1//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Mangle.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/VTableBuilder.h"
26#include "clang/Basic/ABI.h"
27#include "clang/Basic/DiagnosticOptions.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/JamCRC.h"
32
33using namespace clang;
34
35namespace {
36
37/// \brief Retrieve the declaration context that should be used when mangling
38/// the given declaration.
39static const DeclContext *getEffectiveDeclContext(const Decl *D) {
40  // The ABI assumes that lambda closure types that occur within
41  // default arguments live in the context of the function. However, due to
42  // the way in which Clang parses and creates function declarations, this is
43  // not the case: the lambda closure type ends up living in the context
44  // where the function itself resides, because the function declaration itself
45  // had not yet been created. Fix the context here.
46  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
47    if (RD->isLambda())
48      if (ParmVarDecl *ContextParam =
49              dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
50        return ContextParam->getDeclContext();
51  }
52
53  // Perform the same check for block literals.
54  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
55    if (ParmVarDecl *ContextParam =
56            dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
57      return ContextParam->getDeclContext();
58  }
59
60  const DeclContext *DC = D->getDeclContext();
61  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
62    return getEffectiveDeclContext(CD);
63
64  return DC;
65}
66
67static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
68  return getEffectiveDeclContext(cast<Decl>(DC));
69}
70
71static const FunctionDecl *getStructor(const NamedDecl *ND) {
72  if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
73    return FTD->getTemplatedDecl();
74
75  const auto *FD = cast<FunctionDecl>(ND);
76  if (const auto *FTD = FD->getPrimaryTemplate())
77    return FTD->getTemplatedDecl();
78
79  return FD;
80}
81
82static bool isLambda(const NamedDecl *ND) {
83  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
84  if (!Record)
85    return false;
86
87  return Record->isLambda();
88}
89
90/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
91/// Microsoft Visual C++ ABI.
92class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
93  typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
94  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
95  llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
96  llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
97  llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
98  llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
99
100public:
101  MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
102      : MicrosoftMangleContext(Context, Diags) {}
103  bool shouldMangleCXXName(const NamedDecl *D) override;
104  bool shouldMangleStringLiteral(const StringLiteral *SL) override;
105  void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
106  void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
107                                raw_ostream &) override;
108  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
109                   raw_ostream &) override;
110  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
111                          const ThisAdjustment &ThisAdjustment,
112                          raw_ostream &) override;
113  void mangleCXXVFTable(const CXXRecordDecl *Derived,
114                        ArrayRef<const CXXRecordDecl *> BasePath,
115                        raw_ostream &Out) override;
116  void mangleCXXVBTable(const CXXRecordDecl *Derived,
117                        ArrayRef<const CXXRecordDecl *> BasePath,
118                        raw_ostream &Out) override;
119  void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
120                                       const CXXRecordDecl *DstRD,
121                                       raw_ostream &Out) override;
122  void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
123                          uint32_t NumEntries, raw_ostream &Out) override;
124  void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
125                                   raw_ostream &Out) override;
126  void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
127                              CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
128                              int32_t VBPtrOffset, uint32_t VBIndex,
129                              raw_ostream &Out) override;
130  void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
131  void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
132  void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
133                                        uint32_t NVOffset, int32_t VBPtrOffset,
134                                        uint32_t VBTableOffset, uint32_t Flags,
135                                        raw_ostream &Out) override;
136  void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
137                                   raw_ostream &Out) override;
138  void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
139                                             raw_ostream &Out) override;
140  void
141  mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
142                                     ArrayRef<const CXXRecordDecl *> BasePath,
143                                     raw_ostream &Out) override;
144  void mangleTypeName(QualType T, raw_ostream &) override;
145  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
146                     raw_ostream &) override;
147  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
148                     raw_ostream &) override;
149  void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
150                                raw_ostream &) override;
151  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
152  void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
153                                           raw_ostream &Out) override;
154  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
155  void mangleDynamicAtExitDestructor(const VarDecl *D,
156                                     raw_ostream &Out) override;
157  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
158                                 raw_ostream &Out) override;
159  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
160                             raw_ostream &Out) override;
161  void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
162  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
163    // Lambda closure types are already numbered.
164    if (isLambda(ND))
165      return false;
166
167    const DeclContext *DC = getEffectiveDeclContext(ND);
168    if (!DC->isFunctionOrMethod())
169      return false;
170
171    // Use the canonical number for externally visible decls.
172    if (ND->isExternallyVisible()) {
173      disc = getASTContext().getManglingNumber(ND);
174      return true;
175    }
176
177    // Anonymous tags are already numbered.
178    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
179      if (!Tag->hasNameForLinkage() &&
180          !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
181          !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
182        return false;
183    }
184
185    // Make up a reasonable number for internal decls.
186    unsigned &discriminator = Uniquifier[ND];
187    if (!discriminator)
188      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
189    disc = discriminator + 1;
190    return true;
191  }
192
193  unsigned getLambdaId(const CXXRecordDecl *RD) {
194    assert(RD->isLambda() && "RD must be a lambda!");
195    assert(!RD->isExternallyVisible() && "RD must not be visible!");
196    assert(RD->getLambdaManglingNumber() == 0 &&
197           "RD must not have a mangling number!");
198    std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
199        Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
200    return Result.first->second;
201  }
202
203private:
204  void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
205};
206
207/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
208/// Microsoft Visual C++ ABI.
209class MicrosoftCXXNameMangler {
210  MicrosoftMangleContextImpl &Context;
211  raw_ostream &Out;
212
213  /// The "structor" is the top-level declaration being mangled, if
214  /// that's not a template specialization; otherwise it's the pattern
215  /// for that specialization.
216  const NamedDecl *Structor;
217  unsigned StructorType;
218
219  typedef llvm::SmallVector<std::string, 10> BackRefVec;
220  BackRefVec NameBackReferences;
221
222  typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
223  ArgBackRefMap TypeBackReferences;
224
225  typedef std::set<int> PassObjectSizeArgsSet;
226  PassObjectSizeArgsSet PassObjectSizeArgs;
227
228  ASTContext &getASTContext() const { return Context.getASTContext(); }
229
230  // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
231  // this check into mangleQualifiers().
232  const bool PointersAre64Bit;
233
234public:
235  enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
236
237  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
238      : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
239        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
240                         64) {}
241
242  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
243                          const CXXConstructorDecl *D, CXXCtorType Type)
244      : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
245        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
246                         64) {}
247
248  MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
249                          const CXXDestructorDecl *D, CXXDtorType Type)
250      : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
251        PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
252                         64) {}
253
254  raw_ostream &getStream() const { return Out; }
255
256  void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
257  void mangleName(const NamedDecl *ND);
258  void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
259  void mangleVariableEncoding(const VarDecl *VD);
260  void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
261  void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
262                                   const CXXMethodDecl *MD);
263  void mangleVirtualMemPtrThunk(
264      const CXXMethodDecl *MD,
265      const MicrosoftVTableContext::MethodVFTableLocation &ML);
266  void mangleNumber(int64_t Number);
267  void mangleTagTypeKind(TagTypeKind TK);
268  void mangleArtificalTagType(TagTypeKind TK, StringRef UnqualifiedName,
269                              ArrayRef<StringRef> NestedNames = None);
270  void mangleType(QualType T, SourceRange Range,
271                  QualifierMangleMode QMM = QMM_Mangle);
272  void mangleFunctionType(const FunctionType *T,
273                          const FunctionDecl *D = nullptr,
274                          bool ForceThisQuals = false);
275  void mangleNestedName(const NamedDecl *ND);
276
277private:
278  void mangleUnqualifiedName(const NamedDecl *ND) {
279    mangleUnqualifiedName(ND, ND->getDeclName());
280  }
281  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
282  void mangleSourceName(StringRef Name);
283  void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
284  void mangleCXXDtorType(CXXDtorType T);
285  void mangleQualifiers(Qualifiers Quals, bool IsMember);
286  void mangleRefQualifier(RefQualifierKind RefQualifier);
287  void manglePointerCVQualifiers(Qualifiers Quals);
288  void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
289
290  void mangleUnscopedTemplateName(const TemplateDecl *ND);
291  void
292  mangleTemplateInstantiationName(const TemplateDecl *TD,
293                                  const TemplateArgumentList &TemplateArgs);
294  void mangleObjCMethodName(const ObjCMethodDecl *MD);
295
296  void mangleArgumentType(QualType T, SourceRange Range);
297  void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
298
299  // Declare manglers for every type class.
300#define ABSTRACT_TYPE(CLASS, PARENT)
301#define NON_CANONICAL_TYPE(CLASS, PARENT)
302#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
303                                            Qualifiers Quals, \
304                                            SourceRange Range);
305#include "clang/AST/TypeNodes.def"
306#undef ABSTRACT_TYPE
307#undef NON_CANONICAL_TYPE
308#undef TYPE
309
310  void mangleType(const TagDecl *TD);
311  void mangleDecayedArrayType(const ArrayType *T);
312  void mangleArrayType(const ArrayType *T);
313  void mangleFunctionClass(const FunctionDecl *FD);
314  void mangleCallingConvention(CallingConv CC);
315  void mangleCallingConvention(const FunctionType *T);
316  void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
317  void mangleExpression(const Expr *E);
318  void mangleThrowSpecification(const FunctionProtoType *T);
319
320  void mangleTemplateArgs(const TemplateDecl *TD,
321                          const TemplateArgumentList &TemplateArgs);
322  void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
323                         const NamedDecl *Parm);
324};
325}
326
327bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
328  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
329    LanguageLinkage L = FD->getLanguageLinkage();
330    // Overloadable functions need mangling.
331    if (FD->hasAttr<OverloadableAttr>())
332      return true;
333
334    // The ABI expects that we would never mangle "typical" user-defined entry
335    // points regardless of visibility or freestanding-ness.
336    //
337    // N.B. This is distinct from asking about "main".  "main" has a lot of
338    // special rules associated with it in the standard while these
339    // user-defined entry points are outside of the purview of the standard.
340    // For example, there can be only one definition for "main" in a standards
341    // compliant program; however nothing forbids the existence of wmain and
342    // WinMain in the same translation unit.
343    if (FD->isMSVCRTEntryPoint())
344      return false;
345
346    // C++ functions and those whose names are not a simple identifier need
347    // mangling.
348    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
349      return true;
350
351    // C functions are not mangled.
352    if (L == CLanguageLinkage)
353      return false;
354  }
355
356  // Otherwise, no mangling is done outside C++ mode.
357  if (!getASTContext().getLangOpts().CPlusPlus)
358    return false;
359
360  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
361    // C variables are not mangled.
362    if (VD->isExternC())
363      return false;
364
365    // Variables at global scope with non-internal linkage are not mangled.
366    const DeclContext *DC = getEffectiveDeclContext(D);
367    // Check for extern variable declared locally.
368    if (DC->isFunctionOrMethod() && D->hasLinkage())
369      while (!DC->isNamespace() && !DC->isTranslationUnit())
370        DC = getEffectiveParentContext(DC);
371
372    if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
373        !isa<VarTemplateSpecializationDecl>(D) &&
374        D->getIdentifier() != nullptr)
375      return false;
376  }
377
378  return true;
379}
380
381bool
382MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
383  return true;
384}
385
386void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
387  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
388  // Therefore it's really important that we don't decorate the
389  // name with leading underscores or leading/trailing at signs. So, by
390  // default, we emit an asm marker at the start so we get the name right.
391  // Callers can override this with a custom prefix.
392
393  // <mangled-name> ::= ? <name> <type-encoding>
394  Out << Prefix;
395  mangleName(D);
396  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
397    mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
398  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
399    mangleVariableEncoding(VD);
400  else
401    llvm_unreachable("Tried to mangle unexpected NamedDecl!");
402}
403
404void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
405                                                     bool ShouldMangle) {
406  // <type-encoding> ::= <function-class> <function-type>
407
408  // Since MSVC operates on the type as written and not the canonical type, it
409  // actually matters which decl we have here.  MSVC appears to choose the
410  // first, since it is most likely to be the declaration in a header file.
411  FD = FD->getFirstDecl();
412
413  // We should never ever see a FunctionNoProtoType at this point.
414  // We don't even know how to mangle their types anyway :).
415  const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
416
417  // extern "C" functions can hold entities that must be mangled.
418  // As it stands, these functions still need to get expressed in the full
419  // external name.  They have their class and type omitted, replaced with '9'.
420  if (ShouldMangle) {
421    // We would like to mangle all extern "C" functions using this additional
422    // component but this would break compatibility with MSVC's behavior.
423    // Instead, do this when we know that compatibility isn't important (in
424    // other words, when it is an overloaded extern "C" function).
