume that lookup was performed and the results written into
1026///    the provided structure.  It will take over from there.
1027///  * Otherwise, the returned expression will be produced in place of
1028///    an ordinary member expression.
1029///
1030/// The ObjCImpDecl bit is a gross hack that will need to be properly
1031/// fixed for ObjC++.
1032ExprResult
1033Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
1034                       bool &IsArrow, SourceLocation OpLoc,
1035                       CXXScopeSpec &SS,
1036                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
1037  assert(BaseExpr.get() && "no base expression");
1038
1039  // Perform default conversions.
1040  BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
1041  if (BaseExpr.isInvalid())
1042    return ExprError();
1043
1044  QualType BaseType = BaseExpr.get()->getType();
1045  assert(!BaseType->isDependentType());
1046
1047  DeclarationName MemberName = R.getLookupName();
1048  SourceLocation MemberLoc = R.getNameLoc();
1049
1050  // For later type-checking purposes, turn arrow accesses into dot
1051  // accesses.  The only access type we support that doesn't follow
1052  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1053  // and those never use arrows, so this is unaffected.
1054  if (IsArrow) {
1055    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1056      BaseType = Ptr->getPointeeType();
1057    else if (const ObjCObjectPointerType *Ptr
1058               = BaseType->getAs<ObjCObjectPointerType>())
1059      BaseType = Ptr->getPointeeType();
1060    else if (BaseType->isRecordType()) {
1061      // Recover from arrow accesses to records, e.g.:
1062      //   struct MyRecord foo;
1063      //   foo->bar
1064      // This is actually well-formed in C++ if MyRecord has an
1065      // overloaded operator->, but that should have been dealt with
1066      // by now.
1067      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1068        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1069        << FixItHint::CreateReplacement(OpLoc, ".");
1070      IsArrow = false;
1071    } else if (BaseType->isFunctionType()) {
1072      goto fail;
1073    } else {
1074      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1075        << BaseType << BaseExpr.get()->getSourceRange();
1076      return ExprError();
1077    }
1078  }
1079
1080  // Handle field access to simple records.
1081  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1082    if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
1083                                 RTy, OpLoc, SS, HasTemplateArgs))
1084      return ExprError();
1085
1086    // Returning valid-but-null is how we indicate to the caller that
1087    // the lookup result was filled in.
1088    return Owned((Expr*) 0);
1089  }
1090
1091  // Handle ivar access to Objective-C objects.
1092  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1093    if (!SS.isEmpty() && !SS.isInvalid()) {
1094      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1095        << 1 << SS.getScopeRep()
1096        << FixItHint::CreateRemoval(SS.getRange());
1097      SS.clear();
1098    }
1099
1100    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1101
1102    // There are three cases for the base type:
1103    //   - builtin id (qualified or unqualified)
1104    //   - builtin Class (qualified or unqualified)
1105    //   - an interface
1106    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1107    if (!IDecl) {
1108      if (getLangOpts().ObjCAutoRefCount &&
1109          (OTy->isObjCId() || OTy->isObjCClass()))
1110        goto fail;
1111      // There's an implicit 'isa' ivar on all objects.
1112      // But we only actually find it this way on objects of type 'id',
1113      // apparently.ghjg
1114      if (OTy->isObjCId() && Member->isStr("isa")) {
1115        Diag(MemberLoc, diag::warn_objc_isa_use);
1116        return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
1117                                               Context.getObjCClassType()));
1118      }
1119
1120      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1121        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1122                                ObjCImpDecl, HasTemplateArgs);
1123      goto fail;
1124    }
1125
1126    if (RequireCompleteType(OpLoc, BaseType,
1127                            PDiag(diag::err_typecheck_incomplete_tag)
1128                              << BaseExpr.get()->getSourceRange()))
1129      return ExprError();
1130
1131    ObjCInterfaceDecl *ClassDeclared = 0;
1132    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1133
1134    if (!IV) {
1135      // Attempt to correct for typos in ivar names.
