SemaExprMember.cpp revision 226633
1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/SemaInternal.h"
14#include "clang/Sema/Lookup.h"
15#include "clang/Sema/Scope.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Lex/Preprocessor.h"
22
23using namespace clang;
24using namespace sema;
25
26/// Determines if the given class is provably not derived from all of
27/// the prospective base classes.
28static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
29                                     CXXRecordDecl *Record,
30                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
31  if (Bases.count(Record->getCanonicalDecl()))
32    return false;
33
34  RecordDecl *RD = Record->getDefinition();
35  if (!RD) return false;
36  Record = cast<CXXRecordDecl>(RD);
37
38  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
39         E = Record->bases_end(); I != E; ++I) {
40    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
41    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
42    if (!BaseRT) return false;
43
44    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
45    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
46      return false;
47  }
48
49  return true;
50}
51
52enum IMAKind {
53  /// The reference is definitely not an instance member access.
54  IMA_Static,
55
56  /// The reference may be an implicit instance member access.
57  IMA_Mixed,
58
59  /// The reference may be to an instance member, but it is invalid if
60  /// so, because the context is not an instance method.
61  IMA_Mixed_StaticContext,
62
63  /// The reference may be to an instance member, but it is invalid if
64  /// so, because the context is from an unrelated class.
65  IMA_Mixed_Unrelated,
66
67  /// The reference is definitely an implicit instance member access.
68  IMA_Instance,
69
70  /// The reference may be to an unresolved using declaration.
71  IMA_Unresolved,
72
73  /// The reference may be to an unresolved using declaration and the
74  /// context is not an instance method.
75  IMA_Unresolved_StaticContext,
76
77  /// All possible referrents are instance members and the current
78  /// context is not an instance method.
79  IMA_Error_StaticContext,
80
81  /// All possible referrents are instance members of an unrelated
82  /// class.
83  IMA_Error_Unrelated
84};
85
86/// The given lookup names class member(s) and is not being used for
87/// an address-of-member expression.  Classify the type of access
88/// according to whether it's possible that this reference names an
89/// instance member.  This is best-effort; it is okay to
90/// conservatively answer "yes", in which case some errors will simply
91/// not be caught until template-instantiation.
92static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
93                                            Scope *CurScope,
94                                            const LookupResult &R) {
95  assert(!R.empty() && (*R.begin())->isCXXClassMember());
96
97  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
98
99  bool isStaticContext =
100    (!isa<CXXMethodDecl>(DC) ||
101     cast<CXXMethodDecl>(DC)->isStatic());
102
103  // C++0x [expr.prim]p4:
104  //   Otherwise, if a member-declarator declares a non-static data member
105  // of a class X, the expression this is a prvalue of type "pointer to X"
106  // within the optional brace-or-equal-initializer.
107  if (CurScope->getFlags() & Scope::ThisScope)
108    isStaticContext = false;
109
110  if (R.isUnresolvableResult())
111    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
112
113  // Collect all the declaring classes of instance members we find.
114  bool hasNonInstance = false;
115  bool hasField = false;
116  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
117  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
118    NamedDecl *D = *I;
119
120    if (D->isCXXInstanceMember()) {
121      if (dyn_cast<FieldDecl>(D))
122        hasField = true;
123
124      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
125      Classes.insert(R->getCanonicalDecl());
126    }
127    else
128      hasNonInstance = true;
129  }
130
131  // If we didn't find any instance members, it can't be an implicit
132  // member reference.
133  if (Classes.empty())
134    return IMA_Static;
135
136  // If the current context is not an instance method, it can't be
137  // an implicit member reference.
138  if (isStaticContext) {
139    if (hasNonInstance)
140        return IMA_Mixed_StaticContext;
141
142    if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
143      // C++0x [expr.prim.general]p10:
144      //   An id-expression that denotes a non-static data member or non-static
145      //   member function of a class can only be used:
146      //   (...)
147      //   - if that id-expression denotes a non-static data member and it
148      //     appears in an unevaluated operand.
149      const Sema::ExpressionEvaluationContextRecord& record
150        = SemaRef.ExprEvalContexts.back();
151      bool isUnevaluatedExpression = (record.Context == Sema::Unevaluated);
152      if (isUnevaluatedExpression)
153        return IMA_Mixed_StaticContext;
154    }
155
156    return IMA_Error_StaticContext;
157  }
158
159  CXXRecordDecl *contextClass;
160  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
161    contextClass = MD->getParent()->getCanonicalDecl();
162  else
163    contextClass = cast<CXXRecordDecl>(DC);
164
165  // [class.mfct.non-static]p3:
166  // ...is used in the body of a non-static member function of class X,
167  // if name lookup (3.4.1) resolves the name in the id-expression to a
168  // non-static non-type member of some class C [...]
169  // ...if C is not X or a base class of X, the class member access expression
170  // is ill-formed.
171  if (R.getNamingClass() &&
172      contextClass != R.getNamingClass()->getCanonicalDecl() &&
173      contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
174    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
175
176  // If we can prove that the current context is unrelated to all the
177  // declaring classes, it can't be an implicit member reference (in
178  // which case it's an error if any of those members are selected).
179  if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
180    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
181
182  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
183}
184
185/// Diagnose a reference to a field with no object available.
186static void DiagnoseInstanceReference(Sema &SemaRef,
187                                      const CXXScopeSpec &SS,
188                                      NamedDecl *rep,
189                                      const DeclarationNameInfo &nameInfo) {
190  SourceLocation Loc = nameInfo.getLoc();
191  SourceRange Range(Loc);
192  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
193
194  if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
195    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
196      if (MD->isStatic()) {
197        // "invalid use of member 'x' in static member function"
198        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
199        << Range << nameInfo.getName();
200        return;
201      }
202    }
203
204    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
205    << nameInfo.getName() << Range;
206    return;
207  }
208
209  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
210}
211
212/// Builds an expression which might be an implicit member expression.
213ExprResult
214Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
215                                      LookupResult &R,
216                                const TemplateArgumentListInfo *TemplateArgs) {
217  switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
218  case IMA_Instance:
219    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
220
221  case IMA_Mixed:
222  case IMA_Mixed_Unrelated:
223  case IMA_Unresolved:
224    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
225
226  case IMA_Static:
227  case IMA_Mixed_StaticContext:
228  case IMA_Unresolved_StaticContext:
229    if (TemplateArgs)
230      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
231    return BuildDeclarationNameExpr(SS, R, false);
232
233  case IMA_Error_StaticContext:
234  case IMA_Error_Unrelated:
235    DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
236                              R.getLookupNameInfo());
237    return ExprError();
238  }
239
240  llvm_unreachable("unexpected instance member access kind");
241  return ExprError();
242}
243
244/// Check an ext-vector component access expression.
