1//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/TargetTransformInfo.h"
19#include "llvm/ADT/SetOperations.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/MapVector.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/CallSite.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InstIterator.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/MDBuilder.h"
36#include "llvm/IR/Statepoint.h"
37#include "llvm/IR/Value.h"
38#include "llvm/IR/Verifier.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Transforms/Utils/Cloning.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Transforms/Utils/PromoteMemToReg.h"
46
47#define DEBUG_TYPE "rewrite-statepoints-for-gc"
48
49using namespace llvm;
50
51// Print the liveset found at the insert location
52static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
53                                  cl::init(false));
54static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
55                                      cl::init(false));
56// Print out the base pointers for debugging
57static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
58                                       cl::init(false));
59
60// Cost threshold measuring when it is profitable to rematerialize value instead
61// of relocating it
62static cl::opt<unsigned>
63RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
64                           cl::init(6));
65
66#ifdef XDEBUG
67static bool ClobberNonLive = true;
68#else
69static bool ClobberNonLive = false;
70#endif
71static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72                                                  cl::location(ClobberNonLive),
73                                                  cl::Hidden);
74
75static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden,
76                                     cl::init(false));
77static cl::opt<bool>
78    AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
79                                   cl::Hidden, cl::init(true));
80
81/// Should we split vectors of pointers into their individual elements?  This
82/// is known to be buggy, but the alternate implementation isn't yet ready.
83/// This is purely to provide a debugging and dianostic hook until the vector
84/// split is replaced with vector relocations.
85static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden,
86                                    cl::init(true));
87
88namespace {
89struct RewriteStatepointsForGC : public ModulePass {
90  static char ID; // Pass identification, replacement for typeid
91
92  RewriteStatepointsForGC() : ModulePass(ID) {
93    initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
94  }
95  bool runOnFunction(Function &F);
96  bool runOnModule(Module &M) override {
97    bool Changed = false;
98    for (Function &F : M)
99      Changed |= runOnFunction(F);
100
101    if (Changed) {
102      // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
103      // returns true for at least one function in the module.  Since at least
104      // one function changed, we know that the precondition is satisfied.
105      stripNonValidAttributes(M);
106    }
107
108    return Changed;
109  }
110
111  void getAnalysisUsage(AnalysisUsage &AU) const override {
112    // We add and rewrite a bunch of instructions, but don't really do much
113    // else.  We could in theory preserve a lot more analyses here.
114    AU.addRequired<DominatorTreeWrapperPass>();
115    AU.addRequired<TargetTransformInfoWrapperPass>();
116  }
117
118  /// The IR fed into RewriteStatepointsForGC may have had attributes implying
119  /// dereferenceability that are no longer valid/correct after
120  /// RewriteStatepointsForGC has run.  This is because semantically, after
121  /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
122  /// heap.  stripNonValidAttributes (conservatively) restores correctness
123  /// by erasing all attributes in the module that externally imply
124  /// dereferenceability.
125  /// Similar reasoning also applies to the noalias attributes. gc.statepoint
126  /// can touch the entire heap including noalias objects.
127  void stripNonValidAttributes(Module &M);
128
129  // Helpers for stripNonValidAttributes
130  void stripNonValidAttributesFromBody(Function &F);
131  void stripNonValidAttributesFromPrototype(Function &F);
132};
133} // namespace
134
135char RewriteStatepointsForGC::ID = 0;
136
137ModulePass *llvm::createRewriteStatepointsForGCPass() {
138  return new RewriteStatepointsForGC();
139}
140
141INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
142                      "Make relocations explicit at statepoints", false, false)
143INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
144INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
145                    "Make relocations explicit at statepoints", false, false)
146
147namespace {
148struct GCPtrLivenessData {
149  /// Values defined in this block.
150  DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
151  /// Values used in this block (and thus live); does not included values
152  /// killed within this block.
153  DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
154
155  /// Values live into this basic block (i.e. used by any
156  /// instruction in this basic block or ones reachable from here)
157  DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
158
159  /// Values live out of this basic block (i.e. live into
160  /// any successor block)
161  DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
162};
163
164// The type of the internal cache used inside the findBasePointers family
165// of functions.  From the callers perspective, this is an opaque type and
166// should not be inspected.
167//
168// In the actual implementation this caches two relations:
169// - The base relation itself (i.e. this pointer is based on that one)
170// - The base defining value relation (i.e. before base_phi insertion)
171// Generally, after the execution of a full findBasePointer call, only the
172// base relation will remain.  Internally, we add a mixture of the two
173// types, then update all the second type to the first type
174typedef DenseMap<Value *, Value *> DefiningValueMapTy;
175typedef DenseSet<Value *> StatepointLiveSetTy;
176typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
177  RematerializedValueMapTy;
178
179struct PartiallyConstructedSafepointRecord {
180  /// The set of values known to be live across this safepoint
181  StatepointLiveSetTy LiveSet;
182
183  /// Mapping from live pointers to a base-defining-value
184  DenseMap<Value *, Value *> PointerToBase;
185
186  /// The *new* gc.statepoint instruction itself.  This produces the token
187  /// that normal path gc.relocates and the gc.result are tied to.
188  Instruction *StatepointToken;
189
190  /// Instruction to which exceptional gc relocates are attached
191  /// Makes it easier to iterate through them during relocationViaAlloca.
192  Instruction *UnwindToken;
193
194  /// Record live values we are rematerialized instead of relocating.
195  /// They are not included into 'LiveSet' field.
196  /// Maps rematerialized copy to it's original value.
197  RematerializedValueMapTy RematerializedValues;
198};
199}
200
201static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
202  assert(UseDeoptBundles && "Should not be called otherwise!");
203
204  Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt");
205
206  if (!DeoptBundle.hasValue()) {
207    assert(AllowStatepointWithNoDeoptInfo &&
208           "Found non-leaf call without deopt info!");
209    return None;
210  }
211
212  return DeoptBundle.getValue().Inputs;
213}
214
215/// Compute the live-in set for every basic block in the function
216static void computeLiveInValues(DominatorTree &DT, Function &F,
217                                GCPtrLivenessData &Data);
218
219/// Given results from the dataflow liveness computation, find the set of live
220/// Values at a particular instruction.