1136      DeclFilterCCC<ObjCIvarDecl> Validator;
1137      Validator.IsObjCIvarLookup = IsArrow;
1138      if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
1139                                                 LookupMemberName, NULL, NULL,
1140                                                 Validator, IDecl)) {
1141        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1142        Diag(R.getNameLoc(),
1143             diag::err_typecheck_member_reference_ivar_suggest)
1144          << IDecl->getDeclName() << MemberName << IV->getDeclName()
1145          << FixItHint::CreateReplacement(R.getNameLoc(),
1146                                          IV->getNameAsString());
1147        Diag(IV->getLocation(), diag::note_previous_decl)
1148          << IV->getDeclName();
1149
1150        // Figure out the class that declares the ivar.
1151        assert(!ClassDeclared);
1152        Decl *D = cast<Decl>(IV->getDeclContext());
1153        if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1154          D = CAT->getClassInterface();
1155        ClassDeclared = cast<ObjCInterfaceDecl>(D);
1156      } else {
1157        if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1158          Diag(MemberLoc,
1159          diag::err_property_found_suggest)
1160          << Member << BaseExpr.get()->getType()
1161          << FixItHint::CreateReplacement(OpLoc, ".");
1162          return ExprError();
1163        }
1164
1165        Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1166          << IDecl->getDeclName() << MemberName
1167          << BaseExpr.get()->getSourceRange();
1168        return ExprError();
1169      }
1170    }
1171
1172    assert(ClassDeclared);
1173
1174    // If the decl being referenced had an error, return an error for this
1175    // sub-expr without emitting another error, in order to avoid cascading
1176    // error cases.
1177    if (IV->isInvalidDecl())
1178      return ExprError();
1179
1180    // Check whether we can reference this field.
1181    if (DiagnoseUseOfDecl(IV, MemberLoc))
1182      return ExprError();
1183    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1184        IV->getAccessControl() != ObjCIvarDecl::Package) {
1185      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1186      if (ObjCMethodDecl *MD = getCurMethodDecl())
1187        ClassOfMethodDecl =  MD->getClassInterface();
1188      else if (ObjCImpDecl && getCurFunctionDecl()) {
1189        // Case of a c-function declared inside an objc implementation.
1190        // FIXME: For a c-style function nested inside an objc implementation
1191        // class, there is no implementation context available, so we pass
1192        // down the context as argument to this routine. Ideally, this context
1193        // need be passed down in the AST node and somehow calculated from the
1194        // AST for a function decl.
1195        if (ObjCImplementationDecl *IMPD =
1196              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1197          ClassOfMethodDecl = IMPD->getClassInterface();
1198        else if (ObjCCategoryImplDecl* CatImplClass =
1199                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1200          ClassOfMethodDecl = CatImplClass->getClassInterface();
1201      }
1202      if (!getLangOpts().DebuggerSupport) {
1203        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1204          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1205              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1206            Diag(MemberLoc, diag::error_private_ivar_access)
1207              << IV->getDeclName();
1208        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1209          // @protected
1210          Diag(MemberLoc, diag::error_protected_ivar_access)
1211            << IV->getDeclName();
1212      }
1213    }
1214    if (getLangOpts().ObjCAutoRefCount) {
1215      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1216      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1217        if (UO->getOpcode() == UO_Deref)
1218          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1219
1220      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1221        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
1222          Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1223    }
1224
1225    return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1226                                               MemberLoc, BaseExpr.take(),
1227                                               IsArrow));
1228  }
1229
1230  // Objective-C property access.
1231  const ObjCObjectPointerType *OPT;
1232  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1233    if (!SS.isEmpty() && !SS.isInvalid()) {
1234      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1235        << 0 << SS.getScopeRep()
1236        << FixItHint::CreateRemoval(SS.getRange());
1237      SS.clear();
1238    }
1239
1240    // This actually uses the base as an r-value.
1241    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1242    if (BaseExpr.isInvalid())
1243      return ExprError();
1244
1245    assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
1246
1247    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1248
1249    const ObjCObjectType *OT = OPT->getObjectType();
1250
1251    // id, with and without qualifiers.
1252    if (OT->isObjCId()) {
1253      // Check protocols on qualified interfaces.
1254      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1255      if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
1256        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1257          // Check the use of this declaration
1258          if (DiagnoseUseOfDecl(PD, MemberLoc))
1259            return ExprError();
1260
1261          return Owned(new (Context) ObjCPropertyRefExpr(PD,
1262                                                         Context.PseudoObjectTy,
1263                                                         VK_LValue,
1264                                                         OK_ObjCProperty,
1265                                                         MemberLoc,
1266                                                         BaseExpr.take()));
1267        }
1268
1269        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1270          // Check the use of this method.