425    if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
426      Out << "$$J0";
427
428    mangleFunctionClass(FD);
429
430    mangleFunctionType(FT, FD);
431  } else {
432    Out << '9';
433  }
434}
435
436void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
437  // <type-encoding> ::= <storage-class> <variable-type>
438  // <storage-class> ::= 0  # private static member
439  //                 ::= 1  # protected static member
440  //                 ::= 2  # public static member
441  //                 ::= 3  # global
442  //                 ::= 4  # static local
443
444  // The first character in the encoding (after the name) is the storage class.
445  if (VD->isStaticDataMember()) {
446    // If it's a static member, it also encodes the access level.
447    switch (VD->getAccess()) {
448      default:
449      case AS_private: Out << '0'; break;
450      case AS_protected: Out << '1'; break;
451      case AS_public: Out << '2'; break;
452    }
453  }
454  else if (!VD->isStaticLocal())
455    Out << '3';
456  else
457    Out << '4';
458  // Now mangle the type.
459  // <variable-type> ::= <type> <cvr-qualifiers>
460  //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references
461  // Pointers and references are odd. The type of 'int * const foo;' gets
462  // mangled as 'QAHA' instead of 'PAHB', for example.
463  SourceRange SR = VD->getSourceRange();
464  QualType Ty = VD->getType();
465  if (Ty->isPointerType() || Ty->isReferenceType() ||
466      Ty->isMemberPointerType()) {
467    mangleType(Ty, SR, QMM_Drop);
468    manglePointerExtQualifiers(
469        Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
470    if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
471      mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
472      // Member pointers are suffixed with a back reference to the member
473      // pointer's class name.
474      mangleName(MPT->getClass()->getAsCXXRecordDecl());
475    } else
476      mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
477  } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
478    // Global arrays are funny, too.
479    mangleDecayedArrayType(AT);
480    if (AT->getElementType()->isArrayType())
481      Out << 'A';
482    else
483      mangleQualifiers(Ty.getQualifiers(), false);
484  } else {
485    mangleType(Ty, SR, QMM_Drop);
486    mangleQualifiers(Ty.getQualifiers(), false);
487  }
488}
489
490void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
491                                                      const ValueDecl *VD) {
492  // <member-data-pointer> ::= <integer-literal>
493  //                       ::= $F <number> <number>
494  //                       ::= $G <number> <number> <number>
495
496  int64_t FieldOffset;
497  int64_t VBTableOffset;
498  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
499  if (VD) {
500    FieldOffset = getASTContext().getFieldOffset(VD);
501    assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
502           "cannot take address of bitfield");
503    FieldOffset /= getASTContext().getCharWidth();
504
505    VBTableOffset = 0;
506
507    if (IM == MSInheritanceAttr::Keyword_virtual_inheritance)
508      FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
509  } else {
510    FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
511
512    VBTableOffset = -1;
513  }
514
515  char Code = '\0';
516  switch (IM) {
517  case MSInheritanceAttr::Keyword_single_inheritance:      Code = '0'; break;
518  case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = '0'; break;
519  case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'F'; break;
520  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
521  }
522
523  Out << '$' << Code;
524
525  mangleNumber(FieldOffset);
526
527  // The C++ standard doesn't allow base-to-derived member pointer conversions
528  // in template parameter contexts, so the vbptr offset of data member pointers
529  // is always zero.
530  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
531    mangleNumber(0);
532  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
533    mangleNumber(VBTableOffset);
534}
535
536void
537MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
538                                                     const CXXMethodDecl *MD) {
539  // <member-function-pointer> ::= $1? <name>
540  //                           ::= $H? <name> <number>
541  //                           ::= $I? <name> <number> <number>
542  //                           ::= $J? <name> <number> <number> <number>
543
544  MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
545
546  char Code = '\0';
547  switch (IM) {
548  case MSInheritanceAttr::Keyword_single_inheritance:      Code = '1'; break;
549  case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = 'H'; break;
550  case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'I'; break;
551  case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
552  }
553
554  // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr
555  // thunk.
556  uint64_t NVOffset = 0;
557  uint64_t VBTableOffset = 0;
558  uint64_t VBPtrOffset = 0;
559  if (MD) {
560    Out << '$' << Code << '?';
561    if (MD->isVirtual()) {
562      MicrosoftVTableContext *VTContext =
563          cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
564      const MicrosoftVTableContext::MethodVFTableLocation &ML =
565          VTContext->getMethodVFTableLocation(GlobalDecl(MD));
566      mangleVirtualMemPtrThunk(MD, ML);
567      NVOffset = ML.VFPtrOffset.getQuantity();
568      VBTableOffset = ML.VBTableIndex * 4;
569      if (ML.VBase) {
570        const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
571        VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
572      }
573    } else {
574      mangleName(MD);
575      mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
576    }
577
578    if (VBTableOffset == 0 &&
579        IM == MSInheritanceAttr::Keyword_virtual_inheritance)
580      NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
581  } else {
582    // Null single inheritance member functions are encoded as a simple nullptr.
583    if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
584      Out << "$0A@";
585      return;
586    }
587    if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
588      VBTableOffset = -1;
589    Out << '$' << Code;
590  }
591
592  if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
593    mangleNumber(static_cast<uint32_t>(NVOffset));
594  if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
595    mangleNumber(VBPtrOffset);
596  if (MSInheritanceAttr::hasVBTableOffsetField(IM))
597    mangleNumber(VBTableOffset);
598}
599
600void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
601    const CXXMethodDecl *MD,
602    const MicrosoftVTableContext::MethodVFTableLocation &ML) {
603  // Get the vftable offset.
604  CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
605      getASTContext().getTargetInfo().getPointerWidth(0));
606  uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
607
608  Out << "?_9";
609  mangleName(MD->getParent());
610  Out << "$B";
611  mangleNumber(OffsetInVFTable);
612  Out << 'A';
613  mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
614}
615
616void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
617  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
618
619  // Always start with the unqualified name.
620  mangleUnqualifiedName(ND);
621
622  mangleNestedName(ND);
623
624  // Terminate the whole name with an '@'.
625  Out << '@';
626}
627
628void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
629  // <non-negative integer> ::= A@              # when Number == 0
630  //                        ::= <decimal digit> # when 1 <= Number <= 10
631  //                        ::= <hex digit>+ @  # when Number >= 10
632  //
633  // <number>               ::= [?] <non-negative integer>
634
635  uint64_t Value = static_cast<uint64_t>(Number);
636  if (Number < 0) {
637    Value = -Value;
638    Out << '?';
639  }
640
641  if (Value == 0)
642    Out << "A@";
643  else if (Value >= 1 && Value <= 10)
644    Out << (Value - 1);
645  else {
646    // Numbers that are not encoded as decimal digits are represented as nibbles
647    // in the range of ASCII characters 'A' to 'P'.
648    // The number 0x123450 would be encoded as 'BCDEFA'
649    char EncodedNumberBuffer[sizeof(uint64_t) * 2];
650    MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
651    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
652    for (; Value != 0; Value >>= 4)
653      *I++ = 'A' + (Value & 0xf);
654    Out.write(I.base(), I - BufferRef.rbegin());
655    Out << '@';
656  }
657}
658
659static const TemplateDecl *
660isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
661  // Check if we have a function template.
662  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
663    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
664      TemplateArgs = FD->getTemplateSpecializationArgs();
665      return TD;
666    }
667  }
668
669  // Check if we have a class template.
670  if (const ClassTemplateSpecializationDecl *Spec =
671          dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
672    TemplateArgs = &Spec->getTemplateArgs();
673    return Spec->getSpecializedTemplate();
674  }
675
676  // Check if we have a variable template.
677  if (const VarTemplateSpecializationDecl *Spec =
678          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
679    TemplateArgs = &Spec->getTemplateArgs();
680    return Spec->getSpecializedTemplate();
681  }
682
683  return nullptr;
684}
685
686void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
687                                                    DeclarationName Name) {
688  //  <unqualified-name> ::= <operator-name>
689  //                     ::= <ctor-dtor-name>
690  //                     ::= <source-name>
691  //                     ::= <template-name>
692
693  // Check if we have a template.
694  const TemplateArgumentList *TemplateArgs = nullptr;
695  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
696    // Function templates aren't considered for name back referencing.  This
697    // makes sense since function templates aren't likely to occur multiple
698    // times in a symbol.
699    if (isa<FunctionTemplateDecl>(TD)) {
700      mangleTemplateInstantiationName(TD, *TemplateArgs);
701      Out << '@';
702      return;
703    }
704
705    // Here comes the tricky thing: if we need to mangle something like
706    //   void foo(A::X<Y>, B::X<Y>),
707    // the X<Y> part is aliased. However, if you need to mangle
708    //   void foo(A::X<A::Y>, A::X<B::Y>),
709    // the A::X<> part is not aliased.
710    // That said, from the mangler's perspective we have a structure like this:
711    //   namespace[s] -> type[ -> template-parameters]
712    // but from the Clang perspective we have
713    //   type [ -> template-parameters]
714    //      \-> namespace[s]
715    // What we do is we create a new mangler, mangle the same type (without
716    // a namespace suffix) to a string using the extra mangler and then use
717    // the mangled type name as a key to check the mangling of different types
718    // for aliasing.
719
720    llvm::SmallString<64> TemplateMangling;
721    llvm::raw_svector_ostream Stream(TemplateMangling);
722    MicrosoftCXXNameMangler Extra(Context, Stream);
723    Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
724
725    mangleSourceName(TemplateMangling);
726    return;
727  }
728
729  switch (Name.getNameKind()) {
730    case DeclarationName::Identifier: {
731      if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
732        mangleSourceName(II->getName());
733        break;
734      }
735
736      // Otherwise, an anonymous entity.  We must have a declaration.
737      assert(ND && "mangling empty name without declaration");
738
739      if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
740        if (NS->isAnonymousNamespace()) {
741          Out << "?A@";
742          break;
743        }
744      }
745
746      if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
747        // We must have an anonymous union or struct declaration.
748        const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
749        assert(RD && "expected variable decl to have a record type");
750        // Anonymous types with no tag or typedef get the name of their
751        // declarator mangled in.  If they have no declarator, number them with
752        // a $S prefix.
753        llvm::SmallString<64> Name("$S");
754        // Get a unique id for the anonymous struct.
755        Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
756        mangleSourceName(Name.str());
757        break;
758      }
759
760      // We must have an anonymous struct.
761      const TagDecl *TD = cast<TagDecl>(ND);
762      if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
763        assert(TD->getDeclContext() == D->getDeclContext() &&
764               "Typedef should not be in another decl context!");
765        assert(D->getDeclName().getAsIdentifierInfo() &&
766               "Typedef was not named!");
767        mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
768        break;
769      }
770
771      if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
772        if (Record->isLambda()) {
773          llvm::SmallString<10> Name("<lambda_");
774          unsigned LambdaId;
775          if (Record->getLambdaManglingNumber())
776            LambdaId = Record->getLambdaManglingNumber();
777          else
778            LambdaId = Context.getLambdaId(Record);
779
780          Name += llvm::utostr(LambdaId);
781          Name += ">";
782
783          mangleSourceName(Name);
784          break;
785        }
786      }
787
788      llvm::SmallString<64> Name("<unnamed-type-");
789      if (DeclaratorDecl *DD =
790              Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
791        // Anonymous types without a name for linkage purposes have their
792        // declarator mangled in if they have one.
793        Name += DD->getName();
794      } else if (TypedefNameDecl *TND =
795                     Context.getASTContext().getTypedefNameForUnnamedTagDecl(
796                         TD)) {
797        // Anonymous types without a name for linkage purposes have their
798        // associate typedef mangled in if they have one.
799        Name += TND->getName();
800      } else {
801        // Otherwise, number the types using a $S prefix.
802        Name += "$S";
803        Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
804      }
805      Name += ">";
806      mangleSourceName(Name.str());
807      break;
808    }
809
810    case DeclarationName::ObjCZeroArgSelector:
811    case DeclarationName::ObjCOneArgSelector:
812    case DeclarationName::ObjCMultiArgSelector:
813      llvm_unreachable("Can't mangle Objective-C selector names here!");
814
815    case DeclarationName::CXXConstructorName:
816      if (Structor == getStructor(ND)) {
817        if (StructorType == Ctor_CopyingClosure) {
818          Out << "?_O";
819          return;
820        }
821        if (StructorType == Ctor_DefaultClosure) {
822          Out << "?_F";
823          return;
824        }
825      }
826      Out << "?0";
827      return;
828
829    case DeclarationName::CXXDestructorName:
830      if (ND == Structor)
831        // If the named decl is the C++ destructor we're mangling,
832        // use the type we were given.
833        mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
834      else
835        // Otherwise, use the base destructor name. This is relevant if a
836        // class with a destructor is declared within a destructor.