245///
246/// VK should be set in advance to the value kind of the base
247/// expression.
248static QualType
249CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
250                        SourceLocation OpLoc, const IdentifierInfo *CompName,
251                        SourceLocation CompLoc) {
252  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
253  // see FIXME there.
254  //
255  // FIXME: This logic can be greatly simplified by splitting it along
256  // halving/not halving and reworking the component checking.
257  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
258
259  // The vector accessor can't exceed the number of elements.
260  const char *compStr = CompName->getNameStart();
261
262  // This flag determines whether or not the component is one of the four
263  // special names that indicate a subset of exactly half the elements are
264  // to be selected.
265  bool HalvingSwizzle = false;
266
267  // This flag determines whether or not CompName has an 's' char prefix,
268  // indicating that it is a string of hex values to be used as vector indices.
269  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
270
271  bool HasRepeated = false;
272  bool HasIndex[16] = {};
273
274  int Idx;
275
276  // Check that we've found one of the special components, or that the component
277  // names must come from the same set.
278  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
279      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
280    HalvingSwizzle = true;
281  } else if (!HexSwizzle &&
282             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
283    do {
284      if (HasIndex[Idx]) HasRepeated = true;
285      HasIndex[Idx] = true;
286      compStr++;
287    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
288  } else {
289    if (HexSwizzle) compStr++;
290    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
291      if (HasIndex[Idx]) HasRepeated = true;
292      HasIndex[Idx] = true;
293      compStr++;
294    }
295  }
296
297  if (!HalvingSwizzle && *compStr) {
298    // We didn't get to the end of the string. This means the component names
299    // didn't come from the same set *or* we encountered an illegal name.
300    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
301      << StringRef(compStr, 1) << SourceRange(CompLoc);
302    return QualType();
303  }
304
305  // Ensure no component accessor exceeds the width of the vector type it
306  // operates on.
307  if (!HalvingSwizzle) {
308    compStr = CompName->getNameStart();
309
310    if (HexSwizzle)
311      compStr++;
312
313    while (*compStr) {
314      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
315        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
316          << baseType << SourceRange(CompLoc);
317        return QualType();
318      }
319    }
320  }
321
322  // The component accessor looks fine - now we need to compute the actual type.
323  // The vector type is implied by the component accessor. For example,
324  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
325  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
326  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
327  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
328                                     : CompName->getLength();
329  if (HexSwizzle)
330    CompSize--;
331
332  if (CompSize == 1)
333    return vecType->getElementType();
334
335  if (HasRepeated) VK = VK_RValue;
336
337  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
338  // Now look up the TypeDefDecl from the vector type. Without this,
339  // diagostics look bad. We want extended vector types to appear built-in.
340  for (Sema::ExtVectorDeclsType::iterator
341         I = S.ExtVectorDecls.begin(S.ExternalSource),
342         E = S.ExtVectorDecls.end();
343       I != E; ++I) {
344    if ((*I)->getUnderlyingType() == VT)
345      return S.Context.getTypedefType(*I);
346  }
347
348  return VT; // should never get here (a typedef type should always be found).
349}
350
351static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
352                                                IdentifierInfo *Member,
353                                                const Selector &Sel,
354                                                ASTContext &Context) {
355  if (Member)
356    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
357      return PD;
358  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
359    return OMD;
360
361  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
362       E = PDecl->protocol_end(); I != E; ++I) {
363    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
364                                                           Context))
365      return D;
366  }
367  return 0;
368}
369
370static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
371                                      IdentifierInfo *Member,
372                                      const Selector &Sel,
373                                      ASTContext &Context) {
374  // Check protocols on qualified interfaces.
375  Decl *GDecl = 0;
376  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
377       E = QIdTy->qual_end(); I != E; ++I) {
378    if (Member)
379      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
380        GDecl = PD;
381        break;
382      }
383    // Also must look for a getter or setter name which uses property syntax.
384    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
385      GDecl = OMD;
386      break;
387    }
388  }
389  if (!GDecl) {
390    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
391         E = QIdTy->qual_end(); I != E; ++I) {
392      // Search in the protocol-qualifier list of current protocol.
393      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
394                                                       Context);
395      if (GDecl)
396        return GDecl;
397    }
398  }
399  return GDecl;
400}
401
402ExprResult
403Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
404                               bool IsArrow, SourceLocation OpLoc,
405                               const CXXScopeSpec &SS,
406                               NamedDecl *FirstQualifierInScope,
407                               const DeclarationNameInfo &NameInfo,
408                               const TemplateArgumentListInfo *TemplateArgs) {
409  // Even in dependent contexts, try to diagnose base expressions with
410  // obviously wrong types, e.g.:
411  //
412  // T* t;
413  // t.f;
414  //
415  // In Obj-C++, however, the above expression is valid, since it could be
416  // accessing the 'f' property if T is an Obj-C interface. The extra check
417  // allows this, while still reporting an error if T is a struct pointer.
418  if (!IsArrow) {
419    const PointerType *PT = BaseType->getAs<PointerType>();
420    if (PT && (!getLangOptions().ObjC1 ||
421               PT->getPointeeType()->isRecordType())) {
422      assert(BaseExpr && "cannot happen with implicit member accesses");
423      Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
424        << BaseType << BaseExpr->getSourceRange();
425      return ExprError();
426    }
427  }
428
429  assert(BaseType->isDependentType() ||
430         NameInfo.getName().isDependentName() ||
431         isDependentScopeSpecifier(SS));
432
433  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
434  // must have pointer type, and the accessed type is the pointee.
435  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
436                                                   IsArrow, OpLoc,
437                                               SS.getWithLocInContext(Context),
438                                                   FirstQualifierInScope,
439                                                   NameInfo, TemplateArgs));
440}
441
442/// We know that the given qualified member reference points only to
443/// declarations which do not belong to the static type of the base
444/// expression.  Diagnose the problem.