221static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
222                              StatepointLiveSetTy &out);
223
224// TODO: Once we can get to the GCStrategy, this becomes
225// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
226
227static bool isGCPointerType(Type *T) {
228  if (auto *PT = dyn_cast<PointerType>(T))
229    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
230    // GC managed heap.  We know that a pointer into this heap needs to be
231    // updated and that no other pointer does.
232    return (1 == PT->getAddressSpace());
233  return false;
234}
235
236// Return true if this type is one which a) is a gc pointer or contains a GC
237// pointer and b) is of a type this code expects to encounter as a live value.
238// (The insertion code will assert that a type which matches (a) and not (b)
239// is not encountered.)
240static bool isHandledGCPointerType(Type *T) {
241  // We fully support gc pointers
242  if (isGCPointerType(T))
243    return true;
244  // We partially support vectors of gc pointers. The code will assert if it
245  // can't handle something.
246  if (auto VT = dyn_cast<VectorType>(T))
247    if (isGCPointerType(VT->getElementType()))
248      return true;
249  return false;
250}
251
252#ifndef NDEBUG
253/// Returns true if this type contains a gc pointer whether we know how to
254/// handle that type or not.
255static bool containsGCPtrType(Type *Ty) {
256  if (isGCPointerType(Ty))
257    return true;
258  if (VectorType *VT = dyn_cast<VectorType>(Ty))
259    return isGCPointerType(VT->getScalarType());
260  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
261    return containsGCPtrType(AT->getElementType());
262  if (StructType *ST = dyn_cast<StructType>(Ty))
263    return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
264                       containsGCPtrType);
265  return false;
266}
267
268// Returns true if this is a type which a) is a gc pointer or contains a GC
269// pointer and b) is of a type which the code doesn't expect (i.e. first class
270// aggregates).  Used to trip assertions.
271static bool isUnhandledGCPointerType(Type *Ty) {
272  return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
273}
274#endif
275
276static bool order_by_name(Value *a, Value *b) {
277  if (a->hasName() && b->hasName()) {
278    return -1 == a->getName().compare(b->getName());
279  } else if (a->hasName() && !b->hasName()) {
280    return true;
281  } else if (!a->hasName() && b->hasName()) {
282    return false;
283  } else {
284    // Better than nothing, but not stable
285    return a < b;
286  }
287}
288
289// Return the name of the value suffixed with the provided value, or if the
290// value didn't have a name, the default value specified.
291static std::string suffixed_name_or(Value *V, StringRef Suffix,
292                                    StringRef DefaultName) {
293  return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
294}
295
296// Conservatively identifies any definitions which might be live at the
297// given instruction. The  analysis is performed immediately before the
298// given instruction. Values defined by that instruction are not considered
299// live.  Values used by that instruction are considered live.
300static void analyzeParsePointLiveness(
301    DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
302    const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
303  Instruction *inst = CS.getInstruction();
304
305  StatepointLiveSetTy LiveSet;
306  findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
307
308  if (PrintLiveSet) {
309    // Note: This output is used by several of the test cases
310    // The order of elements in a set is not stable, put them in a vec and sort
311    // by name
312    SmallVector<Value *, 64> Temp;
313    Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
314    std::sort(Temp.begin(), Temp.end(), order_by_name);
315    errs() << "Live Variables:\n";
316    for (Value *V : Temp)
317      dbgs() << " " << V->getName() << " " << *V << "\n";
318  }
319  if (PrintLiveSetSize) {
320    errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
321    errs() << "Number live values: " << LiveSet.size() << "\n";
322  }
323  result.LiveSet = LiveSet;
324}
325
326static bool isKnownBaseResult(Value *V);
327namespace {
328/// A single base defining value - An immediate base defining value for an
329/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
330/// For instructions which have multiple pointer [vector] inputs or that
331/// transition between vector and scalar types, there is no immediate base
332/// defining value.  The 'base defining value' for 'Def' is the transitive
333/// closure of this relation stopping at the first instruction which has no
334/// immediate base defining value.  The b.d.v. might itself be a base pointer,
335/// but it can also be an arbitrary derived pointer.
336struct BaseDefiningValueResult {
337  /// Contains the value which is the base defining value.
338  Value * const BDV;
339  /// True if the base defining value is also known to be an actual base
340  /// pointer.
341  const bool IsKnownBase;
342  BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
343    : BDV(BDV), IsKnownBase(IsKnownBase) {
344#ifndef NDEBUG
345    // Check consistency between new and old means of checking whether a BDV is
346    // a base.
347    bool MustBeBase = isKnownBaseResult(BDV);
348    assert(!MustBeBase || MustBeBase == IsKnownBase);
349#endif
350  }
351};
352}
353
354static BaseDefiningValueResult findBaseDefiningValue(Value *I);
355
356/// Return a base defining value for the 'Index' element of the given vector
357/// instruction 'I'.  If Index is null, returns a BDV for the entire vector
358/// 'I'.  As an optimization, this method will try to determine when the
359/// element is known to already be a base pointer.  If this can be established,
360/// the second value in the returned pair will be true.  Note that either a
361/// vector or a pointer typed value can be returned.  For the former, the
362/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
363/// If the later, the return pointer is a BDV (or possibly a base) for the
364/// particular element in 'I'.
365static BaseDefiningValueResult
366findBaseDefiningValueOfVector(Value *I) {
367  // Each case parallels findBaseDefiningValue below, see that code for
368  // detailed motivation.
369
370  if (isa<Argument>(I))
371    // An incoming argument to the function is a base pointer
372    return BaseDefiningValueResult(I, true);
373
374  if (isa<Constant>(I))
375    // Constant vectors consist only of constant pointers.
