MicrosoftMangle.cpp revision 280031
1//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Mangle.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/VTableBuilder.h"
26#include "clang/Basic/ABI.h"
27#include "clang/Basic/DiagnosticOptions.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/MathExtras.h"
31
32using namespace clang;
33
34namespace {
35
36/// \brief Retrieve the declaration context that should be used when mangling
37/// the given declaration.
38static const DeclContext *getEffectiveDeclContext(const Decl *D) {
39  // The ABI assumes that lambda closure types that occur within
40  // default arguments live in the context of the function. However, due to
41  // the way in which Clang parses and creates function declarations, this is
42  // not the case: the lambda closure type ends up living in the context
43  // where the function itself resides, because the function declaration itself
44  // had not yet been created. Fix the context here.
45  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
46    if (RD->isLambda())
47      if (ParmVarDecl *ContextParam =
48              dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
49        return ContextParam->getDeclContext();
50  }
51
52  // Perform the same check for block literals.
53  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
54    if (ParmVarDecl *ContextParam =
55            dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
56      return ContextParam->getDeclContext();
57  }
58
59  const DeclContext *DC = D->getDeclContext();
60  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
61    return getEffectiveDeclContext(CD);
62
63  return DC;
64}
65
66static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
67  return getEffectiveDeclContext(cast<Decl>(DC));
68}
69
70static const FunctionDecl *getStructor(const FunctionDecl *fn) {
71  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
72    return ftd->getTemplatedDecl();
73
74  return fn;
75}
76
77static bool isLambda(const NamedDecl *ND) {
78  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
79  if (!Record)
80    return false;
81
82  return Record->isLambda();
83}
84
85/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
86/// Microsoft Visual C++ ABI.
87class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
88  typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
89  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
90  llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
91  llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
92
93public:
94  MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
95      : MicrosoftMangleContext(Context, Diags) {}
96  bool shouldMangleCXXName(const NamedDecl *D) override;
97  bool shouldMangleStringLiteral(const StringLiteral *SL) override;
98  void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
99  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
100                                raw_ostream &) override;
101  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
102                   raw_ostream &) override;
103  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
104                          const ThisAdjustment &ThisAdjustment,
105                          raw_ostream &) override;
106  void mangleCXXVFTable(const CXXRecordDecl *Derived,
107                        ArrayRef<const CXXRecordDecl *> BasePath,
108                        raw_ostream &Out) override;
109  void mangleCXXVBTable(const CXXRecordDecl *Derived,
110                        ArrayRef<const CXXRecordDecl *> BasePath,
111                        raw_ostream &Out) override;
112  void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
113  void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
114  void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
115                                        uint32_t NVOffset, int32_t VBPtrOffset,
116                                        uint32_t VBTableOffset, uint32_t Flags,
117                                        raw_ostream &Out) override;
118  void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
119                                   raw_ostream &Out) override;
120  void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
121                                             raw_ostream &Out) override;
122  void
123  mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
124                                     ArrayRef<const CXXRecordDecl *> BasePath,
125                                     raw_ostream &Out) override;
126  void mangleTypeName(QualType T, raw_ostream &) override;
127  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
128                     raw_ostream &) override;
129  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
130                     raw_ostream &) override;
131  void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
132                                raw_ostream &) override;
133  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
134  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
135  void mangleDynamicAtExitDestructor(const VarDecl *D,
136                                     raw_ostream &Out) override;
137  void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
138  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
139    // Lambda closure types are already numbered.
140    if (isLambda(ND))
141      return false;
142
143    const DeclContext *DC = getEffectiveDeclContext(ND);
144    if (!DC->isFunctionOrMethod())
145      return false;
146
147    // Use the canonical number for externally visible decls.
148    if (ND->isExternallyVisible()) {
149      disc = getASTContext().getManglingNumber(ND);
150      return true;
151    }
152
153    // Anonymous tags are already numbered.
154    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
155      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
156        return false;
157    }
158
159    // Make up a reasonable number for internal decls.
160    unsigned &discriminator = Uniquifier[ND];
161    if (!discriminator)
162      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
163    disc = discriminator + 1;
164    return true;
165  }
166
167  unsigned getLambdaId(const CXXRecordDecl *RD) {
168    assert(RD->isLambda() && "RD must be a lambda!");
169    assert(!RD->isExternallyVisible() && "RD must not be visible!");
170    assert(RD->getLambdaManglingNumber() == 0 &&
171           "RD must not have a mangling number!");
172    std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
173        Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
174    return Result.first->second;
175  }
176
177private:
178  void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
179};
180
181/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
182/// Microsoft Visual C++ ABI.
183class MicrosoftCXXNameMangler {
184  MicrosoftMangleContextImpl &Context;
185  raw_ostream &Out;
186
187  /// The "structor" is the top-level declaration being mangled, if
188  /// that's not a template specialization; otherwise it's the pattern
189  /// for that specialization.
190  const NamedDecl *Structor;
191  unsigned StructorType;
192
193  typedef llvm::SmallVector<std::string, 10> BackRefVec;
194  BackRefVec NameBackReferences;
195
196  typedef llvm::DenseMap<void *, unsigned> ArgBackRefMap;
197  ArgBackRefMap TypeBackReferences;
198
199  ASTContext &getASTContext() const { return Context.getASTContext(); }
200
201  // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
202  // this check into mangleQualifiers().
203  const bool PointersAre64Bit;
204
205public:
206  enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
207
208  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
209      : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
210        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
211                         64) {}
212
213  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
214                          const CXXDestructorDecl *D, CXXDtorType Type)
215      : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
216        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
217                         64) {}
218
219  raw_ostream &getStream() const { return Out; }
220
221  void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
222  void mangleName(const NamedDecl *ND);
223  void mangleFunctionEncoding(const FunctionDecl *FD);
224  void mangleVariableEncoding(const VarDecl *VD);
225  void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
226  void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
227                                   const CXXMethodDecl *MD);
228  void mangleVirtualMemPtrThunk(
229      const CXXMethodDecl *MD,
230      const MicrosoftVTableContext::MethodVFTableLocation &ML);
231  void mangleNumber(int64_t Number);
232  void mangleType(QualType T, SourceRange Range,
233                  QualifierMangleMode QMM = QMM_Mangle);
234  void mangleFunctionType(const FunctionType *T,
235                          const FunctionDecl *D = nullptr,
236                          bool ForceThisQuals = false);
237  void mangleNestedName(const NamedDecl *ND);
238
239private:
240  void mangleUnqualifiedName(const NamedDecl *ND) {
241    mangleUnqualifiedName(ND, ND->getDeclName());
242  }
243  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
244  void mangleSourceName(StringRef Name);
245  void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
246  void mangleCXXDtorType(CXXDtorType T);
247  void mangleQualifiers(Qualifiers Quals, bool IsMember);
248  void mangleRefQualifier(RefQualifierKind RefQualifier);
249  void manglePointerCVQualifiers(Qualifiers Quals);
250  void manglePointerExtQualifiers(Qualifiers Quals, const Type *PointeeType);
251
252  void mangleUnscopedTemplateName(const TemplateDecl *ND);
253  void
254  mangleTemplateInstantiationName(const TemplateDecl *TD,
255                                  const TemplateArgumentList &TemplateArgs);
256  void mangleObjCMethodName(const ObjCMethodDecl *MD);
257
258  void mangleArgumentType(QualType T, SourceRange Range);
259
260  // Declare manglers for every type class.
261#define ABSTRACT_TYPE(CLASS, PARENT)
262#define NON_CANONICAL_TYPE(CLASS, PARENT)
263#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
264                                            SourceRange Range);
265#include "clang/AST/TypeNodes.def"
266#undef ABSTRACT_TYPE
267#undef NON_CANONICAL_TYPE
268#undef TYPE
269
270  void mangleType(const TagDecl *TD);
271  void mangleDecayedArrayType(const ArrayType *T);
272  void mangleArrayType(const ArrayType *T);
273  void mangleFunctionClass(const FunctionDecl *FD);
274  void mangleCallingConvention(const FunctionType *T);
275  void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
276  void mangleExpression(const Expr *E);
277  void mangleThrowSpecification(const FunctionProtoType *T);
278
279  void mangleTemplateArgs(const TemplateDecl *TD,
280                          const TemplateArgumentList &TemplateArgs);
281  void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
282                         const NamedDecl *Parm);
283};
284}
285
286bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
287  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
288    LanguageLinkage L = FD->getLanguageLinkage();
289    // Overloadable functions need mangling.
290    if (FD->hasAttr<OverloadableAttr>())
291      return true;
292
293    // The ABI expects that we would never mangle "typical" user-defined entry
294    // points regardless of visibility or freestanding-ness.
295    //
296    // N.B. This is distinct from asking about "main".  "main" has a lot of
297    // special rules associated with it in the standard while these
298    // user-defined entry points are outside of the purview of the standard.
299    // For example, there can be only one definition for "main" in a standards
300    // compliant program; however nothing forbids the existence of wmain and
301    // WinMain in the same translation unit.
302    if (FD->isMSVCRTEntryPoint())
303      return false;
304
305    // C++ functions and those whose names are not a simple identifier need
306    // mangling.
307    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
308      return true;
309
310    // C functions are not mangled.
311    if (L == CLanguageLinkage)
312      return false;
313  }
314
315  // Otherwise, no mangling is done outside C++ mode.
316  if (!getASTContext().getLangOpts().CPlusPlus)
317    return false;
318
319  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
320    // C variables are not mangled.
321    if (VD->isExternC())
322      return false;
323
324    // Variables at global scope with non-internal linkage are not mangled.
325    const DeclContext *DC = getEffectiveDeclContext(D);
326    // Check for extern variable declared locally.
327    if (DC->isFunctionOrMethod() && D->hasLinkage())
328      while (!DC->isNamespace() && !DC->isTranslationUnit())
329        DC = getEffectiveParentContext(DC);
330
331    if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
332        !isa<VarTemplateSpecializationDecl>(D))
333      return false;
334  }
335
336  return true;
337}
338
339bool
340MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
341  return true;
342}
343
344void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
345  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
346  // Therefore it's really important that we don't decorate the
347  // name with leading underscores or leading/trailing at signs. So, by
348  // default, we emit an asm marker at the start so we get the name right.
349  // Callers can override this with a custom prefix.
350
351  // <mangled-name> ::= ? <name> <type-encoding>
352  Out << Prefix;
353  mangleName(D);
354  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
355    mangleFunctionEncoding(FD);
356  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
357    mangleVariableEncoding(VD);
358  else {
359    // TODO: Fields? Can MSVC even mangle them?
360    // Issue a diagnostic for now.
361    DiagnosticsEngine &Diags = Context.getDiags();
362    unsigned DiagID = Diags.getCustomDiagID(
363        DiagnosticsEngine::Error, "cannot mangle this declaration yet");
364    Diags.Report(D->getLocation(), DiagID) << D->getSourceRange();
365  }
366}
367
368void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
369  // <type-encoding> ::= <function-class> <function-type>
370
371  // Since MSVC operates on the type as written and not the canonical type, it
372  // actually matters which decl we have here.  MSVC appears to choose the
373  // first, since it is most likely to be the declaration in a header file.
