1//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "clang/AST/RecordLayout.h"
11#include "clang/AST/ASTContext.h"
12#include "clang/AST/Attr.h"
13#include "clang/AST/CXXInheritance.h"
14#include "clang/AST/Decl.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/Sema/SemaDiagnostic.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/Support/Format.h"
22#include "llvm/Support/MathExtras.h"
23
24using namespace clang;
25
26namespace {
27
28/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29/// For a class hierarchy like
30///
31/// class A { };
32/// class B : A { };
33/// class C : A, B { };
34///
35/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36/// instances, one for B and two for A.
37///
38/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39struct BaseSubobjectInfo {
40  /// Class - The class for this base info.
41  const CXXRecordDecl *Class;
42
43  /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44  bool IsVirtual;
45
46  /// Bases - Information about the base subobjects.
47  SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49  /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50  /// of this base info (if one exists).
51  BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53  // FIXME: Document.
54  const BaseSubobjectInfo *Derived;
55};
56
57/// \brief Externally provided layout. Typically used when the AST source, such
58/// as DWARF, lacks all the information that was available at compile time, such
59/// as alignment attributes on fields and pragmas in effect.
60struct ExternalLayout {
61  ExternalLayout() : Size(0), Align(0) {}
62
63  /// \brief Overall record size in bits.
64  uint64_t Size;
65
66  /// \brief Overall record alignment in bits.
67  uint64_t Align;
68
69  /// \brief Record field offsets in bits.
70  llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72  /// \brief Direct, non-virtual base offsets.
73  llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75  /// \brief Virtual base offsets.
76  llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78  /// Get the offset of the given field. The external source must provide
79  /// entries for all fields in the record.
80  uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81    assert(FieldOffsets.count(FD) &&
82           "Field does not have an external offset");
83    return FieldOffsets[FD];
84  }
85
86  bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87    auto Known = BaseOffsets.find(RD);
88    if (Known == BaseOffsets.end())
89      return false;
90    BaseOffset = Known->second;
91    return true;
92  }
93
94  bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95    auto Known = VirtualBaseOffsets.find(RD);
96    if (Known == VirtualBaseOffsets.end())
97      return false;
98    BaseOffset = Known->second;
99    return true;
100  }
101};
102
103/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104/// offsets while laying out a C++ class.
105class EmptySubobjectMap {
106  const ASTContext &Context;
107  uint64_t CharWidth;
108
109  /// Class - The class whose empty entries we're keeping track of.
110  const CXXRecordDecl *Class;
111
112  /// EmptyClassOffsets - A map from offsets to empty record decls.
113  typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114  typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115  EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117  /// MaxEmptyClassOffset - The highest offset known to contain an empty
118  /// base subobject.
119  CharUnits MaxEmptyClassOffset;
120
121  /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122  /// member subobject that is empty.
123  void ComputeEmptySubobjectSizes();
124
125  void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127  void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                 CharUnits Offset, bool PlacingEmptyBase);
129
130  void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                  const CXXRecordDecl *Class,
132                                  CharUnits Offset);
133  void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
134
135  /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
136  /// subobjects beyond the given offset.
137  bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
138    return Offset <= MaxEmptyClassOffset;
139  }
140
141  CharUnits
142  getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
143    uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
144    assert(FieldOffset % CharWidth == 0 &&
145           "Field offset not at char boundary!");
146
147    return Context.toCharUnitsFromBits(FieldOffset);
148  }
149
150protected:
151  bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
152                                 CharUnits Offset) const;
153
154  bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
155                                     CharUnits Offset);
156
157  bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
158                                      const CXXRecordDecl *Class,
159                                      CharUnits Offset) const;
160  bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
161                                      CharUnits Offset) const;
162
163public:
164  /// This holds the size of the largest empty subobject (either a base
165  /// or a member). Will be zero if the record being built doesn't contain
166  /// any empty classes.
167  CharUnits SizeOfLargestEmptySubobject;
168
169  EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
170  : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
171      ComputeEmptySubobjectSizes();
172  }
173
174  /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
175  /// at the given offset.
176  /// Returns false if placing the record will result in two components
177  /// (direct or indirect) of the same type having the same offset.
178  bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
179                            CharUnits Offset);
180
181  /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
182  /// offset.
183  bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
184};
185
186void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
187  // Check the bases.
188  for (const CXXBaseSpecifier &Base : Class->bases()) {
189    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
190
191    CharUnits EmptySize;
192    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
193    if (BaseDecl->isEmpty()) {
194      // If the class decl is empty, get its size.
195      EmptySize = Layout.getSize();
196    } else {
197      // Otherwise, we get the largest empty subobject for the decl.
198      EmptySize = Layout.getSizeOfLargestEmptySubobject();
199    }
200
201    if (EmptySize > SizeOfLargestEmptySubobject)
202      SizeOfLargestEmptySubobject = EmptySize;
203  }
204
205  // Check the fields.
206  for (const FieldDecl *FD : Class->fields()) {
207    const RecordType *RT =
208        Context.getBaseElementType(FD->getType())->getAs<RecordType>();
209
210    // We only care about record types.
211    if (!RT)
212      continue;
213
214    CharUnits EmptySize;
215    const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
216    const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
217    if (MemberDecl->isEmpty()) {
218      // If the class decl is empty, get its size.
219      EmptySize = Layout.getSize();
220    } else {
221      // Otherwise, we get the largest empty subobject for the decl.
222      EmptySize = Layout.getSizeOfLargestEmptySubobject();
223    }
224
225    if (EmptySize > SizeOfLargestEmptySubobject)
226      SizeOfLargestEmptySubobject = EmptySize;
227  }
228}
229
230bool
231EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
232                                             CharUnits Offset) const {
233  // We only need to check empty bases.
234  if (!RD->isEmpty())
235    return true;
236
237  EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
238  if (I == EmptyClassOffsets.end())
239    return true;
240
241  const ClassVectorTy &Classes = I->second;
242  if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
243    return true;
244
245  // There is already an empty class of the same type at this offset.
246  return false;
247}
248
249void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
250                                             CharUnits Offset) {
251  // We only care about empty bases.
252  if (!RD->isEmpty())
253    return;
254
255  // If we have empty structures inside a union, we can assign both
256  // the same offset. Just avoid pushing them twice in the list.
257  ClassVectorTy &Classes = EmptyClassOffsets[Offset];
258  if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
259    return;
260
261  Classes.push_back(RD);
262
263  // Update the empty class offset.
264  if (Offset > MaxEmptyClassOffset)
265    MaxEmptyClassOffset = Offset;
266}
267
268bool
269EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
270                                                 CharUnits Offset) {
271  // We don't have to keep looking past the maximum offset that's known to
272  // contain an empty class.
273  if (!AnyEmptySubobjectsBeyondOffset(Offset))
274    return true;
275
276  if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
277    return false;
278
279  // Traverse all non-virtual bases.
280  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
281  for (const BaseSubobjectInfo *Base : Info->Bases) {
282    if (Base->IsVirtual)
283      continue;
284
285    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
286
287    if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
288      return false;
289  }
290
291  if (Info->PrimaryVirtualBaseInfo) {
292    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
293
294    if (Info == PrimaryVirtualBaseInfo->Derived) {
295      if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
296        return false;
297    }
298  }
299
300  // Traverse all member variables.
301  unsigned FieldNo = 0;
302  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
303       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
304    if (I->isBitField())
305      continue;
306
307    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
308    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
309      return false;
310  }
311
312  return true;
313}
314
315void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
316                                                  CharUnits Offset,
317                                                  bool PlacingEmptyBase) {
318  if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
319    // We know that the only empty subobjects that can conflict with empty
320    // subobject of non-empty bases, are empty bases that can be placed at
321    // offset zero. Because of this, we only need to keep track of empty base
322    // subobjects with offsets less than the size of the largest empty
323    // subobject for our class.
324    return;
325  }
326
327  AddSubobjectAtOffset(Info->Class, Offset);
328
329  // Traverse all non-virtual bases.
330  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
331  for (const BaseSubobjectInfo *Base : Info->Bases) {
332    if (Base->IsVirtual)
333      continue;
334
335    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
336    UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
337  }
338
339  if (Info->PrimaryVirtualBaseInfo) {
340    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
341
342    if (Info == PrimaryVirtualBaseInfo->Derived)
343      UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
344                                PlacingEmptyBase);
345  }
346
347  // Traverse all member variables.
348  unsigned FieldNo = 0;
349  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
350       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
351    if (I->isBitField())
352      continue;
353
354    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
355    UpdateEmptyFieldSubobjects(*I, FieldOffset);
356  }
357}
358
359bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
360                                             CharUnits Offset) {
361  // If we know this class doesn't have any empty subobjects we don't need to
362  // bother checking.
363  if (SizeOfLargestEmptySubobject.isZero())
364    return true;
365
366  if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
367    return false;
368
369  // We are able to place the base at this offset. Make sure to update the
370  // empty base subobject map.
371  UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
372  return true;
373}
374
375bool
376EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
377                                                  const CXXRecordDecl *Class,
378                                                  CharUnits Offset) const {
379  // We don't have to keep looking past the maximum offset that's known to
380  // contain an empty class.
381  if (!AnyEmptySubobjectsBeyondOffset(Offset))
382    return true;
383
384  if (!CanPlaceSubobjectAtOffset(RD, Offset))
385    return false;
386
387  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
388
389  // Traverse all non-virtual bases.
390  for (const CXXBaseSpecifier &Base : RD->bases()) {
391    if (Base.isVirtual())
392      continue;
393
394    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
395
396    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
397    if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
398      return false;
399  }
400
401  if (RD == Class) {
402    // This is the most derived class, traverse virtual bases as well.
403    for (const CXXBaseSpecifier &Base : RD->vbases()) {
404      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
405
406      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
407      if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
408        return false;
409    }
410  }
411
412  // Traverse all member variables.
413  unsigned FieldNo = 0;
414  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
415       I != E; ++I, ++FieldNo) {
416    if (I->isBitField())
417      continue;
418
419    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
420
421    if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
422      return false;
423  }
424
425  return true;
426}
427
428bool
429EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
430                                                  CharUnits Offset) const {
431  // We don't have to keep looking past the maximum offset that's known to
432  // contain an empty class.
433  if (!AnyEmptySubobjectsBeyondOffset(Offset))
434    return true;
435
436  QualType T = FD->getType();
437  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
438    return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
439
440  // If we have an array type we need to look at every element.
441  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
442    QualType ElemTy = Context.getBaseElementType(AT);
443    const RecordType *RT = ElemTy->getAs<RecordType>();
444    if (!RT)
445      return true;
446
447    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
448    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
449
450    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
451    CharUnits ElementOffset = Offset;
452    for (uint64_t I = 0; I != NumElements; ++I) {
453      // We don't have to keep looking past the maximum offset that's known to
454      // contain an empty class.
455      if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
456        return true;
457
458      if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
459        return false;
460
461      ElementOffset += Layout.getSize();
462    }
463  }
464
465  return true;
466}
467
468bool
469EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
470                                         CharUnits Offset) {
471  if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
472    return false;
473
474  // We are able to place the member variable at this offset.
475  // Make sure to update the empty base subobject map.
476  UpdateEmptyFieldSubobjects(FD, Offset);
477  return true;
478}
479
480void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
481                                                   const CXXRecordDecl *Class,
482                                                   CharUnits Offset) {
483  // We know that the only empty subobjects that can conflict with empty
484  // field subobjects are subobjects of empty bases that can be placed at offset
485  // zero. Because of this, we only need to keep track of empty field
486  // subobjects with offsets less than the size of the largest empty
487  // subobject for our class.
488  if (Offset >= SizeOfLargestEmptySubobject)
489    return;
490
491  AddSubobjectAtOffset(RD, Offset);
492
493  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
494
495  // Traverse all non-virtual bases.
496  for (const CXXBaseSpecifier &Base : RD->bases()) {
497    if (Base.isVirtual())
498      continue;
499
500    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
501
502    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
503    UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
504  }
505
506  if (RD == Class) {
507    // This is the most derived class, traverse virtual bases as well.
508    for (const CXXBaseSpecifier &Base : RD->vbases()) {
509      const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
510
511      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
512      UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
513    }
514  }
515
516  // Traverse all member variables.
517  unsigned FieldNo = 0;
518  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
519       I != E; ++I, ++FieldNo) {
520    if (I->isBitField())
521      continue;
522
523    CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
524
525    UpdateEmptyFieldSubobjects(*I, FieldOffset);
526  }
527}
528
529void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
530                                                   CharUnits Offset) {
531  QualType T = FD->getType();
532  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
533    UpdateEmptyFieldSubobjects(RD, RD, Offset);
534    return;
535  }
536
537  // If we have an array type we need to update every element.
538  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
539    QualType ElemTy = Context.getBaseElementType(AT);
540    const RecordType *RT = ElemTy->getAs<RecordType>();
541    if (!RT)
542      return;
543
544    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
545    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
546
547    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
548    CharUnits ElementOffset = Offset;
549
550    for (uint64_t I = 0; I != NumElements; ++I) {
551      // We know that the only empty subobjects that can conflict with empty
552      // field subobjects are subobjects of empty bases that can be placed at
553      // offset zero. Because of this, we only need to keep track of empty field
554      // subobjects with offsets less than the size of the largest empty
555      // subobject for our class.
556      if (ElementOffset >= SizeOfLargestEmptySubobject)
557        return;
558
559      UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
560      ElementOffset += Layout.getSize();
561    }
562  }
563}
564
565typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
566
567class ItaniumRecordLayoutBuilder {
568protected:
569  // FIXME: Remove this and make the appropriate fields public.