376    return BaseDefiningValueResult(I, true);
377
378  if (isa<LoadInst>(I))
379    return BaseDefiningValueResult(I, true);
380
381  if (isa<InsertElementInst>(I))
382    // We don't know whether this vector contains entirely base pointers or
383    // not.  To be conservatively correct, we treat it as a BDV and will
384    // duplicate code as needed to construct a parallel vector of bases.
385    return BaseDefiningValueResult(I, false);
386
387  if (isa<ShuffleVectorInst>(I))
388    // We don't know whether this vector contains entirely base pointers or
389    // not.  To be conservatively correct, we treat it as a BDV and will
390    // duplicate code as needed to construct a parallel vector of bases.
391    // TODO: There a number of local optimizations which could be applied here
392    // for particular sufflevector patterns.
393    return BaseDefiningValueResult(I, false);
394
395  // A PHI or Select is a base defining value.  The outer findBasePointer
396  // algorithm is responsible for constructing a base value for this BDV.
397  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
398         "unknown vector instruction - no base found for vector element");
399  return BaseDefiningValueResult(I, false);
400}
401
402/// Helper function for findBasePointer - Will return a value which either a)
403/// defines the base pointer for the input, b) blocks the simple search
404/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
405/// from pointer to vector type or back.
406static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
407  assert(I->getType()->isPtrOrPtrVectorTy() &&
408         "Illegal to ask for the base pointer of a non-pointer type");
409
410  if (I->getType()->isVectorTy())
411    return findBaseDefiningValueOfVector(I);
412
413  if (isa<Argument>(I))
414    // An incoming argument to the function is a base pointer
415    // We should have never reached here if this argument isn't an gc value
416    return BaseDefiningValueResult(I, true);
417
418  if (isa<Constant>(I))
419    // We assume that objects with a constant base (e.g. a global) can't move
420    // and don't need to be reported to the collector because they are always
421    // live.  All constants have constant bases.  Besides global references, all
422    // kinds of constants (e.g. undef, constant expressions, null pointers) can
423    // be introduced by the inliner or the optimizer, especially on dynamically
424    // dead paths.  See e.g. test4 in constants.ll.
425    return BaseDefiningValueResult(I, true);
426
427  if (CastInst *CI = dyn_cast<CastInst>(I)) {
428    Value *Def = CI->stripPointerCasts();
429    // If stripping pointer casts changes the address space there is an
430    // addrspacecast in between.
431    assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
432               cast<PointerType>(CI->getType())->getAddressSpace() &&
433           "unsupported addrspacecast");
434    // If we find a cast instruction here, it means we've found a cast which is
435    // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
436    // handle int->ptr conversion.
437    assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
438    return findBaseDefiningValue(Def);
439  }
440
441  if (isa<LoadInst>(I))
442    // The value loaded is an gc base itself
443    return BaseDefiningValueResult(I, true);
444
445
446  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
447    // The base of this GEP is the base
448    return findBaseDefiningValue(GEP->getPointerOperand());
449
450  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
451    switch (II->getIntrinsicID()) {
452    default:
453      // fall through to general call handling
454      break;
455    case Intrinsic::experimental_gc_statepoint:
456      llvm_unreachable("statepoints don't produce pointers");
457    case Intrinsic::experimental_gc_relocate: {
458      // Rerunning safepoint insertion after safepoints are already
459      // inserted is not supported.  It could probably be made to work,
460      // but why are you doing this?  There's no good reason.
461      llvm_unreachable("repeat safepoint insertion is not supported");
462    }
463    case Intrinsic::gcroot:
464      // Currently, this mechanism hasn't been extended to work with gcroot.
465      // There's no reason it couldn't be, but I haven't thought about the
466      // implications much.
467      llvm_unreachable(
468          "interaction with the gcroot mechanism is not supported");
469    }
470  }
471  // We assume that functions in the source language only return base
472  // pointers.  This should probably be generalized via attributes to support
473  // both source language and internal functions.
474  if (isa<CallInst>(I) || isa<InvokeInst>(I))
475    return BaseDefiningValueResult(I, true);
476
477  // I have absolutely no idea how to implement this part yet.  It's not
478  // necessarily hard, I just haven't really looked at it yet.
479  assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
480
481  if (isa<AtomicCmpXchgInst>(I))
482    // A CAS is effectively a atomic store and load combined under a
483    // predicate.  From the perspective of base pointers, we just treat it
484    // like a load.
485    return BaseDefiningValueResult(I, true);
486
487  assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
488                                   "binary ops which don't apply to pointers");
489
490  // The aggregate ops.  Aggregates can either be in the heap or on the
491  // stack, but in either case, this is simply a field load.  As a result,
492  // this is a defining definition of the base just like a load is.
493  if (isa<ExtractValueInst>(I))
494    return BaseDefiningValueResult(I, true);
495
496  // We should never see an insert vector since that would require we be
497  // tracing back a struct value not a pointer value.
498  assert(!isa<InsertValueInst>(I) &&
499         "Base pointer for a struct is meaningless");
500
501  // An extractelement produces a base result exactly when it's input does.
502  // We may need to insert a parallel instruction to extract the appropriate
503  // element out of the base vector corresponding to the input. Given this,
504  // it's analogous to the phi and select case even though it's not a merge.
505  if (isa<ExtractElementInst>(I))
506    // Note: There a lot of obvious peephole cases here.  This are deliberately
507    // handled after the main base pointer inference algorithm to make writing
508    // test cases to exercise that code easier.
509    return BaseDefiningValueResult(I, false);
510
511  // The last two cases here don't return a base pointer.  Instead, they
512  // return a value which dynamically selects from among several base
513  // derived pointers (each with it's own base potentially).  It's the job of
514  // the caller to resolve these.
515  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
516         "missing instruction case in findBaseDefiningValing");
517  return BaseDefiningValueResult(I, false);
518}
519
520/// Returns the base defining value for this value.
521static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
522  Value *&Cached = Cache[I];
523  if (!Cached) {
524    Cached = findBaseDefiningValue(I).BDV;
525    DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
526                 << Cached->getName() << "\n");
527  }
528  assert(Cache[I] != nullptr);
529  return Cached;
530}
531
532/// Return a base pointer for this value if known.  Otherwise, return it's
533/// base defining value.