1271          if (DiagnoseUseOfDecl(OMD, MemberLoc))
1272            return ExprError();
1273          Selector SetterSel =
1274            SelectorTable::constructSetterName(PP.getIdentifierTable(),
1275                                               PP.getSelectorTable(), Member);
1276          ObjCMethodDecl *SMD = 0;
1277          if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
1278                                                     SetterSel, Context))
1279            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1280
1281          return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
1282                                                         Context.PseudoObjectTy,
1283                                                         VK_LValue, OK_ObjCProperty,
1284                                                         MemberLoc, BaseExpr.take()));
1285        }
1286      }
1287      // Use of id.member can only be for a property reference. Do not
1288      // use the 'id' redefinition in this case.
1289      if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1290        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1291                                ObjCImpDecl, HasTemplateArgs);
1292
1293      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1294                         << MemberName << BaseType);
1295    }
1296
1297    // 'Class', unqualified only.
1298    if (OT->isObjCClass()) {
1299      // Only works in a method declaration (??!).
1300      ObjCMethodDecl *MD = getCurMethodDecl();
1301      if (!MD) {
1302        if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1303          return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1304                                  ObjCImpDecl, HasTemplateArgs);
1305
1306        goto fail;
1307      }
1308
1309      // Also must look for a getter name which uses property syntax.
1310      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1311      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1312      ObjCMethodDecl *Getter;
1313      if ((Getter = IFace->lookupClassMethod(Sel))) {
1314        // Check the use of this method.
1315        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1316          return ExprError();
1317      } else
1318        Getter = IFace->lookupPrivateMethod(Sel, false);
1319      // If we found a getter then this may be a valid dot-reference, we
1320      // will look for the matching setter, in case it is needed.
1321      Selector SetterSel =
1322        SelectorTable::constructSetterName(PP.getIdentifierTable(),
1323                                           PP.getSelectorTable(), Member);
1324      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1325      if (!Setter) {
1326        // If this reference is in an @implementation, also check for 'private'
1327        // methods.
1328        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1329      }
1330      // Look through local category implementations associated with the class.
1331      if (!Setter)
1332        Setter = IFace->getCategoryClassMethod(SetterSel);
1333
1334      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1335        return ExprError();
1336
1337      if (Getter || Setter) {
1338        return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1339                                                       Context.PseudoObjectTy,
1340                                                       VK_LValue, OK_ObjCProperty,
1341                                                       MemberLoc, BaseExpr.take()));
1342      }
1343
1344      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1345        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1346                                ObjCImpDecl, HasTemplateArgs);
1347
1348      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1349                         << MemberName << BaseType);
1350    }
1351
1352    // Normal property access.
1353    return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
1354                                     MemberName, MemberLoc,
1355                                     SourceLocation(), QualType(), false);
1356  }
1357
1358  // Handle 'field access' to vectors, such as 'V.xx'.
1359  if (BaseType->isExtVectorType()) {
1360    // FIXME: this expr should store IsArrow.
1361    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1362    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1363    QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
1364                                           Member, MemberLoc);
1365    if (ret.isNull())
1366      return ExprError();
1367
1368    return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
1369                                                    *Member, MemberLoc));
1370  }
1371
1372  // Adjust builtin-sel to the appropriate redefinition type if that's
1373  // not just a pointer to builtin-sel again.
1374  if (IsArrow &&
1375      BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1376      !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1377    BaseExpr = ImpCastExprToType(BaseExpr.take(),
1378                                 Context.getObjCSelRedefinitionType(),
1379                                 CK_BitCast);
1380    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1381                            ObjCImpDecl, HasTemplateArgs);
1382  }
1383
1384  // Failure cases.
1385 fail:
1386
1387  // Recover from dot accesses to pointers, e.g.:
1388  //   type *foo;
1389  //   foo.bar
1390  // This is actually well-formed in two cases:
1391  //   - 'type' is an Objective C type
1392  //   - 'bar' is a pseudo-destructor name which happens to refer to
1393  //     the appropriate pointer type
1394  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1395    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1396        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1397      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1398        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1399          << FixItHint::CreateReplacement(OpLoc, "->");
1400
1401      // Recurse as an -> access.