445static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
446                                             Expr *BaseExpr,
447                                             QualType BaseType,
448                                             const CXXScopeSpec &SS,
449                                             NamedDecl *rep,
450                                       const DeclarationNameInfo &nameInfo) {
451  // If this is an implicit member access, use a different set of
452  // diagnostics.
453  if (!BaseExpr)
454    return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
455
456  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
457    << SS.getRange() << rep << BaseType;
458}
459
460// Check whether the declarations we found through a nested-name
461// specifier in a member expression are actually members of the base
462// type.  The restriction here is:
463//
464//   C++ [expr.ref]p2:
465//     ... In these cases, the id-expression shall name a
466//     member of the class or of one of its base classes.
467//
468// So it's perfectly legitimate for the nested-name specifier to name
469// an unrelated class, and for us to find an overload set including
470// decls from classes which are not superclasses, as long as the decl
471// we actually pick through overload resolution is from a superclass.
472bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
473                                         QualType BaseType,
474                                         const CXXScopeSpec &SS,
475                                         const LookupResult &R) {
476  const RecordType *BaseRT = BaseType->getAs<RecordType>();
477  if (!BaseRT) {
478    // We can't check this yet because the base type is still
479    // dependent.
480    assert(BaseType->isDependentType());
481    return false;
482  }
483  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
484
485  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
486    // If this is an implicit member reference and we find a
487    // non-instance member, it's not an error.
488    if (!BaseExpr && !(*I)->isCXXInstanceMember())
489      return false;
490
491    // Note that we use the DC of the decl, not the underlying decl.
492    DeclContext *DC = (*I)->getDeclContext();
493    while (DC->isTransparentContext())
494      DC = DC->getParent();
495
496    if (!DC->isRecord())
497      continue;
498
499    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
500    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
501
502    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
503      return false;
504  }
505
506  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
507                                   R.getRepresentativeDecl(),
508                                   R.getLookupNameInfo());
509  return true;
510}
511
512static bool
513LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
514                         SourceRange BaseRange, const RecordType *RTy,
515                         SourceLocation OpLoc, CXXScopeSpec &SS,
516                         bool HasTemplateArgs) {
517  RecordDecl *RDecl = RTy->getDecl();
518  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
519                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
520                                    << BaseRange))
521    return true;
522
523  if (HasTemplateArgs) {
524    // LookupTemplateName doesn't expect these both to exist simultaneously.
525    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
526
527    bool MOUS;
528    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
529    return false;
530  }
531
532  DeclContext *DC = RDecl;
533  if (SS.isSet()) {
534    // If the member name was a qualified-id, look into the
535    // nested-name-specifier.
536    DC = SemaRef.computeDeclContext(SS, false);
537
538    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
539      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
540        << SS.getRange() << DC;
541      return true;
542    }
543
544    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
545
546    if (!isa<TypeDecl>(DC)) {
547      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
548        << DC << SS.getRange();
549      return true;
550    }
551  }
552
553  // The record definition is complete, now look up the member.
554  SemaRef.LookupQualifiedName(R, DC);
555
556  if (!R.empty())
557    return false;
558
559  // We didn't find anything with the given name, so try to correct
560  // for typos.
561  DeclarationName Name = R.getLookupName();
562  TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
563                                                 R.getLookupKind(), NULL,
564                                                 &SS, DC, false,
565                                                 Sema::CTC_MemberLookup);
566  NamedDecl *ND = Corrected.getCorrectionDecl();
567  R.clear();
568  if (ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))) {
569    std::string CorrectedStr(
570        Corrected.getAsString(SemaRef.getLangOptions()));
571    std::string CorrectedQuotedStr(
572        Corrected.getQuoted(SemaRef.getLangOptions()));
573    R.setLookupName(Corrected.getCorrection());
574    R.addDecl(ND);
575    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
576      << Name << DC << CorrectedQuotedStr << SS.getRange()
577      << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
578    SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
579      << ND->getDeclName();
580  }
581
582  return false;
583}
584
585ExprResult
586Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
587                               SourceLocation OpLoc, bool IsArrow,
588                               CXXScopeSpec &SS,
589                               NamedDecl *FirstQualifierInScope,
590                               const DeclarationNameInfo &NameInfo,
591                               const TemplateArgumentListInfo *TemplateArgs) {
592  if (BaseType->isDependentType() ||
593      (SS.isSet() && isDependentScopeSpecifier(SS)))
594    return ActOnDependentMemberExpr(Base, BaseType,
595                                    IsArrow, OpLoc,
596                                    SS, FirstQualifierInScope,
597                                    NameInfo, TemplateArgs);
598
599  LookupResult R(*this, NameInfo, LookupMemberName);
600
601  // Implicit member accesses.
602  if (!Base) {
603    QualType RecordTy = BaseType;
604    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
605    if (LookupMemberExprInRecord(*this, R, SourceRange(),
606                                 RecordTy->getAs<RecordType>(),
607                                 OpLoc, SS, TemplateArgs != 0))
608      return ExprError();
609
610  // Explicit member accesses.
611  } else {
612    ExprResult BaseResult = Owned(Base);
613    ExprResult Result =
614      LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
615                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
616
617    if (BaseResult.isInvalid())
618      return ExprError();
619    Base = BaseResult.take();
620
621    if (Result.isInvalid()) {
622      Owned(Base);
623      return ExprError();
624    }
625
626    if (Result.get())
627      return move(Result);
628
629    // LookupMemberExpr can modify Base, and thus change BaseType
630    BaseType = Base->getType();
631  }
632
633  return BuildMemberReferenceExpr(Base, BaseType,
634                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
635                                  R, TemplateArgs);
636}
637
638static ExprResult
639BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
640                        const CXXScopeSpec &SS, FieldDecl *Field,
641                        DeclAccessPair FoundDecl,
642                        const DeclarationNameInfo &MemberNameInfo);
643
644ExprResult
645Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
646                                               SourceLocation loc,
647                                               IndirectFieldDecl *indirectField,
648                                               Expr *baseObjectExpr,
649                                               SourceLocation opLoc) {
650  // First, build the expression that refers to the base object.
651
652  bool baseObjectIsPointer = false;
653  Qualifiers baseQuals;
654
655  // Case 1:  the base of the indirect field is not a field.