570  friend class clang::ASTContext;
571
572  const ASTContext &Context;
573
574  EmptySubobjectMap *EmptySubobjects;
575
576  /// Size - The current size of the record layout.
577  uint64_t Size;
578
579  /// Alignment - The current alignment of the record layout.
580  CharUnits Alignment;
581
582  /// \brief The alignment if attribute packed is not used.
583  CharUnits UnpackedAlignment;
584
585  SmallVector<uint64_t, 16> FieldOffsets;
586
587  /// \brief Whether the external AST source has provided a layout for this
588  /// record.
589  unsigned UseExternalLayout : 1;
590
591  /// \brief Whether we need to infer alignment, even when we have an
592  /// externally-provided layout.
593  unsigned InferAlignment : 1;
594
595  /// Packed - Whether the record is packed or not.
596  unsigned Packed : 1;
597
598  unsigned IsUnion : 1;
599
600  unsigned IsMac68kAlign : 1;
601
602  unsigned IsMsStruct : 1;
603
604  /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
605  /// this contains the number of bits in the last unit that can be used for
606  /// an adjacent bitfield if necessary.  The unit in question is usually
607  /// a byte, but larger units are used if IsMsStruct.
608  unsigned char UnfilledBitsInLastUnit;
609  /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
610  /// of the previous field if it was a bitfield.
611  unsigned char LastBitfieldTypeSize;
612
613  /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
614  /// #pragma pack.
615  CharUnits MaxFieldAlignment;
616
617  /// DataSize - The data size of the record being laid out.
618  uint64_t DataSize;
619
620  CharUnits NonVirtualSize;
621  CharUnits NonVirtualAlignment;
622
623  /// PrimaryBase - the primary base class (if one exists) of the class
624  /// we're laying out.
625  const CXXRecordDecl *PrimaryBase;
626
627  /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
628  /// out is virtual.
629  bool PrimaryBaseIsVirtual;
630
631  /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
632  /// pointer, as opposed to inheriting one from a primary base class.
633  bool HasOwnVFPtr;
634
635  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
636
637  /// Bases - base classes and their offsets in the record.
638  BaseOffsetsMapTy Bases;
639
640  // VBases - virtual base classes and their offsets in the record.
641  ASTRecordLayout::VBaseOffsetsMapTy VBases;
642
643  /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
644  /// primary base classes for some other direct or indirect base class.
645  CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
646
647  /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
648  /// inheritance graph order. Used for determining the primary base class.
649  const CXXRecordDecl *FirstNearlyEmptyVBase;
650
651  /// VisitedVirtualBases - A set of all the visited virtual bases, used to
652  /// avoid visiting virtual bases more than once.
653  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
654
655  /// Valid if UseExternalLayout is true.
656  ExternalLayout External;
657
658  ItaniumRecordLayoutBuilder(const ASTContext &Context,
659                             EmptySubobjectMap *EmptySubobjects)
660      : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
661        Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
662        UseExternalLayout(false), InferAlignment(false), Packed(false),
663        IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
664        UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
665        MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
666        NonVirtualSize(CharUnits::Zero()),
667        NonVirtualAlignment(CharUnits::One()), PrimaryBase(nullptr),
668        PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
669        FirstNearlyEmptyVBase(nullptr) {}
670
671  void Layout(const RecordDecl *D);
672  void Layout(const CXXRecordDecl *D);
673  void Layout(const ObjCInterfaceDecl *D);
674
675  void LayoutFields(const RecordDecl *D);
676  void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
677  void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
678                          bool FieldPacked, const FieldDecl *D);
679  void LayoutBitField(const FieldDecl *D);
680
681  TargetCXXABI getCXXABI() const {
682    return Context.getTargetInfo().getCXXABI();
683  }
684
685  /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
686  llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
687
688  typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
689    BaseSubobjectInfoMapTy;
690
691  /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
692  /// of the class we're laying out to their base subobject info.
693  BaseSubobjectInfoMapTy VirtualBaseInfo;
694
695  /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
696  /// class we're laying out to their base subobject info.
697  BaseSubobjectInfoMapTy NonVirtualBaseInfo;
698
699  /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
700  /// bases of the given class.
701  void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
702
703  /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
704  /// single class and all of its base classes.
705  BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
706                                              bool IsVirtual,
707                                              BaseSubobjectInfo *Derived);
708
709  /// DeterminePrimaryBase - Determine the primary base of the given class.
710  void DeterminePrimaryBase(const CXXRecordDecl *RD);
711
712  void SelectPrimaryVBase(const CXXRecordDecl *RD);
713
714  void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
715
716  /// LayoutNonVirtualBases - Determines the primary base class (if any) and
717  /// lays it out. Will then proceed to lay out all non-virtual base clasess.
718  void LayoutNonVirtualBases(const CXXRecordDecl *RD);
719
720  /// LayoutNonVirtualBase - Lays out a single non-virtual base.
721  void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
722
723  void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
724                                    CharUnits Offset);
725
726  /// LayoutVirtualBases - Lays out all the virtual bases.
727  void LayoutVirtualBases(const CXXRecordDecl *RD,
728                          const CXXRecordDecl *MostDerivedClass);
729
730  /// LayoutVirtualBase - Lays out a single virtual base.
731  void LayoutVirtualBase(const BaseSubobjectInfo *Base);
732
733  /// LayoutBase - Will lay out a base and return the offset where it was
734  /// placed, in chars.
735  CharUnits LayoutBase(const BaseSubobjectInfo *Base);
736
737  /// InitializeLayout - Initialize record layout for the given record decl.
738  void InitializeLayout(const Decl *D);
739
740  /// FinishLayout - Finalize record layout. Adjust record size based on the
741  /// alignment.
742  void FinishLayout(const NamedDecl *D);
743
744  void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
745  void UpdateAlignment(CharUnits NewAlignment) {
746    UpdateAlignment(NewAlignment, NewAlignment);
747  }
748
749  /// \brief Retrieve the externally-supplied field offset for the given
750  /// field.
751  ///
752  /// \param Field The field whose offset is being queried.
753  /// \param ComputedOffset The offset that we've computed for this field.
754  uint64_t updateExternalFieldOffset(const FieldDecl *Field,
755                                     uint64_t ComputedOffset);
756
757  void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
758                          uint64_t UnpackedOffset, unsigned UnpackedAlign,
759                          bool isPacked, const FieldDecl *D);
760
761  DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
762
763  CharUnits getSize() const {
764    assert(Size % Context.getCharWidth() == 0);
765    return Context.toCharUnitsFromBits(Size);
766  }
767  uint64_t getSizeInBits() const { return Size; }
768
769  void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
770  void setSize(uint64_t NewSize) { Size = NewSize; }
771
772  CharUnits getAligment() const { return Alignment; }
773
774  CharUnits getDataSize() const {
775    assert(DataSize % Context.getCharWidth() == 0);
776    return Context.toCharUnitsFromBits(DataSize);
777  }
778  uint64_t getDataSizeInBits() const { return DataSize; }
779
780  void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
781  void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
782
783  ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
784  void operator=(const ItaniumRecordLayoutBuilder &) = delete;
785};
786} // end anonymous namespace
787
788void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
789  for (const auto &I : RD->bases()) {
790    assert(!I.getType()->isDependentType() &&
791           "Cannot layout class with dependent bases.");
792
793    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
794
795    // Check if this is a nearly empty virtual base.
796    if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
797      // If it's not an indirect primary base, then we've found our primary
798      // base.
799      if (!IndirectPrimaryBases.count(Base)) {
800        PrimaryBase = Base;
801        PrimaryBaseIsVirtual = true;
802        return;
803      }
804
805      // Is this the first nearly empty virtual base?
806      if (!FirstNearlyEmptyVBase)
807        FirstNearlyEmptyVBase = Base;
808    }
809
810    SelectPrimaryVBase(Base);
811    if (PrimaryBase)
812      return;
813  }
814}
815
816/// DeterminePrimaryBase - Determine the primary base of the given class.
817void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
818  // If the class isn't dynamic, it won't have a primary base.
819  if (!RD->isDynamicClass())
820    return;
821
822  // Compute all the primary virtual bases for all of our direct and
823  // indirect bases, and record all their primary virtual base classes.
824  RD->getIndirectPrimaryBases(IndirectPrimaryBases);
825
826  // If the record has a dynamic base class, attempt to choose a primary base
827  // class. It is the first (in direct base class order) non-virtual dynamic
828  // base class, if one exists.
829  for (const auto &I : RD->bases()) {
830    // Ignore virtual bases.
831    if (I.isVirtual())
832      continue;
833
834    const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
835
836    if (Base->isDynamicClass()) {
837      // We found it.
838      PrimaryBase = Base;
839      PrimaryBaseIsVirtual = false;
840      return;
841    }
842  }
843
844  // Under the Itanium ABI, if there is no non-virtual primary base class,
845  // try to compute the primary virtual base.  The primary virtual base is
846  // the first nearly empty virtual base that is not an indirect primary
847  // virtual base class, if one exists.
848  if (RD->getNumVBases() != 0) {
849    SelectPrimaryVBase(RD);
850    if (PrimaryBase)
851      return;
852  }
853
854  // Otherwise, it is the first indirect primary base class, if one exists.
855  if (FirstNearlyEmptyVBase) {
856    PrimaryBase = FirstNearlyEmptyVBase;
857    PrimaryBaseIsVirtual = true;
858    return;
859  }
860
861  assert(!PrimaryBase && "Should not get here with a primary base!");
862}
863
864BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
865    const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
866  BaseSubobjectInfo *Info;
867
868  if (IsVirtual) {
869    // Check if we already have info about this virtual base.
870    BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
871    if (InfoSlot) {
872      assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
873      return InfoSlot;
874    }
875
876    // We don't, create it.
877    InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
878    Info = InfoSlot;
879  } else {
880    Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
881  }
882
883  Info->Class = RD;
884  Info->IsVirtual = IsVirtual;
885  Info->Derived = nullptr;
886  Info->PrimaryVirtualBaseInfo = nullptr;
887
888  const CXXRecordDecl *PrimaryVirtualBase = nullptr;
889  BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
890
891  // Check if this base has a primary virtual base.
892  if (RD->getNumVBases()) {
893    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
894    if (Layout.isPrimaryBaseVirtual()) {
895      // This base does have a primary virtual base.
896      PrimaryVirtualBase = Layout.getPrimaryBase();
897      assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
898
899      // Now check if we have base subobject info about this primary base.
900      PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
901
902      if (PrimaryVirtualBaseInfo) {
903        if (PrimaryVirtualBaseInfo->Derived) {
904          // We did have info about this primary base, and it turns out that it
905          // has already been claimed as a primary virtual base for another
906          // base.
907          PrimaryVirtualBase = nullptr;
908        } else {
909          // We can claim this base as our primary base.
910          Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
911          PrimaryVirtualBaseInfo->Derived = Info;
912        }
913      }
914    }
915  }
916
917  // Now go through all direct bases.
918  for (const auto &I : RD->bases()) {
919    bool IsVirtual = I.isVirtual();
920
921    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
922
923    Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
924  }
925
926  if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
927    // Traversing the bases must have created the base info for our primary
928    // virtual base.
929    PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
930    assert(PrimaryVirtualBaseInfo &&
931           "Did not create a primary virtual base!");
932
933    // Claim the primary virtual base as our primary virtual base.
934    Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
935    PrimaryVirtualBaseInfo->Derived = Info;
936  }
937
938  return Info;
939}
940
941void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
942    const CXXRecordDecl *RD) {
943  for (const auto &I : RD->bases()) {
944    bool IsVirtual = I.isVirtual();
945
946    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
947
948    // Compute the base subobject info for this base.
949    BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
950                                                       nullptr);
951
952    if (IsVirtual) {
953      // ComputeBaseInfo has already added this base for us.
954      assert(VirtualBaseInfo.count(BaseDecl) &&
955             "Did not add virtual base!");
956    } else {
957      // Add the base info to the map of non-virtual bases.
958      assert(!NonVirtualBaseInfo.count(BaseDecl) &&
959             "Non-virtual base already exists!");
960      NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
961    }
962  }
963}
964
965void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
966    CharUnits UnpackedBaseAlign) {
967  CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
968
969  // The maximum field alignment overrides base align.
970  if (!MaxFieldAlignment.isZero()) {
971    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
972    UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
973  }
974
975  // Round up the current record size to pointer alignment.
976  setSize(getSize().RoundUpToAlignment(BaseAlign));
977  setDataSize(getSize());
978
979  // Update the alignment.
980  UpdateAlignment(BaseAlign, UnpackedBaseAlign);
981}
982
983void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
984    const CXXRecordDecl *RD) {
985  // Then, determine the primary base class.
986  DeterminePrimaryBase(RD);
987
988  // Compute base subobject info.
989  ComputeBaseSubobjectInfo(RD);
990
991  // If we have a primary base class, lay it out.
992  if (PrimaryBase) {
993    if (PrimaryBaseIsVirtual) {
994      // If the primary virtual base was a primary virtual base of some other
995      // base class we'll have to steal it.
996      BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
997      PrimaryBaseInfo->Derived = nullptr;
998
999      // We have a virtual primary base, insert it as an indirect primary base.