837        mangleCXXDtorType(Dtor_Base);
838      break;
839
840    case DeclarationName::CXXConversionFunctionName:
841      // <operator-name> ::= ?B # (cast)
842      // The target type is encoded as the return type.
843      Out << "?B";
844      break;
845
846    case DeclarationName::CXXOperatorName:
847      mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
848      break;
849
850    case DeclarationName::CXXLiteralOperatorName: {
851      Out << "?__K";
852      mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
853      break;
854    }
855
856    case DeclarationName::CXXUsingDirective:
857      llvm_unreachable("Can't mangle a using directive name!");
858  }
859}
860
861void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
862  // <postfix> ::= <unqualified-name> [<postfix>]
863  //           ::= <substitution> [<postfix>]
864  const DeclContext *DC = getEffectiveDeclContext(ND);
865
866  while (!DC->isTranslationUnit()) {
867    if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
868      unsigned Disc;
869      if (Context.getNextDiscriminator(ND, Disc)) {
870        Out << '?';
871        mangleNumber(Disc);
872        Out << '?';
873      }
874    }
875
876    if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
877      DiagnosticsEngine &Diags = Context.getDiags();
878      unsigned DiagID =
879          Diags.getCustomDiagID(DiagnosticsEngine::Error,
880                                "cannot mangle a local inside this block yet");
881      Diags.Report(BD->getLocation(), DiagID);
882
883      // FIXME: This is completely, utterly, wrong; see ItaniumMangle
884      // for how this should be done.
885      Out << "__block_invoke" << Context.getBlockId(BD, false);
886      Out << '@';
887      continue;
888    } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
889      mangleObjCMethodName(Method);
890    } else if (isa<NamedDecl>(DC)) {
891      ND = cast<NamedDecl>(DC);
892      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
893        mangle(FD, "?");
894        break;
895      } else
896        mangleUnqualifiedName(ND);
897    }
898    DC = DC->getParent();
899  }
900}
901
902void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
903  // Microsoft uses the names on the case labels for these dtor variants.  Clang
904  // uses the Itanium terminology internally.  Everything in this ABI delegates
905  // towards the base dtor.
906  switch (T) {
907  // <operator-name> ::= ?1  # destructor
908  case Dtor_Base: Out << "?1"; return;
909  // <operator-name> ::= ?_D # vbase destructor
910  case Dtor_Complete: Out << "?_D"; return;
911  // <operator-name> ::= ?_G # scalar deleting destructor
912  case Dtor_Deleting: Out << "?_G"; return;
913  // <operator-name> ::= ?_E # vector deleting destructor
914  // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need
915  // it.
916  case Dtor_Comdat:
917    llvm_unreachable("not expecting a COMDAT");
918  }
919  llvm_unreachable("Unsupported dtor type?");
920}
921
922void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
923                                                 SourceLocation Loc) {
924  switch (OO) {
925  //                     ?0 # constructor
926  //                     ?1 # destructor
927  // <operator-name> ::= ?2 # new
928  case OO_New: Out << "?2"; break;
929  // <operator-name> ::= ?3 # delete
930  case OO_Delete: Out << "?3"; break;
931  // <operator-name> ::= ?4 # =
932  case OO_Equal: Out << "?4"; break;
933  // <operator-name> ::= ?5 # >>
934  case OO_GreaterGreater: Out << "?5"; break;
935  // <operator-name> ::= ?6 # <<
936  case OO_LessLess: Out << "?6"; break;
937  // <operator-name> ::= ?7 # !
938  case OO_Exclaim: Out << "?7"; break;
939  // <operator-name> ::= ?8 # ==
940  case OO_EqualEqual: Out << "?8"; break;
941  // <operator-name> ::= ?9 # !=
942  case OO_ExclaimEqual: Out << "?9"; break;
943  // <operator-name> ::= ?A # []
944  case OO_Subscript: Out << "?A"; break;
945  //                     ?B # conversion
946  // <operator-name> ::= ?C # ->
947  case OO_Arrow: Out << "?C"; break;
948  // <operator-name> ::= ?D # *
949  case OO_Star: Out << "?D"; break;
950  // <operator-name> ::= ?E # ++
951  case OO_PlusPlus: Out << "?E"; break;
952  // <operator-name> ::= ?F # --
953  case OO_MinusMinus: Out << "?F"; break;
954  // <operator-name> ::= ?G # -
955  case OO_Minus: Out << "?G"; break;
956  // <operator-name> ::= ?H # +
957  case OO_Plus: Out << "?H"; break;
958  // <operator-name> ::= ?I # &
959  case OO_Amp: Out << "?I"; break;
960  // <operator-name> ::= ?J # ->*
961  case OO_ArrowStar: Out << "?J"; break;
962  // <operator-name> ::= ?K # /
963  case OO_Slash: Out << "?K"; break;
964  // <operator-name> ::= ?L # %
965  case OO_Percent: Out << "?L"; break;
966  // <operator-name> ::= ?M # <
967  case OO_Less: Out << "?M"; break;
968  // <operator-name> ::= ?N # <=
969  case OO_LessEqual: Out << "?N"; break;
970  // <operator-name> ::= ?O # >
971  case OO_Greater: Out << "?O"; break;
972  // <operator-name> ::= ?P # >=
973  case OO_GreaterEqual: Out << "?P"; break;
974  // <operator-name> ::= ?Q # ,
975  case OO_Comma: Out << "?Q"; break;
976  // <operator-name> ::= ?R # ()
977  case OO_Call: Out << "?R"; break;
978  // <operator-name> ::= ?S # ~
979  case OO_Tilde: Out << "?S"; break;
980  // <operator-name> ::= ?T # ^
981  case OO_Caret: Out << "?T"; break;
982  // <operator-name> ::= ?U # |
983  case OO_Pipe: Out << "?U"; break;
984  // <operator-name> ::= ?V # &&
985  case OO_AmpAmp: Out << "?V"; break;
986  // <operator-name> ::= ?W # ||
987  case OO_PipePipe: Out << "?W"; break;
988  // <operator-name> ::= ?X # *=
989  case OO_StarEqual: Out << "?X"; break;
990  // <operator-name> ::= ?Y # +=
991  case OO_PlusEqual: Out << "?Y"; break;
992  // <operator-name> ::= ?Z # -=
993  case OO_MinusEqual: Out << "?Z"; break;
994  // <operator-name> ::= ?_0 # /=
995  case OO_SlashEqual: Out << "?_0"; break;
996  // <operator-name> ::= ?_1 # %=
997  case OO_PercentEqual: Out << "?_1"; break;
998  // <operator-name> ::= ?_2 # >>=
999  case OO_GreaterGreaterEqual: Out << "?_2"; break;
1000  // <operator-name> ::= ?_3 # <<=
1001  case OO_LessLessEqual: Out << "?_3"; break;
1002  // <operator-name> ::= ?_4 # &=
1003  case OO_AmpEqual: Out << "?_4"; break;
1004  // <operator-name> ::= ?_5 # |=
1005  case OO_PipeEqual: Out << "?_5"; break;
1006  // <operator-name> ::= ?_6 # ^=
1007  case OO_CaretEqual: Out << "?_6"; break;
1008  //                     ?_7 # vftable
1009  //                     ?_8 # vbtable
1010  //                     ?_9 # vcall
1011  //                     ?_A # typeof
1012  //                     ?_B # local static guard
1013  //                     ?_C # string
1014  //                     ?_D # vbase destructor
1015  //                     ?_E # vector deleting destructor
1016  //                     ?_F # default constructor closure
1017  //                     ?_G # scalar deleting destructor
1018  //                     ?_H # vector constructor iterator
1019  //                     ?_I # vector destructor iterator
1020  //                     ?_J # vector vbase constructor iterator
1021  //                     ?_K # virtual displacement map
1022  //                     ?_L # eh vector constructor iterator
1023  //                     ?_M # eh vector destructor iterator
1024  //                     ?_N # eh vector vbase constructor iterator
1025  //                     ?_O # copy constructor closure
1026  //                     ?_P<name> # udt returning <name>
1027  //                     ?_Q # <unknown>
1028  //                     ?_R0 # RTTI Type Descriptor
1029  //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1030  //                     ?_R2 # RTTI Base Class Array
1031  //                     ?_R3 # RTTI Class Hierarchy Descriptor
1032  //                     ?_R4 # RTTI Complete Object Locator
1033  //                     ?_S # local vftable
1034  //                     ?_T # local vftable constructor closure
1035  // <operator-name> ::= ?_U # new[]
1036  case OO_Array_New: Out << "?_U"; break;
1037  // <operator-name> ::= ?_V # delete[]
1038  case OO_Array_Delete: Out << "?_V"; break;
1039
1040  case OO_Conditional: {
1041    DiagnosticsEngine &Diags = Context.getDiags();
1042    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1043      "cannot mangle this conditional operator yet");
1044    Diags.Report(Loc, DiagID);
1045    break;
1046  }
1047
1048  case OO_Coawait: {
1049    DiagnosticsEngine &Diags = Context.getDiags();
1050    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1051      "cannot mangle this operator co_await yet");
1052    Diags.Report(Loc, DiagID);
1053    break;
1054  }
1055
1056  case OO_None:
1057  case NUM_OVERLOADED_OPERATORS:
1058    llvm_unreachable("Not an overloaded operator");
1059  }
1060}
1061
1062void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1063  // <source name> ::= <identifier> @
1064  BackRefVec::iterator Found =
1065      std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
1066  if (Found == NameBackReferences.end()) {
1067    if (NameBackReferences.size() < 10)
1068      NameBackReferences.push_back(Name);
1069    Out << Name << '@';
1070  } else {
1071    Out << (Found - NameBackReferences.begin());
1072  }
1073}
1074
1075void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1076  Context.mangleObjCMethodName(MD, Out);
1077}
1078
1079void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1080    const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1081  // <template-name> ::= <unscoped-template-name> <template-args>
1082  //                 ::= <substitution>
1083  // Always start with the unqualified name.
1084
1085  // Templates have their own context for back references.
1086  ArgBackRefMap OuterArgsContext;
1087  BackRefVec OuterTemplateContext;
1088  PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1089  NameBackReferences.swap(OuterTemplateContext);
1090  TypeBackReferences.swap(OuterArgsContext);
1091  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1092
1093  mangleUnscopedTemplateName(TD);
1094  mangleTemplateArgs(TD, TemplateArgs);
1095
1096  // Restore the previous back reference contexts.
1097  NameBackReferences.swap(OuterTemplateContext);
1098  TypeBackReferences.swap(OuterArgsContext);
1099  PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1100}
1101
1102void
1103MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1104  // <unscoped-template-name> ::= ?$ <unqualified-name>
1105  Out << "?$";
1106  mangleUnqualifiedName(TD);
1107}
1108
1109void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1110                                                   bool IsBoolean) {
1111  // <integer-literal> ::= $0 <number>
1112  Out << "$0";
1113  // Make sure booleans are encoded as 0/1.
1114  if (IsBoolean && Value.getBoolValue())
1115    mangleNumber(1);
1116  else if (Value.isSigned())
1117    mangleNumber(Value.getSExtValue());
1118  else
1119    mangleNumber(Value.getZExtValue());
1120}
1121
1122void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1123  // See if this is a constant expression.
1124  llvm::APSInt Value;
1125  if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1126    mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1127    return;
1128  }
1129
1130  // Look through no-op casts like template parameter substitutions.
1131  E = E->IgnoreParenNoopCasts(Context.getASTContext());
1132
1133  const CXXUuidofExpr *UE = nullptr;
1134  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1135    if (UO->getOpcode() == UO_AddrOf)
1136      UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1137  } else
1138    UE = dyn_cast<CXXUuidofExpr>(E);
1139
1140  if (UE) {
1141    // If we had to peek through an address-of operator, treat this like we are
1142    // dealing with a pointer type.  Otherwise, treat it like a const reference.
1143    //
1144    // N.B. This matches up with the handling of TemplateArgument::Declaration
1145    // in mangleTemplateArg
1146    if (UE == E)
1147      Out << "$E?";
1148    else
1149      Out << "$1?";
1150
1151    // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1152    // const __s_GUID _GUID_{lower case UUID with underscores}
1153    StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
1154    std::string Name = "_GUID_" + Uuid.lower();
1155    std::replace(Name.begin(), Name.end(), '-', '_');
1156
1157    mangleSourceName(Name);
1158    // Terminate the whole name with an '@'.
1159    Out << '@';
1160    // It's a global variable.
1161    Out << '3';
1162    // It's a struct called __s_GUID.
1163    mangleArtificalTagType(TTK_Struct, "__s_GUID");
1164    // It's const.
1165    Out << 'B';
1166    return;
1167  }
1168
1169  // As bad as this diagnostic is, it's better than crashing.