656  VarDecl *baseVariable = indirectField->getVarDecl();
657  CXXScopeSpec EmptySS;
658  if (baseVariable) {
659    assert(baseVariable->getType()->isRecordType());
660
661    // In principle we could have a member access expression that
662    // accesses an anonymous struct/union that's a static member of
663    // the base object's class.  However, under the current standard,
664    // static data members cannot be anonymous structs or unions.
665    // Supporting this is as easy as building a MemberExpr here.
666    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
667
668    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
669
670    ExprResult result
671      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
672    if (result.isInvalid()) return ExprError();
673
674    baseObjectExpr = result.take();
675    baseObjectIsPointer = false;
676    baseQuals = baseObjectExpr->getType().getQualifiers();
677
678    // Case 2: the base of the indirect field is a field and the user
679    // wrote a member expression.
680  } else if (baseObjectExpr) {
681    // The caller provided the base object expression. Determine
682    // whether its a pointer and whether it adds any qualifiers to the
683    // anonymous struct/union fields we're looking into.
684    QualType objectType = baseObjectExpr->getType();
685
686    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
687      baseObjectIsPointer = true;
688      objectType = ptr->getPointeeType();
689    } else {
690      baseObjectIsPointer = false;
691    }
692    baseQuals = objectType.getQualifiers();
693
694    // Case 3: the base of the indirect field is a field and we should
695    // build an implicit member access.
696  } else {
697    // We've found a member of an anonymous struct/union that is
698    // inside a non-anonymous struct/union, so in a well-formed
699    // program our base object expression is "this".
700    QualType ThisTy = getAndCaptureCurrentThisType();
701    if (ThisTy.isNull()) {
702      Diag(loc, diag::err_invalid_member_use_in_static_method)
703        << indirectField->getDeclName();
704      return ExprError();
705    }
706
707    // Our base object expression is "this".
708    baseObjectExpr
709      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
710    baseObjectIsPointer = true;
711    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
712  }
713
714  // Build the implicit member references to the field of the
715  // anonymous struct/union.
716  Expr *result = baseObjectExpr;
717  IndirectFieldDecl::chain_iterator
718  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
719
720  // Build the first member access in the chain with full information.
721  if (!baseVariable) {
722    FieldDecl *field = cast<FieldDecl>(*FI);
723
724    // FIXME: use the real found-decl info!
725    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
726
727    // Make a nameInfo that properly uses the anonymous name.
728    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
729
730    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
731                                     EmptySS, field, foundDecl,
732                                     memberNameInfo).take();
733    baseObjectIsPointer = false;
734
735    // FIXME: check qualified member access
736  }
737
738  // In all cases, we should now skip the first declaration in the chain.
739  ++FI;
740
741  while (FI != FEnd) {
742    FieldDecl *field = cast<FieldDecl>(*FI++);
743
744    // FIXME: these are somewhat meaningless
745    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
746    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
747
748    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
749                                     (FI == FEnd? SS : EmptySS), field,
750                                     foundDecl, memberNameInfo).take();
751  }
752
753  return Owned(result);
754}
755
756/// \brief Build a MemberExpr AST node.
757static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
758                                   const CXXScopeSpec &SS, ValueDecl *Member,
759                                   DeclAccessPair FoundDecl,
760                                   const DeclarationNameInfo &MemberNameInfo,
761                                   QualType Ty,
762                                   ExprValueKind VK, ExprObjectKind OK,
763                                   const TemplateArgumentListInfo *TemplateArgs = 0) {
764  return MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
765                            Member, FoundDecl, MemberNameInfo,
766                            TemplateArgs, Ty, VK, OK);
767}
768
769ExprResult
770Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
771                               SourceLocation OpLoc, bool IsArrow,
772                               const CXXScopeSpec &SS,
773                               NamedDecl *FirstQualifierInScope,
774                               LookupResult &R,
775                         const TemplateArgumentListInfo *TemplateArgs,
776                               bool SuppressQualifierCheck) {
777  QualType BaseType = BaseExprType;
778  if (IsArrow) {
779    assert(BaseType->isPointerType());
780    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
781  }
782  R.setBaseObjectType(BaseType);
783
784  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
785  DeclarationName MemberName = MemberNameInfo.getName();
786  SourceLocation MemberLoc = MemberNameInfo.getLoc();
787
788  if (R.isAmbiguous())
789    return ExprError();
790
791  if (R.empty()) {
792    // Rederive where we looked up.
793    DeclContext *DC = (SS.isSet()
794                       ? computeDeclContext(SS, false)
795                       : BaseType->getAs<RecordType>()->getDecl());
796
797    Diag(R.getNameLoc(), diag::err_no_member)
798      << MemberName << DC
799      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
800    return ExprError();
801  }
802
803  // Diagnose lookups that find only declarations from a non-base
804  // type.  This is possible for either qualified lookups (which may
805  // have been qualified with an unrelated type) or implicit member
806  // expressions (which were found with unqualified lookup and thus
807  // may have come from an enclosing scope).  Note that it's okay for
808  // lookup to find declarations from a non-base type as long as those
809  // aren't the ones picked by overload resolution.
810  if ((SS.isSet() || !BaseExpr ||
811       (isa<CXXThisExpr>(BaseExpr) &&
812        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
813      !SuppressQualifierCheck &&
814      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
815    return ExprError();
816
817  // Construct an unresolved result if we in fact got an unresolved
818  // result.
819  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
820    // Suppress any lookup-related diagnostics; we'll do these when we
821    // pick a member.
822    R.suppressDiagnostics();
823
824    UnresolvedMemberExpr *MemExpr
825      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
826                                     BaseExpr, BaseExprType,
827                                     IsArrow, OpLoc,
828                                     SS.getWithLocInContext(Context),
829                                     MemberNameInfo,
830                                     TemplateArgs, R.begin(), R.end());
831
832    return Owned(MemExpr);
833  }
834
835  assert(R.isSingleResult());
836  DeclAccessPair FoundDecl = R.begin().getPair();
837  NamedDecl *MemberDecl = R.getFoundDecl();
838
839  // FIXME: diagnose the presence of template arguments now.
840
841  // If the decl being referenced had an error, return an error for this
842  // sub-expr without emitting another error, in order to avoid cascading
843  // error cases.
844  if (MemberDecl->isInvalidDecl())
845    return ExprError();
846
847  // Handle the implicit-member-access case.
848  if (!BaseExpr) {
849    // If this is not an instance member, convert to a non-member access.