374  FD = FD->getFirstDecl();
375
376  // We should never ever see a FunctionNoProtoType at this point.
377  // We don't even know how to mangle their types anyway :).
378  const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
379
380  // extern "C" functions can hold entities that must be mangled.
381  // As it stands, these functions still need to get expressed in the full
382  // external name.  They have their class and type omitted, replaced with '9'.
383  if (Context.shouldMangleDeclName(FD)) {
384    // First, the function class.
385    mangleFunctionClass(FD);
386
387    mangleFunctionType(FT, FD);
388  } else
389    Out << '9';
390}
391
392void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
393  // <type-encoding> ::= <storage-class> <variable-type>
394  // <storage-class> ::= 0  # private static member
395  //                 ::= 1  # protected static member
396  //                 ::= 2  # public static member
397  //                 ::= 3  # global
398  //                 ::= 4  # static local
399
400  // The first character in the encoding (after the name) is the storage class.
401  if (VD->isStaticDataMember()) {
402    // If it's a static member, it also encodes the access level.
403    switch (VD->getAccess()) {
404      default:
405      case AS_private: Out << '0'; break;
406      case AS_protected: Out << '1'; break;
407      case AS_public: Out << '2'; break;
408    }
409  }
410  else if (!VD->isStaticLocal())
411    Out << '3';
412  else
413    Out << '4';
414  // Now mangle the type.
415  // <variable-type> ::= <type> <cvr-qualifiers>
416  //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references
417  // Pointers and references are odd. The type of 'int * const foo;' gets
418  // mangled as 'QAHA' instead of 'PAHB', for example.
419  SourceRange SR = VD->getSourceRange();
420  QualType Ty = VD->getType();
421  if (Ty->isPointerType() || Ty->isReferenceType() ||
422      Ty->isMemberPointerType()) {
423    mangleType(Ty, SR, QMM_Drop);
424    manglePointerExtQualifiers(
425        Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), nullptr);
426    if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
427      mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
428      // Member pointers are suffixed with a back reference to the member
429      // pointer's class name.
430      mangleName(MPT->getClass()->getAsCXXRecordDecl());
431    } else
432      mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
433  } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
434    // Global arrays are funny, too.
435    mangleDecayedArrayType(AT);
436    if (AT->getElementType()->isArrayType())
437      Out << 'A';
438    else
439      mangleQualifiers(Ty.getQualifiers(), false);
440  } else {
441    mangleType(Ty, SR, QMM_Drop);
442    mangleQualifiers(Ty.getQualifiers(), false);
443  }
444}
445
446void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
447                                                      const ValueDecl *VD) {
448  // <member-data-pointer> ::= <integer-literal>
449  //                       ::= $F <number> <number>
450  //                       ::= $G <number> <number> <number>
451
452  int64_t FieldOffset;
453  int64_t VBTableOffset;
454  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
455  if (VD) {
456    FieldOffset = getASTContext().getFieldOffset(VD);
457    assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
458           "cannot take address of bitfield");
459    FieldOffset /= getASTContext().getCharWidth();
460
461    VBTableOffset = 0;
462  } else {
463    FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
464
465    VBTableOffset = -1;
466  }
467
468  char Code = '\0';
469  switch (IM) {
470  case MSInheritanceAttr::Keyword_single_inheritance:      Code = '0'; break;
471  case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = '0'; break;
472  case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'F'; break;
473  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
474  }
475
476  Out << '$' << Code;
477
478  mangleNumber(FieldOffset);
479
480  // The C++ standard doesn't allow base-to-derived member pointer conversions
481  // in template parameter contexts, so the vbptr offset of data member pointers
482  // is always zero.
483  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
484    mangleNumber(0);
485  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
486    mangleNumber(VBTableOffset);
487}
488
489void
490MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
491                                                     const CXXMethodDecl *MD) {
492  // <member-function-pointer> ::= $1? <name>
493  //                           ::= $H? <name> <number>
494  //                           ::= $I? <name> <number> <number>
495  //                           ::= $J? <name> <number> <number> <number>
496
497  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
498
499  char Code = '\0';
500  switch (IM) {
501  case MSInheritanceAttr::Keyword_single_inheritance:      Code = '1'; break;
502  case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = 'H'; break;
503  case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'I'; break;
504  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
505  }
506
507  // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr
508  // thunk.
509  uint64_t NVOffset = 0;
510  uint64_t VBTableOffset = 0;
511  uint64_t VBPtrOffset = 0;
512  if (MD) {
513    Out << '$' << Code << '?';
514    if (MD->isVirtual()) {
515      MicrosoftVTableContext *VTContext =
516          cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
517      const MicrosoftVTableContext::MethodVFTableLocation &ML =
518          VTContext->getMethodVFTableLocation(GlobalDecl(MD));
519      mangleVirtualMemPtrThunk(MD, ML);
520      NVOffset = ML.VFPtrOffset.getQuantity();
521      VBTableOffset = ML.VBTableIndex * 4;
522      if (ML.VBase) {
523        const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
524        VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
525      }
526    } else {
527      mangleName(MD);
528      mangleFunctionEncoding(MD);
529    }
530  } else {
531    // Null single inheritance member functions are encoded as a simple nullptr.
532    if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
533      Out << "$0A@";
534      return;
535    }
536    if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
537      VBTableOffset = -1;
538    Out << '$' << Code;
539  }
540
541  if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
542    mangleNumber(NVOffset);
543  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
544    mangleNumber(VBPtrOffset);
545  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
546    mangleNumber(VBTableOffset);
547}
548
549void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
550    const CXXMethodDecl *MD,
551    const MicrosoftVTableContext::MethodVFTableLocation &ML) {
552  // Get the vftable offset.
553  CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
554      getASTContext().getTargetInfo().getPointerWidth(0));
555  uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
556
557  Out << "?_9";
558  mangleName(MD->getParent());
559  Out << "$B";
560  mangleNumber(OffsetInVFTable);
561  Out << 'A';
562  Out << (PointersAre64Bit ? 'A' : 'E');
563}
564
565void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
566  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
567
568  // Always start with the unqualified name.
569  mangleUnqualifiedName(ND);
570
571  mangleNestedName(ND);
572
573  // Terminate the whole name with an '@'.
574  Out << '@';
575}
576
577void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
578  // <non-negative integer> ::= A@              # when Number == 0
579  //                        ::= <decimal digit> # when 1 <= Number <= 10
580  //                        ::= <hex digit>+ @  # when Number >= 10
581  //
582  // <number>               ::= [?] <non-negative integer>
583
584  uint64_t Value = static_cast<uint64_t>(Number);
585  if (Number < 0) {
586    Value = -Value;
587    Out << '?';
588  }
589
590  if (Value == 0)
591    Out << "A@";
592  else if (Value >= 1 && Value <= 10)
593    Out << (Value - 1);
594  else {
595    // Numbers that are not encoded as decimal digits are represented as nibbles
596    // in the range of ASCII characters 'A' to 'P'.
597    // The number 0x123450 would be encoded as 'BCDEFA'
598    char EncodedNumberBuffer[sizeof(uint64_t) * 2];
599    MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
600    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
601    for (; Value != 0; Value >>= 4)
602      *I++ = 'A' + (Value & 0xf);
603    Out.write(I.base(), I - BufferRef.rbegin());
604    Out << '@';
605  }
606}
607
608static const TemplateDecl *
609isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
610  // Check if we have a function template.
611  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
612    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
613      TemplateArgs = FD->getTemplateSpecializationArgs();
614      return TD;
615    }
616  }
617
618  // Check if we have a class template.
619  if (const ClassTemplateSpecializationDecl *Spec =
620          dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
621    TemplateArgs = &Spec->getTemplateArgs();
622    return Spec->getSpecializedTemplate();
623  }
624
625  // Check if we have a variable template.
626  if (const VarTemplateSpecializationDecl *Spec =
627          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
628    TemplateArgs = &Spec->getTemplateArgs();
629    return Spec->getSpecializedTemplate();
630  }
631
632  return nullptr;
633}
634
635void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
636                                                    DeclarationName Name) {
637  //  <unqualified-name> ::= <operator-name>
638  //                     ::= <ctor-dtor-name>
639  //                     ::= <source-name>
640  //                     ::= <template-name>
641
642  // Check if we have a template.
643  const TemplateArgumentList *TemplateArgs = nullptr;
644  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
645    // Function templates aren't considered for name back referencing.  This
646    // makes sense since function templates aren't likely to occur multiple
647    // times in a symbol.
648    // FIXME: Test alias template mangling with MSVC 2013.
649    if (!isa<ClassTemplateDecl>(TD)) {
650      mangleTemplateInstantiationName(TD, *TemplateArgs);
651      Out << '@';
652      return;
653    }
654
655    // Here comes the tricky thing: if we need to mangle something like
656    //   void foo(A::X<Y>, B::X<Y>),
657    // the X<Y> part is aliased. However, if you need to mangle
658    //   void foo(A::X<A::Y>, A::X<B::Y>),
659    // the A::X<> part is not aliased.
660    // That said, from the mangler's perspective we have a structure like this:
661    //   namespace[s] -> type[ -> template-parameters]
662    // but from the Clang perspective we have
663    //   type [ -> template-parameters]
664    //      \-> namespace[s]
665    // What we do is we create a new mangler, mangle the same type (without
666    // a namespace suffix) to a string using the extra mangler and then use
667    // the mangled type name as a key to check the mangling of different types
668    // for aliasing.
669
670    llvm::SmallString<64> TemplateMangling;
671    llvm::raw_svector_ostream Stream(TemplateMangling);
672    MicrosoftCXXNameMangler Extra(Context, Stream);
673    Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
674    Stream.flush();
675
676    mangleSourceName(TemplateMangling);
677    return;
678  }
679
680  switch (Name.getNameKind()) {
681    case DeclarationName::Identifier: {
682      if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
683        mangleSourceName(II->getName());
684        break;
685      }
686
687      // Otherwise, an anonymous entity.  We must have a declaration.
688      assert(ND && "mangling empty name without declaration");
689
690      if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
691        if (NS->isAnonymousNamespace()) {
692          Out << "?A@";
693          break;
694        }
695      }
696
697      if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
698        // We must have an anonymous union or struct declaration.
699        const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
700        assert(RD && "expected variable decl to have a record type");
701        // Anonymous types with no tag or typedef get the name of their
702        // declarator mangled in.  If they have no declarator, number them with
703        // a $S prefix.
704        llvm::SmallString<64> Name("$S");
705        // Get a unique id for the anonymous struct.
706        Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
707        mangleSourceName(Name.str());
708        break;
709      }
710
711      // We must have an anonymous struct.