534static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
535  Value *Def = findBaseDefiningValueCached(I, Cache);
536  auto Found = Cache.find(Def);
537  if (Found != Cache.end()) {
538    // Either a base-of relation, or a self reference.  Caller must check.
539    return Found->second;
540  }
541  // Only a BDV available
542  return Def;
543}
544
545/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
546/// is it known to be a base pointer?  Or do we need to continue searching.
547static bool isKnownBaseResult(Value *V) {
548  if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
549      !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
550      !isa<ShuffleVectorInst>(V)) {
551    // no recursion possible
552    return true;
553  }
554  if (isa<Instruction>(V) &&
555      cast<Instruction>(V)->getMetadata("is_base_value")) {
556    // This is a previously inserted base phi or select.  We know
557    // that this is a base value.
558    return true;
559  }
560
561  // We need to keep searching
562  return false;
563}
564
565namespace {
566/// Models the state of a single base defining value in the findBasePointer
567/// algorithm for determining where a new instruction is needed to propagate
568/// the base of this BDV.
569class BDVState {
570public:
571  enum Status { Unknown, Base, Conflict };
572
573  BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
574    assert(status != Base || b);
575  }
576  explicit BDVState(Value *b) : status(Base), base(b) {}
577  BDVState() : status(Unknown), base(nullptr) {}
578
579  Status getStatus() const { return status; }
580  Value *getBase() const { return base; }
581
582  bool isBase() const { return getStatus() == Base; }
583  bool isUnknown() const { return getStatus() == Unknown; }
584  bool isConflict() const { return getStatus() == Conflict; }
585
586  bool operator==(const BDVState &other) const {
587    return base == other.base && status == other.status;
588  }
589
590  bool operator!=(const BDVState &other) const { return !(*this == other); }
591
592  LLVM_DUMP_METHOD
593  void dump() const { print(dbgs()); dbgs() << '\n'; }
594
595  void print(raw_ostream &OS) const {
596    switch (status) {
597    case Unknown:
598      OS << "U";
599      break;
600    case Base:
601      OS << "B";
602      break;
603    case Conflict:
604      OS << "C";
605      break;
606    };
607    OS << " (" << base << " - "
608       << (base ? base->getName() : "nullptr") << "): ";
609  }
610
611private:
612  Status status;
613  AssertingVH<Value> base; // non null only if status == base
614};
615}
616
617#ifndef NDEBUG
618static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
619  State.print(OS);
620  return OS;
621}
622#endif
623
624namespace {
625// Values of type BDVState form a lattice, and this is a helper
626// class that implementes the meet operation.  The meat of the meet
627// operation is implemented in MeetBDVStates::pureMeet
628class MeetBDVStates {
629public:
630  /// Initializes the currentResult to the TOP state so that if can be met with
631  /// any other state to produce that state.
632  MeetBDVStates() {}
633
634  // Destructively meet the current result with the given BDVState
635  void meetWith(BDVState otherState) {
636    currentResult = meet(otherState, currentResult);
637  }
638
639  BDVState getResult() const { return currentResult; }
640
641private:
642  BDVState currentResult;
643
644  /// Perform a meet operation on two elements of the BDVState lattice.
645  static BDVState meet(BDVState LHS, BDVState RHS) {
646    assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
647           "math is wrong: meet does not commute!");
648    BDVState Result = pureMeet(LHS, RHS);
649    DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
650                 << " produced " << Result << "\n");
651    return Result;
652  }
653
654  static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
655    switch (stateA.getStatus()) {
656    case BDVState::Unknown:
657      return stateB;
658
659    case BDVState::Base:
660      assert(stateA.getBase() && "can't be null");
661      if (stateB.isUnknown())
662        return stateA;
663
664      if (stateB.isBase()) {
665        if (stateA.getBase() == stateB.getBase()) {
666          assert(stateA == stateB && "equality broken!");
667          return stateA;
668        }
669        return BDVState(BDVState::Conflict);
670      }
671      assert(stateB.isConflict() && "only three states!");
672      return BDVState(BDVState::Conflict);
673
674    case BDVState::Conflict:
675      return stateA;
676    }
677    llvm_unreachable("only three states!");
678  }
679};
680}
681
682
683/// For a given value or instruction, figure out what base ptr it's derived
684/// from.  For gc objects, this is simply itself.  On success, returns a value
685/// which is the base pointer.  (This is reliable and can be used for
686/// relocation.)  On failure, returns nullptr.
687static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
688  Value *def = findBaseOrBDV(I, cache);
689
690  if (isKnownBaseResult(def)) {
691    return def;
692  }
693
694  // Here's the rough algorithm:
695  // - For every SSA value, construct a mapping to either an actual base
696  //   pointer or a PHI which obscures the base pointer.
697  // - Construct a mapping from PHI to unknown TOP state.  Use an
698  //   optimistic algorithm to propagate base pointer information.  Lattice
699  //   looks like:
700  //   UNKNOWN
701  //   b1 b2 b3 b4
702  //   CONFLICT
703  //   When algorithm terminates, all PHIs will either have a single concrete
704  //   base or be in a conflict state.
705  // - For every conflict, insert a dummy PHI node without arguments.  Add
706  //   these to the base[Instruction] = BasePtr mapping.  For every
707  //   non-conflict, add the actual base.
708  //  - For every conflict, add arguments for the base[a] of each input
709  //   arguments.
710  //
711  // Note: A simpler form of this would be to add the conflict form of all
712  // PHIs without running the optimistic algorithm.  This would be
713  // analogous to pessimistic data flow and would likely lead to an
714  // overall worse solution.
715
716#ifndef NDEBUG
717  auto isExpectedBDVType = [](Value *BDV) {
718    return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
719           isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
720  };
721#endif
722
723  // Once populated, will contain a mapping from each potentially non-base BDV
724  // to a lattice value (described above) which corresponds to that BDV.
