MicrosoftMangle.cpp revision 218887
1//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ name mangling targetting the Microsoft Visual C++ ABI.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Mangle.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/Basic/ABI.h"
23
24using namespace clang;
25
26namespace {
27
28/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
29/// Microsoft Visual C++ ABI.
30class MicrosoftCXXNameMangler {
31  MangleContext &Context;
32  llvm::raw_ostream &Out;
33
34  ASTContext &getASTContext() const { return Context.getASTContext(); }
35
36public:
37  MicrosoftCXXNameMangler(MangleContext &C, llvm::raw_ostream &Out_)
38  : Context(C), Out(Out_) { }
39
40  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "?");
41  void mangleName(const NamedDecl *ND);
42  void mangleFunctionEncoding(const FunctionDecl *FD);
43  void mangleVariableEncoding(const VarDecl *VD);
44  void mangleNumber(int64_t Number);
45  void mangleType(QualType T);
46
47private:
48  void mangleUnqualifiedName(const NamedDecl *ND) {
49    mangleUnqualifiedName(ND, ND->getDeclName());
50  }
51  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
52  void mangleSourceName(const IdentifierInfo *II);
53  void manglePostfix(const DeclContext *DC, bool NoFunction=false);
54  void mangleOperatorName(OverloadedOperatorKind OO);
55  void mangleQualifiers(Qualifiers Quals, bool IsMember);
56
57  void mangleObjCMethodName(const ObjCMethodDecl *MD);
58
59  // Declare manglers for every type class.
60#define ABSTRACT_TYPE(CLASS, PARENT)
61#define NON_CANONICAL_TYPE(CLASS, PARENT)
62#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
63#include "clang/AST/TypeNodes.def"
64
65  void mangleType(const TagType*);
66  void mangleType(const FunctionType *T, const FunctionDecl *D,
67                  bool IsStructor, bool IsInstMethod);
68  void mangleType(const ArrayType *T, bool IsGlobal);
69  void mangleExtraDimensions(QualType T);
70  void mangleFunctionClass(const FunctionDecl *FD);
71  void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false);
72  void mangleThrowSpecification(const FunctionProtoType *T);
73
74};
75
76/// MicrosoftMangleContext - Overrides the default MangleContext for the
77/// Microsoft Visual C++ ABI.
78class MicrosoftMangleContext : public MangleContext {
79public:
80  MicrosoftMangleContext(ASTContext &Context,
81                         Diagnostic &Diags) : MangleContext(Context, Diags) { }
82  virtual bool shouldMangleDeclName(const NamedDecl *D);
83  virtual void mangleName(const NamedDecl *D, llvm::raw_ostream &Out);
84  virtual void mangleThunk(const CXXMethodDecl *MD,
85                           const ThunkInfo &Thunk,
86                           llvm::raw_ostream &);
87  virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
88                                  const ThisAdjustment &ThisAdjustment,
89                                  llvm::raw_ostream &);
90  virtual void mangleCXXVTable(const CXXRecordDecl *RD,
91                               llvm::raw_ostream &);
92  virtual void mangleCXXVTT(const CXXRecordDecl *RD,
93                            llvm::raw_ostream &);
94  virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
95                                   const CXXRecordDecl *Type,
96                                   llvm::raw_ostream &);
97  virtual void mangleCXXRTTI(QualType T, llvm::raw_ostream &);
98  virtual void mangleCXXRTTIName(QualType T, llvm::raw_ostream &);
99  virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
100                             llvm::raw_ostream &);
101  virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
102                             llvm::raw_ostream &);
103  virtual void mangleReferenceTemporary(const clang::VarDecl *,
104                                        llvm::raw_ostream &);
105};
106
107}
108
109static bool isInCLinkageSpecification(const Decl *D) {
110  D = D->getCanonicalDecl();
111  for (const DeclContext *DC = D->getDeclContext();
112       !DC->isTranslationUnit(); DC = DC->getParent()) {
113    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
114      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
115  }
116
117  return false;
118}
119
120bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
121  // In C, functions with no attributes never need to be mangled. Fastpath them.
122  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
123    return false;
124
125  // Any decl can be declared with __asm("foo") on it, and this takes precedence
126  // over all other naming in the .o file.
127  if (D->hasAttr<AsmLabelAttr>())
128    return true;
129
130  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
131  // (always) as does passing a C++ member function and a function
132  // whose name is not a simple identifier.
133  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
134  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
135             !FD->getDeclName().isIdentifier()))
136    return true;
137
138  // Otherwise, no mangling is done outside C++ mode.
139  if (!getASTContext().getLangOptions().CPlusPlus)
140    return false;
141
142  // Variables at global scope with internal linkage are not mangled.
143  if (!FD) {
144    const DeclContext *DC = D->getDeclContext();
145    if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
146      return false;
147  }
148
149  // C functions and "main" are not mangled.
150  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
151    return false;
152
153  return true;
154}
155
156void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
157                                     llvm::StringRef Prefix) {
158  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
159  // Therefore it's really important that we don't decorate the
160  // name with leading underscores or leading/trailing at signs. So, emit a
161  // asm marker at the start so we get the name right.
162  Out << '\01';  // LLVM IR Marker for __asm("foo")
163
164  // Any decl can be declared with __asm("foo") on it, and this takes precedence
165  // over all other naming in the .o file.