1402      IsArrow = true;
1403      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1404                              ObjCImpDecl, HasTemplateArgs);
1405    }
1406  }
1407
1408  // If the user is trying to apply -> or . to a function name, it's probably
1409  // because they forgot parentheses to call that function.
1410  if (tryToRecoverWithCall(BaseExpr,
1411                           PDiag(diag::err_member_reference_needs_call),
1412                           /*complain*/ false,
1413                           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1414    if (BaseExpr.isInvalid())
1415      return ExprError();
1416    BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1417    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1418                            ObjCImpDecl, HasTemplateArgs);
1419  }
1420
1421  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1422    << BaseType << BaseExpr.get()->getSourceRange();
1423
1424  return ExprError();
1425}
1426
1427/// The main callback when the parser finds something like
1428///   expression . [nested-name-specifier] identifier
1429///   expression -> [nested-name-specifier] identifier
1430/// where 'identifier' encompasses a fairly broad spectrum of
1431/// possibilities, including destructor and operator references.
1432///
1433/// \param OpKind either tok::arrow or tok::period
1434/// \param HasTrailingLParen whether the next token is '(', which
1435///   is used to diagnose mis-uses of special members that can
1436///   only be called
1437/// \param ObjCImpDecl the current ObjC @implementation decl;
1438///   this is an ugly hack around the fact that ObjC @implementations
1439///   aren't properly put in the context chain
1440ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1441                                       SourceLocation OpLoc,
1442                                       tok::TokenKind OpKind,
1443                                       CXXScopeSpec &SS,
1444                                       SourceLocation TemplateKWLoc,
1445                                       UnqualifiedId &Id,
1446                                       Decl *ObjCImpDecl,
1447                                       bool HasTrailingLParen) {
1448  if (SS.isSet() && SS.isInvalid())
1449    return ExprError();
1450
1451  // Warn about the explicit constructor calls Microsoft extension.
1452  if (getLangOpts().MicrosoftExt &&
1453      Id.getKind() == UnqualifiedId::IK_ConstructorName)
1454    Diag(Id.getSourceRange().getBegin(),
1455         diag::ext_ms_explicit_constructor_call);
1456
1457  TemplateArgumentListInfo TemplateArgsBuffer;
1458
1459  // Decompose the name into its component parts.
1460  DeclarationNameInfo NameInfo;
1461  const TemplateArgumentListInfo *TemplateArgs;
1462  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1463                         NameInfo, TemplateArgs);
1464
1465  DeclarationName Name = NameInfo.getName();
1466  bool IsArrow = (OpKind == tok::arrow);
1467
1468  NamedDecl *FirstQualifierInScope
1469    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
1470                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
1471
1472  // This is a postfix expression, so get rid of ParenListExprs.
1473  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1474  if (Result.isInvalid()) return ExprError();
1475  Base = Result.take();
1476
1477  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1478      isDependentScopeSpecifier(SS)) {
1479    Result = ActOnDependentMemberExpr(Base, Base->getType(),
1480                                      IsArrow, OpLoc,
1481                                      SS, TemplateKWLoc, FirstQualifierInScope,
1482                                      NameInfo, TemplateArgs);
1483  } else {
1484    LookupResult R(*this, NameInfo, LookupMemberName);
1485    ExprResult BaseResult = Owned(Base);
1486    Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
1487                              SS, ObjCImpDecl, TemplateArgs != 0);
1488    if (BaseResult.isInvalid())
1489      return ExprError();
1490    Base = BaseResult.take();
1491
1492    if (Result.isInvalid()) {
1493      Owned(Base);
1494      return ExprError();
1495    }
1496
1497    if (Result.get()) {
1498      // The only way a reference to a destructor can be used is to
1499      // immediately call it, which falls into this case.  If the
1500      // next token is not a '(', produce a diagnostic and build the
1501      // call now.