725  // We use the order of insertion (DFS over the def/use graph) to provide a
726  // stable deterministic ordering for visiting DenseMaps (which are unordered)
727  // below.  This is important for deterministic compilation.
728  MapVector<Value *, BDVState> States;
729
730  // Recursively fill in all base defining values reachable from the initial
731  // one for which we don't already know a definite base value for
732  /* scope */ {
733    SmallVector<Value*, 16> Worklist;
734    Worklist.push_back(def);
735    States.insert(std::make_pair(def, BDVState()));
736    while (!Worklist.empty()) {
737      Value *Current = Worklist.pop_back_val();
738      assert(!isKnownBaseResult(Current) && "why did it get added?");
739
740      auto visitIncomingValue = [&](Value *InVal) {
741        Value *Base = findBaseOrBDV(InVal, cache);
742        if (isKnownBaseResult(Base))
743          // Known bases won't need new instructions introduced and can be
744          // ignored safely
745          return;
746        assert(isExpectedBDVType(Base) && "the only non-base values "
747               "we see should be base defining values");
748        if (States.insert(std::make_pair(Base, BDVState())).second)
749          Worklist.push_back(Base);
750      };
751      if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
752        for (Value *InVal : Phi->incoming_values())
753          visitIncomingValue(InVal);
754      } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
755        visitIncomingValue(Sel->getTrueValue());
756        visitIncomingValue(Sel->getFalseValue());
757      } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
758        visitIncomingValue(EE->getVectorOperand());
759      } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
760        visitIncomingValue(IE->getOperand(0)); // vector operand
761        visitIncomingValue(IE->getOperand(1)); // scalar operand
762      } else {
763        // There is one known class of instructions we know we don't handle.
764        assert(isa<ShuffleVectorInst>(Current));
765        llvm_unreachable("unimplemented instruction case");
766      }
767    }
768  }
769
770#ifndef NDEBUG
771  DEBUG(dbgs() << "States after initialization:\n");
772  for (auto Pair : States) {
773    DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
774  }
775#endif
776
777  // Return a phi state for a base defining value.  We'll generate a new
778  // base state for known bases and expect to find a cached state otherwise.
779  auto getStateForBDV = [&](Value *baseValue) {
780    if (isKnownBaseResult(baseValue))
781      return BDVState(baseValue);
782    auto I = States.find(baseValue);
783    assert(I != States.end() && "lookup failed!");
784    return I->second;
785  };
786
787  bool progress = true;
788  while (progress) {
789#ifndef NDEBUG
790    const size_t oldSize = States.size();
791#endif
792    progress = false;
793    // We're only changing values in this loop, thus safe to keep iterators.
794    // Since this is computing a fixed point, the order of visit does not
795    // effect the result.  TODO: We could use a worklist here and make this run
796    // much faster.
797    for (auto Pair : States) {
798      Value *BDV = Pair.first;
799      assert(!isKnownBaseResult(BDV) && "why did it get added?");
800
801      // Given an input value for the current instruction, return a BDVState
802      // instance which represents the BDV of that value.
803      auto getStateForInput = [&](Value *V) mutable {
804        Value *BDV = findBaseOrBDV(V, cache);
805        return getStateForBDV(BDV);
806      };
807
808      MeetBDVStates calculateMeet;
809      if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
810        calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
811        calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
812      } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
813        for (Value *Val : Phi->incoming_values())
814          calculateMeet.meetWith(getStateForInput(Val));
815      } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
816        // The 'meet' for an extractelement is slightly trivial, but it's still
817        // useful in that it drives us to conflict if our input is.
818        calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
819      } else {
820        // Given there's a inherent type mismatch between the operands, will
821        // *always* produce Conflict.
822        auto *IE = cast<InsertElementInst>(BDV);
823        calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
824        calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
825      }
826
827      BDVState oldState = States[BDV];
828      BDVState newState = calculateMeet.getResult();
829      if (oldState != newState) {
830        progress = true;
831        States[BDV] = newState;
832      }
833    }
834
835    assert(oldSize == States.size() &&
836           "fixed point shouldn't be adding any new nodes to state");
837  }
838
839#ifndef NDEBUG
840  DEBUG(dbgs() << "States after meet iteration:\n");
841  for (auto Pair : States) {
842    DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
843  }
844#endif
845
846  // Insert Phis for all conflicts
847  // TODO: adjust naming patterns to avoid this order of iteration dependency
848  for (auto Pair : States) {
849    Instruction *I = cast<Instruction>(Pair.first);
850    BDVState State = Pair.second;
851    assert(!isKnownBaseResult(I) && "why did it get added?");
852    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
853
854    // extractelement instructions are a bit special in that we may need to
855    // insert an extract even when we know an exact base for the instruction.
856    // The problem is that we need to convert from a vector base to a scalar
857    // base for the particular indice we're interested in.
858    if (State.isBase() && isa<ExtractElementInst>(I) &&
859        isa<VectorType>(State.getBase()->getType())) {
860      auto *EE = cast<ExtractElementInst>(I);
861      // TODO: In many cases, the new instruction is just EE itself.  We should
862      // exploit this, but can't do it here since it would break the invariant
863      // about the BDV not being known to be a base.
864      auto *BaseInst = ExtractElementInst::Create(State.getBase(),
865                                                  EE->getIndexOperand(),
866                                                  "base_ee", EE);
867      BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
868      States[I] = BDVState(BDVState::Base, BaseInst);
869    }
870
871    // Since we're joining a vector and scalar base, they can never be the
872    // same.  As a result, we should always see insert element having reached
873    // the conflict state.
874    if (isa<InsertElementInst>(I)) {
875      assert(State.isConflict());
876    }
877
878    if (!State.isConflict())
879      continue;
880
881    /// Create and insert a new instruction which will represent the base of
882    /// the given instruction 'I'.