166  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
167    // If we have an asm name, then we use it as the mangling.
168    Out << ALA->getLabel();
169    return;
170  }
171
172  // <mangled-name> ::= ? <name> <type-encoding>
173  Out << Prefix;
174  mangleName(D);
175  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
176    mangleFunctionEncoding(FD);
177  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
178    mangleVariableEncoding(VD);
179  // TODO: Fields? Can MSVC even mangle them?
180}
181
182void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
183  // <type-encoding> ::= <function-class> <function-type>
184
185  // Don't mangle in the type if this isn't a decl we should typically mangle.
186  if (!Context.shouldMangleDeclName(FD))
187    return;
188
189  // We should never ever see a FunctionNoProtoType at this point.
190  // We don't even know how to mangle their types anyway :).
191  const FunctionProtoType *FT = cast<FunctionProtoType>(FD->getType());
192
193  bool InStructor = false, InInstMethod = false;
194  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
195  if (MD) {
196    if (MD->isInstance())
197      InInstMethod = true;
198    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
199      InStructor = true;
200  }
201
202  // First, the function class.
203  mangleFunctionClass(FD);
204
205  mangleType(FT, FD, InStructor, InInstMethod);
206}
207
208void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
209  // <type-encoding> ::= <storage-class> <variable-type>
210  // <storage-class> ::= 0  # private static member
211  //                 ::= 1  # protected static member
212  //                 ::= 2  # public static member
213  //                 ::= 3  # global
214  //                 ::= 4  # static local
215
216  // The first character in the encoding (after the name) is the storage class.
217  if (VD->isStaticDataMember()) {
218    // If it's a static member, it also encodes the access level.
219    switch (VD->getAccess()) {
220      default:
221      case AS_private: Out << '0'; break;
222      case AS_protected: Out << '1'; break;
223      case AS_public: Out << '2'; break;
224    }
225  }
226  else if (!VD->isStaticLocal())
227    Out << '3';
228  else
229    Out << '4';
230  // Now mangle the type.
231  // <variable-type> ::= <type> <cvr-qualifiers>
232  //                 ::= <type> A # pointers, references, arrays
233  // Pointers and references are odd. The type of 'int * const foo;' gets
234  // mangled as 'QAHA' instead of 'PAHB', for example.
235  QualType Ty = VD->getType();
236  if (Ty->isPointerType() || Ty->isReferenceType()) {
237    mangleType(Ty);
238    Out << 'A';
239  } else if (Ty->isArrayType()) {
240    // Global arrays are funny, too.
241    mangleType(cast<ArrayType>(Ty.getTypePtr()), true);
242    Out << 'A';
243  } else {
244    mangleType(Ty.getLocalUnqualifiedType());
245    mangleQualifiers(Ty.getLocalQualifiers(), false);
246  }
247}
248
249void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
250  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
251  const DeclContext *DC = ND->getDeclContext();
252
253  // Always start with the unqualified name.
254  mangleUnqualifiedName(ND);
255
256  // If this is an extern variable declared locally, the relevant DeclContext
257  // is that of the containing namespace, or the translation unit.
258  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
259    while (!DC->isNamespace() && !DC->isTranslationUnit())
260      DC = DC->getParent();
261
262  manglePostfix(DC);
263
264  // Terminate the whole name with an '@'.
265  Out << '@';
266}
267
268void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
269  // <number> ::= [?] <decimal digit> # <= 9
270  //          ::= [?] <hex digit>+ @ # > 9; A = 0, B = 1, etc...
271  if (Number < 0) {
272    Out << '?';
273    Number = -Number;
274  }
275  if (Number >= 1 && Number <= 10) {
276    Out << Number-1;
277  } else {
278    // We have to build up the encoding in reverse order, so it will come
279    // out right when we write it out.
280    char Encoding[16];
281    char *EndPtr = Encoding+sizeof(Encoding);
282    char *CurPtr = EndPtr;
283    while (Number) {
284      *--CurPtr = 'A' + (Number % 16);
285      Number /= 16;
286    }
287    Out.write(CurPtr, EndPtr-CurPtr);
288    Out << '@';
289  }
290}
291
292void
293MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
294                                               DeclarationName Name) {
295  //  <unqualified-name> ::= <operator-name>
296  //                     ::= <ctor-dtor-name>
297  //                     ::= <source-name>
298  switch (Name.getNameKind()) {
299    case DeclarationName::Identifier: {
300      if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
301        mangleSourceName(II);
302        break;
303      }
304
305      // Otherwise, an anonymous entity.  We must have a declaration.
306      assert(ND && "mangling empty name without declaration");
307
308      if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
309        if (NS->isAnonymousNamespace()) {
310          Out << "?A";
311          break;
312        }
313      }
314
315      // We must have an anonymous struct.
316      const TagDecl *TD = cast<TagDecl>(ND);
317      if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
318        assert(TD->getDeclContext() == D->getDeclContext() &&
319               "Typedef should not be in another decl context!");
320        assert(D->getDeclName().getAsIdentifierInfo() &&
321               "Typedef was not named!");
322        mangleSourceName(D->getDeclName().getAsIdentifierInfo());
323        break;
324      }
325
326      // When VC encounters an anonymous type with no tag and no typedef,
327      // it literally emits '<unnamed-tag>'.