1170  DiagnosticsEngine &Diags = Context.getDiags();
1171  unsigned DiagID = Diags.getCustomDiagID(
1172      DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1173  Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1174                                        << E->getSourceRange();
1175}
1176
1177void MicrosoftCXXNameMangler::mangleTemplateArgs(
1178    const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1179  // <template-args> ::= <template-arg>+
1180  const TemplateParameterList *TPL = TD->getTemplateParameters();
1181  assert(TPL->size() == TemplateArgs.size() &&
1182         "size mismatch between args and parms!");
1183
1184  unsigned Idx = 0;
1185  for (const TemplateArgument &TA : TemplateArgs.asArray())
1186    mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
1187}
1188
1189void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1190                                                const TemplateArgument &TA,
1191                                                const NamedDecl *Parm) {
1192  // <template-arg> ::= <type>
1193  //                ::= <integer-literal>
1194  //                ::= <member-data-pointer>
1195  //                ::= <member-function-pointer>
1196  //                ::= $E? <name> <type-encoding>
1197  //                ::= $1? <name> <type-encoding>
1198  //                ::= $0A@
1199  //                ::= <template-args>
1200
1201  switch (TA.getKind()) {
1202  case TemplateArgument::Null:
1203    llvm_unreachable("Can't mangle null template arguments!");
1204  case TemplateArgument::TemplateExpansion:
1205    llvm_unreachable("Can't mangle template expansion arguments!");
1206  case TemplateArgument::Type: {
1207    QualType T = TA.getAsType();
1208    mangleType(T, SourceRange(), QMM_Escape);
1209    break;
1210  }
1211  case TemplateArgument::Declaration: {
1212    const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
1213    if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1214      mangleMemberDataPointer(
1215          cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
1216          cast<ValueDecl>(ND));
1217    } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1218      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1219      if (MD && MD->isInstance()) {
1220        mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
1221      } else {
1222        Out << "$1?";
1223        mangleName(FD);
1224        mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1225      }
1226    } else {
1227      mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1228    }
1229    break;
1230  }
1231  case TemplateArgument::Integral:
1232    mangleIntegerLiteral(TA.getAsIntegral(),
1233                         TA.getIntegralType()->isBooleanType());
1234    break;
1235  case TemplateArgument::NullPtr: {
1236    QualType T = TA.getNullPtrType();
1237    if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1238      const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1239      if (MPT->isMemberFunctionPointerType() &&
1240          !isa<FunctionTemplateDecl>(TD)) {
1241        mangleMemberFunctionPointer(RD, nullptr);
1242        return;
1243      }
1244      if (MPT->isMemberDataPointer()) {
1245        if (!isa<FunctionTemplateDecl>(TD)) {
1246          mangleMemberDataPointer(RD, nullptr);
1247          return;
1248        }
1249        // nullptr data pointers are always represented with a single field
1250        // which is initialized with either 0 or -1.  Why -1?  Well, we need to
1251        // distinguish the case where the data member is at offset zero in the
1252        // record.
1253        // However, we are free to use 0 *if* we would use multiple fields for
1254        // non-nullptr member pointers.
1255        if (!RD->nullFieldOffsetIsZero()) {
1256          mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
1257          return;
1258        }
1259      }
1260    }
1261    mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
1262    break;
1263  }
1264  case TemplateArgument::Expression:
1265    mangleExpression(TA.getAsExpr());
1266    break;
1267  case TemplateArgument::Pack: {
1268    ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1269    if (TemplateArgs.empty()) {
1270      if (isa<TemplateTypeParmDecl>(Parm) ||
1271          isa<TemplateTemplateParmDecl>(Parm))
1272        // MSVC 2015 changed the mangling for empty expanded template packs,
1273        // use the old mangling for link compatibility for old versions.
1274        Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1275                    LangOptions::MSVC2015)
1276                    ? "$$V"
1277                    : "$$$V");
1278      else if (isa<NonTypeTemplateParmDecl>(Parm))
1279        Out << "$S";
1280      else
1281        llvm_unreachable("unexpected template parameter decl!");
1282    } else {
1283      for (const TemplateArgument &PA : TemplateArgs)
1284        mangleTemplateArg(TD, PA, Parm);
1285    }
1286    break;
1287  }
1288  case TemplateArgument::Template: {
1289    const NamedDecl *ND =
1290        TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1291    if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1292      mangleType(TD);
1293    } else if (isa<TypeAliasDecl>(ND)) {
1294      Out << "$$Y";
1295      mangleName(ND);
1296    } else {
1297      llvm_unreachable("unexpected template template NamedDecl!");
1298    }
1299    break;
1300  }
1301  }
1302}
1303
1304void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1305                                               bool IsMember) {
1306  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1307  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1308  // 'I' means __restrict (32/64-bit).
1309  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1310  // keyword!
1311  // <base-cvr-qualifiers> ::= A  # near
1312  //                       ::= B  # near const
1313  //                       ::= C  # near volatile
1314  //                       ::= D  # near const volatile
1315  //                       ::= E  # far (16-bit)
1316  //                       ::= F  # far const (16-bit)
1317  //                       ::= G  # far volatile (16-bit)
1318  //                       ::= H  # far const volatile (16-bit)
1319  //                       ::= I  # huge (16-bit)
1320  //                       ::= J  # huge const (16-bit)
1321  //                       ::= K  # huge volatile (16-bit)
1322  //                       ::= L  # huge const volatile (16-bit)
1323  //                       ::= M <basis> # based
1324  //                       ::= N <basis> # based const
1325  //                       ::= O <basis> # based volatile
1326  //                       ::= P <basis> # based const volatile
1327  //                       ::= Q  # near member
1328  //                       ::= R  # near const member
1329  //                       ::= S  # near volatile member
1330  //                       ::= T  # near const volatile member
1331  //                       ::= U  # far member (16-bit)
1332  //                       ::= V  # far const member (16-bit)
1333  //                       ::= W  # far volatile member (16-bit)
1334  //                       ::= X  # far const volatile member (16-bit)
1335  //                       ::= Y  # huge member (16-bit)
1336  //                       ::= Z  # huge const member (16-bit)
1337  //                       ::= 0  # huge volatile member (16-bit)
1338  //                       ::= 1  # huge const volatile member (16-bit)
1339  //                       ::= 2 <basis> # based member
1340  //                       ::= 3 <basis> # based const member
1341  //                       ::= 4 <basis> # based volatile member
1342  //                       ::= 5 <basis> # based const volatile member
1343  //                       ::= 6  # near function (pointers only)
1344  //                       ::= 7  # far function (pointers only)
1345  //                       ::= 8  # near method (pointers only)
1346  //                       ::= 9  # far method (pointers only)
1347  //                       ::= _A <basis> # based function (pointers only)
1348  //                       ::= _B <basis> # based function (far?) (pointers only)
1349  //                       ::= _C <basis> # based method (pointers only)
1350  //                       ::= _D <basis> # based method (far?) (pointers only)
1351  //                       ::= _E # block (Clang)
1352  // <basis> ::= 0 # __based(void)
1353  //         ::= 1 # __based(segment)?
1354  //         ::= 2 <name> # __based(name)
1355  //         ::= 3 # ?
1356  //         ::= 4 # ?
1357  //         ::= 5 # not really based
1358  bool HasConst = Quals.hasConst(),
1359       HasVolatile = Quals.hasVolatile();
1360
1361  if (!IsMember) {
1362    if (HasConst && HasVolatile) {
1363      Out << 'D';
1364    } else if (HasVolatile) {
1365      Out << 'C';
1366    } else if (HasConst) {
1367      Out << 'B';
1368    } else {
1369      Out << 'A';
1370    }
1371  } else {
1372    if (HasConst && HasVolatile) {
1373      Out << 'T';
1374    } else if (HasVolatile) {
1375      Out << 'S';
1376    } else if (HasConst) {
1377      Out << 'R';
1378    } else {
1379      Out << 'Q';
1380    }
1381  }
1382
1383  // FIXME: For now, just drop all extension qualifiers on the floor.
1384}
1385
1386void
1387MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1388  // <ref-qualifier> ::= G                # lvalue reference
1389  //                 ::= H                # rvalue-reference
1390  switch (RefQualifier) {
1391  case RQ_None:
1392    break;
1393
1394  case RQ_LValue:
1395    Out << 'G';
1396    break;
1397
1398  case RQ_RValue:
1399    Out << 'H';
1400    break;
1401  }
1402}
1403
1404void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1405                                                         QualType PointeeType) {
1406  bool HasRestrict = Quals.hasRestrict();
1407  if (PointersAre64Bit &&
1408      (PointeeType.isNull() || !PointeeType->isFunctionType()))
1409    Out << 'E';
1410
1411  if (HasRestrict)
1412    Out << 'I';
1413}
1414
1415void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1416  // <pointer-cv-qualifiers> ::= P  # no qualifiers
1417  //                         ::= Q  # const
1418  //                         ::= R  # volatile
1419  //                         ::= S  # const volatile
1420  bool HasConst = Quals.hasConst(),
1421       HasVolatile = Quals.hasVolatile();
1422
1423  if (HasConst && HasVolatile) {
1424    Out << 'S';
1425  } else if (HasVolatile) {
1426    Out << 'R';
1427  } else if (HasConst) {
1428    Out << 'Q';
1429  } else {
1430    Out << 'P';
1431  }
1432}
1433
1434void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1435                                                 SourceRange Range) {
1436  // MSVC will backreference two canonically equivalent types that have slightly
1437  // different manglings when mangled alone.
1438
1439  // Decayed types do not match up with non-decayed versions of the same type.
1440  //
1441  // e.g.
1442  // void (*x)(void) will not form a backreference with void x(void)
1443  void *TypePtr;
1444  if (const auto *DT = T->getAs<DecayedType>()) {
1445    QualType OriginalType = DT->getOriginalType();
1446    // All decayed ArrayTypes should be treated identically; as-if they were
1447    // a decayed IncompleteArrayType.
1448    if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
1449      OriginalType = getASTContext().getIncompleteArrayType(
1450          AT->getElementType(), AT->getSizeModifier(),
1451          AT->getIndexTypeCVRQualifiers());
1452
1453    TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
1454    // If the original parameter was textually written as an array,
1455    // instead treat the decayed parameter like it's const.
1456    //
1457    // e.g.
1458    // int [] -> int * const
1459    if (OriginalType->isArrayType())
1460      T = T.withConst();
1461  } else {
1462    TypePtr = T.getCanonicalType().getAsOpaquePtr();
1463  }
1464
1465  ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1466
1467  if (Found == TypeBackReferences.end()) {
1468    size_t OutSizeBefore = Out.tell();
1469
1470    mangleType(T, Range, QMM_Drop);
1471
1472    // See if it's worth creating a back reference.
1473    // Only types longer than 1 character are considered
1474    // and only 10 back references slots are available:
1475    bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
1476    if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1477      size_t Size = TypeBackReferences.size();
1478      TypeBackReferences[TypePtr] = Size;
1479    }
1480  } else {
1481    Out << Found->second;
1482  }
1483}
1484
1485void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
1486    const PassObjectSizeAttr *POSA) {
1487  int Type = POSA->getType();
1488
1489  auto Iter = PassObjectSizeArgs.insert(Type).first;
1490  auto *TypePtr = (const void *)&*Iter;
1491  ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1492
1493  if (Found == TypeBackReferences.end()) {
1494    mangleArtificalTagType(TTK_Enum, "__pass_object_size" + llvm::utostr(Type),
1495                           {"__clang"});
1496
1497    if (TypeBackReferences.size() < 10) {
1498      size_t Size = TypeBackReferences.size();
1499      TypeBackReferences[TypePtr] = Size;
1500    }
1501  } else {
1502    Out << Found->second;
1503  }
1504}
1505
1506void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1507                                         QualifierMangleMode QMM) {
1508  // Don't use the canonical types.  MSVC includes things like 'const' on
1509  // pointer arguments to function pointers that canonicalization strips away.
1510  T = T.getDesugaredType(getASTContext());
1511  Qualifiers Quals = T.getLocalQualifiers();
1512  if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1513    // If there were any Quals, getAsArrayType() pushed them onto the array
1514    // element type.