712      const TagDecl *TD = cast<TagDecl>(ND);
713      if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
714        assert(TD->getDeclContext() == D->getDeclContext() &&
715               "Typedef should not be in another decl context!");
716        assert(D->getDeclName().getAsIdentifierInfo() &&
717               "Typedef was not named!");
718        mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
719        break;
720      }
721
722      if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
723        if (Record->isLambda()) {
724          llvm::SmallString<10> Name("<lambda_");
725          unsigned LambdaId;
726          if (Record->getLambdaManglingNumber())
727            LambdaId = Record->getLambdaManglingNumber();
728          else
729            LambdaId = Context.getLambdaId(Record);
730
731          Name += llvm::utostr(LambdaId);
732          Name += ">";
733
734          mangleSourceName(Name);
735          break;
736        }
737      }
738
739      llvm::SmallString<64> Name("<unnamed-type-");
740      if (TD->hasDeclaratorForAnonDecl()) {
741        // Anonymous types with no tag or typedef get the name of their
742        // declarator mangled in if they have one.
743        Name += TD->getDeclaratorForAnonDecl()->getName();
744      } else {
745        // Otherwise, number the types using a $S prefix.
746        Name += "$S";
747        Name += llvm::utostr(Context.getAnonymousStructId(TD));
748      }
749      Name += ">";
750      mangleSourceName(Name.str());
751      break;
752    }
753
754    case DeclarationName::ObjCZeroArgSelector:
755    case DeclarationName::ObjCOneArgSelector:
756    case DeclarationName::ObjCMultiArgSelector:
757      llvm_unreachable("Can't mangle Objective-C selector names here!");
758
759    case DeclarationName::CXXConstructorName:
760      if (ND == Structor) {
761        assert(StructorType == Ctor_Complete &&
762               "Should never be asked to mangle a ctor other than complete");
763      }
764      Out << "?0";
765      break;
766
767    case DeclarationName::CXXDestructorName:
768      if (ND == Structor)
769        // If the named decl is the C++ destructor we're mangling,
770        // use the type we were given.
771        mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
772      else
773        // Otherwise, use the base destructor name. This is relevant if a
774        // class with a destructor is declared within a destructor.
775        mangleCXXDtorType(Dtor_Base);
776      break;
777
778    case DeclarationName::CXXConversionFunctionName:
779      // <operator-name> ::= ?B # (cast)
780      // The target type is encoded as the return type.
781      Out << "?B";
782      break;
783
784    case DeclarationName::CXXOperatorName:
785      mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
786      break;
787
788    case DeclarationName::CXXLiteralOperatorName: {
789      Out << "?__K";
790      mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
791      break;
792    }
793
794    case DeclarationName::CXXUsingDirective:
795      llvm_unreachable("Can't mangle a using directive name!");
796  }
797}
798
799void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
800  // <postfix> ::= <unqualified-name> [<postfix>]
801  //           ::= <substitution> [<postfix>]
802  const DeclContext *DC = getEffectiveDeclContext(ND);
803
804  while (!DC->isTranslationUnit()) {
805    if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
806      unsigned Disc;
807      if (Context.getNextDiscriminator(ND, Disc)) {
808        Out << '?';
809        mangleNumber(Disc);
810        Out << '?';
811      }
812    }
813
814    if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
815      DiagnosticsEngine &Diags = Context.getDiags();
816      unsigned DiagID =
817          Diags.getCustomDiagID(DiagnosticsEngine::Error,
818                                "cannot mangle a local inside this block yet");
819      Diags.Report(BD->getLocation(), DiagID);
820
821      // FIXME: This is completely, utterly, wrong; see ItaniumMangle
822      // for how this should be done.
823      Out << "__block_invoke" << Context.getBlockId(BD, false);
824      Out << '@';
825      continue;
826    } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
827      mangleObjCMethodName(Method);
828    } else if (isa<NamedDecl>(DC)) {
829      ND = cast<NamedDecl>(DC);
830      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
831        mangle(FD, "?");
832        break;
833      } else
834        mangleUnqualifiedName(ND);
835    }
836    DC = DC->getParent();
837  }
838}
839
840void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
841  // Microsoft uses the names on the case labels for these dtor variants.  Clang
842  // uses the Itanium terminology internally.  Everything in this ABI delegates
843  // towards the base dtor.
844  switch (T) {
845  // <operator-name> ::= ?1  # destructor
846  case Dtor_Base: Out << "?1"; return;
847  // <operator-name> ::= ?_D # vbase destructor
848  case Dtor_Complete: Out << "?_D"; return;
849  // <operator-name> ::= ?_G # scalar deleting destructor
850  case Dtor_Deleting: Out << "?_G"; return;
851  // <operator-name> ::= ?_E # vector deleting destructor
852  // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need
853  // it.
854  case Dtor_Comdat:
855    llvm_unreachable("not expecting a COMDAT");
856  }
857  llvm_unreachable("Unsupported dtor type?");
858}
859
860void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
861                                                 SourceLocation Loc) {
862  switch (OO) {
863  //                     ?0 # constructor
864  //                     ?1 # destructor
865  // <operator-name> ::= ?2 # new
866  case OO_New: Out << "?2"; break;
867  // <operator-name> ::= ?3 # delete
868  case OO_Delete: Out << "?3"; break;
869  // <operator-name> ::= ?4 # =
870  case OO_Equal: Out << "?4"; break;
871  // <operator-name> ::= ?5 # >>
872  case OO_GreaterGreater: Out << "?5"; break;
873  // <operator-name> ::= ?6 # <<
874  case OO_LessLess: Out << "?6"; break;
875  // <operator-name> ::= ?7 # !
876  case OO_Exclaim: Out << "?7"; break;
877  // <operator-name> ::= ?8 # ==
878  case OO_EqualEqual: Out << "?8"; break;
879  // <operator-name> ::= ?9 # !=
880  case OO_ExclaimEqual: Out << "?9"; break;
881  // <operator-name> ::= ?A # []
882  case OO_Subscript: Out << "?A"; break;
883  //                     ?B # conversion
884  // <operator-name> ::= ?C # ->
885  case OO_Arrow: Out << "?C"; break;
886  // <operator-name> ::= ?D # *
887  case OO_Star: Out << "?D"; break;
888  // <operator-name> ::= ?E # ++
889  case OO_PlusPlus: Out << "?E"; break;
890  // <operator-name> ::= ?F # --
891  case OO_MinusMinus: Out << "?F"; break;
892  // <operator-name> ::= ?G # -
893  case OO_Minus: Out << "?G"; break;
894  // <operator-name> ::= ?H # +
895  case OO_Plus: Out << "?H"; break;
896  // <operator-name> ::= ?I # &
897  case OO_Amp: Out << "?I"; break;
898  // <operator-name> ::= ?J # ->*
899  case OO_ArrowStar: Out << "?J"; break;
900  // <operator-name> ::= ?K # /
901  case OO_Slash: Out << "?K"; break;
902  // <operator-name> ::= ?L # %
903  case OO_Percent: Out << "?L"; break;
904  // <operator-name> ::= ?M # <
905  case OO_Less: Out << "?M"; break;
906  // <operator-name> ::= ?N # <=
907  case OO_LessEqual: Out << "?N"; break;
908  // <operator-name> ::= ?O # >
909  case OO_Greater: Out << "?O"; break;
910  // <operator-name> ::= ?P # >=
911  case OO_GreaterEqual: Out << "?P"; break;
912  // <operator-name> ::= ?Q # ,
913  case OO_Comma: Out << "?Q"; break;
914  // <operator-name> ::= ?R # ()
915  case OO_Call: Out << "?R"; break;
916  // <operator-name> ::= ?S # ~
917  case OO_Tilde: Out << "?S"; break;
918  // <operator-name> ::= ?T # ^
919  case OO_Caret: Out << "?T"; break;
920  // <operator-name> ::= ?U # |
921  case OO_Pipe: Out << "?U"; break;
922  // <operator-name> ::= ?V # &&
923  case OO_AmpAmp: Out << "?V"; break;
924  // <operator-name> ::= ?W # ||
925  case OO_PipePipe: Out << "?W"; break;
926  // <operator-name> ::= ?X # *=
927  case OO_StarEqual: Out << "?X"; break;
928  // <operator-name> ::= ?Y # +=
929  case OO_PlusEqual: Out << "?Y"; break;
930  // <operator-name> ::= ?Z # -=
931  case OO_MinusEqual: Out << "?Z"; break;
932  // <operator-name> ::= ?_0 # /=
933  case OO_SlashEqual: Out << "?_0"; break;
934  // <operator-name> ::= ?_1 # %=
935  case OO_PercentEqual: Out << "?_1"; break;
936  // <operator-name> ::= ?_2 # >>=
937  case OO_GreaterGreaterEqual: Out << "?_2"; break;
938  // <operator-name> ::= ?_3 # <<=
939  case OO_LessLessEqual: Out << "?_3"; break;
940  // <operator-name> ::= ?_4 # &=
941  case OO_AmpEqual: Out << "?_4"; break;
942  // <operator-name> ::= ?_5 # |=
943  case OO_PipeEqual: Out << "?_5"; break;
944  // <operator-name> ::= ?_6 # ^=
945  case OO_CaretEqual: Out << "?_6"; break;
946  //                     ?_7 # vftable
947  //                     ?_8 # vbtable
948  //                     ?_9 # vcall
949  //                     ?_A # typeof
950  //                     ?_B # local static guard
951  //                     ?_C # string
952  //                     ?_D # vbase destructor
953  //                     ?_E # vector deleting destructor
954  //                     ?_F # default constructor closure
955  //                     ?_G # scalar deleting destructor
956  //                     ?_H # vector constructor iterator
957  //                     ?_I # vector destructor iterator
958  //                     ?_J # vector vbase constructor iterator
959  //                     ?_K # virtual displacement map
960  //                     ?_L # eh vector constructor iterator
961  //                     ?_M # eh vector destructor iterator
962  //                     ?_N # eh vector vbase constructor iterator
963  //                     ?_O # copy constructor closure
964  //                     ?_P<name> # udt returning <name>
965  //                     ?_Q # <unknown>
966  //                     ?_R0 # RTTI Type Descriptor
967  //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
968  //                     ?_R2 # RTTI Base Class Array
969  //                     ?_R3 # RTTI Class Hierarchy Descriptor
970  //                     ?_R4 # RTTI Complete Object Locator
971  //                     ?_S # local vftable
972  //                     ?_T # local vftable constructor closure
973  // <operator-name> ::= ?_U # new[]
974  case OO_Array_New: Out << "?_U"; break;
975  // <operator-name> ::= ?_V # delete[]
976  case OO_Array_Delete: Out << "?_V"; break;
977
978  case OO_Conditional: {
979    DiagnosticsEngine &Diags = Context.getDiags();
980    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
981      "cannot mangle this conditional operator yet");
982    Diags.Report(Loc, DiagID);
983    break;
984  }
985
986  case OO_None:
987  case NUM_OVERLOADED_OPERATORS:
988    llvm_unreachable("Not an overloaded operator");
989  }
990}
991
992void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
993  // <source name> ::= <identifier> @
994  BackRefVec::iterator Found =
995      std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
996  if (Found == NameBackReferences.end()) {
997    if (NameBackReferences.size() < 10)
998      NameBackReferences.push_back(Name);
999    Out << Name << '@';
1000  } else {
1001    Out << (Found - NameBackReferences.begin());
1002  }
1003}
1004
1005void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1006  Context.mangleObjCMethodName(MD, Out);
1007}
1008
1009void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1010    const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1011  // <template-name> ::= <unscoped-template-name> <template-args>
1012  //                 ::= <substitution>
1013  // Always start with the unqualified name.