328      Out << "<unnamed-tag>";
329      break;
330    }
331
332    case DeclarationName::ObjCZeroArgSelector:
333    case DeclarationName::ObjCOneArgSelector:
334    case DeclarationName::ObjCMultiArgSelector:
335      assert(false && "Can't mangle Objective-C selector names here!");
336      break;
337
338    case DeclarationName::CXXConstructorName:
339      assert(false && "Can't mangle constructors yet!");
340      break;
341
342    case DeclarationName::CXXDestructorName:
343      assert(false && "Can't mangle destructors yet!");
344      break;
345
346    case DeclarationName::CXXConversionFunctionName:
347      // <operator-name> ::= ?B # (cast)
348      // The target type is encoded as the return type.
349      Out << "?B";
350      break;
351
352    case DeclarationName::CXXOperatorName:
353      mangleOperatorName(Name.getCXXOverloadedOperator());
354      break;
355
356    case DeclarationName::CXXLiteralOperatorName:
357      // FIXME: Was this added in VS2010? Does MS even know how to mangle this?
358      assert(false && "Don't know how to mangle literal operators yet!");
359      break;
360
361    case DeclarationName::CXXUsingDirective:
362      assert(false && "Can't mangle a using directive name!");
363      break;
364  }
365}
366
367void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
368                                            bool NoFunction) {
369  // <postfix> ::= <unqualified-name> [<postfix>]
370  //           ::= <template-postfix> <template-args> [<postfix>]
371  //           ::= <template-param>
372  //           ::= <substitution> [<postfix>]
373
374  if (!DC) return;
375
376  while (isa<LinkageSpecDecl>(DC))
377    DC = DC->getParent();
378
379  if (DC->isTranslationUnit())
380    return;
381
382  if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
383    Context.mangleBlock(BD, Out);
384    Out << '@';
385    return manglePostfix(DC->getParent(), NoFunction);
386  }
387
388  if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
389    return;
390  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
391    mangleObjCMethodName(Method);
392  else {
393    mangleUnqualifiedName(cast<NamedDecl>(DC));
394    manglePostfix(DC->getParent(), NoFunction);
395  }
396}
397
398void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO) {
399  switch (OO) {
400  //                     ?0 # constructor
401  //                     ?1 # destructor
402  // <operator-name> ::= ?2 # new
403  case OO_New: Out << "?2"; break;
404  // <operator-name> ::= ?3 # delete
405  case OO_Delete: Out << "?3"; break;
406  // <operator-name> ::= ?4 # =
407  case OO_Equal: Out << "?4"; break;
408  // <operator-name> ::= ?5 # >>
409  case OO_GreaterGreater: Out << "?5"; break;
410  // <operator-name> ::= ?6 # <<
411  case OO_LessLess: Out << "?6"; break;
412  // <operator-name> ::= ?7 # !
413  case OO_Exclaim: Out << "?7"; break;
414  // <operator-name> ::= ?8 # ==
415  case OO_EqualEqual: Out << "?8"; break;
416  // <operator-name> ::= ?9 # !=
417  case OO_ExclaimEqual: Out << "?9"; break;
418  // <operator-name> ::= ?A # []
419  case OO_Subscript: Out << "?A"; break;
420  //                     ?B # conversion
421  // <operator-name> ::= ?C # ->
422  case OO_Arrow: Out << "?C"; break;
423  // <operator-name> ::= ?D # *
424  case OO_Star: Out << "?D"; break;
425  // <operator-name> ::= ?E # ++
426  case OO_PlusPlus: Out << "?E"; break;
427  // <operator-name> ::= ?F # --
428  case OO_MinusMinus: Out << "?F"; break;
429  // <operator-name> ::= ?G # -
430  case OO_Minus: Out << "?G"; break;
431  // <operator-name> ::= ?H # +
432  case OO_Plus: Out << "?H"; break;
433  // <operator-name> ::= ?I # &
434  case OO_Amp: Out << "?I"; break;
435  // <operator-name> ::= ?J # ->*
436  case OO_ArrowStar: Out << "?J"; break;
437  // <operator-name> ::= ?K # /
438  case OO_Slash: Out << "?K"; break;
439  // <operator-name> ::= ?L # %
440  case OO_Percent: Out << "?L"; break;
441  // <operator-name> ::= ?M # <
442  case OO_Less: Out << "?M"; break;
443  // <operator-name> ::= ?N # <=
444  case OO_LessEqual: Out << "?N"; break;
445  // <operator-name> ::= ?O # >
446  case OO_Greater: Out << "?O"; break;
447  // <operator-name> ::= ?P # >=
448  case OO_GreaterEqual: Out << "?P"; break;
449  // <operator-name> ::= ?Q # ,
450  case OO_Comma: Out << "?Q"; break;
451  // <operator-name> ::= ?R # ()
452  case OO_Call: Out << "?R"; break;
453  // <operator-name> ::= ?S # ~
454  case OO_Tilde: Out << "?S"; break;
455  // <operator-name> ::= ?T # ^
456  case OO_Caret: Out << "?T"; break;
457  // <operator-name> ::= ?U # |
458  case OO_Pipe: Out << "?U"; break;
459  // <operator-name> ::= ?V # &&
460  case OO_AmpAmp: Out << "?V"; break;
461  // <operator-name> ::= ?W # ||
462  case OO_PipePipe: Out << "?W"; break;
463  // <operator-name> ::= ?X # *=
464  case OO_StarEqual: Out << "?X"; break;
465  // <operator-name> ::= ?Y # +=
466  case OO_PlusEqual: Out << "?Y"; break;
467  // <operator-name> ::= ?Z # -=
468  case OO_MinusEqual: Out << "?Z"; break;
469  // <operator-name> ::= ?_0 # /=
470  case OO_SlashEqual: Out << "?_0"; break;
471  // <operator-name> ::= ?_1 # %=
472  case OO_PercentEqual: Out << "?_1"; break;
473  // <operator-name> ::= ?_2 # >>=
474  case OO_GreaterGreaterEqual: Out << "?_2"; break;
475  // <operator-name> ::= ?_3 # <<=
476  case OO_LessLessEqual: Out << "?_3"; break;
477  // <operator-name> ::= ?_4 # &=
478  case OO_AmpEqual: Out << "?_4"; break;