883    auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
884      if (isa<PHINode>(I)) {
885        BasicBlock *BB = I->getParent();
886        int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
887        assert(NumPreds > 0 && "how did we reach here");
888        std::string Name = suffixed_name_or(I, ".base", "base_phi");
889        return PHINode::Create(I->getType(), NumPreds, Name, I);
890      } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
891        // The undef will be replaced later
892        UndefValue *Undef = UndefValue::get(Sel->getType());
893        std::string Name = suffixed_name_or(I, ".base", "base_select");
894        return SelectInst::Create(Sel->getCondition(), Undef,
895                                  Undef, Name, Sel);
896      } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
897        UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
898        std::string Name = suffixed_name_or(I, ".base", "base_ee");
899        return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
900                                          EE);
901      } else {
902        auto *IE = cast<InsertElementInst>(I);
903        UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
904        UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
905        std::string Name = suffixed_name_or(I, ".base", "base_ie");
906        return InsertElementInst::Create(VecUndef, ScalarUndef,
907                                         IE->getOperand(2), Name, IE);
908      }
909
910    };
911    Instruction *BaseInst = MakeBaseInstPlaceholder(I);
912    // Add metadata marking this as a base value
913    BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
914    States[I] = BDVState(BDVState::Conflict, BaseInst);
915  }
916
917  // Returns a instruction which produces the base pointer for a given
918  // instruction.  The instruction is assumed to be an input to one of the BDVs
919  // seen in the inference algorithm above.  As such, we must either already
920  // know it's base defining value is a base, or have inserted a new
921  // instruction to propagate the base of it's BDV and have entered that newly
922  // introduced instruction into the state table.  In either case, we are
923  // assured to be able to determine an instruction which produces it's base
924  // pointer.
925  auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
926    Value *BDV = findBaseOrBDV(Input, cache);
927    Value *Base = nullptr;
928    if (isKnownBaseResult(BDV)) {
929      Base = BDV;
930    } else {
931      // Either conflict or base.
932      assert(States.count(BDV));
933      Base = States[BDV].getBase();
934    }
935    assert(Base && "can't be null");
936    // The cast is needed since base traversal may strip away bitcasts
937    if (Base->getType() != Input->getType() &&
938        InsertPt) {
939      Base = new BitCastInst(Base, Input->getType(), "cast",
940                             InsertPt);
941    }
942    return Base;
943  };
944
945  // Fixup all the inputs of the new PHIs.  Visit order needs to be
946  // deterministic and predictable because we're naming newly created
947  // instructions.
948  for (auto Pair : States) {
949    Instruction *BDV = cast<Instruction>(Pair.first);
950    BDVState State = Pair.second;
951
952    assert(!isKnownBaseResult(BDV) && "why did it get added?");
953    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
954    if (!State.isConflict())
955      continue;
956
957    if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
958      PHINode *phi = cast<PHINode>(BDV);
959      unsigned NumPHIValues = phi->getNumIncomingValues();
960      for (unsigned i = 0; i < NumPHIValues; i++) {
961        Value *InVal = phi->getIncomingValue(i);
962        BasicBlock *InBB = phi->getIncomingBlock(i);
963
964        // If we've already seen InBB, add the same incoming value
965        // we added for it earlier.  The IR verifier requires phi
966        // nodes with multiple entries from the same basic block
967        // to have the same incoming value for each of those
968        // entries.  If we don't do this check here and basephi
969        // has a different type than base, we'll end up adding two
970        // bitcasts (and hence two distinct values) as incoming
971        // values for the same basic block.
972
973        int blockIndex = basephi->getBasicBlockIndex(InBB);
974        if (blockIndex != -1) {
975          Value *oldBase = basephi->getIncomingValue(blockIndex);
976          basephi->addIncoming(oldBase, InBB);
977
978#ifndef NDEBUG
979          Value *Base = getBaseForInput(InVal, nullptr);
980          // In essence this assert states: the only way two
981          // values incoming from the same basic block may be
982          // different is by being different bitcasts of the same
983          // value.  A cleanup that remains TODO is changing
984          // findBaseOrBDV to return an llvm::Value of the correct
985          // type (and still remain pure).  This will remove the
986          // need to add bitcasts.
987          assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
988                 "sanity -- findBaseOrBDV should be pure!");
989#endif
990          continue;
991        }
992
993        // Find the instruction which produces the base for each input.  We may
994        // need to insert a bitcast in the incoming block.
995        // TODO: Need to split critical edges if insertion is needed
996        Value *Base = getBaseForInput(InVal, InBB->getTerminator());
997        basephi->addIncoming(Base, InBB);
998      }
999      assert(basephi->getNumIncomingValues() == NumPHIValues);
1000    } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
1001      SelectInst *Sel = cast<SelectInst>(BDV);
1002      // Operand 1 & 2 are true, false path respectively. TODO: refactor to
1003      // something more safe and less hacky.
1004      for (int i = 1; i <= 2; i++) {
1005        Value *InVal = Sel->getOperand(i);
1006        // Find the instruction which produces the base for each input.  We may
1007        // need to insert a bitcast.
1008        Value *Base = getBaseForInput(InVal, BaseSel);
1009        BaseSel->setOperand(i, Base);
1010      }
1011    } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
1012      Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1013      // Find the instruction which produces the base for each input.  We may
1014      // need to insert a bitcast.
1015      Value *Base = getBaseForInput(InVal, BaseEE);
1016      BaseEE->setOperand(0, Base);
1017    } else {
1018      auto *BaseIE = cast<InsertElementInst>(State.getBase());
1019      auto *BdvIE = cast<InsertElementInst>(BDV);
1020      auto UpdateOperand = [&](int OperandIdx) {
1021        Value *InVal = BdvIE->getOperand(OperandIdx);
1022        Value *Base = getBaseForInput(InVal, BaseIE);
1023        BaseIE->setOperand(OperandIdx, Base);
1024      };
1025      UpdateOperand(0); // vector operand
1026      UpdateOperand(1); // scalar operand
1027    }
1028
1029  }
1030
1031  // Now that we're done with the algorithm, see if we can optimize the
1032  // results slightly by reducing the number of new instructions needed.