1515    if (QMM == QMM_Mangle)
1516      Out << 'A';
1517    else if (QMM == QMM_Escape || QMM == QMM_Result)
1518      Out << "$$B";
1519    mangleArrayType(AT);
1520    return;
1521  }
1522
1523  bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1524                   T->isReferenceType() || T->isBlockPointerType();
1525
1526  switch (QMM) {
1527  case QMM_Drop:
1528    break;
1529  case QMM_Mangle:
1530    if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1531      Out << '6';
1532      mangleFunctionType(FT);
1533      return;
1534    }
1535    mangleQualifiers(Quals, false);
1536    break;
1537  case QMM_Escape:
1538    if (!IsPointer && Quals) {
1539      Out << "$$C";
1540      mangleQualifiers(Quals, false);
1541    }
1542    break;
1543  case QMM_Result:
1544    if ((!IsPointer && Quals) || isa<TagType>(T)) {
1545      Out << '?';
1546      mangleQualifiers(Quals, false);
1547    }
1548    break;
1549  }
1550
1551  const Type *ty = T.getTypePtr();
1552
1553  switch (ty->getTypeClass()) {
1554#define ABSTRACT_TYPE(CLASS, PARENT)
1555#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1556  case Type::CLASS: \
1557    llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1558    return;
1559#define TYPE(CLASS, PARENT) \
1560  case Type::CLASS: \
1561    mangleType(cast<CLASS##Type>(ty), Quals, Range); \
1562    break;
1563#include "clang/AST/TypeNodes.def"
1564#undef ABSTRACT_TYPE
1565#undef NON_CANONICAL_TYPE
1566#undef TYPE
1567  }
1568}
1569
1570void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
1571                                         SourceRange Range) {
1572  //  <type>         ::= <builtin-type>
1573  //  <builtin-type> ::= X  # void
1574  //                 ::= C  # signed char
1575  //                 ::= D  # char
1576  //                 ::= E  # unsigned char
1577  //                 ::= F  # short
1578  //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
1579  //                 ::= H  # int
1580  //                 ::= I  # unsigned int
1581  //                 ::= J  # long
1582  //                 ::= K  # unsigned long
1583  //                     L  # <none>
1584  //                 ::= M  # float
1585  //                 ::= N  # double
1586  //                 ::= O  # long double (__float80 is mangled differently)
1587  //                 ::= _J # long long, __int64
1588  //                 ::= _K # unsigned long long, __int64
1589  //                 ::= _L # __int128
1590  //                 ::= _M # unsigned __int128
1591  //                 ::= _N # bool
1592  //                     _O # <array in parameter>
1593  //                 ::= _T # __float80 (Intel)
1594  //                 ::= _W # wchar_t
1595  //                 ::= _Z # __float80 (Digital Mars)
1596  switch (T->getKind()) {
1597  case BuiltinType::Void:
1598    Out << 'X';
1599    break;
1600  case BuiltinType::SChar:
1601    Out << 'C';
1602    break;
1603  case BuiltinType::Char_U:
1604  case BuiltinType::Char_S:
1605    Out << 'D';
1606    break;
1607  case BuiltinType::UChar:
1608    Out << 'E';
1609    break;
1610  case BuiltinType::Short:
1611    Out << 'F';
1612    break;
1613  case BuiltinType::UShort:
1614    Out << 'G';
1615    break;
1616  case BuiltinType::Int:
1617    Out << 'H';
1618    break;
1619  case BuiltinType::UInt:
1620    Out << 'I';
1621    break;
1622  case BuiltinType::Long:
1623    Out << 'J';
1624    break;
1625  case BuiltinType::ULong:
1626    Out << 'K';
1627    break;
1628  case BuiltinType::Float:
1629    Out << 'M';
1630    break;
1631  case BuiltinType::Double:
1632    Out << 'N';
1633    break;
1634  // TODO: Determine size and mangle accordingly
1635  case BuiltinType::LongDouble:
1636    Out << 'O';
1637    break;
1638  case BuiltinType::LongLong:
1639    Out << "_J";
1640    break;
1641  case BuiltinType::ULongLong:
1642    Out << "_K";
1643    break;
1644  case BuiltinType::Int128:
1645    Out << "_L";
1646    break;
1647  case BuiltinType::UInt128:
1648    Out << "_M";
1649    break;
1650  case BuiltinType::Bool:
1651    Out << "_N";
1652    break;
1653  case BuiltinType::Char16:
1654    Out << "_S";
1655    break;
1656  case BuiltinType::Char32:
1657    Out << "_U";
1658    break;
1659  case BuiltinType::WChar_S:
1660  case BuiltinType::WChar_U:
1661    Out << "_W";
1662    break;
1663
1664#define BUILTIN_TYPE(Id, SingletonId)
1665#define PLACEHOLDER_TYPE(Id, SingletonId) \
1666  case BuiltinType::Id:
1667#include "clang/AST/BuiltinTypes.def"
1668  case BuiltinType::Dependent:
1669    llvm_unreachable("placeholder types shouldn't get to name mangling");
1670
1671  case BuiltinType::ObjCId:
1672    Out << "PA";
1673    mangleArtificalTagType(TTK_Struct, "objc_object");
1674    break;
1675  case BuiltinType::ObjCClass:
1676    Out << "PA";
1677    mangleArtificalTagType(TTK_Struct, "objc_class");
1678    break;
1679  case BuiltinType::ObjCSel:
1680    Out << "PA";
1681    mangleArtificalTagType(TTK_Struct, "objc_selector");
1682    break;
1683
1684  case BuiltinType::OCLImage1d:
1685    Out << "PA";
1686    mangleArtificalTagType(TTK_Struct, "ocl_image1d");
1687    break;
1688  case BuiltinType::OCLImage1dArray:
1689    Out << "PA";
1690    mangleArtificalTagType(TTK_Struct, "ocl_image1darray");
1691    break;
1692  case BuiltinType::OCLImage1dBuffer:
1693    Out << "PA";
1694    mangleArtificalTagType(TTK_Struct, "ocl_image1dbuffer");
1695    break;
1696  case BuiltinType::OCLImage2d:
1697    Out << "PA";
1698    mangleArtificalTagType(TTK_Struct, "ocl_image2d");
1699    break;
1700  case BuiltinType::OCLImage2dArray:
1701    Out << "PA";
1702    mangleArtificalTagType(TTK_Struct, "ocl_image2darray");
1703    break;
1704  case BuiltinType::OCLImage2dDepth:
1705    Out << "PA";
1706    mangleArtificalTagType(TTK_Struct, "ocl_image2ddepth");
1707    break;
1708  case BuiltinType::OCLImage2dArrayDepth:
1709    Out << "PA";
1710    mangleArtificalTagType(TTK_Struct, "ocl_image2darraydepth");
1711    break;
1712  case BuiltinType::OCLImage2dMSAA:
1713    Out << "PA";
1714    mangleArtificalTagType(TTK_Struct, "ocl_image2dmsaa");
1715    break;
1716  case BuiltinType::OCLImage2dArrayMSAA:
1717    Out << "PA";
1718    mangleArtificalTagType(TTK_Struct, "ocl_image2darraymsaa");
1719    break;
1720  case BuiltinType::OCLImage2dMSAADepth:
1721    Out << "PA";
1722    mangleArtificalTagType(TTK_Struct, "ocl_image2dmsaadepth");
1723    break;
1724  case BuiltinType::OCLImage2dArrayMSAADepth:
1725    Out << "PA";
1726    mangleArtificalTagType(TTK_Struct, "ocl_image2darraymsaadepth");
1727    break;
1728  case BuiltinType::OCLImage3d:
1729    Out << "PA";
1730    mangleArtificalTagType(TTK_Struct, "ocl_image3d");
1731    break;
1732  case BuiltinType::OCLSampler:
1733    Out << "PA";
1734    mangleArtificalTagType(TTK_Struct, "ocl_sampler");
1735    break;
1736  case BuiltinType::OCLEvent:
1737    Out << "PA";
1738    mangleArtificalTagType(TTK_Struct, "ocl_event");
1739    break;
1740  case BuiltinType::OCLClkEvent:
1741    Out << "PA";
1742    mangleArtificalTagType(TTK_Struct, "ocl_clkevent");
1743    break;
1744  case BuiltinType::OCLQueue:
1745    Out << "PA";
1746    mangleArtificalTagType(TTK_Struct, "ocl_queue");
1747    break;
1748  case BuiltinType::OCLNDRange:
1749    Out << "PA";
1750    mangleArtificalTagType(TTK_Struct, "ocl_ndrange");
1751    break;
1752  case BuiltinType::OCLReserveID:
1753    Out << "PA";
1754    mangleArtificalTagType(TTK_Struct, "ocl_reserveid");
1755    break;
1756
1757  case BuiltinType::NullPtr:
1758    Out << "$$T";
1759    break;
1760
1761  case BuiltinType::Half: {
1762    DiagnosticsEngine &Diags = Context.getDiags();
1763    unsigned DiagID = Diags.getCustomDiagID(
1764        DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
1765    Diags.Report(Range.getBegin(), DiagID)
1766        << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
1767    break;
1768  }
1769  }
1770}
1771
1772// <type>          ::= <function-type>
1773void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
1774                                         SourceRange) {
1775  // Structors only appear in decls, so at this point we know it's not a
1776  // structor type.
1777  // FIXME: This may not be lambda-friendly.
1778  if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
1779    Out << "$$A8@@";
1780    mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
1781  } else {
1782    Out << "$$A6";
1783    mangleFunctionType(T);
1784  }
1785}
1786void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1787                                         Qualifiers, SourceRange) {
1788  Out << "$$A6";
1789  mangleFunctionType(T);
1790}
1791
1792void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
1793                                                 const FunctionDecl *D,
1794                                                 bool ForceThisQuals) {
1795  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1796  //                     <return-type> <argument-list> <throw-spec>
1797  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
1798
1799  SourceRange Range;
1800  if (D) Range = D->getSourceRange();
1801
1802  bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
1803  CallingConv CC = T->getCallConv();
1804  if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
1805    if (MD->isInstance())
1806      HasThisQuals = true;
1807    if (isa<CXXDestructorDecl>(MD)) {
1808      IsStructor = true;
1809    } else if (isa<CXXConstructorDecl>(MD)) {
1810      IsStructor = true;
1811      IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
1812                       StructorType == Ctor_DefaultClosure) &&
1813                      getStructor(MD) == Structor;
1814      if (IsCtorClosure)
1815        CC = getASTContext().getDefaultCallingConvention(
1816            /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1817    }
1818  }
1819
1820  // If this is a C++ instance method, mangle the CVR qualifiers for the
1821  // this pointer.
1822  if (HasThisQuals) {
1823    Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals());
1824    manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
1825    mangleRefQualifier(Proto->getRefQualifier());
1826    mangleQualifiers(Quals, /*IsMember=*/false);
1827  }
1828
1829  mangleCallingConvention(CC);
1830
1831  // <return-type> ::= <type>
1832  //               ::= @ # structors (they have no declared return type)
1833  if (IsStructor) {
1834    if (isa<CXXDestructorDecl>(D) && D == Structor &&
1835        StructorType == Dtor_Deleting) {
1836      // The scalar deleting destructor takes an extra int argument.
1837      // However, the FunctionType generated has 0 arguments.
1838      // FIXME: This is a temporary hack.
1839      // Maybe should fix the FunctionType creation instead?
1840      Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
1841      return;
1842    }
1843    if (IsCtorClosure) {
1844      // Default constructor closure and copy constructor closure both return
1845      // void.
1846      Out << 'X';
1847
1848      if (StructorType == Ctor_DefaultClosure) {
1849        // Default constructor closure always has no arguments.
1850        Out << 'X';
1851      } else if (StructorType == Ctor_CopyingClosure) {
1852        // Copy constructor closure always takes an unqualified reference.
1853        mangleArgumentType(getASTContext().getLValueReferenceType(
1854                               Proto->getParamType(0)
1855                                   ->getAs<LValueReferenceType>()
1856                                   ->getPointeeType(),
1857                               /*SpelledAsLValue=*/true),
1858                           Range);
1859        Out << '@';
1860      } else {
1861        llvm_unreachable("unexpected constructor closure!");
1862      }
1863      Out << 'Z';
1864      return;
1865    }
1866    Out << '@';
1867  } else {
1868    QualType ResultType = T->getReturnType();
1869    if (const auto *AT =
1870            dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
1871      Out << '?';
1872      mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
1873      Out << '?';
1874      assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
1875             "shouldn't need to mangle __auto_type!");
1876      mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
1877      Out << '@';
1878    } else {
1879      if (ResultType->isVoidType())
1880        ResultType = ResultType.getUnqualifiedType();
1881      mangleType(ResultType, Range, QMM_Result);
1882    }
1883  }
1884
1885  // <argument-list> ::= X # void
1886  //                 ::= <type>+ @
1887  //                 ::= <type>* Z # varargs
1888  if (!Proto) {
1889    // Function types without prototypes can arise when mangling a function type
1890    // within an overloadable function in C. We mangle these as the absence of
1891    // any parameter types (not even an empty parameter list).
1892    Out << '@';
1893  } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
1894    Out << 'X';
1895  } else {
1896    // Happens for function pointer type arguments for example.
1897    for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
1898      mangleArgumentType(Proto->getParamType(I), Range);
1899      // Mangle each pass_object_size parameter as if it's a paramater of enum
1900      // type passed directly after the parameter with the pass_object_size
1901      // attribute. The aforementioned enum's name is __pass_object_size, and we
1902      // pretend it resides in a top-level namespace called __clang.