479  // <operator-name> ::= ?_5 # |=
480  case OO_PipeEqual: Out << "?_5"; break;
481  // <operator-name> ::= ?_6 # ^=
482  case OO_CaretEqual: Out << "?_6"; break;
483  //                     ?_7 # vftable
484  //                     ?_8 # vbtable
485  //                     ?_9 # vcall
486  //                     ?_A # typeof
487  //                     ?_B # local static guard
488  //                     ?_C # string
489  //                     ?_D # vbase destructor
490  //                     ?_E # vector deleting destructor
491  //                     ?_F # default constructor closure
492  //                     ?_G # scalar deleting destructor
493  //                     ?_H # vector constructor iterator
494  //                     ?_I # vector destructor iterator
495  //                     ?_J # vector vbase constructor iterator
496  //                     ?_K # virtual displacement map
497  //                     ?_L # eh vector constructor iterator
498  //                     ?_M # eh vector destructor iterator
499  //                     ?_N # eh vector vbase constructor iterator
500  //                     ?_O # copy constructor closure
501  //                     ?_P<name> # udt returning <name>
502  //                     ?_Q # <unknown>
503  //                     ?_R0 # RTTI Type Descriptor
504  //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
505  //                     ?_R2 # RTTI Base Class Array
506  //                     ?_R3 # RTTI Class Hierarchy Descriptor
507  //                     ?_R4 # RTTI Complete Object Locator
508  //                     ?_S # local vftable
509  //                     ?_T # local vftable constructor closure
510  // <operator-name> ::= ?_U # new[]
511  case OO_Array_New: Out << "?_U"; break;
512  // <operator-name> ::= ?_V # delete[]
513  case OO_Array_Delete: Out << "?_V"; break;
514
515  case OO_Conditional:
516    assert(false && "Don't know how to mangle ?:");
517    break;
518
519  case OO_None:
520  case NUM_OVERLOADED_OPERATORS:
521    assert(false && "Not an overloaded operator");
522    break;
523  }
524}
525
526void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
527  // <source name> ::= <identifier> @
528  Out << II->getName() << '@';
529}
530
531void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
532  Context.mangleObjCMethodName(MD, Out);
533}
534
535void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
536                                               bool IsMember) {
537  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
538  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
539  // 'I' means __restrict (32/64-bit).
540  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
541  // keyword!
542  // <base-cvr-qualifiers> ::= A  # near
543  //                       ::= B  # near const
544  //                       ::= C  # near volatile
545  //                       ::= D  # near const volatile
546  //                       ::= E  # far (16-bit)
547  //                       ::= F  # far const (16-bit)
548  //                       ::= G  # far volatile (16-bit)
549  //                       ::= H  # far const volatile (16-bit)
550  //                       ::= I  # huge (16-bit)
551  //                       ::= J  # huge const (16-bit)
552  //                       ::= K  # huge volatile (16-bit)
553  //                       ::= L  # huge const volatile (16-bit)
554  //                       ::= M <basis> # based
555  //                       ::= N <basis> # based const
556  //                       ::= O <basis> # based volatile
557  //                       ::= P <basis> # based const volatile
558  //                       ::= Q  # near member
559  //                       ::= R  # near const member
560  //                       ::= S  # near volatile member
561  //                       ::= T  # near const volatile member
562  //                       ::= U  # far member (16-bit)
563  //                       ::= V  # far const member (16-bit)
564  //                       ::= W  # far volatile member (16-bit)
565  //                       ::= X  # far const volatile member (16-bit)
566  //                       ::= Y  # huge member (16-bit)
567  //                       ::= Z  # huge const member (16-bit)
568  //                       ::= 0  # huge volatile member (16-bit)
569  //                       ::= 1  # huge const volatile member (16-bit)
570  //                       ::= 2 <basis> # based member
571  //                       ::= 3 <basis> # based const member
572  //                       ::= 4 <basis> # based volatile member
573  //                       ::= 5 <basis> # based const volatile member
574  //                       ::= 6  # near function (pointers only)
575  //                       ::= 7  # far function (pointers only)
576  //                       ::= 8  # near method (pointers only)
577  //                       ::= 9  # far method (pointers only)
578  //                       ::= _A <basis> # based function (pointers only)
579  //                       ::= _B <basis> # based function (far?) (pointers only)
580  //                       ::= _C <basis> # based method (pointers only)
581  //                       ::= _D <basis> # based method (far?) (pointers only)
582  //                       ::= _E # block (Clang)
583  // <basis> ::= 0 # __based(void)
584  //         ::= 1 # __based(segment)?