1014
1015  // Templates have their own context for back references.
1016  ArgBackRefMap OuterArgsContext;
1017  BackRefVec OuterTemplateContext;
1018  NameBackReferences.swap(OuterTemplateContext);
1019  TypeBackReferences.swap(OuterArgsContext);
1020
1021  mangleUnscopedTemplateName(TD);
1022  mangleTemplateArgs(TD, TemplateArgs);
1023
1024  // Restore the previous back reference contexts.
1025  NameBackReferences.swap(OuterTemplateContext);
1026  TypeBackReferences.swap(OuterArgsContext);
1027}
1028
1029void
1030MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1031  // <unscoped-template-name> ::= ?$ <unqualified-name>
1032  Out << "?$";
1033  mangleUnqualifiedName(TD);
1034}
1035
1036void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1037                                                   bool IsBoolean) {
1038  // <integer-literal> ::= $0 <number>
1039  Out << "$0";
1040  // Make sure booleans are encoded as 0/1.
1041  if (IsBoolean && Value.getBoolValue())
1042    mangleNumber(1);
1043  else if (Value.isSigned())
1044    mangleNumber(Value.getSExtValue());
1045  else
1046    mangleNumber(Value.getZExtValue());
1047}
1048
1049void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1050  // See if this is a constant expression.
1051  llvm::APSInt Value;
1052  if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1053    mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1054    return;
1055  }
1056
1057  // Look through no-op casts like template parameter substitutions.
1058  E = E->IgnoreParenNoopCasts(Context.getASTContext());
1059
1060  const CXXUuidofExpr *UE = nullptr;
1061  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1062    if (UO->getOpcode() == UO_AddrOf)
1063      UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1064  } else
1065    UE = dyn_cast<CXXUuidofExpr>(E);
1066
1067  if (UE) {
1068    // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1069    // const __s_GUID _GUID_{lower case UUID with underscores}
1070    StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
1071    std::string Name = "_GUID_" + Uuid.lower();
1072    std::replace(Name.begin(), Name.end(), '-', '_');
1073
1074    // If we had to peek through an address-of operator, treat this like we are
1075    // dealing with a pointer type.  Otherwise, treat it like a const reference.
1076    //
1077    // N.B. This matches up with the handling of TemplateArgument::Declaration
1078    // in mangleTemplateArg
1079    if (UE == E)
1080      Out << "$E?";
1081    else
1082      Out << "$1?";
1083    Out << Name << "@@3U__s_GUID@@B";
1084    return;
1085  }
1086
1087  // As bad as this diagnostic is, it's better than crashing.
1088  DiagnosticsEngine &Diags = Context.getDiags();
1089  unsigned DiagID = Diags.getCustomDiagID(
1090      DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1091  Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1092                                        << E->getSourceRange();
1093}
1094
1095void MicrosoftCXXNameMangler::mangleTemplateArgs(
1096    const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1097  // <template-args> ::= <template-arg>+
1098  const TemplateParameterList *TPL = TD->getTemplateParameters();
1099  assert(TPL->size() == TemplateArgs.size() &&
1100         "size mismatch between args and parms!");
1101
1102  unsigned Idx = 0;
1103  for (const TemplateArgument &TA : TemplateArgs.asArray())
1104    mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
1105}
1106
1107void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1108                                                const TemplateArgument &TA,
1109                                                const NamedDecl *Parm) {
1110  // <template-arg> ::= <type>
1111  //                ::= <integer-literal>
1112  //                ::= <member-data-pointer>
1113  //                ::= <member-function-pointer>
1114  //                ::= $E? <name> <type-encoding>
1115  //                ::= $1? <name> <type-encoding>
1116  //                ::= $0A@
1117  //                ::= <template-args>
1118
1119  switch (TA.getKind()) {
1120  case TemplateArgument::Null:
1121    llvm_unreachable("Can't mangle null template arguments!");
1122  case TemplateArgument::TemplateExpansion:
1123    llvm_unreachable("Can't mangle template expansion arguments!");
1124  case TemplateArgument::Type: {
1125    QualType T = TA.getAsType();
1126    mangleType(T, SourceRange(), QMM_Escape);
1127    break;
1128  }
1129  case TemplateArgument::Declaration: {
1130    const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
1131    if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1132      mangleMemberDataPointer(
1133          cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
1134          cast<ValueDecl>(ND));
1135    } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1136      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1137      if (MD && MD->isInstance())
1138        mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
1139      else
1140        mangle(FD, "$1?");
1141    } else {
1142      mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1143    }
1144    break;
1145  }
1146  case TemplateArgument::Integral:
1147    mangleIntegerLiteral(TA.getAsIntegral(),
1148                         TA.getIntegralType()->isBooleanType());
1149    break;
1150  case TemplateArgument::NullPtr: {
1151    QualType T = TA.getNullPtrType();
1152    if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1153      const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1154      if (MPT->isMemberFunctionPointerType() && isa<ClassTemplateDecl>(TD)) {
1155        mangleMemberFunctionPointer(RD, nullptr);
1156        return;
1157      }
1158      if (MPT->isMemberDataPointer()) {
1159        mangleMemberDataPointer(RD, nullptr);
1160        return;
1161      }
1162    }
1163    Out << "$0A@";
1164    break;
1165  }
1166  case TemplateArgument::Expression:
1167    mangleExpression(TA.getAsExpr());
1168    break;
1169  case TemplateArgument::Pack: {
1170    ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1171    if (TemplateArgs.empty()) {
1172      if (isa<TemplateTypeParmDecl>(Parm) ||
1173          isa<TemplateTemplateParmDecl>(Parm))
1174        Out << "$$V";
1175      else if (isa<NonTypeTemplateParmDecl>(Parm))
1176        Out << "$S";
1177      else
1178        llvm_unreachable("unexpected template parameter decl!");
1179    } else {
1180      for (const TemplateArgument &PA : TemplateArgs)
1181        mangleTemplateArg(TD, PA, Parm);
1182    }
1183    break;
1184  }
1185  case TemplateArgument::Template: {
1186    const NamedDecl *ND =
1187        TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1188    if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1189      mangleType(TD);
1190    } else if (isa<TypeAliasDecl>(ND)) {
1191      Out << "$$Y";
1192      mangleName(ND);
1193    } else {
1194      llvm_unreachable("unexpected template template NamedDecl!");
1195    }
1196    break;
1197  }
1198  }
1199}
1200
1201void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1202                                               bool IsMember) {
1203  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1204  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1205  // 'I' means __restrict (32/64-bit).
1206  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1207  // keyword!
1208  // <base-cvr-qualifiers> ::= A  # near
1209  //                       ::= B  # near const
1210  //                       ::= C  # near volatile
1211  //                       ::= D  # near const volatile
1212  //                       ::= E  # far (16-bit)
1213  //                       ::= F  # far const (16-bit)
1214  //                       ::= G  # far volatile (16-bit)
1215  //                       ::= H  # far const volatile (16-bit)
1216  //                       ::= I  # huge (16-bit)
1217  //                       ::= J  # huge const (16-bit)
1218  //                       ::= K  # huge volatile (16-bit)
1219  //                       ::= L  # huge const volatile (16-bit)
1220  //                       ::= M <basis> # based
1221  //                       ::= N <basis> # based const
1222  //                       ::= O <basis> # based volatile
1223  //                       ::= P <basis> # based const volatile
1224  //                       ::= Q  # near member
1225  //                       ::= R  # near const member
1226  //                       ::= S  # near volatile member
1227  //                       ::= T  # near const volatile member
1228  //                       ::= U  # far member (16-bit)
1229  //                       ::= V  # far const member (16-bit)
1230  //                       ::= W  # far volatile member (16-bit)
1231  //                       ::= X  # far const volatile member (16-bit)
1232  //                       ::= Y  # huge member (16-bit)
1233  //                       ::= Z  # huge const member (16-bit)
1234  //                       ::= 0  # huge volatile member (16-bit)
1235  //                       ::= 1  # huge const volatile member (16-bit)
1236  //                       ::= 2 <basis> # based member
1237  //                       ::= 3 <basis> # based const member
1238  //                       ::= 4 <basis> # based volatile member
1239  //                       ::= 5 <basis> # based const volatile member
1240  //                       ::= 6  # near function (pointers only)
1241  //                       ::= 7  # far function (pointers only)
1242  //                       ::= 8  # near method (pointers only)
1243  //                       ::= 9  # far method (pointers only)
1244  //                       ::= _A <basis> # based function (pointers only)
1245  //                       ::= _B <basis> # based function (far?) (pointers only)
1246  //                       ::= _C <basis> # based method (pointers only)
1247  //                       ::= _D <basis> # based method (far?) (pointers only)
1248  //                       ::= _E # block (Clang)
1249  // <basis> ::= 0 # __based(void)
1250  //         ::= 1 # __based(segment)?
1251  //         ::= 2 <name> # __based(name)
1252  //         ::= 3 # ?
1253  //         ::= 4 # ?
1254  //         ::= 5 # not really based
1255  bool HasConst = Quals.hasConst(),
1256       HasVolatile = Quals.hasVolatile();
1257
1258  if (!IsMember) {
1259    if (HasConst && HasVolatile) {
1260      Out << 'D';
1261    } else if (HasVolatile) {
1262      Out << 'C';
1263    } else if (HasConst) {
1264      Out << 'B';
1265    } else {
1266      Out << 'A';
1267    }
1268  } else {
1269    if (HasConst && HasVolatile) {
1270      Out << 'T';
1271    } else if (HasVolatile) {
1272      Out << 'S';
1273    } else if (HasConst) {
1274      Out << 'R';
1275    } else {
1276      Out << 'Q';
1277    }
1278  }
1279
1280  // FIXME: For now, just drop all extension qualifiers on the floor.