1000      IndirectPrimaryBases.insert(PrimaryBase);
1001
1002      assert(!VisitedVirtualBases.count(PrimaryBase) &&
1003             "vbase already visited!");
1004      VisitedVirtualBases.insert(PrimaryBase);
1005
1006      LayoutVirtualBase(PrimaryBaseInfo);
1007    } else {
1008      BaseSubobjectInfo *PrimaryBaseInfo =
1009        NonVirtualBaseInfo.lookup(PrimaryBase);
1010      assert(PrimaryBaseInfo &&
1011             "Did not find base info for non-virtual primary base!");
1012
1013      LayoutNonVirtualBase(PrimaryBaseInfo);
1014    }
1015
1016  // If this class needs a vtable/vf-table and didn't get one from a
1017  // primary base, add it in now.
1018  } else if (RD->isDynamicClass()) {
1019    assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1020    CharUnits PtrWidth =
1021      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1022    CharUnits PtrAlign =
1023      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1024    EnsureVTablePointerAlignment(PtrAlign);
1025    HasOwnVFPtr = true;
1026    setSize(getSize() + PtrWidth);
1027    setDataSize(getSize());
1028  }
1029
1030  // Now lay out the non-virtual bases.
1031  for (const auto &I : RD->bases()) {
1032
1033    // Ignore virtual bases.
1034    if (I.isVirtual())
1035      continue;
1036
1037    const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1038
1039    // Skip the primary base, because we've already laid it out.  The
1040    // !PrimaryBaseIsVirtual check is required because we might have a
1041    // non-virtual base of the same type as a primary virtual base.
1042    if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1043      continue;
1044
1045    // Lay out the base.
1046    BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1047    assert(BaseInfo && "Did not find base info for non-virtual base!");
1048
1049    LayoutNonVirtualBase(BaseInfo);
1050  }
1051}
1052
1053void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1054    const BaseSubobjectInfo *Base) {
1055  // Layout the base.
1056  CharUnits Offset = LayoutBase(Base);
1057
1058  // Add its base class offset.
1059  assert(!Bases.count(Base->Class) && "base offset already exists!");
1060  Bases.insert(std::make_pair(Base->Class, Offset));
1061
1062  AddPrimaryVirtualBaseOffsets(Base, Offset);
1063}
1064
1065void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1066    const BaseSubobjectInfo *Info, CharUnits Offset) {
1067  // This base isn't interesting, it has no virtual bases.
1068  if (!Info->Class->getNumVBases())
1069    return;
1070
1071  // First, check if we have a virtual primary base to add offsets for.
1072  if (Info->PrimaryVirtualBaseInfo) {
1073    assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1074           "Primary virtual base is not virtual!");
1075    if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1076      // Add the offset.
1077      assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1078             "primary vbase offset already exists!");
1079      VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1080                                   ASTRecordLayout::VBaseInfo(Offset, false)));
1081
1082      // Traverse the primary virtual base.
1083      AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1084    }
1085  }
1086
1087  // Now go through all direct non-virtual bases.
1088  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1089  for (const BaseSubobjectInfo *Base : Info->Bases) {
1090    if (Base->IsVirtual)
1091      continue;
1092
1093    CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1094    AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1095  }
1096}
1097
1098void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1099    const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1100  const CXXRecordDecl *PrimaryBase;
1101  bool PrimaryBaseIsVirtual;
1102
1103  if (MostDerivedClass == RD) {
1104    PrimaryBase = this->PrimaryBase;
1105    PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1106  } else {
1107    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1108    PrimaryBase = Layout.getPrimaryBase();
1109    PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1110  }
1111
1112  for (const CXXBaseSpecifier &Base : RD->bases()) {
1113    assert(!Base.getType()->isDependentType() &&
1114           "Cannot layout class with dependent bases.");
1115
1116    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1117
1118    if (Base.isVirtual()) {
1119      if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1120        bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1121
1122        // Only lay out the virtual base if it's not an indirect primary base.
1123        if (!IndirectPrimaryBase) {
1124          // Only visit virtual bases once.
1125          if (!VisitedVirtualBases.insert(BaseDecl).second)
1126            continue;
1127
1128          const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1129          assert(BaseInfo && "Did not find virtual base info!");
1130          LayoutVirtualBase(BaseInfo);
1131        }
1132      }
1133    }
1134
1135    if (!BaseDecl->getNumVBases()) {
1136      // This base isn't interesting since it doesn't have any virtual bases.
1137      continue;
1138    }
1139
1140    LayoutVirtualBases(BaseDecl, MostDerivedClass);
1141  }
1142}
1143
1144void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1145    const BaseSubobjectInfo *Base) {
1146  assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1147
1148  // Layout the base.
1149  CharUnits Offset = LayoutBase(Base);
1150
1151  // Add its base class offset.
1152  assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1153  VBases.insert(std::make_pair(Base->Class,
1154                       ASTRecordLayout::VBaseInfo(Offset, false)));
1155
1156  AddPrimaryVirtualBaseOffsets(Base, Offset);
1157}
1158
1159CharUnits
1160ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1161  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1162
1163
1164  CharUnits Offset;
1165
1166  // Query the external layout to see if it provides an offset.
1167  bool HasExternalLayout = false;
1168  if (UseExternalLayout) {
1169    llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
1170    if (Base->IsVirtual)
1171      HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1172    else
1173      HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1174  }
1175
1176  CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1177  CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
1178
1179  // If we have an empty base class, try to place it at offset 0.
1180  if (Base->Class->isEmpty() &&
1181      (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1182      EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1183    setSize(std::max(getSize(), Layout.getSize()));
1184    UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1185
1186    return CharUnits::Zero();
1187  }
1188
1189  // The maximum field alignment overrides base align.
1190  if (!MaxFieldAlignment.isZero()) {
1191    BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1192    UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1193  }
1194
1195  if (!HasExternalLayout) {
1196    // Round up the current record size to the base's alignment boundary.
1197    Offset = getDataSize().RoundUpToAlignment(BaseAlign);
1198
1199    // Try to place the base.
1200    while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1201      Offset += BaseAlign;
1202  } else {
1203    bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1204    (void)Allowed;
1205    assert(Allowed && "Base subobject externally placed at overlapping offset");
1206
1207    if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
1208      // The externally-supplied base offset is before the base offset we
1209      // computed. Assume that the structure is packed.
1210      Alignment = CharUnits::One();
1211      InferAlignment = false;
1212    }
1213  }
1214
1215  if (!Base->Class->isEmpty()) {
1216    // Update the data size.
1217    setDataSize(Offset + Layout.getNonVirtualSize());
1218
1219    setSize(std::max(getSize(), getDataSize()));
1220  } else
1221    setSize(std::max(getSize(), Offset + Layout.getSize()));
1222
1223  // Remember max struct/class alignment.
1224  UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1225
1226  return Offset;
1227}
1228
1229void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1230  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1231    IsUnion = RD->isUnion();
1232    IsMsStruct = RD->isMsStruct(Context);
1233  }
1234
1235  Packed = D->hasAttr<PackedAttr>();
1236
1237  // Honor the default struct packing maximum alignment flag.
1238  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1239    MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1240  }
1241
1242  // mac68k alignment supersedes maximum field alignment and attribute aligned,
1243  // and forces all structures to have 2-byte alignment. The IBM docs on it
1244  // allude to additional (more complicated) semantics, especially with regard
1245  // to bit-fields, but gcc appears not to follow that.
1246  if (D->hasAttr<AlignMac68kAttr>()) {
1247    IsMac68kAlign = true;
1248    MaxFieldAlignment = CharUnits::fromQuantity(2);
1249    Alignment = CharUnits::fromQuantity(2);
1250  } else {
1251    if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1252      MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1253
1254    if (unsigned MaxAlign = D->getMaxAlignment())
1255      UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1256  }
1257
1258  // If there is an external AST source, ask it for the various offsets.
1259  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1260    if (ExternalASTSource *Source = Context.getExternalSource()) {
1261      UseExternalLayout = Source->layoutRecordType(
1262          RD, External.Size, External.Align, External.FieldOffsets,
1263          External.BaseOffsets, External.VirtualBaseOffsets);
1264
1265      // Update based on external alignment.
1266      if (UseExternalLayout) {
1267        if (External.Align > 0) {
1268          Alignment = Context.toCharUnitsFromBits(External.Align);
1269        } else {
1270          // The external source didn't have alignment information; infer it.
1271          InferAlignment = true;
1272        }
1273      }
1274    }
1275}
1276
1277void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1278  InitializeLayout(D);
1279  LayoutFields(D);
1280
1281  // Finally, round the size of the total struct up to the alignment of the
1282  // struct itself.
1283  FinishLayout(D);
1284}
1285
1286void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1287  InitializeLayout(RD);
1288
1289  // Lay out the vtable and the non-virtual bases.
1290  LayoutNonVirtualBases(RD);
1291
1292  LayoutFields(RD);
1293
1294  NonVirtualSize = Context.toCharUnitsFromBits(
1295        llvm::RoundUpToAlignment(getSizeInBits(),
1296                                 Context.getTargetInfo().getCharAlign()));
1297  NonVirtualAlignment = Alignment;
1298
1299  // Lay out the virtual bases and add the primary virtual base offsets.
1300  LayoutVirtualBases(RD, RD);
1301
1302  // Finally, round the size of the total struct up to the alignment
1303  // of the struct itself.
1304  FinishLayout(RD);
1305
1306#ifndef NDEBUG
1307  // Check that we have base offsets for all bases.
1308  for (const CXXBaseSpecifier &Base : RD->bases()) {
1309    if (Base.isVirtual())
1310      continue;
1311
1312    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1313
1314    assert(Bases.count(BaseDecl) && "Did not find base offset!");
1315  }
1316
1317  // And all virtual bases.
1318  for (const CXXBaseSpecifier &Base : RD->vbases()) {
1319    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1320
1321    assert(VBases.count(BaseDecl) && "Did not find base offset!");
1322  }
1323#endif
1324}
1325
1326void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1327  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1328    const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1329
1330    UpdateAlignment(SL.getAlignment());
1331
1332    // We start laying out ivars not at the end of the superclass
1333    // structure, but at the next byte following the last field.
1334    setSize(SL.getDataSize());
1335    setDataSize(getSize());
1336  }
1337
1338  InitializeLayout(D);
1339  // Layout each ivar sequentially.
1340  for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1341       IVD = IVD->getNextIvar())
1342    LayoutField(IVD, false);
1343
1344  // Finally, round the size of the total struct up to the alignment of the
1345  // struct itself.
1346  FinishLayout(D);
1347}
1348
1349void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1350  // Layout each field, for now, just sequentially, respecting alignment.  In
1351  // the future, this will need to be tweakable by targets.
1352  bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1353  bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1354  for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1355    auto Next(I);
1356    ++Next;
1357    LayoutField(*I,
1358                InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1359  }
1360}
1361
1362// Rounds the specified size to have it a multiple of the char size.
1363static uint64_t
1364roundUpSizeToCharAlignment(uint64_t Size,
1365                           const ASTContext &Context) {
1366  uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1367  return llvm::RoundUpToAlignment(Size, CharAlignment);
1368}
1369
1370void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1371                                                    uint64_t TypeSize,
1372                                                    bool FieldPacked,
1373                                                    const FieldDecl *D) {
1374  assert(Context.getLangOpts().CPlusPlus &&
1375         "Can only have wide bit-fields in C++!");
1376
1377  // Itanium C++ ABI 2.4:
1378  //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1379  //   sizeof(T')*8 <= n.
1380
1381  QualType IntegralPODTypes[] = {
1382    Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1383    Context.UnsignedLongTy, Context.UnsignedLongLongTy
1384  };
1385
1386  QualType Type;
1387  for (const QualType &QT : IntegralPODTypes) {
1388    uint64_t Size = Context.getTypeSize(QT);
1389
1390    if (Size > FieldSize)
1391      break;
1392
1393    Type = QT;
1394  }
1395  assert(!Type.isNull() && "Did not find a type!");
1396
1397  CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1398
1399  // We're not going to use any of the unfilled bits in the last byte.
1400  UnfilledBitsInLastUnit = 0;
1401  LastBitfieldTypeSize = 0;
1402
1403  uint64_t FieldOffset;
1404  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1405
1406  if (IsUnion) {
1407    uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1408                                                           Context);
1409    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1410    FieldOffset = 0;
1411  } else {
1412    // The bitfield is allocated starting at the next offset aligned
1413    // appropriately for T', with length n bits.
1414    FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
1415                                           Context.toBits(TypeAlign));
1416
1417    uint64_t NewSizeInBits = FieldOffset + FieldSize;
1418
1419    setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1420                                         Context.getTargetInfo().getCharAlign()));
1421    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1422  }
1423
1424  // Place this field at the current location.
1425  FieldOffsets.push_back(FieldOffset);
1426
1427  CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1428                    Context.toBits(TypeAlign), FieldPacked, D);
1429
1430  // Update the size.
1431  setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1432
1433  // Remember max struct/class alignment.
1434  UpdateAlignment(TypeAlign);
1435}
1436
1437void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1438  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1439  uint64_t FieldSize = D->getBitWidthValue(Context);
1440  TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1441  uint64_t TypeSize = FieldInfo.Width;
1442  unsigned FieldAlign = FieldInfo.Align;
1443
1444  // UnfilledBitsInLastUnit is the difference between the end of the
1445  // last allocated bitfield (i.e. the first bit offset available for
1446  // bitfields) and the end of the current data size in bits (i.e. the
1447  // first bit offset available for non-bitfields).  The current data
1448  // size in bits is always a multiple of the char size; additionally,
1449  // for ms_struct records it's also a multiple of the
1450  // LastBitfieldTypeSize (if set).