1033  // Arguably, this should be integrated into the algorithm above, but
1034  // doing as a post process step is easier to reason about for the moment.
1035  DenseMap<Value *, Value *> ReverseMap;
1036  SmallPtrSet<Instruction *, 16> NewInsts;
1037  SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
1038  // Note: We need to visit the states in a deterministic order.  We uses the
1039  // Keys we sorted above for this purpose.  Note that we are papering over a
1040  // bigger problem with the algorithm above - it's visit order is not
1041  // deterministic.  A larger change is needed to fix this.
1042  for (auto Pair : States) {
1043    auto *BDV = Pair.first;
1044    auto State = Pair.second;
1045    Value *Base = State.getBase();
1046    assert(BDV && Base);
1047    assert(!isKnownBaseResult(BDV) && "why did it get added?");
1048    assert(isKnownBaseResult(Base) &&
1049           "must be something we 'know' is a base pointer");
1050    if (!State.isConflict())
1051      continue;
1052
1053    ReverseMap[Base] = BDV;
1054    if (auto *BaseI = dyn_cast<Instruction>(Base)) {
1055      NewInsts.insert(BaseI);
1056      Worklist.insert(BaseI);
1057    }
1058  }
1059  auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
1060                                 Value *Replacement) {
1061    // Add users which are new instructions (excluding self references)
1062    for (User *U : BaseI->users())
1063      if (auto *UI = dyn_cast<Instruction>(U))
1064        if (NewInsts.count(UI) && UI != BaseI)
1065          Worklist.insert(UI);
1066    // Then do the actual replacement
1067    NewInsts.erase(BaseI);
1068    ReverseMap.erase(BaseI);
1069    BaseI->replaceAllUsesWith(Replacement);
1070    assert(States.count(BDV));
1071    assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
1072    States[BDV] = BDVState(BDVState::Conflict, Replacement);
1073    BaseI->eraseFromParent();
1074  };
1075  const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
1076  while (!Worklist.empty()) {
1077    Instruction *BaseI = Worklist.pop_back_val();
1078    assert(NewInsts.count(BaseI));
1079    Value *Bdv = ReverseMap[BaseI];
1080    if (auto *BdvI = dyn_cast<Instruction>(Bdv))
1081      if (BaseI->isIdenticalTo(BdvI)) {
1082        DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
1083        ReplaceBaseInstWith(Bdv, BaseI, Bdv);
1084        continue;
1085      }
1086    if (Value *V = SimplifyInstruction(BaseI, DL)) {
1087      DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
1088      ReplaceBaseInstWith(Bdv, BaseI, V);
1089      continue;
1090    }
1091  }
1092
1093  // Cache all of our results so we can cheaply reuse them
1094  // NOTE: This is actually two caches: one of the base defining value
1095  // relation and one of the base pointer relation!  FIXME
1096  for (auto Pair : States) {
1097    auto *BDV = Pair.first;
1098    Value *base = Pair.second.getBase();
1099    assert(BDV && base);
1100
1101    std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
1102    DEBUG(dbgs() << "Updating base value cache"
1103          << " for: " << BDV->getName()
1104          << " from: " << fromstr
1105          << " to: " << base->getName() << "\n");
1106
1107    if (cache.count(BDV)) {
1108      // Once we transition from the BDV relation being store in the cache to
1109      // the base relation being stored, it must be stable
1110      assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
1111             "base relation should be stable");
1112    }
1113    cache[BDV] = base;
1114  }
1115  assert(cache.count(def));
1116  return cache[def];
1117}
1118
1119// For a set of live pointers (base and/or derived), identify the base
1120// pointer of the object which they are derived from.  This routine will
1121// mutate the IR graph as needed to make the 'base' pointer live at the
1122// definition site of 'derived'.  This ensures that any use of 'derived' can
1123// also use 'base'.  This may involve the insertion of a number of
1124// additional PHI nodes.
1125//
1126// preconditions: live is a set of pointer type Values
1127//
1128// side effects: may insert PHI nodes into the existing CFG, will preserve
1129// CFG, will not remove or mutate any existing nodes
1130//
1131// post condition: PointerToBase contains one (derived, base) pair for every
1132// pointer in live.  Note that derived can be equal to base if the original
1133// pointer was a base pointer.
1134static void
1135findBasePointers(const StatepointLiveSetTy &live,
1136                 DenseMap<Value *, Value *> &PointerToBase,
1137                 DominatorTree *DT, DefiningValueMapTy &DVCache) {
1138  // For the naming of values inserted to be deterministic - which makes for
1139  // much cleaner and more stable tests - we need to assign an order to the
1140  // live values.  DenseSets do not provide a deterministic order across runs.
1141  SmallVector<Value *, 64> Temp;
1142  Temp.insert(Temp.end(), live.begin(), live.end());
1143  std::sort(Temp.begin(), Temp.end(), order_by_name);
1144  for (Value *ptr : Temp) {
1145    Value *base = findBasePointer(ptr, DVCache);
1146    assert(base && "failed to find base pointer");
1147    PointerToBase[ptr] = base;
1148    assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1149            DT->dominates(cast<Instruction>(base)->getParent(),
1150                          cast<Instruction>(ptr)->getParent())) &&
1151           "The base we found better dominate the derived pointer");
1152
1153    // If you see this trip and like to live really dangerously, the code should
1154    // be correct, just with idioms the verifier can't handle.  You can try
1155    // disabling the verifier at your own substantial risk.
1156    assert(!isa<ConstantPointerNull>(base) &&
1157           "the relocation code needs adjustment to handle the relocation of "
1158           "a null pointer constant without causing false positives in the "
1159           "safepoint ir verifier.");
1160  }
1161}
1162
1163/// Find the required based pointers (and adjust the live set) for the given
1164/// parse point.
1165static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1166                             const CallSite &CS,
1167                             PartiallyConstructedSafepointRecord &result) {
1168  DenseMap<Value *, Value *> PointerToBase;
1169  findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1170
1171  if (PrintBasePointers) {
1172    // Note: Need to print these in a stable order since this is checked in
1173    // some tests.