1281}
1282
1283void
1284MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1285  // <ref-qualifier> ::= G                # lvalue reference
1286  //                 ::= H                # rvalue-reference
1287  switch (RefQualifier) {
1288  case RQ_None:
1289    break;
1290
1291  case RQ_LValue:
1292    Out << 'G';
1293    break;
1294
1295  case RQ_RValue:
1296    Out << 'H';
1297    break;
1298  }
1299}
1300
1301void
1302MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1303                                                    const Type *PointeeType) {
1304  bool HasRestrict = Quals.hasRestrict();
1305  if (PointersAre64Bit && (!PointeeType || !PointeeType->isFunctionType()))
1306    Out << 'E';
1307
1308  if (HasRestrict)
1309    Out << 'I';
1310}
1311
1312void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1313  // <pointer-cv-qualifiers> ::= P  # no qualifiers
1314  //                         ::= Q  # const
1315  //                         ::= R  # volatile
1316  //                         ::= S  # const volatile
1317  bool HasConst = Quals.hasConst(),
1318       HasVolatile = Quals.hasVolatile();
1319
1320  if (HasConst && HasVolatile) {
1321    Out << 'S';
1322  } else if (HasVolatile) {
1323    Out << 'R';
1324  } else if (HasConst) {
1325    Out << 'Q';
1326  } else {
1327    Out << 'P';
1328  }
1329}
1330
1331void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1332                                                 SourceRange Range) {
1333  // MSVC will backreference two canonically equivalent types that have slightly
1334  // different manglings when mangled alone.
1335
1336  // Decayed types do not match up with non-decayed versions of the same type.
1337  //
1338  // e.g.
1339  // void (*x)(void) will not form a backreference with void x(void)
1340  void *TypePtr;
1341  if (const DecayedType *DT = T->getAs<DecayedType>()) {
1342    TypePtr = DT->getOriginalType().getCanonicalType().getAsOpaquePtr();
1343    // If the original parameter was textually written as an array,
1344    // instead treat the decayed parameter like it's const.
1345    //
1346    // e.g.
1347    // int [] -> int * const
1348    if (DT->getOriginalType()->isArrayType())
1349      T = T.withConst();
1350  } else
1351    TypePtr = T.getCanonicalType().getAsOpaquePtr();
1352
1353  ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1354
1355  if (Found == TypeBackReferences.end()) {
1356    size_t OutSizeBefore = Out.GetNumBytesInBuffer();
1357
1358    mangleType(T, Range, QMM_Drop);
1359
1360    // See if it's worth creating a back reference.
1361    // Only types longer than 1 character are considered
1362    // and only 10 back references slots are available:
1363    bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
1364    if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1365      size_t Size = TypeBackReferences.size();
1366      TypeBackReferences[TypePtr] = Size;
1367    }
1368  } else {
1369    Out << Found->second;
1370  }
1371}
1372
1373void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1374                                         QualifierMangleMode QMM) {
1375  // Don't use the canonical types.  MSVC includes things like 'const' on
1376  // pointer arguments to function pointers that canonicalization strips away.
1377  T = T.getDesugaredType(getASTContext());
1378  Qualifiers Quals = T.getLocalQualifiers();
1379  if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1380    // If there were any Quals, getAsArrayType() pushed them onto the array
1381    // element type.
1382    if (QMM == QMM_Mangle)
1383      Out << 'A';
1384    else if (QMM == QMM_Escape || QMM == QMM_Result)
1385      Out << "$$B";
1386    mangleArrayType(AT);
1387    return;
1388  }
1389
1390  bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1391                   T->isBlockPointerType();
1392
1393  switch (QMM) {
1394  case QMM_Drop:
1395    break;
1396  case QMM_Mangle:
1397    if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1398      Out << '6';
1399      mangleFunctionType(FT);
1400      return;
1401    }
1402    mangleQualifiers(Quals, false);
1403    break;
1404  case QMM_Escape:
1405    if (!IsPointer && Quals) {
1406      Out << "$$C";
1407      mangleQualifiers(Quals, false);
1408    }
1409    break;
1410  case QMM_Result:
1411    if ((!IsPointer && Quals) || isa<TagType>(T)) {
1412      Out << '?';
1413      mangleQualifiers(Quals, false);
1414    }
1415    break;
1416  }
1417
1418  // We have to mangle these now, while we still have enough information.
1419  if (IsPointer) {
1420    manglePointerCVQualifiers(Quals);
1421    manglePointerExtQualifiers(Quals, T->getPointeeType().getTypePtr());
1422  }
1423  const Type *ty = T.getTypePtr();
1424
1425  switch (ty->getTypeClass()) {
1426#define ABSTRACT_TYPE(CLASS, PARENT)
1427#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1428  case Type::CLASS: \
1429    llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1430    return;
1431#define TYPE(CLASS, PARENT) \
1432  case Type::CLASS: \
1433    mangleType(cast<CLASS##Type>(ty), Range); \
1434    break;
1435#include "clang/AST/TypeNodes.def"
1436#undef ABSTRACT_TYPE
1437#undef NON_CANONICAL_TYPE
1438#undef TYPE
1439  }
1440}
1441
1442void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
1443                                         SourceRange Range) {
1444  //  <type>         ::= <builtin-type>
1445  //  <builtin-type> ::= X  # void
1446  //                 ::= C  # signed char
1447  //                 ::= D  # char
1448  //                 ::= E  # unsigned char
1449  //                 ::= F  # short
1450  //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
1451  //                 ::= H  # int
1452  //                 ::= I  # unsigned int
1453  //                 ::= J  # long
1454  //                 ::= K  # unsigned long
1455  //                     L  # <none>
1456  //                 ::= M  # float
1457  //                 ::= N  # double
1458  //                 ::= O  # long double (__float80 is mangled differently)
1459  //                 ::= _J # long long, __int64
1460  //                 ::= _K # unsigned long long, __int64
1461  //                 ::= _L # __int128
1462  //                 ::= _M # unsigned __int128
1463  //                 ::= _N # bool
1464  //                     _O # <array in parameter>
1465  //                 ::= _T # __float80 (Intel)
1466  //                 ::= _W # wchar_t
1467  //                 ::= _Z # __float80 (Digital Mars)
1468  switch (T->getKind()) {
1469  case BuiltinType::Void: Out << 'X'; break;
1470  case BuiltinType::SChar: Out << 'C'; break;
1471  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
1472  case BuiltinType::UChar: Out << 'E'; break;
1473  case BuiltinType::Short: Out << 'F'; break;
1474  case BuiltinType::UShort: Out << 'G'; break;
1475  case BuiltinType::Int: Out << 'H'; break;
1476  case BuiltinType::UInt: Out << 'I'; break;
1477  case BuiltinType::Long: Out << 'J'; break;
1478  case BuiltinType::ULong: Out << 'K'; break;
1479  case BuiltinType::Float: Out << 'M'; break;
1480  case BuiltinType::Double: Out << 'N'; break;
1481  // TODO: Determine size and mangle accordingly
1482  case BuiltinType::LongDouble: Out << 'O'; break;
1483  case BuiltinType::LongLong: Out << "_J"; break;
1484  case BuiltinType::ULongLong: Out << "_K"; break;
1485  case BuiltinType::Int128: Out << "_L"; break;
1486  case BuiltinType::UInt128: Out << "_M"; break;
1487  case BuiltinType::Bool: Out << "_N"; break;
1488  case BuiltinType::Char16: Out << "_S"; break;
1489  case BuiltinType::Char32: Out << "_U"; break;
1490  case BuiltinType::WChar_S:
1491  case BuiltinType::WChar_U: Out << "_W"; break;
1492
1493#define BUILTIN_TYPE(Id, SingletonId)
1494#define PLACEHOLDER_TYPE(Id, SingletonId) \
1495  case BuiltinType::Id:
1496#include "clang/AST/BuiltinTypes.def"
1497  case BuiltinType::Dependent:
1498    llvm_unreachable("placeholder types shouldn't get to name mangling");
1499
1500  case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
1501  case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
1502  case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
1503
1504  case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
1505  case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
1506  case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
1507  case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
1508  case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
1509  case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
1510  case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break;
1511  case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break;
1512
1513  case BuiltinType::NullPtr: Out << "$$T"; break;
1514
1515  case BuiltinType::Half: {
1516    DiagnosticsEngine &Diags = Context.getDiags();
1517    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1518      "cannot mangle this built-in %0 type yet");
1519    Diags.Report(Range.getBegin(), DiagID)
1520      << T->getName(Context.getASTContext().getPrintingPolicy())
1521      << Range;
1522    break;
1523  }
1524  }
1525}
1526
1527// <type>          ::= <function-type>
1528void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
1529                                         SourceRange) {
1530  // Structors only appear in decls, so at this point we know it's not a
1531  // structor type.
1532  // FIXME: This may not be lambda-friendly.
1533  if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
1534    Out << "$$A8@@";
1535    mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
1536  } else {
1537    Out << "$$A6";
1538    mangleFunctionType(T);
1539  }
1540}
1541void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1542                                         SourceRange) {
1543  llvm_unreachable("Can't mangle K&R function prototypes");
1544}
1545
1546void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
1547                                                 const FunctionDecl *D,
1548                                                 bool ForceThisQuals) {
1549  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1550  //                     <return-type> <argument-list> <throw-spec>
1551  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1552
1553  SourceRange Range;
1554  if (D) Range = D->getSourceRange();
1555
1556  bool IsStructor = false, HasThisQuals = ForceThisQuals;
1557  if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
1558    if (MD->isInstance())
1559      HasThisQuals = true;
1560    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
1561      IsStructor = true;
1562  }
1563
1564  // If this is a C++ instance method, mangle the CVR qualifiers for the
1565  // this pointer.
1566  if (HasThisQuals) {
1567    Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals());
1568    manglePointerExtQualifiers(Quals, /*PointeeType=*/nullptr);
1569    mangleRefQualifier(Proto->getRefQualifier());
1570    mangleQualifiers(Quals, /*IsMember=*/false);
1571  }
1572
1573  mangleCallingConvention(T);
1574
1575  // <return-type> ::= <type>
1576  //               ::= @ # structors (they have no declared return type)
1577  if (IsStructor) {
1578    if (isa<CXXDestructorDecl>(D) && D == Structor &&
1579        StructorType == Dtor_Deleting) {
1580      // The scalar deleting destructor takes an extra int argument.
1581      // However, the FunctionType generated has 0 arguments.
1582      // FIXME: This is a temporary hack.
1583      // Maybe should fix the FunctionType creation instead?
1584      Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
1585      return;
1586    }
1587    Out << '@';
1588  } else {
1589    QualType ResultType = Proto->getReturnType();
1590    if (const auto *AT =
1591            dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
1592      Out << '?';
1593      mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
1594      Out << '?';
1595      mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
1596      Out << '@';
1597    } else {
1598      if (ResultType->isVoidType())
1599        ResultType = ResultType.getUnqualifiedType();
1600      mangleType(ResultType, Range, QMM_Result);
1601    }
1602  }
1603
1604  // <argument-list> ::= X # void
1605  //                 ::= <type>+ @
1606  //                 ::= <type>* Z # varargs
1607  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
1608    Out << 'X';
1609  } else {
1610    // Happens for function pointer type arguments for example.
1611    for (const QualType Arg : Proto->param_types())
1612      mangleArgumentType(Arg, Range);
1613    // <builtin-type>      ::= Z  # ellipsis
1614    if (Proto->isVariadic())
1615      Out << 'Z';
1616    else
1617      Out << '@';
1618  }
1619
1620  mangleThrowSpecification(Proto);
1621}
1622
1623void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1624  // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this'
1625  //                                            # pointer. in 64-bit mode *all*
1626  //                                            # 'this' pointers are 64-bit.