585  //         ::= 2 <name> # __based(name)
586  //         ::= 3 # ?
587  //         ::= 4 # ?
588  //         ::= 5 # not really based
589  if (!IsMember) {
590    if (!Quals.hasVolatile()) {
591      if (!Quals.hasConst())
592        Out << 'A';
593      else
594        Out << 'B';
595    } else {
596      if (!Quals.hasConst())
597        Out << 'C';
598      else
599        Out << 'D';
600    }
601  } else {
602    if (!Quals.hasVolatile()) {
603      if (!Quals.hasConst())
604        Out << 'Q';
605      else
606        Out << 'R';
607    } else {
608      if (!Quals.hasConst())
609        Out << 'S';
610      else
611        Out << 'T';
612    }
613  }
614
615  // FIXME: For now, just drop all extension qualifiers on the floor.
616}
617
618void MicrosoftCXXNameMangler::mangleType(QualType T) {
619  // Only operate on the canonical type!
620  T = getASTContext().getCanonicalType(T);
621
622  Qualifiers Quals = T.getLocalQualifiers();
623  if (Quals) {
624    // We have to mangle these now, while we still have enough information.
625    // <pointer-cvr-qualifiers> ::= P  # pointer
626    //                          ::= Q  # const pointer
627    //                          ::= R  # volatile pointer
628    //                          ::= S  # const volatile pointer
629    if (T->isAnyPointerType() || T->isMemberPointerType() ||
630        T->isBlockPointerType()) {
631      if (!Quals.hasVolatile())
632        Out << 'Q';
633      else {
634        if (!Quals.hasConst())
635          Out << 'R';
636        else
637          Out << 'S';
638      }
639    } else
640      // Just emit qualifiers like normal.
641      // NB: When we mangle a pointer/reference type, and the pointee
642      // type has no qualifiers, the lack of qualifier gets mangled
643      // in there.
644      mangleQualifiers(Quals, false);
645  } else if (T->isAnyPointerType() || T->isMemberPointerType() ||
646             T->isBlockPointerType()) {
647    Out << 'P';
648  }
649  switch (T->getTypeClass()) {
650#define ABSTRACT_TYPE(CLASS, PARENT)
651#define NON_CANONICAL_TYPE(CLASS, PARENT) \
652case Type::CLASS: \
653llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
654return;
655#define TYPE(CLASS, PARENT) \
656case Type::CLASS: \
657mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
658break;
659#include "clang/AST/TypeNodes.def"
660  }
661}
662
663void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T) {
664  //  <type>         ::= <builtin-type>
665  //  <builtin-type> ::= X  # void
666  //                 ::= C  # signed char
667  //                 ::= D  # char
668  //                 ::= E  # unsigned char
669  //                 ::= F  # short
670  //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
671  //                 ::= H  # int
672  //                 ::= I  # unsigned int
673  //                 ::= J  # long
674  //                 ::= K  # unsigned long
675  //                     L  # <none>
676  //                 ::= M  # float
677  //                 ::= N  # double
678  //                 ::= O  # long double (__float80 is mangled differently)
679  //                 ::= _D # __int8 (yup, it's a distinct type in MSVC)
680  //                 ::= _E # unsigned __int8
681  //                 ::= _F # __int16
682  //                 ::= _G # unsigned __int16
683  //                 ::= _H # __int32
684  //                 ::= _I # unsigned __int32
685  //                 ::= _J # long long, __int64
686  //                 ::= _K # unsigned long long, __int64
687  //                 ::= _L # __int128
688  //                 ::= _M # unsigned __int128
689  //                 ::= _N # bool
690  //                     _O # <array in parameter>
691  //                 ::= _T # __float80 (Intel)
692  //                 ::= _W # wchar_t
693  //                 ::= _Z # __float80 (Digital Mars)
694  switch (T->getKind()) {
695  case BuiltinType::Void: Out << 'X'; break;
696  case BuiltinType::SChar: Out << 'C'; break;
697  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
698  case BuiltinType::UChar: Out << 'E'; break;
699  case BuiltinType::Short: Out << 'F'; break;
700  case BuiltinType::UShort: Out << 'G'; break;
701  case BuiltinType::Int: Out << 'H'; break;
702  case BuiltinType::UInt: Out << 'I'; break;
703  case BuiltinType::Long: Out << 'J'; break;
704  case BuiltinType::ULong: Out << 'K'; break;
705  case BuiltinType::Float: Out << 'M'; break;
706  case BuiltinType::Double: Out << 'N'; break;
707  // TODO: Determine size and mangle accordingly
708  case BuiltinType::LongDouble: Out << 'O'; break;
709  // TODO: __int8 and friends
710  case BuiltinType::LongLong: Out << "_J"; break;
711  case BuiltinType::ULongLong: Out << "_K"; break;
712  case BuiltinType::Int128: Out << "_L"; break;
713  case BuiltinType::UInt128: Out << "_M"; break;
714  case BuiltinType::Bool: Out << "_N"; break;
715  case BuiltinType::WChar_S:
716  case BuiltinType::WChar_U: Out << "_W"; break;
717
718  case BuiltinType::Overload:
719  case BuiltinType::Dependent:
720    assert(false &&
721           "Overloaded and dependent types shouldn't get to name mangling");
722    break;
723  case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
724  case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
725  case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
726
727  case BuiltinType::Char16:
728  case BuiltinType::Char32:
729  case BuiltinType::NullPtr:
730    assert(false && "Don't know how to mangle this type");
731    break;
732  }
733}
734
735// <type>          ::= <function-type>
736void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T) {
737  // Structors only appear in decls, so at this point we know it's not a
738  // structor type.