1903      //
1904      // FIXME: Is there a defined extension notation for the MS ABI, or is it
1905      // necessary to just cross our fingers and hope this type+namespace
1906      // combination doesn't conflict with anything?
1907      if (D)
1908        if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
1909          manglePassObjectSizeArg(P);
1910    }
1911    // <builtin-type>      ::= Z  # ellipsis
1912    if (Proto->isVariadic())
1913      Out << 'Z';
1914    else
1915      Out << '@';
1916  }
1917
1918  mangleThrowSpecification(Proto);
1919}
1920
1921void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1922  // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this'
1923  //                                            # pointer. in 64-bit mode *all*
1924  //                                            # 'this' pointers are 64-bit.
1925  //                   ::= <global-function>
1926  // <member-function> ::= A # private: near
1927  //                   ::= B # private: far
1928  //                   ::= C # private: static near
1929  //                   ::= D # private: static far
1930  //                   ::= E # private: virtual near
1931  //                   ::= F # private: virtual far
1932  //                   ::= I # protected: near
1933  //                   ::= J # protected: far
1934  //                   ::= K # protected: static near
1935  //                   ::= L # protected: static far
1936  //                   ::= M # protected: virtual near
1937  //                   ::= N # protected: virtual far
1938  //                   ::= Q # public: near
1939  //                   ::= R # public: far
1940  //                   ::= S # public: static near
1941  //                   ::= T # public: static far
1942  //                   ::= U # public: virtual near
1943  //                   ::= V # public: virtual far
1944  // <global-function> ::= Y # global near
1945  //                   ::= Z # global far
1946  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1947    switch (MD->getAccess()) {
1948      case AS_none:
1949        llvm_unreachable("Unsupported access specifier");
1950      case AS_private:
1951        if (MD->isStatic())
1952          Out << 'C';
1953        else if (MD->isVirtual())
1954          Out << 'E';
1955        else
1956          Out << 'A';
1957        break;
1958      case AS_protected:
1959        if (MD->isStatic())
1960          Out << 'K';
1961        else if (MD->isVirtual())
1962          Out << 'M';
1963        else
1964          Out << 'I';
1965        break;
1966      case AS_public:
1967        if (MD->isStatic())
1968          Out << 'S';
1969        else if (MD->isVirtual())
1970          Out << 'U';
1971        else
1972          Out << 'Q';
1973    }
1974  } else {
1975    Out << 'Y';
1976  }
1977}
1978void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
1979  // <calling-convention> ::= A # __cdecl
1980  //                      ::= B # __export __cdecl
1981  //                      ::= C # __pascal
1982  //                      ::= D # __export __pascal
1983  //                      ::= E # __thiscall
1984  //                      ::= F # __export __thiscall
1985  //                      ::= G # __stdcall
1986  //                      ::= H # __export __stdcall
1987  //                      ::= I # __fastcall
1988  //                      ::= J # __export __fastcall
1989  //                      ::= Q # __vectorcall
1990  // The 'export' calling conventions are from a bygone era
1991  // (*cough*Win16*cough*) when functions were declared for export with
1992  // that keyword. (It didn't actually export them, it just made them so
1993  // that they could be in a DLL and somebody from another module could call
1994  // them.)
1995
1996  switch (CC) {
1997    default:
1998      llvm_unreachable("Unsupported CC for mangling");
1999    case CC_X86_64Win64:
2000    case CC_X86_64SysV:
2001    case CC_C: Out << 'A'; break;
2002    case CC_X86Pascal: Out << 'C'; break;
2003    case CC_X86ThisCall: Out << 'E'; break;
2004    case CC_X86StdCall: Out << 'G'; break;
2005    case CC_X86FastCall: Out << 'I'; break;
2006    case CC_X86VectorCall: Out << 'Q'; break;
2007  }
2008}
2009void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2010  mangleCallingConvention(T->getCallConv());
2011}
2012void MicrosoftCXXNameMangler::mangleThrowSpecification(
2013                                                const FunctionProtoType *FT) {
2014  // <throw-spec> ::= Z # throw(...) (default)
2015  //              ::= @ # throw() or __declspec/__attribute__((nothrow))
2016  //              ::= <type>+
2017  // NOTE: Since the Microsoft compiler ignores throw specifications, they are
2018  // all actually mangled as 'Z'. (They're ignored because their associated
2019  // functionality isn't implemented, and probably never will be.)
2020  Out << 'Z';
2021}
2022
2023void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2024                                         Qualifiers, SourceRange Range) {
2025  // Probably should be mangled as a template instantiation; need to see what
2026  // VC does first.
2027  DiagnosticsEngine &Diags = Context.getDiags();
2028  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2029    "cannot mangle this unresolved dependent type yet");
2030  Diags.Report(Range.getBegin(), DiagID)
2031    << Range;
2032}
2033
2034// <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2035// <union-type>  ::= T <name>
2036// <struct-type> ::= U <name>
2037// <class-type>  ::= V <name>
2038// <enum-type>   ::= W4 <name>
2039void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2040  switch (TTK) {
2041    case TTK_Union:
2042      Out << 'T';
2043      break;
2044    case TTK_Struct:
2045    case TTK_Interface:
2046      Out << 'U';
2047      break;
2048    case TTK_Class:
2049      Out << 'V';
2050      break;
2051    case TTK_Enum:
2052      Out << "W4";
2053      break;
2054  }
2055}
2056void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2057                                         SourceRange) {
2058  mangleType(cast<TagType>(T)->getDecl());
2059}
2060void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2061                                         SourceRange) {
2062  mangleType(cast<TagType>(T)->getDecl());
2063}
2064void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2065  mangleTagTypeKind(TD->getTagKind());
2066  mangleName(TD);
2067}
2068void MicrosoftCXXNameMangler::mangleArtificalTagType(
2069    TagTypeKind TK, StringRef UnqualifiedName, ArrayRef<StringRef> NestedNames) {
2070  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2071  mangleTagTypeKind(TK);
2072
2073  // Always start with the unqualified name.
2074  mangleSourceName(UnqualifiedName);
2075
2076  for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
2077    mangleSourceName(*I);
2078
2079  // Terminate the whole name with an '@'.
2080  Out << '@';
2081}
2082
2083// <type>       ::= <array-type>
2084// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2085//                  [Y <dimension-count> <dimension>+]
2086//                  <element-type> # as global, E is never required
2087// It's supposed to be the other way around, but for some strange reason, it
2088// isn't. Today this behavior is retained for the sole purpose of backwards
2089// compatibility.
2090void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2091  // This isn't a recursive mangling, so now we have to do it all in this
2092  // one call.
2093  manglePointerCVQualifiers(T->getElementType().getQualifiers());
2094  mangleType(T->getElementType(), SourceRange());
2095}
2096void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2097                                         SourceRange) {
2098  llvm_unreachable("Should have been special cased");
2099}
2100void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2101                                         SourceRange) {
2102  llvm_unreachable("Should have been special cased");
2103}
2104void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2105                                         Qualifiers, SourceRange) {
2106  llvm_unreachable("Should have been special cased");
2107}
2108void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2109                                         Qualifiers, SourceRange) {
2110  llvm_unreachable("Should have been special cased");
2111}
2112void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2113  QualType ElementTy(T, 0);
2114  SmallVector<llvm::APInt, 3> Dimensions;
2115  for (;;) {
2116    if (ElementTy->isConstantArrayType()) {
2117      const ConstantArrayType *CAT =
2118          getASTContext().getAsConstantArrayType(ElementTy);
2119      Dimensions.push_back(CAT->getSize());
2120      ElementTy = CAT->getElementType();
2121    } else if (ElementTy->isIncompleteArrayType()) {
2122      const IncompleteArrayType *IAT =
2123          getASTContext().getAsIncompleteArrayType(ElementTy);
2124      Dimensions.push_back(llvm::APInt(32, 0));
2125      ElementTy = IAT->getElementType();
2126    } else if (ElementTy->isVariableArrayType()) {
2127      const VariableArrayType *VAT =
2128        getASTContext().getAsVariableArrayType(ElementTy);
2129      Dimensions.push_back(llvm::APInt(32, 0));
2130      ElementTy = VAT->getElementType();
2131    } else if (ElementTy->isDependentSizedArrayType()) {
2132      // The dependent expression has to be folded into a constant (TODO).
2133      const DependentSizedArrayType *DSAT =
2134        getASTContext().getAsDependentSizedArrayType(ElementTy);
2135      DiagnosticsEngine &Diags = Context.getDiags();
2136      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2137        "cannot mangle this dependent-length array yet");
2138      Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2139        << DSAT->getBracketsRange();
2140      return;
2141    } else {
2142      break;
2143    }
2144  }
2145  Out << 'Y';
2146  // <dimension-count> ::= <number> # number of extra dimensions
2147  mangleNumber(Dimensions.size());
2148  for (const llvm::APInt &Dimension : Dimensions)
2149    mangleNumber(Dimension.getLimitedValue());
2150  mangleType(ElementTy, SourceRange(), QMM_Escape);
2151}
2152
2153// <type>                   ::= <pointer-to-member-type>
2154// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2155//                                                          <class name> <type>
2156void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, Qualifiers Quals,
2157                                         SourceRange Range) {
2158  QualType PointeeType = T->getPointeeType();
2159  manglePointerCVQualifiers(Quals);
2160  manglePointerExtQualifiers(Quals, PointeeType);
2161  if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2162    Out << '8';
2163    mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2164    mangleFunctionType(FPT, nullptr, true);
2165  } else {
2166    mangleQualifiers(PointeeType.getQualifiers(), true);
2167    mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2168    mangleType(PointeeType, Range, QMM_Drop);
2169  }
2170}
2171
2172void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2173                                         Qualifiers, SourceRange Range) {
2174  DiagnosticsEngine &Diags = Context.getDiags();
2175  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2176    "cannot mangle this template type parameter type yet");
2177  Diags.Report(Range.getBegin(), DiagID)
2178    << Range;
2179}
2180
2181void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2182                                         Qualifiers, SourceRange Range) {
2183  DiagnosticsEngine &Diags = Context.getDiags();
2184  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2185    "cannot mangle this substituted parameter pack yet");
2186  Diags.Report(Range.getBegin(), DiagID)
2187    << Range;
2188}
2189
2190// <type> ::= <pointer-type>
2191// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2192//                       # the E is required for 64-bit non-static pointers
2193void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2194                                         SourceRange Range) {
2195  QualType PointeeType = T->getPointeeType();
2196  manglePointerCVQualifiers(Quals);
2197  manglePointerExtQualifiers(Quals, PointeeType);
2198  mangleType(PointeeType, Range);
2199}
2200void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2201                                         Qualifiers Quals, SourceRange Range) {
2202  QualType PointeeType = T->getPointeeType();
2203  manglePointerCVQualifiers(Quals);
2204  manglePointerExtQualifiers(Quals, PointeeType);
2205  // Object pointers never have qualifiers.
2206  Out << 'A';
2207  mangleType(PointeeType, Range);
2208}
2209
2210// <type> ::= <reference-type>
2211// <reference-type> ::= A E? <cvr-qualifiers> <type>
2212//                 # the E is required for 64-bit non-static lvalue references
2213void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2214                                         Qualifiers Quals, SourceRange Range) {
2215  QualType PointeeType = T->getPointeeType();
2216  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2217  Out << 'A';
2218  manglePointerExtQualifiers(Quals, PointeeType);
2219  mangleType(PointeeType, Range);
2220}
2221
2222// <type> ::= <r-value-reference-type>
2223// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2224//                 # the E is required for 64-bit non-static rvalue references
2225void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2226                                         Qualifiers Quals, SourceRange Range) {
2227  QualType PointeeType = T->getPointeeType();
2228  assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2229  Out << "$$Q";
2230  manglePointerExtQualifiers(Quals, PointeeType);
2231  mangleType(PointeeType, Range);
2232}
2233
2234void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
2235                                         SourceRange Range) {
2236  QualType ElementType = T->getElementType();
2237
2238  llvm::SmallString<64> TemplateMangling;
2239  llvm::raw_svector_ostream Stream(TemplateMangling);
2240  MicrosoftCXXNameMangler Extra(Context, Stream);
2241  Stream << "?$";
2242  Extra.mangleSourceName("_Complex");
2243  Extra.mangleType(ElementType, Range, QMM_Escape);
2244
2245  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2246}
2247
2248void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
2249                                         SourceRange Range) {
2250  const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
2251  assert(ET && "vectors with non-builtin elements are unsupported");
2252  uint64_t Width = getASTContext().getTypeSize(T);
2253  // Pattern match exactly the typedefs in our intrinsic headers.  Anything that
2254  // doesn't match the Intel types uses a custom mangling below.