1451
1452  // The struct-layout algorithm is dictated by the platform ABI,
1453  // which in principle could use almost any rules it likes.  In
1454  // practice, UNIXy targets tend to inherit the algorithm described
1455  // in the System V generic ABI.  The basic bitfield layout rule in
1456  // System V is to place bitfields at the next available bit offset
1457  // where the entire bitfield would fit in an aligned storage unit of
1458  // the declared type; it's okay if an earlier or later non-bitfield
1459  // is allocated in the same storage unit.  However, some targets
1460  // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1461  // require this storage unit to be aligned, and therefore always put
1462  // the bitfield at the next available bit offset.
1463
1464  // ms_struct basically requests a complete replacement of the
1465  // platform ABI's struct-layout algorithm, with the high-level goal
1466  // of duplicating MSVC's layout.  For non-bitfields, this follows
1467  // the standard algorithm.  The basic bitfield layout rule is to
1468  // allocate an entire unit of the bitfield's declared type
1469  // (e.g. 'unsigned long'), then parcel it up among successive
1470  // bitfields whose declared types have the same size, making a new
1471  // unit as soon as the last can no longer store the whole value.
1472  // Since it completely replaces the platform ABI's algorithm,
1473  // settings like !useBitFieldTypeAlignment() do not apply.
1474
1475  // A zero-width bitfield forces the use of a new storage unit for
1476  // later bitfields.  In general, this occurs by rounding up the
1477  // current size of the struct as if the algorithm were about to
1478  // place a non-bitfield of the field's formal type.  Usually this
1479  // does not change the alignment of the struct itself, but it does
1480  // on some targets (those that useZeroLengthBitfieldAlignment(),
1481  // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1482  // ignored unless they follow a non-zero-width bitfield.
1483
1484  // A field alignment restriction (e.g. from #pragma pack) or
1485  // specification (e.g. from __attribute__((aligned))) changes the
1486  // formal alignment of the field.  For System V, this alters the
1487  // required alignment of the notional storage unit that must contain
1488  // the bitfield.  For ms_struct, this only affects the placement of
1489  // new storage units.  In both cases, the effect of #pragma pack is
1490  // ignored on zero-width bitfields.
1491
1492  // On System V, a packed field (e.g. from #pragma pack or
1493  // __attribute__((packed))) always uses the next available bit
1494  // offset.
1495
1496  // In an ms_struct struct, the alignment of a fundamental type is
1497  // always equal to its size.  This is necessary in order to mimic
1498  // the i386 alignment rules on targets which might not fully align
1499  // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1500
1501  // First, some simple bookkeeping to perform for ms_struct structs.
1502  if (IsMsStruct) {
1503    // The field alignment for integer types is always the size.
1504    FieldAlign = TypeSize;
1505
1506    // If the previous field was not a bitfield, or was a bitfield
1507    // with a different storage unit size, we're done with that
1508    // storage unit.
1509    if (LastBitfieldTypeSize != TypeSize) {
1510      // Also, ignore zero-length bitfields after non-bitfields.
1511      if (!LastBitfieldTypeSize && !FieldSize)
1512        FieldAlign = 1;
1513
1514      UnfilledBitsInLastUnit = 0;
1515      LastBitfieldTypeSize = 0;
1516    }
1517  }
1518
1519  // If the field is wider than its declared type, it follows
1520  // different rules in all cases.
1521  if (FieldSize > TypeSize) {
1522    LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1523    return;
1524  }
1525
1526  // Compute the next available bit offset.
1527  uint64_t FieldOffset =
1528    IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1529
1530  // Handle targets that don't honor bitfield type alignment.
1531  if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1532    // Some such targets do honor it on zero-width bitfields.
1533    if (FieldSize == 0 &&
1534        Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1535      // The alignment to round up to is the max of the field's natural
1536      // alignment and a target-specific fixed value (sometimes zero).
1537      unsigned ZeroLengthBitfieldBoundary =
1538        Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1539      FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1540
1541    // If that doesn't apply, just ignore the field alignment.
1542    } else {
1543      FieldAlign = 1;
1544    }
1545  }
1546
1547  // Remember the alignment we would have used if the field were not packed.
1548  unsigned UnpackedFieldAlign = FieldAlign;
1549
1550  // Ignore the field alignment if the field is packed unless it has zero-size.
1551  if (!IsMsStruct && FieldPacked && FieldSize != 0)
1552    FieldAlign = 1;
1553
1554  // But, if there's an 'aligned' attribute on the field, honor that.
1555  unsigned ExplicitFieldAlign = D->getMaxAlignment();
1556  if (ExplicitFieldAlign) {
1557    FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1558    UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1559  }
1560
1561  // But, if there's a #pragma pack in play, that takes precedent over
1562  // even the 'aligned' attribute, for non-zero-width bitfields.
1563  if (!MaxFieldAlignment.isZero() && FieldSize) {
1564    unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1565    FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1566    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1567  }
1568
1569  // But, ms_struct just ignores all of that in unions, even explicit
1570  // alignment attributes.
1571  if (IsMsStruct && IsUnion) {
1572    FieldAlign = UnpackedFieldAlign = 1;
1573  }
1574
1575  // For purposes of diagnostics, we're going to simultaneously
1576  // compute the field offsets that we would have used if we weren't
1577  // adding any alignment padding or if the field weren't packed.
1578  uint64_t UnpaddedFieldOffset = FieldOffset;
1579  uint64_t UnpackedFieldOffset = FieldOffset;
1580
1581  // Check if we need to add padding to fit the bitfield within an
1582  // allocation unit with the right size and alignment.  The rules are
1583  // somewhat different here for ms_struct structs.
1584  if (IsMsStruct) {
1585    // If it's not a zero-width bitfield, and we can fit the bitfield
1586    // into the active storage unit (and we haven't already decided to
1587    // start a new storage unit), just do so, regardless of any other
1588    // other consideration.  Otherwise, round up to the right alignment.
1589    if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1590      FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1591      UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1592                                                     UnpackedFieldAlign);
1593      UnfilledBitsInLastUnit = 0;
1594    }
1595
1596  } else {
1597    // #pragma pack, with any value, suppresses the insertion of padding.
1598    bool AllowPadding = MaxFieldAlignment.isZero();
1599
1600    // Compute the real offset.
1601    if (FieldSize == 0 ||
1602        (AllowPadding &&
1603         (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
1604      FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1605    } else if (ExplicitFieldAlign) {
1606      // TODO: figure it out what needs to be done on targets that don't honor
1607      // bit-field type alignment like ARM APCS ABI.
1608      FieldOffset = llvm::RoundUpToAlignment(FieldOffset, ExplicitFieldAlign);
1609    }
1610
1611    // Repeat the computation for diagnostic purposes.
1612    if (FieldSize == 0 ||
1613        (AllowPadding &&
1614         (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1615      UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1616                                                     UnpackedFieldAlign);
1617    else if (ExplicitFieldAlign)
1618      UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1619                                                     ExplicitFieldAlign);
1620  }
1621
1622  // If we're using external layout, give the external layout a chance
1623  // to override this information.
1624  if (UseExternalLayout)
1625    FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1626
1627  // Okay, place the bitfield at the calculated offset.
1628  FieldOffsets.push_back(FieldOffset);
1629
1630  // Bookkeeping:
1631
1632  // Anonymous members don't affect the overall record alignment,
1633  // except on targets where they do.
1634  if (!IsMsStruct &&
1635      !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1636      !D->getIdentifier())
1637    FieldAlign = UnpackedFieldAlign = 1;
1638
1639  // Diagnose differences in layout due to padding or packing.
1640  if (!UseExternalLayout)
1641    CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1642                      UnpackedFieldAlign, FieldPacked, D);
1643
1644  // Update DataSize to include the last byte containing (part of) the bitfield.
1645
1646  // For unions, this is just a max operation, as usual.
1647  if (IsUnion) {
1648    // For ms_struct, allocate the entire storage unit --- unless this
1649    // is a zero-width bitfield, in which case just use a size of 1.
1650    uint64_t RoundedFieldSize;
1651    if (IsMsStruct) {
1652      RoundedFieldSize =
1653        (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());
1654
1655    // Otherwise, allocate just the number of bytes required to store
1656    // the bitfield.
1657    } else {
1658      RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1659    }
1660    setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1661
1662  // For non-zero-width bitfields in ms_struct structs, allocate a new
1663  // storage unit if necessary.
1664  } else if (IsMsStruct && FieldSize) {
1665    // We should have cleared UnfilledBitsInLastUnit in every case
1666    // where we changed storage units.
1667    if (!UnfilledBitsInLastUnit) {
1668      setDataSize(FieldOffset + TypeSize);
1669      UnfilledBitsInLastUnit = TypeSize;
1670    }
1671    UnfilledBitsInLastUnit -= FieldSize;
1672    LastBitfieldTypeSize = TypeSize;
1673
1674  // Otherwise, bump the data size up to include the bitfield,
1675  // including padding up to char alignment, and then remember how
1676  // bits we didn't use.
1677  } else {
1678    uint64_t NewSizeInBits = FieldOffset + FieldSize;
1679    uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1680    setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, CharAlignment));
1681    UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1682
1683    // The only time we can get here for an ms_struct is if this is a
1684    // zero-width bitfield, which doesn't count as anything for the
1685    // purposes of unfilled bits.
1686    LastBitfieldTypeSize = 0;
1687  }
1688
1689  // Update the size.
1690  setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1691
1692  // Remember max struct/class alignment.
1693  UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1694                  Context.toCharUnitsFromBits(UnpackedFieldAlign));
1695}
1696
1697void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1698                                             bool InsertExtraPadding) {
1699  if (D->isBitField()) {
1700    LayoutBitField(D);
1701    return;
1702  }
1703
1704  uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1705
1706  // Reset the unfilled bits.
1707  UnfilledBitsInLastUnit = 0;
1708  LastBitfieldTypeSize = 0;
1709
1710  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1711  CharUnits FieldOffset =
1712    IsUnion ? CharUnits::Zero() : getDataSize();
1713  CharUnits FieldSize;
1714  CharUnits FieldAlign;
1715
1716  if (D->getType()->isIncompleteArrayType()) {
1717    // This is a flexible array member; we can't directly
1718    // query getTypeInfo about these, so we figure it out here.
1719    // Flexible array members don't have any size, but they
1720    // have to be aligned appropriately for their element type.
1721    FieldSize = CharUnits::Zero();
1722    const ArrayType* ATy = Context.getAsArrayType(D->getType());
1723    FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1724  } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1725    unsigned AS = RT->getPointeeType().getAddressSpace();
1726    FieldSize =
1727      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1728    FieldAlign =
1729      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1730  } else {
1731    std::pair<CharUnits, CharUnits> FieldInfo =
1732      Context.getTypeInfoInChars(D->getType());
1733    FieldSize = FieldInfo.first;
1734    FieldAlign = FieldInfo.second;
1735
1736    if (IsMsStruct) {
1737      // If MS bitfield layout is required, figure out what type is being
1738      // laid out and align the field to the width of that type.
1739
1740      // Resolve all typedefs down to their base type and round up the field
1741      // alignment if necessary.
1742      QualType T = Context.getBaseElementType(D->getType());
1743      if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1744        CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1745        if (TypeSize > FieldAlign)
1746          FieldAlign = TypeSize;
1747      }
1748    }
1749  }
1750
1751  // The align if the field is not packed. This is to check if the attribute
1752  // was unnecessary (-Wpacked).
1753  CharUnits UnpackedFieldAlign = FieldAlign;
1754  CharUnits UnpackedFieldOffset = FieldOffset;
1755
1756  if (FieldPacked)
1757    FieldAlign = CharUnits::One();
1758  CharUnits MaxAlignmentInChars =
1759    Context.toCharUnitsFromBits(D->getMaxAlignment());
1760  FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1761  UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1762
1763  // The maximum field alignment overrides the aligned attribute.
1764  if (!MaxFieldAlignment.isZero()) {
1765    FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1766    UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1767  }
1768
1769  // Round up the current record size to the field's alignment boundary.
1770  FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
1771  UnpackedFieldOffset =
1772    UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
1773
1774  if (UseExternalLayout) {
1775    FieldOffset = Context.toCharUnitsFromBits(
1776                    updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1777
1778    if (!IsUnion && EmptySubobjects) {
1779      // Record the fact that we're placing a field at this offset.
1780      bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1781      (void)Allowed;
1782      assert(Allowed && "Externally-placed field cannot be placed here");
1783    }
1784  } else {
1785    if (!IsUnion && EmptySubobjects) {
1786      // Check if we can place the field at this offset.
1787      while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1788        // We couldn't place the field at the offset. Try again at a new offset.
1789        FieldOffset += FieldAlign;
1790      }
1791    }
1792  }
1793
1794  // Place this field at the current location.
1795  FieldOffsets.push_back(Context.toBits(FieldOffset));
1796
1797  if (!UseExternalLayout)
1798    CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1799                      Context.toBits(UnpackedFieldOffset),
1800                      Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1801
1802  if (InsertExtraPadding) {
1803    CharUnits ASanAlignment = CharUnits::fromQuantity(8);
1804    CharUnits ExtraSizeForAsan = ASanAlignment;
1805    if (FieldSize % ASanAlignment)
1806      ExtraSizeForAsan +=
1807          ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
1808    FieldSize += ExtraSizeForAsan;
1809  }
1810
1811  // Reserve space for this field.
1812  uint64_t FieldSizeInBits = Context.toBits(FieldSize);
1813  if (IsUnion)
1814    setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
1815  else
1816    setDataSize(FieldOffset + FieldSize);
1817
1818  // Update the size.
1819  setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1820
1821  // Remember max struct/class alignment.
1822  UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1823}
1824
1825void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1826  // In C++, records cannot be of size 0.