1627  //                   ::= <global-function>
1628  // <member-function> ::= A # private: near
1629  //                   ::= B # private: far
1630  //                   ::= C # private: static near
1631  //                   ::= D # private: static far
1632  //                   ::= E # private: virtual near
1633  //                   ::= F # private: virtual far
1634  //                   ::= I # protected: near
1635  //                   ::= J # protected: far
1636  //                   ::= K # protected: static near
1637  //                   ::= L # protected: static far
1638  //                   ::= M # protected: virtual near
1639  //                   ::= N # protected: virtual far
1640  //                   ::= Q # public: near
1641  //                   ::= R # public: far
1642  //                   ::= S # public: static near
1643  //                   ::= T # public: static far
1644  //                   ::= U # public: virtual near
1645  //                   ::= V # public: virtual far
1646  // <global-function> ::= Y # global near
1647  //                   ::= Z # global far
1648  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1649    switch (MD->getAccess()) {
1650      case AS_none:
1651        llvm_unreachable("Unsupported access specifier");
1652      case AS_private:
1653        if (MD->isStatic())
1654          Out << 'C';
1655        else if (MD->isVirtual())
1656          Out << 'E';
1657        else
1658          Out << 'A';
1659        break;
1660      case AS_protected:
1661        if (MD->isStatic())
1662          Out << 'K';
1663        else if (MD->isVirtual())
1664          Out << 'M';
1665        else
1666          Out << 'I';
1667        break;
1668      case AS_public:
1669        if (MD->isStatic())
1670          Out << 'S';
1671        else if (MD->isVirtual())
1672          Out << 'U';
1673        else
1674          Out << 'Q';
1675    }
1676  } else
1677    Out << 'Y';
1678}
1679void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
1680  // <calling-convention> ::= A # __cdecl
1681  //                      ::= B # __export __cdecl
1682  //                      ::= C # __pascal
1683  //                      ::= D # __export __pascal
1684  //                      ::= E # __thiscall
1685  //                      ::= F # __export __thiscall
1686  //                      ::= G # __stdcall
1687  //                      ::= H # __export __stdcall
1688  //                      ::= I # __fastcall
1689  //                      ::= J # __export __fastcall
1690  //                      ::= Q # __vectorcall
1691  // The 'export' calling conventions are from a bygone era
1692  // (*cough*Win16*cough*) when functions were declared for export with
1693  // that keyword. (It didn't actually export them, it just made them so
1694  // that they could be in a DLL and somebody from another module could call
1695  // them.)
1696  CallingConv CC = T->getCallConv();
1697  switch (CC) {
1698    default:
1699      llvm_unreachable("Unsupported CC for mangling");
1700    case CC_X86_64Win64:
1701    case CC_X86_64SysV:
1702    case CC_C: Out << 'A'; break;
1703    case CC_X86Pascal: Out << 'C'; break;
1704    case CC_X86ThisCall: Out << 'E'; break;
1705    case CC_X86StdCall: Out << 'G'; break;
1706    case CC_X86FastCall: Out << 'I'; break;
1707    case CC_X86VectorCall: Out << 'Q'; break;
1708  }
1709}
1710void MicrosoftCXXNameMangler::mangleThrowSpecification(
1711                                                const FunctionProtoType *FT) {
1712  // <throw-spec> ::= Z # throw(...) (default)
1713  //              ::= @ # throw() or __declspec/__attribute__((nothrow))
1714  //              ::= <type>+
1715  // NOTE: Since the Microsoft compiler ignores throw specifications, they are
1716  // all actually mangled as 'Z'. (They're ignored because their associated
1717  // functionality isn't implemented, and probably never will be.)
1718  Out << 'Z';
1719}
1720
1721void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
1722                                         SourceRange Range) {
1723  // Probably should be mangled as a template instantiation; need to see what
1724  // VC does first.
1725  DiagnosticsEngine &Diags = Context.getDiags();
1726  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1727    "cannot mangle this unresolved dependent type yet");
1728  Diags.Report(Range.getBegin(), DiagID)
1729    << Range;
1730}
1731
1732// <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
1733// <union-type>  ::= T <name>
1734// <struct-type> ::= U <name>
1735// <class-type>  ::= V <name>
1736// <enum-type>   ::= W4 <name>
1737void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
1738  mangleType(cast<TagType>(T)->getDecl());
1739}
1740void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
1741  mangleType(cast<TagType>(T)->getDecl());
1742}
1743void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
1744  switch (TD->getTagKind()) {
1745    case TTK_Union:
1746      Out << 'T';
1747      break;
1748    case TTK_Struct:
1749    case TTK_Interface:
1750      Out << 'U';
1751      break;
1752    case TTK_Class:
1753      Out << 'V';
1754      break;
1755    case TTK_Enum:
1756      Out << "W4";
1757      break;
1758  }
1759  mangleName(TD);
1760}
1761
1762// <type>       ::= <array-type>
1763// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1764//                  [Y <dimension-count> <dimension>+]
1765//                  <element-type> # as global, E is never required
1766// It's supposed to be the other way around, but for some strange reason, it
1767// isn't. Today this behavior is retained for the sole purpose of backwards
1768// compatibility.
1769void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
1770  // This isn't a recursive mangling, so now we have to do it all in this
1771  // one call.
1772  manglePointerCVQualifiers(T->getElementType().getQualifiers());
1773  mangleType(T->getElementType(), SourceRange());
1774}
1775void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
1776                                         SourceRange) {
1777  llvm_unreachable("Should have been special cased");
1778}
1779void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
1780                                         SourceRange) {
1781  llvm_unreachable("Should have been special cased");
1782}
1783void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
1784                                         SourceRange) {
1785  llvm_unreachable("Should have been special cased");
1786}
1787void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
1788                                         SourceRange) {
1789  llvm_unreachable("Should have been special cased");
1790}
1791void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
1792  QualType ElementTy(T, 0);
1793  SmallVector<llvm::APInt, 3> Dimensions;
1794  for (;;) {
1795    if (const ConstantArrayType *CAT =
1796            getASTContext().getAsConstantArrayType(ElementTy)) {
1797      Dimensions.push_back(CAT->getSize());
1798      ElementTy = CAT->getElementType();
1799    } else if (ElementTy->isVariableArrayType()) {
1800      const VariableArrayType *VAT =
1801        getASTContext().getAsVariableArrayType(ElementTy);
1802      DiagnosticsEngine &Diags = Context.getDiags();
1803      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1804        "cannot mangle this variable-length array yet");
1805      Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
1806        << VAT->getBracketsRange();
1807      return;
1808    } else if (ElementTy->isDependentSizedArrayType()) {
1809      // The dependent expression has to be folded into a constant (TODO).
1810      const DependentSizedArrayType *DSAT =
1811        getASTContext().getAsDependentSizedArrayType(ElementTy);
1812      DiagnosticsEngine &Diags = Context.getDiags();
1813      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1814        "cannot mangle this dependent-length array yet");
1815      Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
1816        << DSAT->getBracketsRange();
1817      return;
1818    } else if (const IncompleteArrayType *IAT =
1819                   getASTContext().getAsIncompleteArrayType(ElementTy)) {
1820      Dimensions.push_back(llvm::APInt(32, 0));
1821      ElementTy = IAT->getElementType();
1822    }
1823    else break;
1824  }
1825  Out << 'Y';
1826  // <dimension-count> ::= <number> # number of extra dimensions
1827  mangleNumber(Dimensions.size());
1828  for (const llvm::APInt &Dimension : Dimensions)
1829    mangleNumber(Dimension.getLimitedValue());
1830  mangleType(ElementTy, SourceRange(), QMM_Escape);
1831}
1832
1833// <type>                   ::= <pointer-to-member-type>
1834// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1835//                                                          <class name> <type>
1836void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
1837                                         SourceRange Range) {
1838  QualType PointeeType = T->getPointeeType();
1839  if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
1840    Out << '8';
1841    mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1842    mangleFunctionType(FPT, nullptr, true);
1843  } else {
1844    mangleQualifiers(PointeeType.getQualifiers(), true);
1845    mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1846    mangleType(PointeeType, Range, QMM_Drop);
1847  }
1848}
1849
1850void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
1851                                         SourceRange Range) {
1852  DiagnosticsEngine &Diags = Context.getDiags();
1853  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1854    "cannot mangle this template type parameter type yet");
1855  Diags.Report(Range.getBegin(), DiagID)
1856    << Range;
1857}
1858
1859void MicrosoftCXXNameMangler::mangleType(
1860                                       const SubstTemplateTypeParmPackType *T,
1861                                       SourceRange Range) {
1862  DiagnosticsEngine &Diags = Context.getDiags();
1863  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1864    "cannot mangle this substituted parameter pack yet");
1865  Diags.Report(Range.getBegin(), DiagID)
1866    << Range;
1867}
1868
1869// <type> ::= <pointer-type>
1870// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1871//                       # the E is required for 64-bit non-static pointers
1872void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
1873                                         SourceRange Range) {
1874  QualType PointeeTy = T->getPointeeType();
1875  mangleType(PointeeTy, Range);
1876}
1877void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
1878                                         SourceRange Range) {
1879  // Object pointers never have qualifiers.
1880  Out << 'A';
1881  manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1882  mangleType(T->getPointeeType(), Range);
1883}
1884
1885// <type> ::= <reference-type>
1886// <reference-type> ::= A E? <cvr-qualifiers> <type>
1887//                 # the E is required for 64-bit non-static lvalue references
1888void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
1889                                         SourceRange Range) {
1890  Out << 'A';
1891  manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1892  mangleType(T->getPointeeType(), Range);
1893}
1894
1895// <type> ::= <r-value-reference-type>
1896// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
1897//                 # the E is required for 64-bit non-static rvalue references
1898void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
1899                                         SourceRange Range) {
1900  Out << "$$Q";
1901  manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1902  mangleType(T->getPointeeType(), Range);
1903}
1904
1905void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
1906                                         SourceRange Range) {
1907  DiagnosticsEngine &Diags = Context.getDiags();
1908  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1909    "cannot mangle this complex number type yet");
1910  Diags.Report(Range.getBegin(), DiagID)
1911    << Range;
1912}
1913
1914void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
1915                                         SourceRange Range) {
1916  const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
1917  assert(ET && "vectors with non-builtin elements are unsupported");
1918  uint64_t Width = getASTContext().getTypeSize(T);
1919  // Pattern match exactly the typedefs in our intrinsic headers.  Anything that
1920  // doesn't match the Intel types uses a custom mangling below.