1502      if (!HasTrailingLParen &&
1503          Id.getKind() == UnqualifiedId::IK_DestructorName)
1504        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
1505
1506      return move(Result);
1507    }
1508
1509    Result = BuildMemberReferenceExpr(Base, Base->getType(),
1510                                      OpLoc, IsArrow, SS, TemplateKWLoc,
1511                                      FirstQualifierInScope, R, TemplateArgs);
1512  }
1513
1514  return move(Result);
1515}
1516
1517static ExprResult
1518BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1519                        const CXXScopeSpec &SS, FieldDecl *Field,
1520                        DeclAccessPair FoundDecl,
1521                        const DeclarationNameInfo &MemberNameInfo) {
1522  // x.a is an l-value if 'a' has a reference type. Otherwise:
1523  // x.a is an l-value/x-value/pr-value if the base is (and note
1524  //   that *x is always an l-value), except that if the base isn't
1525  //   an ordinary object then we must have an rvalue.
1526  ExprValueKind VK = VK_LValue;
1527  ExprObjectKind OK = OK_Ordinary;
1528  if (!IsArrow) {
1529    if (BaseExpr->getObjectKind() == OK_Ordinary)
1530      VK = BaseExpr->getValueKind();
1531    else
1532      VK = VK_RValue;
1533  }
1534  if (VK != VK_RValue && Field->isBitField())
1535    OK = OK_BitField;
1536
1537  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1538  QualType MemberType = Field->getType();
1539  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1540    MemberType = Ref->getPointeeType();
1541    VK = VK_LValue;
1542  } else {
1543    QualType BaseType = BaseExpr->getType();
1544    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1545
1546    Qualifiers BaseQuals = BaseType.getQualifiers();
1547
1548    // GC attributes are never picked up by members.
1549    BaseQuals.removeObjCGCAttr();
1550
1551    // CVR attributes from the base are picked up by members,
1552    // except that 'mutable' members don't pick up 'const'.
1553    if (Field->isMutable()) BaseQuals.removeConst();
1554
1555    Qualifiers MemberQuals
1556    = S.Context.getCanonicalType(MemberType).getQualifiers();
1557
1558    // TR 18037 does not allow fields to be declared with address spaces.
1559    assert(!MemberQuals.hasAddressSpace());
1560
1561    Qualifiers Combined = BaseQuals + MemberQuals;
1562    if (Combined != MemberQuals)
1563      MemberType = S.Context.getQualifiedType(MemberType, Combined);
1564  }
1565
1566  ExprResult Base =
1567  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1568                                  FoundDecl, Field);
1569  if (Base.isInvalid())
1570    return ExprError();
1571  return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
1572                                 /*TemplateKWLoc=*/SourceLocation(),
1573                                 Field, FoundDecl, MemberNameInfo,
1574                                 MemberType, VK, OK));
1575}
1576
1577/// Builds an implicit member access expression.  The current context
1578/// is known to be an instance method, and the given unqualified lookup
1579/// set is known to contain only instance members, at least one of which
1580/// is from an appropriate type.
1581ExprResult
1582Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1583                              SourceLocation TemplateKWLoc,
1584                              LookupResult &R,
1585                              const TemplateArgumentListInfo *TemplateArgs,
1586                              bool IsKnownInstance) {
1587  assert(!R.empty() && !R.isAmbiguous());
1588
1589  SourceLocation loc = R.getNameLoc();
1590
1591  // We may have found a field within an anonymous union or struct
1592  // (C++ [class.union]).
1593  // FIXME: template-ids inside anonymous structs?
1594  if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
1595    return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
1596
1597  // If this is known to be an instance access, go ahead and build an
1598  // implicit 'this' expression now.
1599  // 'this' expression now.
1600  QualType ThisTy = getCurrentThisType();
1601  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1602
1603  Expr *baseExpr = 0; // null signifies implicit access
1604  if (IsKnownInstance) {
1605    SourceLocation Loc = R.getNameLoc();
1606    if (SS.getRange().isValid())
1607      Loc = SS.getRange().getBegin();
1608    CheckCXXThisCapture(Loc);
1609    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1610  }
1611
1612  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1613                                  /*OpLoc*/ SourceLocation(),
1614                                  /*IsArrow*/ true,
1615                                  SS, TemplateKWLoc,
1616                                  /*FirstQualifierInScope*/ 0,
1617                                  R, TemplateArgs);
1618}
1619