850    if (!MemberDecl->isCXXInstanceMember())
851      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
852
853    SourceLocation Loc = R.getNameLoc();
854    if (SS.getRange().isValid())
855      Loc = SS.getRange().getBegin();
856    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
857  }
858
859  bool ShouldCheckUse = true;
860  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
861    // Don't diagnose the use of a virtual member function unless it's
862    // explicitly qualified.
863    if (MD->isVirtual() && !SS.isSet())
864      ShouldCheckUse = false;
865  }
866
867  // Check the use of this member.
868  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
869    Owned(BaseExpr);
870    return ExprError();
871  }
872
873  // Perform a property load on the base regardless of whether we
874  // actually need it for the declaration.
875  if (BaseExpr->getObjectKind() == OK_ObjCProperty) {
876    ExprResult Result = ConvertPropertyForRValue(BaseExpr);
877    if (Result.isInvalid())
878      return ExprError();
879    BaseExpr = Result.take();
880  }
881
882  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
883    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
884                                   SS, FD, FoundDecl, MemberNameInfo);
885
886  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
887    // We may have found a field within an anonymous union or struct
888    // (C++ [class.union]).
889    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
890                                                    BaseExpr, OpLoc);
891
892  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
893    MarkDeclarationReferenced(MemberLoc, Var);
894    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
895                                 Var, FoundDecl, MemberNameInfo,
896                                 Var->getType().getNonReferenceType(),
897                                 VK_LValue, OK_Ordinary));
898  }
899
900  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
901    ExprValueKind valueKind;
902    QualType type;
903    if (MemberFn->isInstance()) {
904      valueKind = VK_RValue;
905      type = Context.BoundMemberTy;
906    } else {
907      valueKind = VK_LValue;
908      type = MemberFn->getType();
909    }
910
911    MarkDeclarationReferenced(MemberLoc, MemberDecl);
912    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
913                                 MemberFn, FoundDecl, MemberNameInfo,
914                                 type, valueKind, OK_Ordinary));
915  }
916  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
917
918  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
919    MarkDeclarationReferenced(MemberLoc, MemberDecl);
920    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
921                                 Enum, FoundDecl, MemberNameInfo,
922                                 Enum->getType(), VK_RValue, OK_Ordinary));
923  }
924
925  Owned(BaseExpr);
926
927  // We found something that we didn't expect. Complain.
928  if (isa<TypeDecl>(MemberDecl))
929    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
930      << MemberName << BaseType << int(IsArrow);
931  else
932    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
933      << MemberName << BaseType << int(IsArrow);
934
935  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
936    << MemberName;
937  R.suppressDiagnostics();
938  return ExprError();
939}
940
941/// Given that normal member access failed on the given expression,
942/// and given that the expression's type involves builtin-id or
943/// builtin-Class, decide whether substituting in the redefinition
944/// types would be profitable.  The redefinition type is whatever
945/// this translation unit tried to typedef to id/Class;  we store
946/// it to the side and then re-use it in places like this.
947static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
948  const ObjCObjectPointerType *opty
949    = base.get()->getType()->getAs<ObjCObjectPointerType>();
950  if (!opty) return false;
951
952  const ObjCObjectType *ty = opty->getObjectType();
953
954  QualType redef;
955  if (ty->isObjCId()) {
956    redef = S.Context.getObjCIdRedefinitionType();
957  } else if (ty->isObjCClass()) {
958    redef = S.Context.getObjCClassRedefinitionType();
959  } else {
960    return false;
961  }
962
963  // Do the substitution as long as the redefinition type isn't just a
964  // possibly-qualified pointer to builtin-id or builtin-Class again.
965  opty = redef->getAs<ObjCObjectPointerType>();
966  if (opty && !opty->getObjectType()->getInterface() != 0)
967    return false;
968
969  base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
970  return true;
971}
972
973static bool isRecordType(QualType T) {
974  return T->isRecordType();
975}
976static bool isPointerToRecordType(QualType T) {
977  if (const PointerType *PT = T->getAs<PointerType>())
978    return PT->getPointeeType()->isRecordType();
979  return false;
980}
981
982/// Look up the given member of the given non-type-dependent
983/// expression.  This can return in one of two ways:
984///  * If it returns a sentinel null-but-valid result, the caller will
985///    assume that lookup was performed and the results written into
986///    the provided structure.  It will take over from there.
987///  * Otherwise, the returned expression will be produced in place of
988///    an ordinary member expression.
989///
990/// The ObjCImpDecl bit is a gross hack that will need to be properly
991/// fixed for ObjC++.
992ExprResult
993Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
994                       bool &IsArrow, SourceLocation OpLoc,
995                       CXXScopeSpec &SS,
996                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
997  assert(BaseExpr.get() && "no base expression");
998
999  // Perform default conversions.
1000  BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1001  if (BaseExpr.isInvalid())
1002    return ExprError();
1003
1004  if (IsArrow) {
1005    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1006    if (BaseExpr.isInvalid())
1007      return ExprError();
1008  }
1009
1010  QualType BaseType = BaseExpr.get()->getType();
1011  assert(!BaseType->isDependentType());
1012
1013  DeclarationName MemberName = R.getLookupName();
1014  SourceLocation MemberLoc = R.getNameLoc();
1015
1016  // For later type-checking purposes, turn arrow accesses into dot
1017  // accesses.  The only access type we support that doesn't follow
1018  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1019  // and those never use arrows, so this is unaffected.
1020  if (IsArrow) {
1021    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1022      BaseType = Ptr->getPointeeType();
1023    else if (const ObjCObjectPointerType *Ptr
1024               = BaseType->getAs<ObjCObjectPointerType>())
1025      BaseType = Ptr->getPointeeType();
1026    else if (BaseType->isRecordType()) {
1027      // Recover from arrow accesses to records, e.g.:
1028      //   struct MyRecord foo;
1029      //   foo->bar
1030      // This is actually well-formed in C++ if MyRecord has an
1031      // overloaded operator->, but that should have been dealt with
1032      // by now.
1033      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1034        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1035        << FixItHint::CreateReplacement(OpLoc, ".");
1036      IsArrow = false;
1037    } else if (BaseType == Context.BoundMemberTy) {
1038      goto fail;
1039    } else {
1040      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1041        << BaseType << BaseExpr.get()->getSourceRange();
1042      return ExprError();
1043    }
1044  }
1045
1046  // Handle field access to simple records.