1827  if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1828    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1829      // Compatibility with gcc requires a class (pod or non-pod)
1830      // which is not empty but of size 0; such as having fields of
1831      // array of zero-length, remains of Size 0
1832      if (RD->isEmpty())
1833        setSize(CharUnits::One());
1834    }
1835    else
1836      setSize(CharUnits::One());
1837  }
1838
1839  // Finally, round the size of the record up to the alignment of the
1840  // record itself.
1841  uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
1842  uint64_t UnpackedSizeInBits =
1843  llvm::RoundUpToAlignment(getSizeInBits(),
1844                           Context.toBits(UnpackedAlignment));
1845  CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
1846  uint64_t RoundedSize
1847    = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
1848
1849  if (UseExternalLayout) {
1850    // If we're inferring alignment, and the external size is smaller than
1851    // our size after we've rounded up to alignment, conservatively set the
1852    // alignment to 1.
1853    if (InferAlignment && External.Size < RoundedSize) {
1854      Alignment = CharUnits::One();
1855      InferAlignment = false;
1856    }
1857    setSize(External.Size);
1858    return;
1859  }
1860
1861  // Set the size to the final size.
1862  setSize(RoundedSize);
1863
1864  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1865  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1866    // Warn if padding was introduced to the struct/class/union.
1867    if (getSizeInBits() > UnpaddedSize) {
1868      unsigned PadSize = getSizeInBits() - UnpaddedSize;
1869      bool InBits = true;
1870      if (PadSize % CharBitNum == 0) {
1871        PadSize = PadSize / CharBitNum;
1872        InBits = false;
1873      }
1874      Diag(RD->getLocation(), diag::warn_padded_struct_size)
1875          << Context.getTypeDeclType(RD)
1876          << PadSize
1877          << (InBits ? 1 : 0); // (byte|bit)
1878    }
1879
1880    // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1881    // bother since there won't be alignment issues.
1882    if (Packed && UnpackedAlignment > CharUnits::One() &&
1883        getSize() == UnpackedSize)
1884      Diag(D->getLocation(), diag::warn_unnecessary_packed)
1885          << Context.getTypeDeclType(RD);
1886  }
1887}
1888
1889void ItaniumRecordLayoutBuilder::UpdateAlignment(
1890    CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
1891  // The alignment is not modified when using 'mac68k' alignment or when
1892  // we have an externally-supplied layout that also provides overall alignment.
1893  if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
1894    return;
1895
1896  if (NewAlignment > Alignment) {
1897    assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
1898           "Alignment not a power of 2");
1899    Alignment = NewAlignment;
1900  }
1901
1902  if (UnpackedNewAlignment > UnpackedAlignment) {
1903    assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
1904           "Alignment not a power of 2");
1905    UnpackedAlignment = UnpackedNewAlignment;
1906  }
1907}
1908
1909uint64_t
1910ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
1911                                                      uint64_t ComputedOffset) {
1912  uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
1913
1914  if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
1915    // The externally-supplied field offset is before the field offset we
1916    // computed. Assume that the structure is packed.
1917    Alignment = CharUnits::One();
1918    InferAlignment = false;
1919  }
1920
1921  // Use the externally-supplied field offset.
1922  return ExternalFieldOffset;
1923}
1924
1925/// \brief Get diagnostic %select index for tag kind for
1926/// field padding diagnostic message.
1927/// WARNING: Indexes apply to particular diagnostics only!
1928///
1929/// \returns diagnostic %select index.
1930static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
1931  switch (Tag) {
1932  case TTK_Struct: return 0;
1933  case TTK_Interface: return 1;
1934  case TTK_Class: return 2;
1935  default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
1936  }
1937}
1938
1939void ItaniumRecordLayoutBuilder::CheckFieldPadding(
1940    uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
1941    unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
1942  // We let objc ivars without warning, objc interfaces generally are not used
1943  // for padding tricks.
1944  if (isa<ObjCIvarDecl>(D))
1945    return;
1946
1947  // Don't warn about structs created without a SourceLocation.  This can
1948  // be done by clients of the AST, such as codegen.
1949  if (D->getLocation().isInvalid())
1950    return;
1951
1952  unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1953
1954  // Warn if padding was introduced to the struct/class.
1955  if (!IsUnion && Offset > UnpaddedOffset) {
1956    unsigned PadSize = Offset - UnpaddedOffset;
1957    bool InBits = true;
1958    if (PadSize % CharBitNum == 0) {
1959      PadSize = PadSize / CharBitNum;
1960      InBits = false;
1961    }
1962    if (D->getIdentifier())
1963      Diag(D->getLocation(), diag::warn_padded_struct_field)
1964          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1965          << Context.getTypeDeclType(D->getParent())
1966          << PadSize
1967          << (InBits ? 1 : 0) // (byte|bit)
1968          << D->getIdentifier();
1969    else
1970      Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
1971          << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1972          << Context.getTypeDeclType(D->getParent())
1973          << PadSize
1974          << (InBits ? 1 : 0); // (byte|bit)
1975  }
1976
1977  // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1978  // bother since there won't be alignment issues.
1979  if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
1980    Diag(D->getLocation(), diag::warn_unnecessary_packed)
1981        << D->getIdentifier();
1982}
1983
1984static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
1985                                               const CXXRecordDecl *RD) {
1986  // If a class isn't polymorphic it doesn't have a key function.
1987  if (!RD->isPolymorphic())
1988    return nullptr;
1989
1990  // A class that is not externally visible doesn't have a key function. (Or
1991  // at least, there's no point to assigning a key function to such a class;
1992  // this doesn't affect the ABI.)
1993  if (!RD->isExternallyVisible())
1994    return nullptr;
1995
1996  // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
1997  // Same behavior as GCC.
1998  TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1999  if (TSK == TSK_ImplicitInstantiation ||
2000      TSK == TSK_ExplicitInstantiationDeclaration ||
2001      TSK == TSK_ExplicitInstantiationDefinition)
2002    return nullptr;
2003
2004  bool allowInlineFunctions =
2005    Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2006
2007  for (const CXXMethodDecl *MD : RD->methods()) {
2008    if (!MD->isVirtual())
2009      continue;
2010
2011    if (MD->isPure())
2012      continue;
2013
2014    // Ignore implicit member functions, they are always marked as inline, but
2015    // they don't have a body until they're defined.
2016    if (MD->isImplicit())
2017      continue;
2018
2019    if (MD->isInlineSpecified())
2020      continue;
2021
2022    if (MD->hasInlineBody())
2023      continue;
2024
2025    // Ignore inline deleted or defaulted functions.
2026    if (!MD->isUserProvided())
2027      continue;
2028
2029    // In certain ABIs, ignore functions with out-of-line inline definitions.
2030    if (!allowInlineFunctions) {
2031      const FunctionDecl *Def;
2032      if (MD->hasBody(Def) && Def->isInlineSpecified())
2033        continue;
2034    }
2035
2036    if (Context.getLangOpts().CUDA) {
2037      // While compiler may see key method in this TU, during CUDA
2038      // compilation we should ignore methods that are not accessible
2039      // on this side of compilation.
2040      if (Context.getLangOpts().CUDAIsDevice) {
2041        // In device mode ignore methods without __device__ attribute.
2042        if (!MD->hasAttr<CUDADeviceAttr>())
2043          continue;
2044      } else {
2045        // In host mode ignore __device__-only methods.
2046        if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2047          continue;
2048      }
2049    }
2050
2051    // If the key function is dllimport but the class isn't, then the class has
2052    // no key function. The DLL that exports the key function won't export the
2053    // vtable in this case.
2054    if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
2055      return nullptr;
2056
2057    // We found it.
2058    return MD;
2059  }
2060
2061  return nullptr;
2062}
2063
2064DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2065                                                   unsigned DiagID) {
2066  return Context.getDiagnostics().Report(Loc, DiagID);
2067}
2068
2069/// Does the target C++ ABI require us to skip over the tail-padding
2070/// of the given class (considering it as a base class) when allocating
2071/// objects?
2072static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2073  switch (ABI.getTailPaddingUseRules()) {
2074  case TargetCXXABI::AlwaysUseTailPadding:
2075    return false;
2076
2077  case TargetCXXABI::UseTailPaddingUnlessPOD03:
2078    // FIXME: To the extent that this is meant to cover the Itanium ABI
2079    // rules, we should implement the restrictions about over-sized
2080    // bitfields:
2081    //
2082    // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
2083    //   In general, a type is considered a POD for the purposes of
2084    //   layout if it is a POD type (in the sense of ISO C++
2085    //   [basic.types]). However, a POD-struct or POD-union (in the
2086    //   sense of ISO C++ [class]) with a bitfield member whose
2087    //   declared width is wider than the declared type of the
2088    //   bitfield is not a POD for the purpose of layout.  Similarly,
2089    //   an array type is not a POD for the purpose of layout if the
2090    //   element type of the array is not a POD for the purpose of
2091    //   layout.
2092    //
2093    //   Where references to the ISO C++ are made in this paragraph,
2094    //   the Technical Corrigendum 1 version of the standard is
2095    //   intended.
2096    return RD->isPOD();
2097
2098  case TargetCXXABI::UseTailPaddingUnlessPOD11:
2099    // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2100    // but with a lot of abstraction penalty stripped off.  This does
2101    // assume that these properties are set correctly even in C++98
2102    // mode; fortunately, that is true because we want to assign
2103    // consistently semantics to the type-traits intrinsics (or at
2104    // least as many of them as possible).
2105    return RD->isTrivial() && RD->isStandardLayout();
2106  }
2107
2108  llvm_unreachable("bad tail-padding use kind");
2109}
2110
2111static bool isMsLayout(const ASTContext &Context) {
2112  return Context.getTargetInfo().getCXXABI().isMicrosoft();
2113}
2114
2115// This section contains an implementation of struct layout that is, up to the
2116// included tests, compatible with cl.exe (2013).  The layout produced is
2117// significantly different than those produced by the Itanium ABI.  Here we note
2118// the most important differences.
2119//
2120// * The alignment of bitfields in unions is ignored when computing the
2121//   alignment of the union.
2122// * The existence of zero-width bitfield that occurs after anything other than
2123//   a non-zero length bitfield is ignored.
2124// * There is no explicit primary base for the purposes of layout.  All bases
2125//   with vfptrs are laid out first, followed by all bases without vfptrs.
2126// * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2127//   function pointer) and a vbptr (virtual base pointer).  They can each be
2128//   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2129//   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2130//   placed after the lexiographically last non-virtual base.  This placement
2131//   is always before fields but can be in the middle of the non-virtual bases
2132//   due to the two-pass layout scheme for non-virtual-bases.
2133// * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2134//   the virtual base and is used in conjunction with virtual overrides during
2135//   construction and destruction.  This is always a 4 byte value and is used as
2136//   an alternative to constructor vtables.
2137// * vtordisps are allocated in a block of memory with size and alignment equal
2138//   to the alignment of the completed structure (before applying __declspec(
2139//   align())).  The vtordisp always occur at the end of the allocation block,
2140//   immediately prior to the virtual base.
2141// * vfptrs are injected after all bases and fields have been laid out.  In
2142//   order to guarantee proper alignment of all fields, the vfptr injection
2143//   pushes all bases and fields back by the alignment imposed by those bases
2144//   and fields.  This can potentially add a significant amount of padding.
2145//   vfptrs are always injected at offset 0.
2146// * vbptrs are injected after all bases and fields have been laid out.  In
2147//   order to guarantee proper alignment of all fields, the vfptr injection
2148//   pushes all bases and fields back by the alignment imposed by those bases
2149//   and fields.  This can potentially add a significant amount of padding.
2150//   vbptrs are injected immediately after the last non-virtual base as
2151//   lexiographically ordered in the code.  If this site isn't pointer aligned
2152//   the vbptr is placed at the next properly aligned location.  Enough padding
2153//   is added to guarantee a fit.
2154// * The last zero sized non-virtual base can be placed at the end of the
2155//   struct (potentially aliasing another object), or may alias with the first
2156//   field, even if they are of the same type.
2157// * The last zero size virtual base may be placed at the end of the struct
2158//   potentially aliasing another object.
2159// * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2160//   between bases or vbases with specific properties.  The criteria for
2161//   additional padding between two bases is that the first base is zero sized
2162//   or ends with a zero sized subobject and the second base is zero sized or
2163//   trails with a zero sized base or field (sharing of vfptrs can reorder the
2164//   layout of the so the leading base is not always the first one declared).
2165//   This rule does take into account fields that are not records, so padding
2166//   will occur even if the last field is, e.g. an int. The padding added for
2167//   bases is 1 byte.  The padding added between vbases depends on the alignment
2168//   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2169// * There is no concept of non-virtual alignment, non-virtual alignment and
2170//   alignment are always identical.
2171// * There is a distinction between alignment and required alignment.
2172//   __declspec(align) changes the required alignment of a struct.  This
2173//   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2174//   record inherits required alignment from all of its fields and bases.
2175// * __declspec(align) on bitfields has the effect of changing the bitfield's
2176//   alignment instead of its required alignment.  This is the only known way
2177//   to make the alignment of a struct bigger than 8.  Interestingly enough
2178//   this alignment is also immune to the effects of #pragma pack and can be
2179//   used to create structures with large alignment under #pragma pack.
2180//   However, because it does not impact required alignment, such a structure,
2181//   when used as a field or base, will not be aligned if #pragma pack is
2182//   still active at the time of use.