1921  bool IntelVector = true;
1922  if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
1923    Out << "T__m64";
1924  } else if (Width == 128 || Width == 256) {
1925    if (ET->getKind() == BuiltinType::Float)
1926      Out << "T__m" << Width;
1927    else if (ET->getKind() == BuiltinType::LongLong)
1928      Out << "T__m" << Width << 'i';
1929    else if (ET->getKind() == BuiltinType::Double)
1930      Out << "U__m" << Width << 'd';
1931    else
1932      IntelVector = false;
1933  } else {
1934    IntelVector = false;
1935  }
1936
1937  if (!IntelVector) {
1938    // The MS ABI doesn't have a special mangling for vector types, so we define
1939    // our own mangling to handle uses of __vector_size__ on user-specified
1940    // types, and for extensions like __v4sf.
1941    Out << "T__clang_vec" << T->getNumElements() << '_';
1942    mangleType(ET, Range);
1943  }
1944
1945  Out << "@@";
1946}
1947
1948void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
1949                                         SourceRange Range) {
1950  DiagnosticsEngine &Diags = Context.getDiags();
1951  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1952    "cannot mangle this extended vector type yet");
1953  Diags.Report(Range.getBegin(), DiagID)
1954    << Range;
1955}
1956void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
1957                                         SourceRange Range) {
1958  DiagnosticsEngine &Diags = Context.getDiags();
1959  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1960    "cannot mangle this dependent-sized extended vector type yet");
1961  Diags.Report(Range.getBegin(), DiagID)
1962    << Range;
1963}
1964
1965void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
1966                                         SourceRange) {
1967  // ObjC interfaces have structs underlying them.
1968  Out << 'U';
1969  mangleName(T->getDecl());
1970}
1971
1972void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
1973                                         SourceRange Range) {
1974  // We don't allow overloading by different protocol qualification,
1975  // so mangling them isn't necessary.
1976  mangleType(T->getBaseType(), Range);
1977}
1978
1979void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
1980                                         SourceRange Range) {
1981  Out << "_E";
1982
1983  QualType pointee = T->getPointeeType();
1984  mangleFunctionType(pointee->castAs<FunctionProtoType>());
1985}
1986
1987void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
1988                                         SourceRange) {
1989  llvm_unreachable("Cannot mangle injected class name type.");
1990}
1991
1992void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
1993                                         SourceRange Range) {
1994  DiagnosticsEngine &Diags = Context.getDiags();
1995  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1996    "cannot mangle this template specialization type yet");
1997  Diags.Report(Range.getBegin(), DiagID)
1998    << Range;
1999}
2000
2001void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
2002                                         SourceRange Range) {
2003  DiagnosticsEngine &Diags = Context.getDiags();
2004  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2005    "cannot mangle this dependent name type yet");
2006  Diags.Report(Range.getBegin(), DiagID)
2007    << Range;
2008}
2009
2010void MicrosoftCXXNameMangler::mangleType(
2011                                 const DependentTemplateSpecializationType *T,
2012                                 SourceRange Range) {
2013  DiagnosticsEngine &Diags = Context.getDiags();
2014  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2015    "cannot mangle this dependent template specialization type yet");
2016  Diags.Report(Range.getBegin(), DiagID)
2017    << Range;
2018}
2019
2020void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
2021                                         SourceRange Range) {
2022  DiagnosticsEngine &Diags = Context.getDiags();
2023  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2024    "cannot mangle this pack expansion yet");
2025  Diags.Report(Range.getBegin(), DiagID)
2026    << Range;
2027}
2028
2029void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
2030                                         SourceRange Range) {
2031  DiagnosticsEngine &Diags = Context.getDiags();
2032  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2033    "cannot mangle this typeof(type) yet");
2034  Diags.Report(Range.getBegin(), DiagID)
2035    << Range;
2036}
2037
2038void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
2039                                         SourceRange Range) {
2040  DiagnosticsEngine &Diags = Context.getDiags();
2041  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2042    "cannot mangle this typeof(expression) yet");
2043  Diags.Report(Range.getBegin(), DiagID)
2044    << Range;
2045}
2046
2047void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
2048                                         SourceRange Range) {
2049  DiagnosticsEngine &Diags = Context.getDiags();
2050  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2051    "cannot mangle this decltype() yet");
2052  Diags.Report(Range.getBegin(), DiagID)
2053    << Range;
2054}
2055
2056void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2057                                         SourceRange Range) {
2058  DiagnosticsEngine &Diags = Context.getDiags();
2059  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2060    "cannot mangle this unary transform type yet");
2061  Diags.Report(Range.getBegin(), DiagID)
2062    << Range;
2063}
2064
2065void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
2066  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2067
2068  DiagnosticsEngine &Diags = Context.getDiags();
2069  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2070    "cannot mangle this 'auto' type yet");
2071  Diags.Report(Range.getBegin(), DiagID)
2072    << Range;
2073}
2074
2075void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
2076                                         SourceRange Range) {
2077  DiagnosticsEngine &Diags = Context.getDiags();
2078  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2079    "cannot mangle this C11 atomic type yet");
2080  Diags.Report(Range.getBegin(), DiagID)
2081    << Range;
2082}
2083
2084void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2085                                               raw_ostream &Out) {
2086  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2087         "Invalid mangleName() call, argument is not a variable or function!");
2088  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2089         "Invalid mangleName() call on 'structor decl!");
2090
2091  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2092                                 getASTContext().getSourceManager(),
2093                                 "Mangling declaration");
2094
2095  MicrosoftCXXNameMangler Mangler(*this, Out);
2096  return Mangler.mangle(D);
2097}
2098
2099// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2100//                       <virtual-adjustment>
2101// <no-adjustment>      ::= A # private near
2102//                      ::= B # private far
2103//                      ::= I # protected near
2104//                      ::= J # protected far
2105//                      ::= Q # public near
2106//                      ::= R # public far
2107// <static-adjustment>  ::= G <static-offset> # private near
2108//                      ::= H <static-offset> # private far
2109//                      ::= O <static-offset> # protected near
2110//                      ::= P <static-offset> # protected far
2111//                      ::= W <static-offset> # public near
2112//                      ::= X <static-offset> # public far
2113// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2114//                      ::= $1 <virtual-shift> <static-offset> # private far
2115//                      ::= $2 <virtual-shift> <static-offset> # protected near
2116//                      ::= $3 <virtual-shift> <static-offset> # protected far
2117//                      ::= $4 <virtual-shift> <static-offset> # public near
2118//                      ::= $5 <virtual-shift> <static-offset> # public far
2119// <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift>
2120// <vtordisp-shift>     ::= <offset-to-vtordisp>
2121// <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset>
2122//                          <offset-to-vtordisp>
2123static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
2124                                      const ThisAdjustment &Adjustment,
2125                                      MicrosoftCXXNameMangler &Mangler,
2126                                      raw_ostream &Out) {
2127  if (!Adjustment.Virtual.isEmpty()) {
2128    Out << '$';
2129    char AccessSpec;
2130    switch (MD->getAccess()) {
2131    case AS_none:
2132      llvm_unreachable("Unsupported access specifier");
2133    case AS_private:
2134      AccessSpec = '0';
2135      break;
2136    case AS_protected:
2137      AccessSpec = '2';
2138      break;
2139    case AS_public:
2140      AccessSpec = '4';
2141    }
2142    if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2143      Out << 'R' << AccessSpec;
2144      Mangler.mangleNumber(
2145          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2146      Mangler.mangleNumber(
2147          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2148      Mangler.mangleNumber(
2149          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2150      Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2151    } else {
2152      Out << AccessSpec;
2153      Mangler.mangleNumber(
2154          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2155      Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2156    }
2157  } else if (Adjustment.NonVirtual != 0) {
2158    switch (MD->getAccess()) {
2159    case AS_none:
2160      llvm_unreachable("Unsupported access specifier");
2161    case AS_private:
2162      Out << 'G';
2163      break;
2164    case AS_protected:
2165      Out << 'O';
2166      break;
2167    case AS_public:
2168      Out << 'W';
2169    }
2170    Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2171  } else {
2172    switch (MD->getAccess()) {
2173    case AS_none:
2174      llvm_unreachable("Unsupported access specifier");
2175    case AS_private:
2176      Out << 'A';
2177      break;
2178    case AS_protected:
2179      Out << 'I';
2180      break;
2181    case AS_public:
2182      Out << 'Q';
2183    }
2184  }
2185}
2186
2187void
2188MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
2189                                                     raw_ostream &Out) {
2190  MicrosoftVTableContext *VTContext =
2191      cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
2192  const MicrosoftVTableContext::MethodVFTableLocation &ML =
2193      VTContext->getMethodVFTableLocation(GlobalDecl(MD));
2194
2195  MicrosoftCXXNameMangler Mangler(*this, Out);
2196  Mangler.getStream() << "\01?";
2197  Mangler.mangleVirtualMemPtrThunk(MD, ML);
2198}
2199
2200void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2201                                             const ThunkInfo &Thunk,
2202                                             raw_ostream &Out) {
2203  MicrosoftCXXNameMangler Mangler(*this, Out);
2204  Out << "\01?";
2205  Mangler.mangleName(MD);
2206  mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
2207  if (!Thunk.Return.isEmpty())
2208    assert(Thunk.Method != nullptr &&
2209           "Thunk info should hold the overridee decl");
2210
2211  const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2212  Mangler.mangleFunctionType(
2213      DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2214}
2215
2216void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2217    const CXXDestructorDecl *DD, CXXDtorType Type,
2218    const ThisAdjustment &Adjustment, raw_ostream &Out) {
2219  // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2220  // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2221  // mangling manually until we support both deleting dtor types.
2222  assert(Type == Dtor_Deleting);
2223  MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
2224  Out << "\01??_E";
2225  Mangler.mangleName(DD->getParent());
2226  mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
2227  Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2228}
2229
2230void MicrosoftMangleContextImpl::mangleCXXVFTable(
2231    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2232    raw_ostream &Out) {
2233  // <mangled-name> ::= ?_7 <class-name> <storage-class>
2234  //                    <cvr-qualifiers> [<name>] @
2235  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2236  // is always '6' for vftables.
2237  MicrosoftCXXNameMangler Mangler(*this, Out);
2238  Mangler.getStream() << "\01??_7";
2239  Mangler.mangleName(Derived);
2240  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2241  for (const CXXRecordDecl *RD : BasePath)
2242    Mangler.mangleName(RD);
2243  Mangler.getStream() << '@';
2244}
2245
2246void MicrosoftMangleContextImpl::mangleCXXVBTable(
2247    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2248    raw_ostream &Out) {
2249  // <mangled-name> ::= ?_8 <class-name> <storage-class>
2250  //                    <cvr-qualifiers> [<name>] @
2251  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2252  // is always '7' for vbtables.
2253  MicrosoftCXXNameMangler Mangler(*this, Out);
2254  Mangler.getStream() << "\01??_8";
2255  Mangler.mangleName(Derived);
2256  Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const.