1047  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1048    if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
1049                                 RTy, OpLoc, SS, HasTemplateArgs))
1050      return ExprError();
1051
1052    // Returning valid-but-null is how we indicate to the caller that
1053    // the lookup result was filled in.
1054    return Owned((Expr*) 0);
1055  }
1056
1057  // Handle ivar access to Objective-C objects.
1058  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1059    if (!SS.isEmpty() && !SS.isInvalid()) {
1060      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1061        << 1 << SS.getScopeRep()
1062        << FixItHint::CreateRemoval(SS.getRange());
1063      SS.clear();
1064    }
1065
1066    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1067
1068    // There are three cases for the base type:
1069    //   - builtin id (qualified or unqualified)
1070    //   - builtin Class (qualified or unqualified)
1071    //   - an interface
1072    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1073    if (!IDecl) {
1074      if (getLangOptions().ObjCAutoRefCount &&
1075          (OTy->isObjCId() || OTy->isObjCClass()))
1076        goto fail;
1077      // There's an implicit 'isa' ivar on all objects.
1078      // But we only actually find it this way on objects of type 'id',
1079      // apparently.
1080      if (OTy->isObjCId() && Member->isStr("isa"))
1081        return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
1082                                               Context.getObjCClassType()));
1083
1084      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1085        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1086                                ObjCImpDecl, HasTemplateArgs);
1087      goto fail;
1088    }
1089
1090    ObjCInterfaceDecl *ClassDeclared;
1091    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1092
1093    if (!IV) {
1094      // Attempt to correct for typos in ivar names.
1095      LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
1096                       LookupMemberName);
1097      TypoCorrection Corrected = CorrectTypo(
1098          R.getLookupNameInfo(), LookupMemberName, NULL, NULL, IDecl, false,
1099          IsArrow ? CTC_ObjCIvarLookup : CTC_ObjCPropertyLookup);
1100      if ((IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>())) {
1101        Diag(R.getNameLoc(),
1102             diag::err_typecheck_member_reference_ivar_suggest)
1103          << IDecl->getDeclName() << MemberName << IV->getDeclName()
1104          << FixItHint::CreateReplacement(R.getNameLoc(),
1105                                          IV->getNameAsString());
1106        Diag(IV->getLocation(), diag::note_previous_decl)
1107          << IV->getDeclName();
1108      } else {
1109        if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1110          Diag(MemberLoc,
1111          diag::err_property_found_suggest)
1112          << Member << BaseExpr.get()->getType()
1113          << FixItHint::CreateReplacement(OpLoc, ".");
1114          return ExprError();
1115        }
1116        Res.clear();
1117        Res.setLookupName(Member);
1118
1119        Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1120          << IDecl->getDeclName() << MemberName
1121          << BaseExpr.get()->getSourceRange();
1122        return ExprError();
1123      }
1124    }
1125
1126    // If the decl being referenced had an error, return an error for this
1127    // sub-expr without emitting another error, in order to avoid cascading
1128    // error cases.
1129    if (IV->isInvalidDecl())
1130      return ExprError();
1131
1132    // Check whether we can reference this field.
1133    if (DiagnoseUseOfDecl(IV, MemberLoc))
1134      return ExprError();
1135    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1136        IV->getAccessControl() != ObjCIvarDecl::Package) {
1137      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1138      if (ObjCMethodDecl *MD = getCurMethodDecl())
1139        ClassOfMethodDecl =  MD->getClassInterface();
1140      else if (ObjCImpDecl && getCurFunctionDecl()) {
1141        // Case of a c-function declared inside an objc implementation.
1142        // FIXME: For a c-style function nested inside an objc implementation
1143        // class, there is no implementation context available, so we pass
1144        // down the context as argument to this routine. Ideally, this context
1145        // need be passed down in the AST node and somehow calculated from the
1146        // AST for a function decl.
1147        if (ObjCImplementationDecl *IMPD =
1148              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1149          ClassOfMethodDecl = IMPD->getClassInterface();
1150        else if (ObjCCategoryImplDecl* CatImplClass =
1151                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1152          ClassOfMethodDecl = CatImplClass->getClassInterface();
1153      }
1154
1155      if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1156        if (ClassDeclared != IDecl ||
1157            ClassOfMethodDecl != ClassDeclared)
1158          Diag(MemberLoc, diag::error_private_ivar_access)
1159            << IV->getDeclName();
1160      } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1161        // @protected
1162        Diag(MemberLoc, diag::error_protected_ivar_access)
1163          << IV->getDeclName();
1164    }
1165    if (getLangOptions().ObjCAutoRefCount) {
1166      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1167      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1168        if (UO->getOpcode() == UO_Deref)
1169          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1170
1171      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1172        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
1173          Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1174    }
1175
1176    return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1177                                               MemberLoc, BaseExpr.take(),
1178                                               IsArrow));
1179  }
1180
1181  // Objective-C property access.
1182  const ObjCObjectPointerType *OPT;
1183  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1184    if (!SS.isEmpty() && !SS.isInvalid()) {
1185      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1186        << 0 << SS.getScopeRep()
1187        << FixItHint::CreateRemoval(SS.getRange());
1188      SS.clear();
1189    }
1190
1191    // This actually uses the base as an r-value.
1192    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1193    if (BaseExpr.isInvalid())
1194      return ExprError();
1195
1196    assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
1197
1198    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1199
1200    const ObjCObjectType *OT = OPT->getObjectType();
1201
1202    // id, with and without qualifiers.
1203    if (OT->isObjCId()) {
1204      // Check protocols on qualified interfaces.
1205      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1206      if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
1207        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1208          // Check the use of this declaration
1209          if (DiagnoseUseOfDecl(PD, MemberLoc))
1210            return ExprError();
1211
1212          QualType T = PD->getType();
1213          if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
1214            T = getMessageSendResultType(BaseType, Getter, false, false);
1215
1216          return Owned(new (Context) ObjCPropertyRefExpr(PD, T,
1217                                                         VK_LValue,
1218                                                         OK_ObjCProperty,
1219                                                         MemberLoc,
1220                                                         BaseExpr.take()));
1221        }
1222
1223        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1224          // Check the use of this method.