739  // I'll probably have mangleType(MemberPointerType) call the mangleType()
740  // method directly.
741  mangleType(T, NULL, false, false);
742}
743void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T) {
744  llvm_unreachable("Can't mangle K&R function prototypes");
745}
746
747void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
748                                         const FunctionDecl *D,
749                                         bool IsStructor,
750                                         bool IsInstMethod) {
751  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
752  //                     <return-type> <argument-list> <throw-spec>
753  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
754
755  // If this is a C++ instance method, mangle the CVR qualifiers for the
756  // this pointer.
757  if (IsInstMethod)
758    mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
759
760  mangleCallingConvention(T, IsInstMethod);
761
762  // <return-type> ::= <type>
763  //               ::= @ # structors (they have no declared return type)
764  if (IsStructor)
765    Out << '@';
766  else
767    mangleType(Proto->getResultType());
768
769  // <argument-list> ::= X # void
770  //                 ::= <type>+ @
771  //                 ::= <type>* Z # varargs
772  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
773    Out << 'X';
774  } else {
775    if (D) {
776      // If we got a decl, use the "types-as-written" to make sure arrays
777      // get mangled right.
778      for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
779           ParmEnd = D->param_end();
780           Parm != ParmEnd; ++Parm)
781        mangleType((*Parm)->getTypeSourceInfo()->getType());
782    } else {
783      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
784           ArgEnd = Proto->arg_type_end();
785           Arg != ArgEnd; ++Arg)
786        mangleType(*Arg);
787    }
788    // <builtin-type>      ::= Z  # ellipsis
789    if (Proto->isVariadic())
790      Out << 'Z';
791    else
792      Out << '@';
793  }
794
795  mangleThrowSpecification(Proto);
796}
797
798void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
799  // <function-class> ::= A # private: near
800  //                  ::= B # private: far
801  //                  ::= C # private: static near
802  //                  ::= D # private: static far
803  //                  ::= E # private: virtual near
804  //                  ::= F # private: virtual far
805  //                  ::= G # private: thunk near
806  //                  ::= H # private: thunk far
807  //                  ::= I # protected: near
808  //                  ::= J # protected: far
809  //                  ::= K # protected: static near
810  //                  ::= L # protected: static far
811  //                  ::= M # protected: virtual near
812  //                  ::= N # protected: virtual far
813  //                  ::= O # protected: thunk near
814  //                  ::= P # protected: thunk far
815  //                  ::= Q # public: near
816  //                  ::= R # public: far
817  //                  ::= S # public: static near
818  //                  ::= T # public: static far
819  //                  ::= U # public: virtual near
820  //                  ::= V # public: virtual far
821  //                  ::= W # public: thunk near
822  //                  ::= X # public: thunk far
823  //                  ::= Y # global near
824  //                  ::= Z # global far
825  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
826    switch (MD->getAccess()) {
827      default:
828      case AS_private:
829        if (MD->isStatic())
830          Out << 'C';
831        else if (MD->isVirtual())
832          Out << 'E';
833        else
834          Out << 'A';
835        break;
836      case AS_protected:
837        if (MD->isStatic())
838          Out << 'K';
839        else if (MD->isVirtual())
840          Out << 'M';
841        else
842          Out << 'I';
843        break;
844      case AS_public:
845        if (MD->isStatic())
846          Out << 'S';
847        else if (MD->isVirtual())
848          Out << 'U';
849        else
850          Out << 'Q';
851    }
852  } else
853    Out << 'Y';
854}
855void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
856                                                      bool IsInstMethod) {
857  // <calling-convention> ::= A # __cdecl
858  //                      ::= B # __export __cdecl
859  //                      ::= C # __pascal
860  //                      ::= D # __export __pascal
861  //                      ::= E # __thiscall
862  //                      ::= F # __export __thiscall
863  //                      ::= G # __stdcall
864  //                      ::= H # __export __stdcall
865  //                      ::= I # __fastcall
866  //                      ::= J # __export __fastcall
867  // The 'export' calling conventions are from a bygone era
868  // (*cough*Win16*cough*) when functions were declared for export with
869  // that keyword. (It didn't actually export them, it just made them so
870  // that they could be in a DLL and somebody from another module could call
871  // them.)
872  CallingConv CC = T->getCallConv();
873  if (CC == CC_Default)
874    CC = IsInstMethod ? getASTContext().getDefaultMethodCallConv() : CC_C;
875  switch (CC) {
876    case CC_Default:
877    case CC_C: Out << 'A'; break;
878    case CC_X86Pascal: Out << 'C'; break;
879    case CC_X86ThisCall: Out << 'E'; break;
880    case CC_X86StdCall: Out << 'G'; break;
881    case CC_X86FastCall: Out << 'I'; break;
882  }
883}
884void MicrosoftCXXNameMangler::mangleThrowSpecification(
885                                                const FunctionProtoType *FT) {
886  // <throw-spec> ::= Z # throw(...) (default)
887  //              ::= @ # throw() or __declspec/__attribute__((nothrow))
888  //              ::= <type>+
889  // NOTE: Since the Microsoft compiler ignores throw specifications, they are
890  // all actually mangled as 'Z'. (They're ignored because their associated
891  // functionality isn't implemented, and probably never will be.)