2257  for (const CXXRecordDecl *RD : BasePath)
2258    Mangler.mangleName(RD);
2259  Mangler.getStream() << '@';
2260}
2261
2262void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2263  MicrosoftCXXNameMangler Mangler(*this, Out);
2264  Mangler.getStream() << "\01??_R0";
2265  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2266  Mangler.getStream() << "@8";
2267}
2268
2269void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2270                                                   raw_ostream &Out) {
2271  MicrosoftCXXNameMangler Mangler(*this, Out);
2272  Mangler.getStream() << '.';
2273  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2274}
2275
2276void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
2277    const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
2278    uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
2279  MicrosoftCXXNameMangler Mangler(*this, Out);
2280  Mangler.getStream() << "\01??_R1";
2281  Mangler.mangleNumber(NVOffset);
2282  Mangler.mangleNumber(VBPtrOffset);
2283  Mangler.mangleNumber(VBTableOffset);
2284  Mangler.mangleNumber(Flags);
2285  Mangler.mangleName(Derived);
2286  Mangler.getStream() << "8";
2287}
2288
2289void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
2290    const CXXRecordDecl *Derived, raw_ostream &Out) {
2291  MicrosoftCXXNameMangler Mangler(*this, Out);
2292  Mangler.getStream() << "\01??_R2";
2293  Mangler.mangleName(Derived);
2294  Mangler.getStream() << "8";
2295}
2296
2297void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
2298    const CXXRecordDecl *Derived, raw_ostream &Out) {
2299  MicrosoftCXXNameMangler Mangler(*this, Out);
2300  Mangler.getStream() << "\01??_R3";
2301  Mangler.mangleName(Derived);
2302  Mangler.getStream() << "8";
2303}
2304
2305void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
2306    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2307    raw_ostream &Out) {
2308  // <mangled-name> ::= ?_R4 <class-name> <storage-class>
2309  //                    <cvr-qualifiers> [<name>] @
2310  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2311  // is always '6' for vftables.
2312  MicrosoftCXXNameMangler Mangler(*this, Out);
2313  Mangler.getStream() << "\01??_R4";
2314  Mangler.mangleName(Derived);
2315  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2316  for (const CXXRecordDecl *RD : BasePath)
2317    Mangler.mangleName(RD);
2318  Mangler.getStream() << '@';
2319}
2320
2321void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
2322  // This is just a made up unique string for the purposes of tbaa.  undname
2323  // does *not* know how to demangle it.
2324  MicrosoftCXXNameMangler Mangler(*this, Out);
2325  Mangler.getStream() << '?';
2326  Mangler.mangleType(T, SourceRange());
2327}
2328
2329void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
2330                                               CXXCtorType Type,
2331                                               raw_ostream &Out) {
2332  MicrosoftCXXNameMangler mangler(*this, Out);
2333  mangler.mangle(D);
2334}
2335
2336void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
2337                                               CXXDtorType Type,
2338                                               raw_ostream &Out) {
2339  MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2340  mangler.mangle(D);
2341}
2342
2343void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD,
2344                                                          unsigned,
2345                                                          raw_ostream &) {
2346  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
2347    "cannot mangle this reference temporary yet");
2348  getDiags().Report(VD->getLocation(), DiagID);
2349}
2350
2351void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
2352                                                           raw_ostream &Out) {
2353  // TODO: This is not correct, especially with respect to VS "14".  VS "14"
2354  // utilizes thread local variables to implement thread safe, re-entrant
2355  // initialization for statics.  They no longer differentiate between an
2356  // externally visible and non-externally visible static with respect to
2357  // mangling, they all get $TSS <number>.
2358  //
2359  // N.B. This means that they can get more than 32 static variable guards in a
2360  // scope.  It also means that they broke compatibility with their own ABI.
2361
2362  // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
2363  //              ::= ?$S <guard-num> @ <postfix> @4IA
2364
2365  // The first mangling is what MSVC uses to guard static locals in inline
2366  // functions.  It uses a different mangling in external functions to support
2367  // guarding more than 32 variables.  MSVC rejects inline functions with more
2368  // than 32 static locals.  We don't fully implement the second mangling
2369  // because those guards are not externally visible, and instead use LLVM's
2370  // default renaming when creating a new guard variable.
2371  MicrosoftCXXNameMangler Mangler(*this, Out);
2372
2373  bool Visible = VD->isExternallyVisible();
2374  // <operator-name> ::= ?_B # local static guard
2375  Mangler.getStream() << (Visible ? "\01??_B" : "\01?$S1@");
2376  unsigned ScopeDepth = 0;
2377  if (Visible && !getNextDiscriminator(VD, ScopeDepth))
2378    // If we do not have a discriminator and are emitting a guard variable for
2379    // use at global scope, then mangling the nested name will not be enough to
2380    // remove ambiguities.
2381    Mangler.mangle(VD, "");
2382  else
2383    Mangler.mangleNestedName(VD);
2384  Mangler.getStream() << (Visible ? "@5" : "@4IA");
2385  if (ScopeDepth)
2386    Mangler.mangleNumber(ScopeDepth);
2387}
2388
2389void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
2390                                                    raw_ostream &Out,
2391                                                    char CharCode) {
2392  MicrosoftCXXNameMangler Mangler(*this, Out);
2393  Mangler.getStream() << "\01??__" << CharCode;
2394  Mangler.mangleName(D);
2395  if (D->isStaticDataMember()) {
2396    Mangler.mangleVariableEncoding(D);
2397    Mangler.getStream() << '@';
2398  }
2399  // This is the function class mangling.  These stubs are global, non-variadic,
2400  // cdecl functions that return void and take no args.
2401  Mangler.getStream() << "YAXXZ";
2402}
2403
2404void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
2405                                                          raw_ostream &Out) {
2406  // <initializer-name> ::= ?__E <name> YAXXZ
2407  mangleInitFiniStub(D, Out, 'E');
2408}
2409
2410void
2411MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
2412                                                          raw_ostream &Out) {
2413  // <destructor-name> ::= ?__F <name> YAXXZ
2414  mangleInitFiniStub(D, Out, 'F');
2415}
2416
2417void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
2418                                                     raw_ostream &Out) {
2419  // <char-type> ::= 0   # char
2420  //             ::= 1   # wchar_t
2421  //             ::= ??? # char16_t/char32_t will need a mangling too...
2422  //
2423  // <literal-length> ::= <non-negative integer>  # the length of the literal
2424  //
2425  // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including
2426  //                                              # null-terminator
2427  //
2428  // <encoded-string> ::= <simple character>           # uninteresting character
2429  //                  ::= '?$' <hex digit> <hex digit> # these two nibbles
2430  //                                                   # encode the byte for the
2431  //                                                   # character
2432  //                  ::= '?' [a-z]                    # \xe1 - \xfa
2433  //                  ::= '?' [A-Z]                    # \xc1 - \xda
2434  //                  ::= '?' [0-9]                    # [,/\:. \n\t'-]
2435  //
2436  // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
2437  //               <encoded-string> '@'
2438  MicrosoftCXXNameMangler Mangler(*this, Out);
2439  Mangler.getStream() << "\01??_C@_";
2440
2441  // <char-type>: The "kind" of string literal is encoded into the mangled name.
2442  if (SL->isWide())
2443    Mangler.getStream() << '1';
2444  else
2445    Mangler.getStream() << '0';
2446
2447  // <literal-length>: The next part of the mangled name consists of the length
2448  // of the string.
2449  // The StringLiteral does not consider the NUL terminator byte(s) but the
2450  // mangling does.
2451  // N.B. The length is in terms of bytes, not characters.
2452  Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
2453
2454  // We will use the "Rocksoft^tm Model CRC Algorithm" to describe the
2455  // properties of our CRC:
2456  //   Width  : 32
2457  //   Poly   : 04C11DB7
2458  //   Init   : FFFFFFFF
2459  //   RefIn  : True
2460  //   RefOut : True
2461  //   XorOut : 00000000
2462  //   Check  : 340BC6D9
2463  uint32_t CRC = 0xFFFFFFFFU;
2464
2465  auto UpdateCRC = [&CRC](char Byte) {
2466    for (unsigned i = 0; i < 8; ++i) {
2467      bool Bit = CRC & 0x80000000U;
2468      if (Byte & (1U << i))
2469        Bit = !Bit;
2470      CRC <<= 1;
2471      if (Bit)
2472        CRC ^= 0x04C11DB7U;
2473    }
2474  };
2475
2476  auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
2477    unsigned CharByteWidth = SL->getCharByteWidth();
2478    uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2479    unsigned OffsetInCodeUnit = Index % CharByteWidth;
2480    return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2481  };
2482
2483  auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
2484    unsigned CharByteWidth = SL->getCharByteWidth();
2485    uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2486    unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
2487    return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2488  };
2489
2490  // CRC all the bytes of the StringLiteral.
2491  for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
2492    UpdateCRC(GetLittleEndianByte(I));
2493
2494  // The NUL terminator byte(s) were not present earlier,
2495  // we need to manually process those bytes into the CRC.
2496  for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2497       ++NullTerminator)
2498    UpdateCRC('\x00');
2499
2500  // The literature refers to the process of reversing the bits in the final CRC
2501  // output as "reflection".
2502  CRC = llvm::reverseBits(CRC);
2503
2504  // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
2505  // scheme.
2506  Mangler.mangleNumber(CRC);
2507
2508  // <encoded-string>: The mangled name also contains the first 32 _characters_
2509  // (including null-terminator bytes) of the StringLiteral.
2510  // Each character is encoded by splitting them into bytes and then encoding
2511  // the constituent bytes.
2512  auto MangleByte = [&Mangler](char Byte) {
2513    // There are five different manglings for characters:
2514    // - [a-zA-Z0-9_$]: A one-to-one mapping.
2515    // - ?[a-z]: The range from \xe1 to \xfa.
2516    // - ?[A-Z]: The range from \xc1 to \xda.
2517    // - ?[0-9]: The set of [,/\:. \n\t'-].
2518    // - ?$XX: A fallback which maps nibbles.
2519    if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
2520      Mangler.getStream() << Byte;
2521    } else if (isLetter(Byte & 0x7f)) {
2522      Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
2523    } else {
2524      const char SpecialChars[] = {',', '/',  '\\', ':',  '.',
2525                                   ' ', '\n', '\t', '\'', '-'};
2526      const char *Pos =
2527          std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
2528      if (Pos != std::end(SpecialChars)) {
2529        Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
2530      } else {
2531        Mangler.getStream() << "?$";
2532        Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
2533        Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
2534      }
2535    }
2536  };
2537
2538  // Enforce our 32 character max.
2539  unsigned NumCharsToMangle = std::min(32U, SL->getLength());
2540  for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
2541       ++I)
2542    if (SL->isWide())
2543      MangleByte(GetBigEndianByte(I));
2544    else
2545      MangleByte(GetLittleEndianByte(I));
2546
2547  // Encode the NUL terminator if there is room.
2548  if (NumCharsToMangle < 32)
2549    for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2550         ++NullTerminator)
2551      MangleByte(0);
2552
2553  Mangler.getStream() << '@';
2554}
2555
2556MicrosoftMangleContext *
2557MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
2558  return new MicrosoftMangleContextImpl(Context, Diags);
2559}
2560