1225          if (DiagnoseUseOfDecl(OMD, MemberLoc))
1226            return ExprError();
1227          Selector SetterSel =
1228            SelectorTable::constructSetterName(PP.getIdentifierTable(),
1229                                               PP.getSelectorTable(), Member);
1230          ObjCMethodDecl *SMD = 0;
1231          if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
1232                                                     SetterSel, Context))
1233            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1234          QualType PType = getMessageSendResultType(BaseType, OMD, false,
1235                                                    false);
1236
1237          ExprValueKind VK = VK_LValue;
1238          if (!getLangOptions().CPlusPlus && PType.isCForbiddenLValueType())
1239            VK = VK_RValue;
1240          ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
1241
1242          return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
1243                                                         VK, OK,
1244                                                         MemberLoc, BaseExpr.take()));
1245        }
1246      }
1247      // Use of id.member can only be for a property reference. Do not
1248      // use the 'id' redefinition in this case.
1249      if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1250        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1251                                ObjCImpDecl, HasTemplateArgs);
1252
1253      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1254                         << MemberName << BaseType);
1255    }
1256
1257    // 'Class', unqualified only.
1258    if (OT->isObjCClass()) {
1259      // Only works in a method declaration (??!).
1260      ObjCMethodDecl *MD = getCurMethodDecl();
1261      if (!MD) {
1262        if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1263          return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1264                                  ObjCImpDecl, HasTemplateArgs);
1265
1266        goto fail;
1267      }
1268
1269      // Also must look for a getter name which uses property syntax.
1270      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1271      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1272      ObjCMethodDecl *Getter;
1273      if ((Getter = IFace->lookupClassMethod(Sel))) {
1274        // Check the use of this method.
1275        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1276          return ExprError();
1277      } else
1278        Getter = IFace->lookupPrivateMethod(Sel, false);
1279      // If we found a getter then this may be a valid dot-reference, we
1280      // will look for the matching setter, in case it is needed.
1281      Selector SetterSel =
1282        SelectorTable::constructSetterName(PP.getIdentifierTable(),
1283                                           PP.getSelectorTable(), Member);
1284      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1285      if (!Setter) {
1286        // If this reference is in an @implementation, also check for 'private'
1287        // methods.
1288        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1289      }
1290      // Look through local category implementations associated with the class.
1291      if (!Setter)
1292        Setter = IFace->getCategoryClassMethod(SetterSel);
1293
1294      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1295        return ExprError();
1296
1297      if (Getter || Setter) {
1298        QualType PType;
1299
1300        ExprValueKind VK = VK_LValue;
1301        if (Getter) {
1302          PType = getMessageSendResultType(QualType(OT, 0), Getter, true,
1303                                           false);
1304          if (!getLangOptions().CPlusPlus && PType.isCForbiddenLValueType())
1305            VK = VK_RValue;
1306        } else {
1307          // Get the expression type from Setter's incoming parameter.
1308          PType = (*(Setter->param_end() -1))->getType();
1309        }
1310        ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
1311
1312        // FIXME: we must check that the setter has property type.
1313        return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1314                                                       PType, VK, OK,
1315                                                       MemberLoc, BaseExpr.take()));
1316      }
1317
1318      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1319        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1320                                ObjCImpDecl, HasTemplateArgs);
1321
1322      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1323                         << MemberName << BaseType);
1324    }
1325
1326    // Normal property access.
1327    return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
1328                                     MemberName, MemberLoc,
1329                                     SourceLocation(), QualType(), false);
1330  }
1331
1332  // Handle 'field access' to vectors, such as 'V.xx'.
1333  if (BaseType->isExtVectorType()) {
1334    // FIXME: this expr should store IsArrow.
1335    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1336    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1337    QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
1338                                           Member, MemberLoc);
1339    if (ret.isNull())
1340      return ExprError();
1341
1342    return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
1343                                                    *Member, MemberLoc));
1344  }
1345
1346  // Adjust builtin-sel to the appropriate redefinition type if that's
1347  // not just a pointer to builtin-sel again.
1348  if (IsArrow &&
1349      BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1350      !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1351    BaseExpr = ImpCastExprToType(BaseExpr.take(),
1352                                 Context.getObjCSelRedefinitionType(),
1353                                 CK_BitCast);
1354    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1355                            ObjCImpDecl, HasTemplateArgs);
1356  }
1357
1358  // Failure cases.
1359 fail:
1360
1361  // Recover from dot accesses to pointers, e.g.:
1362  //   type *foo;
1363  //   foo.bar
1364  // This is actually well-formed in two cases:
1365  //   - 'type' is an Objective C type
1366  //   - 'bar' is a pseudo-destructor name which happens to refer to
1367  //     the appropriate pointer type
1368  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1369    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1370        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1371      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1372        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1373          << FixItHint::CreateReplacement(OpLoc, "->");
1374
1375      // Recurse as an -> access.
1376      IsArrow = true;
1377      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1378                              ObjCImpDecl, HasTemplateArgs);
1379    }
1380  }
1381
1382  // If the user is trying to apply -> or . to a function name, it's probably
1383  // because they forgot parentheses to call that function.
1384  if (tryToRecoverWithCall(BaseExpr,
1385                           PDiag(diag::err_member_reference_needs_call),
1386                           /*complain*/ false,
1387                           IsArrow ? &isRecordType : &isPointerToRecordType)) {
1388    if (BaseExpr.isInvalid())
1389      return ExprError();
1390    BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1391    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1392                            ObjCImpDecl, HasTemplateArgs);
1393  }
1394
1395  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1396    << BaseType << BaseExpr.get()->getSourceRange();
1397
1398  return ExprError();
1399}
1400
1401/// The main callback when the parser finds something like
1402///   expression . [nested-name-specifier] identifier
1403///   expression -> [nested-name-specifier] identifier
1404/// where 'identifier' encompasses a fairly broad spectrum of
1405/// possibilities, including destructor and operator references.
1406///
1407/// \param OpKind either tok::arrow or tok::period
1408/// \param HasTrailingLParen whether the next token is '(', which
1409///   is used to diagnose mis-uses of special members that can
1410///   only be called
1411/// \param ObjCImpDecl the current ObjC @implementation decl;
1412///   this is an ugly hack around the fact that ObjC @implementations
1413///   aren't properly put in the context chain
1414ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1415                                       SourceLocation OpLoc,
1416                                       tok::TokenKind OpKind,
1417                                       CXXScopeSpec &SS,
1418                                       UnqualifiedId &Id,
1419                                       Decl *ObjCImpDecl,
1420                                       bool HasTrailingLParen) {
1421  if (SS.isSet() && SS.isInvalid())
1422    return ExprError();
1423
1424  // Warn about the explicit constructor calls Microsoft extension.