892  Out << 'Z';
893}
894
895void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T) {
896  assert(false && "Don't know how to mangle UnresolvedUsingTypes yet!");
897}
898
899// <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
900// <union-type>  ::= T <name>
901// <struct-type> ::= U <name>
902// <class-type>  ::= V <name>
903// <enum-type>   ::= W <size> <name>
904void MicrosoftCXXNameMangler::mangleType(const EnumType *T) {
905  mangleType(static_cast<const TagType*>(T));
906}
907void MicrosoftCXXNameMangler::mangleType(const RecordType *T) {
908  mangleType(static_cast<const TagType*>(T));
909}
910void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
911  switch (T->getDecl()->getTagKind()) {
912    case TTK_Union:
913      Out << 'T';
914      break;
915    case TTK_Struct:
916      Out << 'U';
917      break;
918    case TTK_Class:
919      Out << 'V';
920      break;
921    case TTK_Enum:
922      Out << 'W';
923      Out << getASTContext().getTypeSizeInChars(
924                cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
925      break;
926  }
927  mangleName(T->getDecl());
928}
929
930// <type>       ::= <array-type>
931// <array-type> ::= P <cvr-qualifiers> [Y <dimension-count> <dimension>+]
932//                                                  <element-type> # as global
933//              ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
934//                                                  <element-type> # as param
935// It's supposed to be the other way around, but for some strange reason, it
936// isn't. Today this behavior is retained for the sole purpose of backwards
937// compatibility.
938void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
939  // This isn't a recursive mangling, so now we have to do it all in this
940  // one call.
941  if (IsGlobal)
942    Out << 'P';
943  else
944    Out << 'Q';
945  mangleExtraDimensions(T->getElementType());
946}
947void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T) {
948  mangleType(static_cast<const ArrayType *>(T), false);
949}
950void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T) {
951  mangleType(static_cast<const ArrayType *>(T), false);
952}
953void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T) {
954  mangleType(static_cast<const ArrayType *>(T), false);
955}
956void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T) {
957  mangleType(static_cast<const ArrayType *>(T), false);
958}
959void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
960  llvm::SmallVector<llvm::APInt, 3> Dimensions;
961  for (;;) {
962    if (ElementTy->isConstantArrayType()) {
963      const ConstantArrayType *CAT =
964      static_cast<const ConstantArrayType *>(ElementTy.getTypePtr());
965      Dimensions.push_back(CAT->getSize());
966      ElementTy = CAT->getElementType();
967    } else if (ElementTy->isVariableArrayType()) {
968      assert(false && "Don't know how to mangle VLAs!");
969    } else if (ElementTy->isDependentSizedArrayType()) {
970      // The dependent expression has to be folded into a constant (TODO).
971      assert(false && "Don't know how to mangle dependent-sized arrays!");
972    } else if (ElementTy->isIncompleteArrayType()) continue;
973    else break;
974  }
975  mangleQualifiers(ElementTy.getQualifiers(), false);
976  // If there are any additional dimensions, mangle them now.
977  if (Dimensions.size() > 0) {
978    Out << 'Y';
979    // <dimension-count> ::= <number> # number of extra dimensions
980    mangleNumber(Dimensions.size());
981    for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
982      mangleNumber(Dimensions[Dim].getLimitedValue());
983    }
984  }
985  mangleType(ElementTy.getLocalUnqualifiedType());
986}
987
988// <type>                   ::= <pointer-to-member-type>
989// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
990//                                                          <class name> <type>
991void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T) {
992  QualType PointeeType = T->getPointeeType();
993  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
994    Out << '8';
995    mangleName(cast<RecordType>(T->getClass())->getDecl());
996    mangleType(FPT, NULL, false, true);
997  } else {
998    mangleQualifiers(PointeeType.getQualifiers(), true);
999    mangleName(cast<RecordType>(T->getClass())->getDecl());
1000    mangleType(PointeeType.getLocalUnqualifiedType());
1001  }
1002}
1003
1004void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1005  assert(false && "Don't know how to mangle TemplateTypeParmTypes yet!");
1006}
1007
1008void MicrosoftCXXNameMangler::mangleType(
1009                                       const SubstTemplateTypeParmPackType *T) {
1010  assert(false &&
1011         "Don't know how to mangle SubstTemplateTypeParmPackTypes yet!");
1012}
1013
1014// <type> ::= <pointer-type>
1015// <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1016void MicrosoftCXXNameMangler::mangleType(const PointerType *T) {
1017  QualType PointeeTy = T->getPointeeType();
1018  if (PointeeTy->isArrayType()) {
1019    // Pointers to arrays are mangled like arrays.
1020    mangleExtraDimensions(T->getPointeeType());
1021  } else if (PointeeTy->isFunctionType()) {
1022    // Function pointers are special.
1023    Out << '6';
1024    mangleType(static_cast<const FunctionType *>(PointeeTy.getTypePtr()),
1025               NULL, false, false);
1026  } else {
1027    if (!PointeeTy.hasQualifiers())
1028      // Lack of qualifiers is mangled as 'A'.