2255  size_t OutSizeBefore = Out.tell();
2256  llvm::Triple::ArchType AT =
2257      getASTContext().getTargetInfo().getTriple().getArch();
2258  if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) {
2259    if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
2260      mangleArtificalTagType(TTK_Union, "__m64");
2261    } else if (Width >= 128) {
2262      if (ET->getKind() == BuiltinType::Float)
2263        mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width));
2264      else if (ET->getKind() == BuiltinType::LongLong)
2265        mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
2266      else if (ET->getKind() == BuiltinType::Double)
2267        mangleArtificalTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
2268    }
2269  }
2270
2271  bool IsBuiltin = Out.tell() != OutSizeBefore;
2272  if (!IsBuiltin) {
2273    // The MS ABI doesn't have a special mangling for vector types, so we define
2274    // our own mangling to handle uses of __vector_size__ on user-specified
2275    // types, and for extensions like __v4sf.
2276
2277    llvm::SmallString<64> TemplateMangling;
2278    llvm::raw_svector_ostream Stream(TemplateMangling);
2279    MicrosoftCXXNameMangler Extra(Context, Stream);
2280    Stream << "?$";
2281    Extra.mangleSourceName("__vector");
2282    Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
2283    Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
2284                               /*IsBoolean=*/false);
2285
2286    mangleArtificalTagType(TTK_Union, TemplateMangling, {"__clang"});
2287  }
2288}
2289
2290void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2291                                         Qualifiers Quals, SourceRange Range) {
2292  mangleType(static_cast<const VectorType *>(T), Quals, Range);
2293}
2294void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2295                                         Qualifiers, SourceRange Range) {
2296  DiagnosticsEngine &Diags = Context.getDiags();
2297  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2298    "cannot mangle this dependent-sized extended vector type yet");
2299  Diags.Report(Range.getBegin(), DiagID)
2300    << Range;
2301}
2302
2303void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
2304                                         SourceRange) {
2305  // ObjC interfaces have structs underlying them.
2306  mangleTagTypeKind(TTK_Struct);
2307  mangleName(T->getDecl());
2308}
2309
2310void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers,
2311                                         SourceRange Range) {
2312  // We don't allow overloading by different protocol qualification,
2313  // so mangling them isn't necessary.
2314  mangleType(T->getBaseType(), Range);
2315}
2316
2317void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2318                                         Qualifiers Quals, SourceRange Range) {
2319  QualType PointeeType = T->getPointeeType();
2320  manglePointerCVQualifiers(Quals);
2321  manglePointerExtQualifiers(Quals, PointeeType);
2322
2323  Out << "_E";
2324
2325  mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
2326}
2327
2328void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2329                                         Qualifiers, SourceRange) {
2330  llvm_unreachable("Cannot mangle injected class name type.");
2331}
2332
2333void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2334                                         Qualifiers, SourceRange Range) {
2335  DiagnosticsEngine &Diags = Context.getDiags();
2336  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2337    "cannot mangle this template specialization type yet");
2338  Diags.Report(Range.getBegin(), DiagID)
2339    << Range;
2340}
2341
2342void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
2343                                         SourceRange Range) {
2344  DiagnosticsEngine &Diags = Context.getDiags();
2345  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2346    "cannot mangle this dependent name type yet");
2347  Diags.Report(Range.getBegin(), DiagID)
2348    << Range;
2349}
2350
2351void MicrosoftCXXNameMangler::mangleType(
2352    const DependentTemplateSpecializationType *T, Qualifiers,
2353    SourceRange Range) {
2354  DiagnosticsEngine &Diags = Context.getDiags();
2355  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2356    "cannot mangle this dependent template specialization type yet");
2357  Diags.Report(Range.getBegin(), DiagID)
2358    << Range;
2359}
2360
2361void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
2362                                         SourceRange Range) {
2363  DiagnosticsEngine &Diags = Context.getDiags();
2364  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2365    "cannot mangle this pack expansion yet");
2366  Diags.Report(Range.getBegin(), DiagID)
2367    << Range;
2368}
2369
2370void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
2371                                         SourceRange Range) {
2372  DiagnosticsEngine &Diags = Context.getDiags();
2373  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2374    "cannot mangle this typeof(type) yet");
2375  Diags.Report(Range.getBegin(), DiagID)
2376    << Range;
2377}
2378
2379void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
2380                                         SourceRange Range) {
2381  DiagnosticsEngine &Diags = Context.getDiags();
2382  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2383    "cannot mangle this typeof(expression) yet");
2384  Diags.Report(Range.getBegin(), DiagID)
2385    << Range;
2386}
2387
2388void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
2389                                         SourceRange Range) {
2390  DiagnosticsEngine &Diags = Context.getDiags();
2391  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2392    "cannot mangle this decltype() yet");
2393  Diags.Report(Range.getBegin(), DiagID)
2394    << Range;
2395}
2396
2397void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2398                                         Qualifiers, SourceRange Range) {
2399  DiagnosticsEngine &Diags = Context.getDiags();
2400  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2401    "cannot mangle this unary transform type yet");
2402  Diags.Report(Range.getBegin(), DiagID)
2403    << Range;
2404}
2405
2406void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
2407                                         SourceRange Range) {
2408  assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2409
2410  DiagnosticsEngine &Diags = Context.getDiags();
2411  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2412    "cannot mangle this 'auto' type yet");
2413  Diags.Report(Range.getBegin(), DiagID)
2414    << Range;
2415}
2416
2417void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
2418                                         SourceRange Range) {
2419  QualType ValueType = T->getValueType();
2420
2421  llvm::SmallString<64> TemplateMangling;
2422  llvm::raw_svector_ostream Stream(TemplateMangling);
2423  MicrosoftCXXNameMangler Extra(Context, Stream);
2424  Stream << "?$";
2425  Extra.mangleSourceName("_Atomic");
2426  Extra.mangleType(ValueType, Range, QMM_Escape);
2427
2428  mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
2429}
2430
2431void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
2432                                         SourceRange Range) {
2433  DiagnosticsEngine &Diags = Context.getDiags();
2434  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2435    "cannot mangle this OpenCL pipe type yet");
2436  Diags.Report(Range.getBegin(), DiagID)
2437    << Range;
2438}
2439
2440void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2441                                               raw_ostream &Out) {
2442  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2443         "Invalid mangleName() call, argument is not a variable or function!");
2444  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2445         "Invalid mangleName() call on 'structor decl!");
2446
2447  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2448                                 getASTContext().getSourceManager(),
2449                                 "Mangling declaration");
2450
2451  MicrosoftCXXNameMangler Mangler(*this, Out);
2452  return Mangler.mangle(D);
2453}
2454
2455// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2456//                       <virtual-adjustment>
2457// <no-adjustment>      ::= A # private near
2458//                      ::= B # private far
2459//                      ::= I # protected near
2460//                      ::= J # protected far
2461//                      ::= Q # public near
2462//                      ::= R # public far
2463// <static-adjustment>  ::= G <static-offset> # private near
2464//                      ::= H <static-offset> # private far
2465//                      ::= O <static-offset> # protected near
2466//                      ::= P <static-offset> # protected far
2467//                      ::= W <static-offset> # public near
2468//                      ::= X <static-offset> # public far
2469// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2470//                      ::= $1 <virtual-shift> <static-offset> # private far
2471//                      ::= $2 <virtual-shift> <static-offset> # protected near
2472//                      ::= $3 <virtual-shift> <static-offset> # protected far
2473//                      ::= $4 <virtual-shift> <static-offset> # public near
2474//                      ::= $5 <virtual-shift> <static-offset> # public far
2475// <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift>
2476// <vtordisp-shift>     ::= <offset-to-vtordisp>
2477// <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset>
2478//                          <offset-to-vtordisp>
2479static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
2480                                      const ThisAdjustment &Adjustment,
2481                                      MicrosoftCXXNameMangler &Mangler,
2482                                      raw_ostream &Out) {
2483  if (!Adjustment.Virtual.isEmpty()) {
2484    Out << '$';
2485    char AccessSpec;
2486    switch (MD->getAccess()) {
2487    case AS_none:
2488      llvm_unreachable("Unsupported access specifier");
2489    case AS_private:
2490      AccessSpec = '0';
2491      break;
2492    case AS_protected:
2493      AccessSpec = '2';
2494      break;
2495    case AS_public:
2496      AccessSpec = '4';
2497    }
2498    if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2499      Out << 'R' << AccessSpec;
2500      Mangler.mangleNumber(
2501          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2502      Mangler.mangleNumber(
2503          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2504      Mangler.mangleNumber(
2505          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2506      Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2507    } else {
2508      Out << AccessSpec;
2509      Mangler.mangleNumber(
2510          static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2511      Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2512    }
2513  } else if (Adjustment.NonVirtual != 0) {
2514    switch (MD->getAccess()) {
2515    case AS_none:
2516      llvm_unreachable("Unsupported access specifier");
2517    case AS_private:
2518      Out << 'G';
2519      break;
2520    case AS_protected:
2521      Out << 'O';
2522      break;
2523    case AS_public:
2524      Out << 'W';
2525    }
2526    Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2527  } else {
2528    switch (MD->getAccess()) {
2529    case AS_none:
2530      llvm_unreachable("Unsupported access specifier");
2531    case AS_private:
2532      Out << 'A';
2533      break;
2534    case AS_protected:
2535      Out << 'I';
2536      break;
2537    case AS_public:
2538      Out << 'Q';
2539    }
2540  }
2541}
2542
2543void
2544MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
2545                                                     raw_ostream &Out) {
2546  MicrosoftVTableContext *VTContext =
2547      cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
2548  const MicrosoftVTableContext::MethodVFTableLocation &ML =
2549      VTContext->getMethodVFTableLocation(GlobalDecl(MD));
2550
2551  MicrosoftCXXNameMangler Mangler(*this, Out);
2552  Mangler.getStream() << "\01?";
2553  Mangler.mangleVirtualMemPtrThunk(MD, ML);
2554}
2555
2556void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2557                                             const ThunkInfo &Thunk,
2558                                             raw_ostream &Out) {
2559  MicrosoftCXXNameMangler Mangler(*this, Out);
2560  Out << "\01?";
2561  Mangler.mangleName(MD);
2562  mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
2563  if (!Thunk.Return.isEmpty())
2564    assert(Thunk.Method != nullptr &&
2565           "Thunk info should hold the overridee decl");
2566
2567  const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2568  Mangler.mangleFunctionType(
2569      DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2570}
2571
2572void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2573    const CXXDestructorDecl *DD, CXXDtorType Type,
2574    const ThisAdjustment &Adjustment, raw_ostream &Out) {
2575  // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2576  // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2577  // mangling manually until we support both deleting dtor types.
2578  assert(Type == Dtor_Deleting);
2579  MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
2580  Out << "\01??_E";
2581  Mangler.mangleName(DD->getParent());
2582  mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
2583  Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2584}
2585
2586void MicrosoftMangleContextImpl::mangleCXXVFTable(
2587    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2588    raw_ostream &Out) {
2589  // <mangled-name> ::= ?_7 <class-name> <storage-class>
2590  //                    <cvr-qualifiers> [<name>] @
2591  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2592  // is always '6' for vftables.
2593  MicrosoftCXXNameMangler Mangler(*this, Out);
2594  Mangler.getStream() << "\01??_7";
2595  Mangler.mangleName(Derived);
2596  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2597  for (const CXXRecordDecl *RD : BasePath)
2598    Mangler.mangleName(RD);
2599  Mangler.getStream() << '@';
2600}
2601
2602void MicrosoftMangleContextImpl::mangleCXXVBTable(
2603    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2604    raw_ostream &Out) {
2605  // <mangled-name> ::= ?_8 <class-name> <storage-class>
2606  //                    <cvr-qualifiers> [<name>] @
2607  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2608  // is always '7' for vbtables.
2609  MicrosoftCXXNameMangler Mangler(*this, Out);
2610  Mangler.getStream() << "\01??_8";
2611  Mangler.mangleName(Derived);
2612  Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const.