1425  if (getLangOptions().MicrosoftExt &&
1426      Id.getKind() == UnqualifiedId::IK_ConstructorName)
1427    Diag(Id.getSourceRange().getBegin(),
1428         diag::ext_ms_explicit_constructor_call);
1429
1430  TemplateArgumentListInfo TemplateArgsBuffer;
1431
1432  // Decompose the name into its component parts.
1433  DeclarationNameInfo NameInfo;
1434  const TemplateArgumentListInfo *TemplateArgs;
1435  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1436                         NameInfo, TemplateArgs);
1437
1438  DeclarationName Name = NameInfo.getName();
1439  bool IsArrow = (OpKind == tok::arrow);
1440
1441  NamedDecl *FirstQualifierInScope
1442    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
1443                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
1444
1445  // This is a postfix expression, so get rid of ParenListExprs.
1446  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1447  if (Result.isInvalid()) return ExprError();
1448  Base = Result.take();
1449
1450  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1451      isDependentScopeSpecifier(SS)) {
1452    Result = ActOnDependentMemberExpr(Base, Base->getType(),
1453                                      IsArrow, OpLoc,
1454                                      SS, FirstQualifierInScope,
1455                                      NameInfo, TemplateArgs);
1456  } else {
1457    LookupResult R(*this, NameInfo, LookupMemberName);
1458    ExprResult BaseResult = Owned(Base);
1459    Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
1460                              SS, ObjCImpDecl, TemplateArgs != 0);
1461    if (BaseResult.isInvalid())
1462      return ExprError();
1463    Base = BaseResult.take();
1464
1465    if (Result.isInvalid()) {
1466      Owned(Base);
1467      return ExprError();
1468    }
1469
1470    if (Result.get()) {
1471      // The only way a reference to a destructor can be used is to
1472      // immediately call it, which falls into this case.  If the
1473      // next token is not a '(', produce a diagnostic and build the
1474      // call now.
1475      if (!HasTrailingLParen &&
1476          Id.getKind() == UnqualifiedId::IK_DestructorName)
1477        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
1478
1479      return move(Result);
1480    }
1481
1482    Result = BuildMemberReferenceExpr(Base, Base->getType(),
1483                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
1484                                      R, TemplateArgs);
1485  }
1486
1487  return move(Result);
1488}
1489
1490static ExprResult
1491BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1492                        const CXXScopeSpec &SS, FieldDecl *Field,
1493                        DeclAccessPair FoundDecl,
1494                        const DeclarationNameInfo &MemberNameInfo) {
1495  // x.a is an l-value if 'a' has a reference type. Otherwise:
1496  // x.a is an l-value/x-value/pr-value if the base is (and note
1497  //   that *x is always an l-value), except that if the base isn't
1498  //   an ordinary object then we must have an rvalue.
1499  ExprValueKind VK = VK_LValue;
1500  ExprObjectKind OK = OK_Ordinary;
1501  if (!IsArrow) {
1502    if (BaseExpr->getObjectKind() == OK_Ordinary)
1503      VK = BaseExpr->getValueKind();
1504    else
1505      VK = VK_RValue;
1506  }
1507  if (VK != VK_RValue && Field->isBitField())
1508    OK = OK_BitField;
1509
1510  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1511  QualType MemberType = Field->getType();
1512  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1513    MemberType = Ref->getPointeeType();
1514    VK = VK_LValue;
1515  } else {
1516    QualType BaseType = BaseExpr->getType();
1517    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1518
1519    Qualifiers BaseQuals = BaseType.getQualifiers();
1520
1521    // GC attributes are never picked up by members.
1522    BaseQuals.removeObjCGCAttr();
1523
1524    // CVR attributes from the base are picked up by members,
1525    // except that 'mutable' members don't pick up 'const'.
1526    if (Field->isMutable()) BaseQuals.removeConst();
1527
1528    Qualifiers MemberQuals
1529    = S.Context.getCanonicalType(MemberType).getQualifiers();
1530
1531    // TR 18037 does not allow fields to be declared with address spaces.
1532    assert(!MemberQuals.hasAddressSpace());
1533
1534    Qualifiers Combined = BaseQuals + MemberQuals;
1535    if (Combined != MemberQuals)
1536      MemberType = S.Context.getQualifiedType(MemberType, Combined);
1537  }
1538
1539  S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
1540  ExprResult Base =
1541  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1542                                  FoundDecl, Field);
1543  if (Base.isInvalid())
1544    return ExprError();
1545  return S.Owned(BuildMemberExpr(S.Context, Base.take(), IsArrow, SS,
1546                                 Field, FoundDecl, MemberNameInfo,
1547                                 MemberType, VK, OK));
1548}
1549
1550/// Builds an implicit member access expression.  The current context
1551/// is known to be an instance method, and the given unqualified lookup
1552/// set is known to contain only instance members, at least one of which
1553/// is from an appropriate type.
1554ExprResult
1555Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1556                              LookupResult &R,
1557                              const TemplateArgumentListInfo *TemplateArgs,
1558                              bool IsKnownInstance) {
1559  assert(!R.empty() && !R.isAmbiguous());
1560
1561  SourceLocation loc = R.getNameLoc();
1562
1563  // We may have found a field within an anonymous union or struct
1564  // (C++ [class.union]).
1565  // FIXME: template-ids inside anonymous structs?
1566  if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
1567    return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
1568
1569  // If this is known to be an instance access, go ahead and build an
1570  // implicit 'this' expression now.
1571  // 'this' expression now.
1572  QualType ThisTy = getAndCaptureCurrentThisType();
1573  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1574
1575  Expr *baseExpr = 0; // null signifies implicit access
1576  if (IsKnownInstance) {
1577    SourceLocation Loc = R.getNameLoc();
1578    if (SS.getRange().isValid())
1579      Loc = SS.getRange().getBegin();
1580    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1581  }
1582
1583  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1584                                  /*OpLoc*/ SourceLocation(),
1585                                  /*IsArrow*/ true,
1586                                  SS,
1587                                  /*FirstQualifierInScope*/ 0,
1588                                  R, TemplateArgs);
1589}
1590