1029      Out << 'A';
1030    mangleType(PointeeTy);
1031  }
1032}
1033void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1034  // Object pointers never have qualifiers.
1035  Out << 'A';
1036  mangleType(T->getPointeeType());
1037}
1038
1039// <type> ::= <reference-type>
1040// <reference-type> ::= A <cvr-qualifiers> <type>
1041void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T) {
1042  Out << 'A';
1043  QualType PointeeTy = T->getPointeeType();
1044  if (!PointeeTy.hasQualifiers())
1045    // Lack of qualifiers is mangled as 'A'.
1046    Out << 'A';
1047  mangleType(PointeeTy);
1048}
1049
1050void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T) {
1051  assert(false && "Don't know how to mangle RValueReferenceTypes yet!");
1052}
1053
1054void MicrosoftCXXNameMangler::mangleType(const ComplexType *T) {
1055  assert(false && "Don't know how to mangle ComplexTypes yet!");
1056}
1057
1058void MicrosoftCXXNameMangler::mangleType(const VectorType *T) {
1059  assert(false && "Don't know how to mangle VectorTypes yet!");
1060}
1061void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T) {
1062  assert(false && "Don't know how to mangle ExtVectorTypes yet!");
1063}
1064void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1065  assert(false && "Don't know how to mangle DependentSizedExtVectorTypes yet!");
1066}
1067
1068void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1069  // ObjC interfaces have structs underlying them.
1070  Out << 'U';
1071  mangleName(T->getDecl());
1072}
1073
1074void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T) {
1075  // We don't allow overloading by different protocol qualification,
1076  // so mangling them isn't necessary.
1077  mangleType(T->getBaseType());
1078}
1079
1080void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T) {
1081  Out << "_E";
1082  mangleType(T->getPointeeType());
1083}
1084
1085void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T) {
1086  assert(false && "Don't know how to mangle InjectedClassNameTypes yet!");
1087}
1088
1089void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1090  assert(false && "Don't know how to mangle TemplateSpecializationTypes yet!");
1091}
1092
1093void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T) {
1094  assert(false && "Don't know how to mangle DependentNameTypes yet!");
1095}
1096
1097void MicrosoftCXXNameMangler::mangleType(
1098                                 const DependentTemplateSpecializationType *T) {
1099  assert(false &&
1100         "Don't know how to mangle DependentTemplateSpecializationTypes yet!");
1101}
1102
1103void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T) {
1104  assert(false && "Don't know how to mangle PackExpansionTypes yet!");
1105}
1106
1107void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T) {
1108  assert(false && "Don't know how to mangle TypeOfTypes yet!");
1109}
1110
1111void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T) {
1112  assert(false && "Don't know how to mangle TypeOfExprTypes yet!");
1113}
1114
1115void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T) {
1116  assert(false && "Don't know how to mangle DecltypeTypes yet!");
1117}
1118
1119void MicrosoftCXXNameMangler::mangleType(const AutoType *T) {
1120  assert(false && "Don't know how to mangle AutoTypes yet!");
1121}
1122
1123void MicrosoftMangleContext::mangleName(const NamedDecl *D,
1124                                        llvm::raw_ostream &Out) {
1125  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
1126         "Invalid mangleName() call, argument is not a variable or function!");
1127  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
1128         "Invalid mangleName() call on 'structor decl!");
1129
1130  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
1131                                 getASTContext().getSourceManager(),
1132                                 "Mangling declaration");
1133
1134  MicrosoftCXXNameMangler Mangler(*this, Out);
1135  return Mangler.mangle(D);
1136}
1137void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
1138                                         const ThunkInfo &Thunk,
1139                                         llvm::raw_ostream &) {
1140  assert(false && "Can't yet mangle thunks!");
1141}
1142void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
1143                                                CXXDtorType Type,
1144                                                const ThisAdjustment &,
1145                                                llvm::raw_ostream &) {
1146  assert(false && "Can't yet mangle destructor thunks!");
1147}
1148void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
1149                                             llvm::raw_ostream &) {
1150  assert(false && "Can't yet mangle virtual tables!");
1151}
1152void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
1153                                          llvm::raw_ostream &) {
1154  llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
1155}
1156void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
1157                                                 int64_t Offset,
1158                                                 const CXXRecordDecl *Type,
1159                                                 llvm::raw_ostream &) {
1160  llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
1161}
1162void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
1163                                           llvm::raw_ostream &) {
1164  assert(false && "Can't yet mangle RTTI!");
1165}
1166void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
1167                                               llvm::raw_ostream &) {
1168  assert(false && "Can't yet mangle RTTI names!");
1169}
1170void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
1171                                           CXXCtorType Type,
1172                                           llvm::raw_ostream &) {
1173  assert(false && "Can't yet mangle constructors!");
1174}
1175void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
1176                                           CXXDtorType Type,
1177                                           llvm::raw_ostream &) {
1178  assert(false && "Can't yet mangle destructors!");
1179}
1180void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *,
1181                                                      llvm::raw_ostream &) {
1182  assert(false && "Can't yet mangle reference temporaries!");
1183}
1184
1185MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context,
1186                                                   Diagnostic &Diags) {
1187  return new MicrosoftMangleContext(Context, Diags);
1188}
1189