2613  for (const CXXRecordDecl *RD : BasePath)
2614    Mangler.mangleName(RD);
2615  Mangler.getStream() << '@';
2616}
2617
2618void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2619  MicrosoftCXXNameMangler Mangler(*this, Out);
2620  Mangler.getStream() << "\01??_R0";
2621  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2622  Mangler.getStream() << "@8";
2623}
2624
2625void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2626                                                   raw_ostream &Out) {
2627  MicrosoftCXXNameMangler Mangler(*this, Out);
2628  Mangler.getStream() << '.';
2629  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2630}
2631
2632void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
2633    const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
2634  MicrosoftCXXNameMangler Mangler(*this, Out);
2635  Mangler.getStream() << "\01??_K";
2636  Mangler.mangleName(SrcRD);
2637  Mangler.getStream() << "$C";
2638  Mangler.mangleName(DstRD);
2639}
2640
2641void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T,
2642                                                    bool IsConst,
2643                                                    bool IsVolatile,
2644                                                    uint32_t NumEntries,
2645                                                    raw_ostream &Out) {
2646  MicrosoftCXXNameMangler Mangler(*this, Out);
2647  Mangler.getStream() << "_TI";
2648  if (IsConst)
2649    Mangler.getStream() << 'C';
2650  if (IsVolatile)
2651    Mangler.getStream() << 'V';
2652  Mangler.getStream() << NumEntries;
2653  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2654}
2655
2656void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
2657    QualType T, uint32_t NumEntries, raw_ostream &Out) {
2658  MicrosoftCXXNameMangler Mangler(*this, Out);
2659  Mangler.getStream() << "_CTA";
2660  Mangler.getStream() << NumEntries;
2661  Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2662}
2663
2664void MicrosoftMangleContextImpl::mangleCXXCatchableType(
2665    QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
2666    uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
2667    raw_ostream &Out) {
2668  MicrosoftCXXNameMangler Mangler(*this, Out);
2669  Mangler.getStream() << "_CT";
2670
2671  llvm::SmallString<64> RTTIMangling;
2672  {
2673    llvm::raw_svector_ostream Stream(RTTIMangling);
2674    mangleCXXRTTI(T, Stream);
2675  }
2676  Mangler.getStream() << RTTIMangling.substr(1);
2677
2678  // VS2015 CTP6 omits the copy-constructor in the mangled name.  This name is,
2679  // in fact, superfluous but I'm not sure the change was made consciously.
2680  // TODO: Revisit this when VS2015 gets released.
2681  llvm::SmallString<64> CopyCtorMangling;
2682  if (CD) {
2683    llvm::raw_svector_ostream Stream(CopyCtorMangling);
2684    mangleCXXCtor(CD, CT, Stream);
2685  }
2686  Mangler.getStream() << CopyCtorMangling.substr(1);
2687
2688  Mangler.getStream() << Size;
2689  if (VBPtrOffset == -1) {
2690    if (NVOffset) {
2691      Mangler.getStream() << NVOffset;
2692    }
2693  } else {
2694    Mangler.getStream() << NVOffset;
2695    Mangler.getStream() << VBPtrOffset;
2696    Mangler.getStream() << VBIndex;
2697  }
2698}
2699
2700void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
2701    const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
2702    uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
2703  MicrosoftCXXNameMangler Mangler(*this, Out);
2704  Mangler.getStream() << "\01??_R1";
2705  Mangler.mangleNumber(NVOffset);
2706  Mangler.mangleNumber(VBPtrOffset);
2707  Mangler.mangleNumber(VBTableOffset);
2708  Mangler.mangleNumber(Flags);
2709  Mangler.mangleName(Derived);
2710  Mangler.getStream() << "8";
2711}
2712
2713void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
2714    const CXXRecordDecl *Derived, raw_ostream &Out) {
2715  MicrosoftCXXNameMangler Mangler(*this, Out);
2716  Mangler.getStream() << "\01??_R2";
2717  Mangler.mangleName(Derived);
2718  Mangler.getStream() << "8";
2719}
2720
2721void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
2722    const CXXRecordDecl *Derived, raw_ostream &Out) {
2723  MicrosoftCXXNameMangler Mangler(*this, Out);
2724  Mangler.getStream() << "\01??_R3";
2725  Mangler.mangleName(Derived);
2726  Mangler.getStream() << "8";
2727}
2728
2729void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
2730    const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2731    raw_ostream &Out) {
2732  // <mangled-name> ::= ?_R4 <class-name> <storage-class>
2733  //                    <cvr-qualifiers> [<name>] @
2734  // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2735  // is always '6' for vftables.
2736  MicrosoftCXXNameMangler Mangler(*this, Out);
2737  Mangler.getStream() << "\01??_R4";
2738  Mangler.mangleName(Derived);
2739  Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2740  for (const CXXRecordDecl *RD : BasePath)
2741    Mangler.mangleName(RD);
2742  Mangler.getStream() << '@';
2743}
2744
2745void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
2746    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2747  MicrosoftCXXNameMangler Mangler(*this, Out);
2748  // The function body is in the same comdat as the function with the handler,
2749  // so the numbering here doesn't have to be the same across TUs.
2750  //
2751  // <mangled-name> ::= ?filt$ <filter-number> @0
2752  Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
2753  Mangler.mangleName(EnclosingDecl);
2754}
2755
2756void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
2757    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2758  MicrosoftCXXNameMangler Mangler(*this, Out);
2759  // The function body is in the same comdat as the function with the handler,
2760  // so the numbering here doesn't have to be the same across TUs.
2761  //
2762  // <mangled-name> ::= ?fin$ <filter-number> @0
2763  Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
2764  Mangler.mangleName(EnclosingDecl);
2765}
2766
2767void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
2768  // This is just a made up unique string for the purposes of tbaa.  undname
2769  // does *not* know how to demangle it.
2770  MicrosoftCXXNameMangler Mangler(*this, Out);
2771  Mangler.getStream() << '?';
2772  Mangler.mangleType(T, SourceRange());
2773}
2774
2775void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
2776                                               CXXCtorType Type,
2777                                               raw_ostream &Out) {
2778  MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2779  mangler.mangle(D);
2780}
2781
2782void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
2783                                               CXXDtorType Type,
2784                                               raw_ostream &Out) {
2785  MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2786  mangler.mangle(D);
2787}
2788
2789void MicrosoftMangleContextImpl::mangleReferenceTemporary(
2790    const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
2791  MicrosoftCXXNameMangler Mangler(*this, Out);
2792
2793  Mangler.getStream() << "\01?$RT" << ManglingNumber << '@';
2794  Mangler.mangle(VD, "");
2795}
2796
2797void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
2798    const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
2799  MicrosoftCXXNameMangler Mangler(*this, Out);
2800
2801  Mangler.getStream() << "\01?$TSS" << GuardNum << '@';
2802  Mangler.mangleNestedName(VD);
2803}
2804
2805void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
2806                                                           raw_ostream &Out) {
2807  // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
2808  //              ::= ?__J <postfix> @5 <scope-depth>
2809  //              ::= ?$S <guard-num> @ <postfix> @4IA
2810
2811  // The first mangling is what MSVC uses to guard static locals in inline
2812  // functions.  It uses a different mangling in external functions to support
2813  // guarding more than 32 variables.  MSVC rejects inline functions with more
2814  // than 32 static locals.  We don't fully implement the second mangling
2815  // because those guards are not externally visible, and instead use LLVM's
2816  // default renaming when creating a new guard variable.
2817  MicrosoftCXXNameMangler Mangler(*this, Out);
2818
2819  bool Visible = VD->isExternallyVisible();
2820  if (Visible) {
2821    Mangler.getStream() << (VD->getTLSKind() ? "\01??__J" : "\01??_B");
2822  } else {
2823    Mangler.getStream() << "\01?$S1@";
2824  }
2825  unsigned ScopeDepth = 0;
2826  if (Visible && !getNextDiscriminator(VD, ScopeDepth))
2827    // If we do not have a discriminator and are emitting a guard variable for
2828    // use at global scope, then mangling the nested name will not be enough to
2829    // remove ambiguities.
2830    Mangler.mangle(VD, "");
2831  else
2832    Mangler.mangleNestedName(VD);
2833  Mangler.getStream() << (Visible ? "@5" : "@4IA");
2834  if (ScopeDepth)
2835    Mangler.mangleNumber(ScopeDepth);
2836}
2837
2838void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
2839                                                    raw_ostream &Out,
2840                                                    char CharCode) {
2841  MicrosoftCXXNameMangler Mangler(*this, Out);
2842  Mangler.getStream() << "\01??__" << CharCode;
2843  Mangler.mangleName(D);
2844  if (D->isStaticDataMember()) {
2845    Mangler.mangleVariableEncoding(D);
2846    Mangler.getStream() << '@';
2847  }
2848  // This is the function class mangling.  These stubs are global, non-variadic,
2849  // cdecl functions that return void and take no args.
2850  Mangler.getStream() << "YAXXZ";
2851}
2852
2853void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
2854                                                          raw_ostream &Out) {
2855  // <initializer-name> ::= ?__E <name> YAXXZ
2856  mangleInitFiniStub(D, Out, 'E');
2857}
2858
2859void
2860MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
2861                                                          raw_ostream &Out) {
2862  // <destructor-name> ::= ?__F <name> YAXXZ
2863  mangleInitFiniStub(D, Out, 'F');
2864}
2865
2866void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
2867                                                     raw_ostream &Out) {
2868  // <char-type> ::= 0   # char
2869  //             ::= 1   # wchar_t
2870  //             ::= ??? # char16_t/char32_t will need a mangling too...
2871  //
2872  // <literal-length> ::= <non-negative integer>  # the length of the literal
2873  //
2874  // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including
2875  //                                              # null-terminator
2876  //
2877  // <encoded-string> ::= <simple character>           # uninteresting character
2878  //                  ::= '?$' <hex digit> <hex digit> # these two nibbles
2879  //                                                   # encode the byte for the
2880  //                                                   # character
2881  //                  ::= '?' [a-z]                    # \xe1 - \xfa
2882  //                  ::= '?' [A-Z]                    # \xc1 - \xda
2883  //                  ::= '?' [0-9]                    # [,/\:. \n\t'-]
2884  //
2885  // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
2886  //               <encoded-string> '@'
2887  MicrosoftCXXNameMangler Mangler(*this, Out);
2888  Mangler.getStream() << "\01??_C@_";
2889
2890  // <char-type>: The "kind" of string literal is encoded into the mangled name.
2891  if (SL->isWide())
2892    Mangler.getStream() << '1';
2893  else
2894    Mangler.getStream() << '0';
2895
2896  // <literal-length>: The next part of the mangled name consists of the length
2897  // of the string.
2898  // The StringLiteral does not consider the NUL terminator byte(s) but the
2899  // mangling does.
2900  // N.B. The length is in terms of bytes, not characters.
2901  Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
2902
2903  auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
2904    unsigned CharByteWidth = SL->getCharByteWidth();
2905    uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2906    unsigned OffsetInCodeUnit = Index % CharByteWidth;
2907    return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2908  };
2909
2910  auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
2911    unsigned CharByteWidth = SL->getCharByteWidth();
2912    uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2913    unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
2914    return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2915  };
2916
2917  // CRC all the bytes of the StringLiteral.
2918  llvm::JamCRC JC;
2919  for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
2920    JC.update(GetLittleEndianByte(I));
2921
2922  // The NUL terminator byte(s) were not present earlier,
2923  // we need to manually process those bytes into the CRC.
2924  for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2925       ++NullTerminator)
2926    JC.update('\x00');
2927
2928  // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
2929  // scheme.
2930  Mangler.mangleNumber(JC.getCRC());
2931
2932  // <encoded-string>: The mangled name also contains the first 32 _characters_
2933  // (including null-terminator bytes) of the StringLiteral.
2934  // Each character is encoded by splitting them into bytes and then encoding
2935  // the constituent bytes.
2936  auto MangleByte = [&Mangler](char Byte) {
2937    // There are five different manglings for characters:
2938    // - [a-zA-Z0-9_$]: A one-to-one mapping.
2939    // - ?[a-z]: The range from \xe1 to \xfa.
2940    // - ?[A-Z]: The range from \xc1 to \xda.
2941    // - ?[0-9]: The set of [,/\:. \n\t'-].
2942    // - ?$XX: A fallback which maps nibbles.
2943    if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
2944      Mangler.getStream() << Byte;
2945    } else if (isLetter(Byte & 0x7f)) {
2946      Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
2947    } else {
2948      const char SpecialChars[] = {',', '/',  '\\', ':',  '.',
2949                                   ' ', '\n', '\t', '\'', '-'};
2950      const char *Pos =
2951          std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
2952      if (Pos != std::end(SpecialChars)) {
2953        Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
2954      } else {
2955        Mangler.getStream() << "?$";
2956        Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
2957        Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
2958      }
2959    }
2960  };
2961
2962  // Enforce our 32 character max.
2963  unsigned NumCharsToMangle = std::min(32U, SL->getLength());
2964  for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
2965       ++I)
2966    if (SL->isWide())
2967      MangleByte(GetBigEndianByte(I));
2968    else
2969      MangleByte(GetLittleEndianByte(I));
2970
2971  // Encode the NUL terminator if there is room.
2972  if (NumCharsToMangle < 32)
2973    for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2974         ++NullTerminator)
2975      MangleByte(0);
2976
2977  Mangler.getStream() << '@';
2978}
2979
2980MicrosoftMangleContext *
2981MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
2982  return new MicrosoftMangleContextImpl(Context, Diags);
2983}
2984