2183//
2184// Known incompatibilities:
2185// * all: #pragma pack between fields in a record
2186// * 2010 and back: If the last field in a record is a bitfield, every object
2187//   laid out after the record will have extra padding inserted before it.  The
2188//   extra padding will have size equal to the size of the storage class of the
2189//   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2190//   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2191//   sized bitfield.
2192// * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2193//   greater due to __declspec(align()) then a second layout phase occurs after
2194//   The locations of the vf and vb pointers are known.  This layout phase
2195//   suffers from the "last field is a bitfield" bug in 2010 and results in
2196//   _every_ field getting padding put in front of it, potentially including the
2197//   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2198//   anything tries to read the vftbl.  The second layout phase also treats
2199//   bitfields as separate entities and gives them each storage rather than
2200//   packing them.  Additionally, because this phase appears to perform a
2201//   (an unstable) sort on the members before laying them out and because merged
2202//   bitfields have the same address, the bitfields end up in whatever order
2203//   the sort left them in, a behavior we could never hope to replicate.
2204
2205namespace {
2206struct MicrosoftRecordLayoutBuilder {
2207  struct ElementInfo {
2208    CharUnits Size;
2209    CharUnits Alignment;
2210  };
2211  typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2212  MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2213private:
2214  MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2215  void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2216public:
2217  void layout(const RecordDecl *RD);
2218  void cxxLayout(const CXXRecordDecl *RD);
2219  /// \brief Initializes size and alignment and honors some flags.
2220  void initializeLayout(const RecordDecl *RD);
2221  /// \brief Initialized C++ layout, compute alignment and virtual alignment and
2222  /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2223  /// laid out.
2224  void initializeCXXLayout(const CXXRecordDecl *RD);
2225  void layoutNonVirtualBases(const CXXRecordDecl *RD);
2226  void layoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
2227                            const ASTRecordLayout &BaseLayout,
2228                            const ASTRecordLayout *&PreviousBaseLayout);
2229  void injectVFPtr(const CXXRecordDecl *RD);
2230  void injectVBPtr(const CXXRecordDecl *RD);
2231  /// \brief Lays out the fields of the record.  Also rounds size up to
2232  /// alignment.
2233  void layoutFields(const RecordDecl *RD);
2234  void layoutField(const FieldDecl *FD);
2235  void layoutBitField(const FieldDecl *FD);
2236  /// \brief Lays out a single zero-width bit-field in the record and handles
2237  /// special cases associated with zero-width bit-fields.
2238  void layoutZeroWidthBitField(const FieldDecl *FD);
2239  void layoutVirtualBases(const CXXRecordDecl *RD);
2240  void finalizeLayout(const RecordDecl *RD);
2241  /// \brief Gets the size and alignment of a base taking pragma pack and
2242  /// __declspec(align) into account.
2243  ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2244  /// \brief Gets the size and alignment of a field taking pragma  pack and
2245  /// __declspec(align) into account.  It also updates RequiredAlignment as a
2246  /// side effect because it is most convenient to do so here.
2247  ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2248  /// \brief Places a field at an offset in CharUnits.
2249  void placeFieldAtOffset(CharUnits FieldOffset) {
2250    FieldOffsets.push_back(Context.toBits(FieldOffset));
2251  }
2252  /// \brief Places a bitfield at a bit offset.
2253  void placeFieldAtBitOffset(uint64_t FieldOffset) {
2254    FieldOffsets.push_back(FieldOffset);
2255  }
2256  /// \brief Compute the set of virtual bases for which vtordisps are required.
2257  void computeVtorDispSet(
2258      llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2259      const CXXRecordDecl *RD) const;
2260  const ASTContext &Context;
2261  /// \brief The size of the record being laid out.
2262  CharUnits Size;
2263  /// \brief The non-virtual size of the record layout.
2264  CharUnits NonVirtualSize;
2265  /// \brief The data size of the record layout.
2266  CharUnits DataSize;
2267  /// \brief The current alignment of the record layout.
2268  CharUnits Alignment;
2269  /// \brief The maximum allowed field alignment. This is set by #pragma pack.
2270  CharUnits MaxFieldAlignment;
2271  /// \brief The alignment that this record must obey.  This is imposed by
2272  /// __declspec(align()) on the record itself or one of its fields or bases.
2273  CharUnits RequiredAlignment;
2274  /// \brief The size of the allocation of the currently active bitfield.
2275  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2276  /// is true.
2277  CharUnits CurrentBitfieldSize;
2278  /// \brief Offset to the virtual base table pointer (if one exists).
2279  CharUnits VBPtrOffset;
2280  /// \brief Minimum record size possible.
2281  CharUnits MinEmptyStructSize;
2282  /// \brief The size and alignment info of a pointer.
2283  ElementInfo PointerInfo;
2284  /// \brief The primary base class (if one exists).
2285  const CXXRecordDecl *PrimaryBase;
2286  /// \brief The class we share our vb-pointer with.
2287  const CXXRecordDecl *SharedVBPtrBase;
2288  /// \brief The collection of field offsets.
2289  SmallVector<uint64_t, 16> FieldOffsets;
2290  /// \brief Base classes and their offsets in the record.
2291  BaseOffsetsMapTy Bases;
2292  /// \brief virtual base classes and their offsets in the record.
2293  ASTRecordLayout::VBaseOffsetsMapTy VBases;
2294  /// \brief The number of remaining bits in our last bitfield allocation.
2295  /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2296  /// true.
2297  unsigned RemainingBitsInField;
2298  bool IsUnion : 1;
2299  /// \brief True if the last field laid out was a bitfield and was not 0
2300  /// width.
2301  bool LastFieldIsNonZeroWidthBitfield : 1;
2302  /// \brief True if the class has its own vftable pointer.
2303  bool HasOwnVFPtr : 1;
2304  /// \brief True if the class has a vbtable pointer.
2305  bool HasVBPtr : 1;
2306  /// \brief True if the last sub-object within the type is zero sized or the
2307  /// object itself is zero sized.  This *does not* count members that are not
2308  /// records.  Only used for MS-ABI.
2309  bool EndsWithZeroSizedObject : 1;
2310  /// \brief True if this class is zero sized or first base is zero sized or
2311  /// has this property.  Only used for MS-ABI.
2312  bool LeadsWithZeroSizedBase : 1;
2313
2314  /// \brief True if the external AST source provided a layout for this record.
2315  bool UseExternalLayout : 1;
2316
2317  /// \brief The layout provided by the external AST source. Only active if
2318  /// UseExternalLayout is true.
2319  ExternalLayout External;
2320};
2321} // namespace
2322
2323MicrosoftRecordLayoutBuilder::ElementInfo
2324MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2325    const ASTRecordLayout &Layout) {
2326  ElementInfo Info;
2327  Info.Alignment = Layout.getAlignment();
2328  // Respect pragma pack.
2329  if (!MaxFieldAlignment.isZero())
2330    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2331  // Track zero-sized subobjects here where it's already available.
2332  EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2333  // Respect required alignment, this is necessary because we may have adjusted
2334  // the alignment in the case of pragam pack.  Note that the required alignment
2335  // doesn't actually apply to the struct alignment at this point.
2336  Alignment = std::max(Alignment, Info.Alignment);
2337  RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2338  Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2339  Info.Size = Layout.getNonVirtualSize();
2340  return Info;
2341}
2342
2343MicrosoftRecordLayoutBuilder::ElementInfo
2344MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2345    const FieldDecl *FD) {
2346  // Get the alignment of the field type's natural alignment, ignore any
2347  // alignment attributes.
2348  ElementInfo Info;
2349  std::tie(Info.Size, Info.Alignment) =
2350      Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2351  // Respect align attributes on the field.
2352  CharUnits FieldRequiredAlignment =
2353      Context.toCharUnitsFromBits(FD->getMaxAlignment());
2354  // Respect align attributes on the type.
2355  if (Context.isAlignmentRequired(FD->getType()))
2356    FieldRequiredAlignment = std::max(
2357        Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2358  // Respect attributes applied to subobjects of the field.
2359  if (FD->isBitField())
2360    // For some reason __declspec align impacts alignment rather than required
2361    // alignment when it is applied to bitfields.
2362    Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2363  else {
2364    if (auto RT =
2365            FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2366      auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2367      EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2368      FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2369                                        Layout.getRequiredAlignment());
2370    }
2371    // Capture required alignment as a side-effect.
2372    RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2373  }
2374  // Respect pragma pack, attribute pack and declspec align
2375  if (!MaxFieldAlignment.isZero())
2376    Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2377  if (FD->hasAttr<PackedAttr>())
2378    Info.Alignment = CharUnits::One();
2379  Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2380  return Info;
2381}
2382
2383void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2384  // For C record layout, zero-sized records always have size 4.
2385  MinEmptyStructSize = CharUnits::fromQuantity(4);
2386  initializeLayout(RD);
2387  layoutFields(RD);
2388  DataSize = Size = Size.RoundUpToAlignment(Alignment);
2389  RequiredAlignment = std::max(
2390      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2391  finalizeLayout(RD);
2392}
2393
2394void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2395  // The C++ standard says that empty structs have size 1.
2396  MinEmptyStructSize = CharUnits::One();
2397  initializeLayout(RD);
2398  initializeCXXLayout(RD);
2399  layoutNonVirtualBases(RD);
2400  layoutFields(RD);
2401  injectVBPtr(RD);
2402  injectVFPtr(RD);
2403  if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2404    Alignment = std::max(Alignment, PointerInfo.Alignment);
2405  auto RoundingAlignment = Alignment;
2406  if (!MaxFieldAlignment.isZero())
2407    RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2408  NonVirtualSize = Size = Size.RoundUpToAlignment(RoundingAlignment);
2409  RequiredAlignment = std::max(
2410      RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2411  layoutVirtualBases(RD);
2412  finalizeLayout(RD);
2413}
2414
2415void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2416  IsUnion = RD->isUnion();
2417  Size = CharUnits::Zero();
2418  Alignment = CharUnits::One();
2419  // In 64-bit mode we always perform an alignment step after laying out vbases.
2420  // In 32-bit mode we do not.  The check to see if we need to perform alignment
2421  // checks the RequiredAlignment field and performs alignment if it isn't 0.
2422  RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2423                          ? CharUnits::One()
2424                          : CharUnits::Zero();
2425  // Compute the maximum field alignment.
2426  MaxFieldAlignment = CharUnits::Zero();
2427  // Honor the default struct packing maximum alignment flag.
2428  if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2429      MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2430  // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2431  // than the pointer size.
2432  if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2433    unsigned PackedAlignment = MFAA->getAlignment();
2434    if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2435      MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2436  }
2437  // Packed attribute forces max field alignment to be 1.
2438  if (RD->hasAttr<PackedAttr>())
2439    MaxFieldAlignment = CharUnits::One();
2440
2441  // Try to respect the external layout if present.
2442  UseExternalLayout = false;
2443  if (ExternalASTSource *Source = Context.getExternalSource())
2444    UseExternalLayout = Source->layoutRecordType(
2445        RD, External.Size, External.Align, External.FieldOffsets,
2446        External.BaseOffsets, External.VirtualBaseOffsets);
2447}
2448
2449void
2450MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2451  EndsWithZeroSizedObject = false;
2452  LeadsWithZeroSizedBase = false;
2453  HasOwnVFPtr = false;
2454  HasVBPtr = false;
2455  PrimaryBase = nullptr;
2456  SharedVBPtrBase = nullptr;
2457  // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2458  // injection.
2459  PointerInfo.Size =
2460      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2461  PointerInfo.Alignment =
2462      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2463  // Respect pragma pack.
2464  if (!MaxFieldAlignment.isZero())
2465    PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2466}
2467
2468void
2469MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2470  // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2471  // out any bases that do not contain vfptrs.  We implement this as two passes
2472  // over the bases.  This approach guarantees that the primary base is laid out
2473  // first.  We use these passes to calculate some additional aggregated
2474  // information about the bases, such as reqruied alignment and the presence of
2475  // zero sized members.
2476  const ASTRecordLayout *PreviousBaseLayout = nullptr;
2477  // Iterate through the bases and lay out the non-virtual ones.
2478  for (const CXXBaseSpecifier &Base : RD->bases()) {
2479    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2480    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2481    // Mark and skip virtual bases.
2482    if (Base.isVirtual()) {
2483      HasVBPtr = true;
2484      continue;
2485    }
2486    // Check fo a base to share a VBPtr with.
2487    if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2488      SharedVBPtrBase = BaseDecl;
2489      HasVBPtr = true;
2490    }
2491    // Only lay out bases with extendable VFPtrs on the first pass.
2492    if (!BaseLayout.hasExtendableVFPtr())
2493      continue;
2494    // If we don't have a primary base, this one qualifies.
2495    if (!PrimaryBase) {
2496      PrimaryBase = BaseDecl;
2497      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2498    }
2499    // Lay out the base.
2500    layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2501  }
2502  // Figure out if we need a fresh VFPtr for this class.
2503  if (!PrimaryBase && RD->isDynamicClass())
2504    for (CXXRecordDecl::method_iterator i = RD->method_begin(),
2505                                        e = RD->method_end();
2506         !HasOwnVFPtr && i != e; ++i)
2507      HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
2508  // If we don't have a primary base then we have a leading object that could
2509  // itself lead with a zero-sized object, something we track.
2510  bool CheckLeadingLayout = !PrimaryBase;
2511  // Iterate through the bases and lay out the non-virtual ones.
2512  for (const CXXBaseSpecifier &Base : RD->bases()) {
2513    if (Base.isVirtual())
2514      continue;
2515    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2516    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2517    // Only lay out bases without extendable VFPtrs on the second pass.
2518    if (BaseLayout.hasExtendableVFPtr()) {
2519      VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2520      continue;
2521    }
2522    // If this is the first layout, check to see if it leads with a zero sized
2523    // object.  If it does, so do we.
2524    if (CheckLeadingLayout) {
2525      CheckLeadingLayout = false;
2526      LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2527    }
2528    // Lay out the base.
2529    layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2530    VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2531  }
2532  // Set our VBPtroffset if we know it at this point.
2533  if (!HasVBPtr)
2534    VBPtrOffset = CharUnits::fromQuantity(-1);
2535  else if (SharedVBPtrBase) {
2536    const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2537    VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2538  }
2539}
2540
2541void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2542    const CXXRecordDecl *BaseDecl,
2543    const ASTRecordLayout &BaseLayout,
2544    const ASTRecordLayout *&PreviousBaseLayout) {
2545  // Insert padding between two bases if the left first one is zero sized or
2546  // contains a zero sized subobject and the right is zero sized or one leads
2547  // with a zero sized base.
2548  if (PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2549      BaseLayout.leadsWithZeroSizedBase())
2550    Size++;
2551  ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2552  CharUnits BaseOffset;
2553
2554  // Respect the external AST source base offset, if present.
2555  bool FoundBase = false;
2556  if (UseExternalLayout) {
2557    FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2558    if (FoundBase)
2559      assert(BaseOffset >= Size && "base offset already allocated");
2560  }
2561
2562  if (!FoundBase)
2563    BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2564  Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2565  Size = BaseOffset + BaseLayout.getNonVirtualSize();
2566  PreviousBaseLayout = &BaseLayout;
2567}
2568
2569void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2570  LastFieldIsNonZeroWidthBitfield = false;
2571  for (const FieldDecl *Field : RD->fields())
2572    layoutField(Field);
2573}
2574
2575void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2576  if (FD->isBitField()) {
2577    layoutBitField(FD);
2578    return;
2579  }
2580  LastFieldIsNonZeroWidthBitfield = false;
2581  ElementInfo Info = getAdjustedElementInfo(FD);
2582  Alignment = std::max(Alignment, Info.Alignment);
2583  if (IsUnion) {
2584    placeFieldAtOffset(CharUnits::Zero());
2585    Size = std::max(Size, Info.Size);
2586  } else {
2587    CharUnits FieldOffset;
2588    if (UseExternalLayout) {
2589      FieldOffset =
2590          Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2591      assert(FieldOffset >= Size && "field offset already allocated");
2592    } else {
2593      FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2594    }
2595    placeFieldAtOffset(FieldOffset);
2596    Size = FieldOffset + Info.Size;
2597  }
2598}
2599
2600void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2601  unsigned Width = FD->getBitWidthValue(Context);
2602  if (Width == 0) {
2603    layoutZeroWidthBitField(FD);
2604    return;
2605  }
2606  ElementInfo Info = getAdjustedElementInfo(FD);
2607  // Clamp the bitfield to a containable size for the sake of being able
2608  // to lay them out.  Sema will throw an error.
2609  if (Width > Context.toBits(Info.Size))
2610    Width = Context.toBits(Info.Size);
2611  // Check to see if this bitfield fits into an existing allocation.  Note:
2612  // MSVC refuses to pack bitfields of formal types with different sizes
2613  // into the same allocation.
2614  if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
2615      CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2616    placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2617    RemainingBitsInField -= Width;
2618    return;
2619  }
2620  LastFieldIsNonZeroWidthBitfield = true;
2621  CurrentBitfieldSize = Info.Size;
2622  if (IsUnion) {
2623    placeFieldAtOffset(CharUnits::Zero());
2624    Size = std::max(Size, Info.Size);
2625    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2626  } else {
2627    // Allocate a new block of memory and place the bitfield in it.
2628    CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2629    placeFieldAtOffset(FieldOffset);
2630    Size = FieldOffset + Info.Size;
2631    Alignment = std::max(Alignment, Info.Alignment);
2632    RemainingBitsInField = Context.toBits(Info.Size) - Width;
2633  }
2634}
2635
2636void
2637MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2638  // Zero-width bitfields are ignored unless they follow a non-zero-width
2639  // bitfield.
2640  if (!LastFieldIsNonZeroWidthBitfield) {
2641    placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2642    // TODO: Add a Sema warning that MS ignores alignment for zero
2643    // sized bitfields that occur after zero-size bitfields or non-bitfields.
2644    return;
2645  }
2646  LastFieldIsNonZeroWidthBitfield = false;
2647  ElementInfo Info = getAdjustedElementInfo(FD);
2648  if (IsUnion) {
2649    placeFieldAtOffset(CharUnits::Zero());
2650    Size = std::max(Size, Info.Size);
2651    // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2652  } else {
2653    // Round up the current record size to the field's alignment boundary.
2654    CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2655    placeFieldAtOffset(FieldOffset);
2656    Size = FieldOffset;
2657    Alignment = std::max(Alignment, Info.Alignment);
2658  }
2659}
2660
2661void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2662  if (!HasVBPtr || SharedVBPtrBase)
2663    return;
2664  // Inject the VBPointer at the injection site.
2665  CharUnits InjectionSite = VBPtrOffset;
2666  // But before we do, make sure it's properly aligned.
2667  VBPtrOffset = VBPtrOffset.RoundUpToAlignment(PointerInfo.Alignment);
2668  // Shift everything after the vbptr down, unless we're using an external
2669  // layout.
2670  if (UseExternalLayout)
2671    return;
2672  // Determine where the first field should be laid out after the vbptr.
2673  CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2674  // Make sure that the amount we push the fields back by is a multiple of the
2675  // alignment.
2676  CharUnits Offset = (FieldStart - InjectionSite).RoundUpToAlignment(
2677      std::max(RequiredAlignment, Alignment));
2678  Size += Offset;
2679  for (uint64_t &FieldOffset : FieldOffsets)
2680    FieldOffset += Context.toBits(Offset);
2681  for (BaseOffsetsMapTy::value_type &Base : Bases)
2682    if (Base.second >= InjectionSite)
2683      Base.second += Offset;
2684}
2685
2686void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2687  if (!HasOwnVFPtr)
2688    return;
2689  // Make sure that the amount we push the struct back by is a multiple of the
2690  // alignment.
2691  CharUnits Offset = PointerInfo.Size.RoundUpToAlignment(
2692      std::max(RequiredAlignment, Alignment));
2693  // Push back the vbptr, but increase the size of the object and push back
2694  // regular fields by the offset only if not using external record layout.
2695  if (HasVBPtr)
2696    VBPtrOffset += Offset;
2697
2698  if (UseExternalLayout)
2699    return;
2700
2701  Size += Offset;
2702
2703  // If we're using an external layout, the fields offsets have already
2704  // accounted for this adjustment.
2705  for (uint64_t &FieldOffset : FieldOffsets)
2706    FieldOffset += Context.toBits(Offset);
2707  for (BaseOffsetsMapTy::value_type &Base : Bases)
2708    Base.second += Offset;
2709}
2710
2711void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2712  if (!HasVBPtr)
2713    return;
2714  // Vtordisps are always 4 bytes (even in 64-bit mode)
2715  CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2716  CharUnits VtorDispAlignment = VtorDispSize;
2717  // vtordisps respect pragma pack.
2718  if (!MaxFieldAlignment.isZero())
2719    VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
2720  // The alignment of the vtordisp is at least the required alignment of the
2721  // entire record.  This requirement may be present to support vtordisp
2722  // injection.
2723  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2724    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2725    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2726    RequiredAlignment =
2727        std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
2728  }
2729  VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
2730  // Compute the vtordisp set.
2731  llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
2732  computeVtorDispSet(HasVtorDispSet, RD);
2733  // Iterate through the virtual bases and lay them out.
2734  const ASTRecordLayout *PreviousBaseLayout = nullptr;
2735  for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2736    const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2737    const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2738    bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
2739    // Insert padding between two bases if the left first one is zero sized or
2740    // contains a zero sized subobject and the right is zero sized or one leads
2741    // with a zero sized base.  The padding between virtual bases is 4
2742    // bytes (in both 32 and 64 bits modes) and always involves rounding up to
2743    // the required alignment, we don't know why.
2744    if ((PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2745        BaseLayout.leadsWithZeroSizedBase()) || HasVtordisp) {
2746      Size = Size.RoundUpToAlignment(VtorDispAlignment) + VtorDispSize;
2747      Alignment = std::max(VtorDispAlignment, Alignment);
2748    }
2749    // Insert the virtual base.
2750    ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2751    CharUnits BaseOffset;
2752
2753    // Respect the external AST source base offset, if present.
2754    bool FoundBase = false;
2755    if (UseExternalLayout) {
2756      FoundBase = External.getExternalVBaseOffset(BaseDecl, BaseOffset);
2757      if (FoundBase)
2758        assert(BaseOffset >= Size && "base offset already allocated");
2759    }
2760    if (!FoundBase)
2761      BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2762
2763    VBases.insert(std::make_pair(BaseDecl,
2764        ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
2765    Size = BaseOffset + BaseLayout.getNonVirtualSize();
2766    PreviousBaseLayout = &BaseLayout;
2767  }
2768}
2769
2770void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
2771  // Respect required alignment.  Note that in 32-bit mode Required alignment
2772  // may be 0 and cause size not to be updated.
2773  DataSize = Size;
2774  if (!RequiredAlignment.isZero()) {
2775    Alignment = std::max(Alignment, RequiredAlignment);
2776    auto RoundingAlignment = Alignment;
2777    if (!MaxFieldAlignment.isZero())
2778      RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2779    RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
2780    Size = Size.RoundUpToAlignment(RoundingAlignment);
2781  }
2782  if (Size.isZero()) {
2783    EndsWithZeroSizedObject = true;
2784    LeadsWithZeroSizedBase = true;
2785    // Zero-sized structures have size equal to their alignment if a
2786    // __declspec(align) came into play.
2787    if (RequiredAlignment >= MinEmptyStructSize)
2788      Size = Alignment;
2789    else
2790      Size = MinEmptyStructSize;
2791  }
2792
2793  if (UseExternalLayout) {
2794    Size = Context.toCharUnitsFromBits(External.Size);
2795    if (External.Align)
2796      Alignment = Context.toCharUnitsFromBits(External.Align);
2797  }
2798}
2799
2800// Recursively walks the non-virtual bases of a class and determines if any of
2801// them are in the bases with overridden methods set.
2802static bool
2803RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
2804                     BasesWithOverriddenMethods,
2805                 const CXXRecordDecl *RD) {
2806  if (BasesWithOverriddenMethods.count(RD))
2807    return true;
2808  // If any of a virtual bases non-virtual bases (recursively) requires a
2809  // vtordisp than so does this virtual base.
2810  for (const CXXBaseSpecifier &Base : RD->bases())
2811    if (!Base.isVirtual() &&
2812        RequiresVtordisp(BasesWithOverriddenMethods,
2813                         Base.getType()->getAsCXXRecordDecl()))
2814      return true;
2815  return false;
2816}
2817
2818void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
2819    llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
2820    const CXXRecordDecl *RD) const {
2821  // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
2822  // vftables.
2823  if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
2824    for (const CXXBaseSpecifier &Base : RD->vbases()) {
2825      const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2826      const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2827      if (Layout.hasExtendableVFPtr())
2828        HasVtordispSet.insert(BaseDecl);
2829    }
2830    return;
2831  }
2832
2833  // If any of our bases need a vtordisp for this type, so do we.  Check our
2834  // direct bases for vtordisp requirements.
2835  for (const CXXBaseSpecifier &Base : RD->bases()) {
2836    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2837    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2838    for (const auto &bi : Layout.getVBaseOffsetsMap())
2839      if (bi.second.hasVtorDisp())
2840        HasVtordispSet.insert(bi.first);
2841  }
2842  // We don't introduce any additional vtordisps if either:
2843  // * A user declared constructor or destructor aren't declared.
2844  // * #pragma vtordisp(0) or the /vd0 flag are in use.
2845  if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
2846      RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
2847    return;
2848  // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
2849  // possible for a partially constructed object with virtual base overrides to
2850  // escape a non-trivial constructor.
2851  assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
2852  // Compute a set of base classes which define methods we override.  A virtual
2853  // base in this set will require a vtordisp.  A virtual base that transitively
2854  // contains one of these bases as a non-virtual base will also require a
2855  // vtordisp.
2856  llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
2857  llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
2858  // Seed the working set with our non-destructor, non-pure virtual methods.
2859  for (const CXXMethodDecl *MD : RD->methods())
2860    if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
2861      Work.insert(MD);
2862  while (!Work.empty()) {
2863    const CXXMethodDecl *MD = *Work.begin();
2864    CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
2865                                   e = MD->end_overridden_methods();
2866    // If a virtual method has no-overrides it lives in its parent's vtable.
2867    if (i == e)
2868      BasesWithOverriddenMethods.insert(MD->getParent());
2869    else
2870      Work.insert(i, e);
2871    // We've finished processing this element, remove it from the working set.
2872    Work.erase(MD);
2873  }
2874  // For each of our virtual bases, check if it is in the set of overridden
2875  // bases or if it transitively contains a non-virtual base that is.
2876  for (const CXXBaseSpecifier &Base : RD->vbases()) {
2877    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2878    if (!HasVtordispSet.count(BaseDecl) &&
2879        RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
2880      HasVtordispSet.insert(BaseDecl);
2881  }
2882}
2883
2884/// getASTRecordLayout - Get or compute information about the layout of the
2885/// specified record (struct/union/class), which indicates its size and field
2886/// position information.
2887const ASTRecordLayout &
2888ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2889  // These asserts test different things.  A record has a definition
2890  // as soon as we begin to parse the definition.  That definition is
2891  // not a complete definition (which is what isDefinition() tests)
2892  // until we *finish* parsing the definition.
2893
2894  if (D->hasExternalLexicalStorage() && !D->getDefinition())
2895    getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2896
2897  D = D->getDefinition();
2898  assert(D && "Cannot get layout of forward declarations!");
2899  assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
2900  assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2901
2902  // Look up this layout, if already laid out, return what we have.
2903  // Note that we can't save a reference to the entry because this function
2904  // is recursive.
2905  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2906  if (Entry) return *Entry;
2907
2908  const ASTRecordLayout *NewEntry = nullptr;
2909
2910  if (isMsLayout(*this)) {
2911    MicrosoftRecordLayoutBuilder Builder(*this);
2912    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
2913      Builder.cxxLayout(RD);
2914      NewEntry = new (*this) ASTRecordLayout(
2915          *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2916          Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
2917          Builder.VBPtrOffset, Builder.NonVirtualSize,
2918          Builder.FieldOffsets.data(), Builder.FieldOffsets.size(),
2919          Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
2920          Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
2921          Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
2922          Builder.Bases, Builder.VBases);
2923    } else {
2924      Builder.layout(D);
2925      NewEntry = new (*this) ASTRecordLayout(
2926          *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2927          Builder.Size, Builder.FieldOffsets.data(),
2928          Builder.FieldOffsets.size());
2929    }
2930  } else {
2931    if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
2932      EmptySubobjectMap EmptySubobjects(*this, RD);
2933      ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
2934      Builder.Layout(RD);
2935
2936      // In certain situations, we are allowed to lay out objects in the
2937      // tail-padding of base classes.  This is ABI-dependent.
2938      // FIXME: this should be stored in the record layout.
2939      bool skipTailPadding =
2940          mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
2941
2942      // FIXME: This should be done in FinalizeLayout.
2943      CharUnits DataSize =
2944          skipTailPadding ? Builder.getSize() : Builder.getDataSize();
2945      CharUnits NonVirtualSize =
2946          skipTailPadding ? DataSize : Builder.NonVirtualSize;
2947      NewEntry = new (*this) ASTRecordLayout(
2948          *this, Builder.getSize(), Builder.Alignment,
2949          /*RequiredAlignment : used by MS-ABI)*/
2950          Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
2951          CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets.data(),
2952          Builder.FieldOffsets.size(), NonVirtualSize,
2953          Builder.NonVirtualAlignment,
2954          EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
2955          Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
2956          Builder.VBases);
2957    } else {
2958      ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
2959      Builder.Layout(D);
2960
2961      NewEntry = new (*this) ASTRecordLayout(
2962          *this, Builder.getSize(), Builder.Alignment,
2963          /*RequiredAlignment : used by MS-ABI)*/
2964          Builder.Alignment, Builder.getSize(), Builder.FieldOffsets.data(),
2965          Builder.FieldOffsets.size());
2966    }
2967  }
2968
2969  ASTRecordLayouts[D] = NewEntry;
2970
2971  if (getLangOpts().DumpRecordLayouts) {
2972    llvm::outs() << "\n*** Dumping AST Record Layout\n";
2973    DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
2974  }
2975
2976  return *NewEntry;
2977}
2978
2979const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
2980  if (!getTargetInfo().getCXXABI().hasKeyFunctions())
2981    return nullptr;
2982
2983  assert(RD->getDefinition() && "Cannot get key function for forward decl!");
2984  RD = cast<CXXRecordDecl>(RD->getDefinition());
2985
2986  // Beware:
2987  //  1) computing the key function might trigger deserialization, which might
2988  //     invalidate iterators into KeyFunctions
2989  //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
2990  //     invalidate the LazyDeclPtr within the map itself
2991  LazyDeclPtr Entry = KeyFunctions[RD];
2992  const Decl *Result =
2993      Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
2994
2995  // Store it back if it changed.
2996  if (Entry.isOffset() || Entry.isValid() != bool(Result))
2997    KeyFunctions[RD] = const_cast<Decl*>(Result);
2998
2999  return cast_or_null<CXXMethodDecl>(Result);
3000}
3001
3002void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3003  assert(Method == Method->getFirstDecl() &&
3004         "not working with method declaration from class definition");
3005
3006  // Look up the cache entry.  Since we're working with the first
3007  // declaration, its parent must be the class definition, which is
3008  // the correct key for the KeyFunctions hash.
3009  const auto &Map = KeyFunctions;
3010  auto I = Map.find(Method->getParent());
3011
3012  // If it's not cached, there's nothing to do.
3013  if (I == Map.end()) return;
3014
3015  // If it is cached, check whether it's the target method, and if so,
3016  // remove it from the cache. Note, the call to 'get' might invalidate
3017  // the iterator and the LazyDeclPtr object within the map.
3018  LazyDeclPtr Ptr = I->second;
3019  if (Ptr.get(getExternalSource()) == Method) {
3020    // FIXME: remember that we did this for module / chained PCH state?
3021    KeyFunctions.erase(Method->getParent());
3022  }
3023}
3024
3025static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3026  const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3027  return Layout.getFieldOffset(FD->getFieldIndex());
3028}
3029
3030uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3031  uint64_t OffsetInBits;
3032  if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3033    OffsetInBits = ::getFieldOffset(*this, FD);
3034  } else {
3035    const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3036
3037    OffsetInBits = 0;
3038    for (const NamedDecl *ND : IFD->chain())
3039      OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3040  }
3041
3042  return OffsetInBits;
3043}
3044
3045/// getObjCLayout - Get or compute information about the layout of the
3046/// given interface.
3047///
3048/// \param Impl - If given, also include the layout of the interface's
3049/// implementation. This may differ by including synthesized ivars.
3050const ASTRecordLayout &
3051ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3052                          const ObjCImplementationDecl *Impl) const {
3053  // Retrieve the definition
3054  if (D->hasExternalLexicalStorage() && !D->getDefinition())
3055    getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3056  D = D->getDefinition();
3057  assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
3058
3059  // Look up this layout, if already laid out, return what we have.
3060  const ObjCContainerDecl *Key =
3061    Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3062  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3063    return *Entry;
3064
3065  // Add in synthesized ivar count if laying out an implementation.
3066  if (Impl) {
3067    unsigned SynthCount = CountNonClassIvars(D);
3068    // If there aren't any sythesized ivars then reuse the interface
3069    // entry. Note we can't cache this because we simply free all
3070    // entries later; however we shouldn't look up implementations
3071    // frequently.
3072    if (SynthCount == 0)
3073      return getObjCLayout(D, nullptr);
3074  }
3075
3076  ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3077  Builder.Layout(D);
3078
3079  const ASTRecordLayout *NewEntry =
3080    new (*this) ASTRecordLayout(*this, Builder.getSize(),
3081                                Builder.Alignment,
3082                                /*RequiredAlignment : used by MS-ABI)*/
3083                                Builder.Alignment,
3084                                Builder.getDataSize(),
3085                                Builder.FieldOffsets.data(),
3086                                Builder.FieldOffsets.size());
3087
3088  ObjCLayouts[Key] = NewEntry;
3089
3090  return *NewEntry;
3091}
3092
3093static void PrintOffset(raw_ostream &OS,
3094                        CharUnits Offset, unsigned IndentLevel) {
3095  OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3096  OS.indent(IndentLevel * 2);
3097}
3098
3099static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3100                                unsigned Begin, unsigned Width,
3101                                unsigned IndentLevel) {
3102  llvm::SmallString<10> Buffer;
3103  {
3104    llvm::raw_svector_ostream BufferOS(Buffer);
3105    BufferOS << Offset.getQuantity() << ':';
3106    if (Width == 0) {
3107      BufferOS << '-';
3108    } else {
3109      BufferOS << Begin << '-' << (Begin + Width - 1);
3110    }
3111  }
3112
3113  OS << llvm::right_justify(Buffer, 10) << " | ";
3114  OS.indent(IndentLevel * 2);
3115}
3116
3117static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3118  OS << "           | ";
3119  OS.indent(IndentLevel * 2);
3120}
3121
3122static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3123                             const ASTContext &C,
3124                             CharUnits Offset,
3125                             unsigned IndentLevel,
3126                             const char* Description,
3127                             bool PrintSizeInfo,
3128                             bool IncludeVirtualBases) {
3129  const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3130  auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3131
3132  PrintOffset(OS, Offset, IndentLevel);
3133  OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3134  if (Description)
3135    OS << ' ' << Description;
3136  if (CXXRD && CXXRD->isEmpty())
3137    OS << " (empty)";
3138  OS << '\n';
3139
3140  IndentLevel++;
3141
3142  // Dump bases.
3143  if (CXXRD) {
3144    const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3145    bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3146    bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3147
3148    // Vtable pointer.
3149    if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3150      PrintOffset(OS, Offset, IndentLevel);
3151      OS << '(' << *RD << " vtable pointer)\n";
3152    } else if (HasOwnVFPtr) {
3153      PrintOffset(OS, Offset, IndentLevel);
3154      // vfptr (for Microsoft C++ ABI)
3155      OS << '(' << *RD << " vftable pointer)\n";
3156    }
3157
3158    // Collect nvbases.
3159    SmallVector<const CXXRecordDecl *, 4> Bases;
3160    for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3161      assert(!Base.getType()->isDependentType() &&
3162             "Cannot layout class with dependent bases.");
3163      if (!Base.isVirtual())
3164        Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3165    }
3166
3167    // Sort nvbases by offset.
3168    std::stable_sort(Bases.begin(), Bases.end(),
3169                     [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3170      return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3171    });
3172
3173    // Dump (non-virtual) bases
3174    for (const CXXRecordDecl *Base : Bases) {
3175      CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3176      DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3177                       Base == PrimaryBase ? "(primary base)" : "(base)",
3178                       /*PrintSizeInfo=*/false,
3179                       /*IncludeVirtualBases=*/false);
3180    }
3181
3182    // vbptr (for Microsoft C++ ABI)
3183    if (HasOwnVBPtr) {
3184      PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3185      OS << '(' << *RD << " vbtable pointer)\n";
3186    }
3187  }
3188
3189  // Dump fields.
3190  uint64_t FieldNo = 0;
3191  for (RecordDecl::field_iterator I = RD->field_begin(),
3192         E = RD->field_end(); I != E; ++I, ++FieldNo) {
3193    const FieldDecl &Field = **I;
3194    uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3195    CharUnits FieldOffset =
3196      Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3197
3198    // Recursively dump fields of record type.
3199    if (auto RT = Field.getType()->getAs<RecordType>()) {
3200      DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3201                       Field.getName().data(),
3202                       /*PrintSizeInfo=*/false,
3203                       /*IncludeVirtualBases=*/true);
3204      continue;
3205    }
3206
3207    if (Field.isBitField()) {
3208      uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3209      unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3210      unsigned Width = Field.getBitWidthValue(C);
3211      PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3212    } else {
3213      PrintOffset(OS, FieldOffset, IndentLevel);
3214    }
3215    OS << Field.getType().getAsString() << ' ' << Field << '\n';
3216  }
3217
3218  // Dump virtual bases.
3219  if (CXXRD && IncludeVirtualBases) {
3220    const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3221      Layout.getVBaseOffsetsMap();
3222
3223    for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3224      assert(Base.isVirtual() && "Found non-virtual class!");
3225      const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3226
3227      CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3228
3229      if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3230        PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3231        OS << "(vtordisp for vbase " << *VBase << ")\n";
3232      }
3233
3234      DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3235                       VBase == Layout.getPrimaryBase() ?
3236                         "(primary virtual base)" : "(virtual base)",
3237                       /*PrintSizeInfo=*/false,
3238                       /*IncludeVirtualBases=*/false);
3239    }
3240  }
3241
3242  if (!PrintSizeInfo) return;
3243
3244  PrintIndentNoOffset(OS, IndentLevel - 1);
3245  OS << "[sizeof=" << Layout.getSize().getQuantity();
3246  if (CXXRD && !isMsLayout(C))
3247    OS << ", dsize=" << Layout.getDataSize().getQuantity();
3248  OS << ", align=" << Layout.getAlignment().getQuantity();
3249
3250  if (CXXRD) {
3251    OS << ",\n";
3252    PrintIndentNoOffset(OS, IndentLevel - 1);
3253    OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3254    OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3255  }
3256  OS << "]\n";
3257}
3258
3259void ASTContext::DumpRecordLayout(const RecordDecl *RD,
3260                                  raw_ostream &OS,
3261                                  bool Simple) const {
3262  if (!Simple) {
3263    ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3264                       /*PrintSizeInfo*/true,
3265                       /*IncludeVirtualBases=*/true);
3266    return;
3267  }
3268
3269  // The "simple" format is designed to be parsed by the
3270  // layout-override testing code.  There shouldn't be any external
3271  // uses of this format --- when LLDB overrides a layout, it sets up
3272  // the data structures directly --- so feel free to adjust this as
3273  // you like as long as you also update the rudimentary parser for it
3274  // in libFrontend.
3275
3276  const ASTRecordLayout &Info = getASTRecordLayout(RD);
3277  OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3278  OS << "\nLayout: ";
3279  OS << "<ASTRecordLayout\n";
3280  OS << "  Size:" << toBits(Info.getSize()) << "\n";
3281  if (!isMsLayout(*this))
3282    OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3283  OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3284  OS << "  FieldOffsets: [";
3285  for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3286    if (i) OS << ", ";
3287    OS << Info.getFieldOffset(i);
3288  }
3289  OS << "]>\n";
3290}
3291