1174    errs() << "Base Pairs (w/o Relocation):\n";
1175    SmallVector<Value *, 64> Temp;
1176    Temp.reserve(PointerToBase.size());
1177    for (auto Pair : PointerToBase) {
1178      Temp.push_back(Pair.first);
1179    }
1180    std::sort(Temp.begin(), Temp.end(), order_by_name);
1181    for (Value *Ptr : Temp) {
1182      Value *Base = PointerToBase[Ptr];
1183      errs() << " derived ";
1184      Ptr->printAsOperand(errs(), false);
1185      errs() << " base ";
1186      Base->printAsOperand(errs(), false);
1187      errs() << "\n";;
1188    }
1189  }
1190
1191  result.PointerToBase = PointerToBase;
1192}
1193
1194/// Given an updated version of the dataflow liveness results, update the
1195/// liveset and base pointer maps for the call site CS.
1196static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1197                                  const CallSite &CS,
1198                                  PartiallyConstructedSafepointRecord &result);
1199
1200static void recomputeLiveInValues(
1201    Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1202    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1203  // TODO-PERF: reuse the original liveness, then simply run the dataflow
1204  // again.  The old values are still live and will help it stabilize quickly.
1205  GCPtrLivenessData RevisedLivenessData;
1206  computeLiveInValues(DT, F, RevisedLivenessData);
1207  for (size_t i = 0; i < records.size(); i++) {
1208    struct PartiallyConstructedSafepointRecord &info = records[i];
1209    const CallSite &CS = toUpdate[i];
1210    recomputeLiveInValues(RevisedLivenessData, CS, info);
1211  }
1212}
1213
1214// When inserting gc.relocate and gc.result calls, we need to ensure there are
1215// no uses of the original value / return value between the gc.statepoint and
1216// the gc.relocate / gc.result call.  One case which can arise is a phi node
1217// starting one of the successor blocks.  We also need to be able to insert the
1218// gc.relocates only on the path which goes through the statepoint.  We might
1219// need to split an edge to make this possible.
1220static BasicBlock *
1221normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1222                            DominatorTree &DT) {
1223  BasicBlock *Ret = BB;
1224  if (!BB->getUniquePredecessor())
1225    Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1226
1227  // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1228  // from it
1229  FoldSingleEntryPHINodes(Ret);
1230  assert(!isa<PHINode>(Ret->begin()) &&
1231         "All PHI nodes should have been removed!");
1232
1233  // At this point, we can safely insert a gc.relocate or gc.result as the first
1234  // instruction in Ret if needed.
1235  return Ret;
1236}
1237
1238// Create new attribute set containing only attributes which can be transferred
1239// from original call to the safepoint.
1240static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1241  AttributeSet Ret;
1242
1243  for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1244    unsigned Index = AS.getSlotIndex(Slot);
1245
1246    if (Index == AttributeSet::ReturnIndex ||
1247        Index == AttributeSet::FunctionIndex) {
1248
1249      for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1250
1251        // Do not allow certain attributes - just skip them
1252        // Safepoint can not be read only or read none.
1253        if (Attr.hasAttribute(Attribute::ReadNone) ||
1254            Attr.hasAttribute(Attribute::ReadOnly))
1255          continue;
1256
1257        // These attributes control the generation of the gc.statepoint call /
1258        // invoke itself; and once the gc.statepoint is in place, they're of no
1259        // use.
1260        if (Attr.hasAttribute("statepoint-num-patch-bytes") ||
1261            Attr.hasAttribute("statepoint-id"))
1262          continue;
1263
1264        Ret = Ret.addAttributes(
1265            AS.getContext(), Index,
1266            AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1267      }
1268    }
1269
1270    // Just skip parameter attributes for now
1271  }
1272
1273  return Ret;
1274}
1275
1276/// Helper function to place all gc relocates necessary for the given
1277/// statepoint.
1278/// Inputs:
1279///   liveVariables - list of variables to be relocated.
1280///   liveStart - index of the first live variable.
1281///   basePtrs - base pointers.
1282///   statepointToken - statepoint instruction to which relocates should be
1283///   bound.
1284///   Builder - Llvm IR builder to be used to construct new calls.
1285static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1286                              const int LiveStart,
1287                              ArrayRef<Value *> BasePtrs,
1288                              Instruction *StatepointToken,
1289                              IRBuilder<> Builder) {
1290  if (LiveVariables.empty())
1291    return;
1292
1293  auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1294    auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1295    assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1296    size_t Index = std::distance(LiveVec.begin(), ValIt);
1297    assert(Index < LiveVec.size() && "Bug in std::find?");
1298    return Index;
1299  };
1300  Module *M = StatepointToken->getModule();
1301
1302  // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1303  // element type is i8 addrspace(1)*). We originally generated unique
1304  // declarations for each pointer type, but this proved problematic because
1305  // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1306  // towards a single unified pointer type anyways, we can just cast everything
1307  // to an i8* of the right address space.  A bitcast is added later to convert
1308  // gc_relocate to the actual value's type.
1309  auto getGCRelocateDecl = [&] (Type *Ty) {
1310    assert(isHandledGCPointerType(Ty));
1311    auto AS = Ty->getScalarType()->getPointerAddressSpace();
1312    Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1313    if (auto *VT = dyn_cast<VectorType>(Ty))
1314      NewTy = VectorType::get(NewTy, VT->getNumElements());
1315    return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1316                                     {NewTy});
1317  };
1318
1319  // Lazily populated map from input types to the canonicalized form mentioned
1320  // in the comment above.  This should probably be cached somewhere more
1321  // broadly.
1322  DenseMap<Type*, Value*> TypeToDeclMap;
1323
1324  for (unsigned i = 0; i < LiveVariables.size(); i++) {
1325    // Generate the gc.relocate call and save the result
1326    Value *BaseIdx =
1327      Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1328    Value *LiveIdx = Builder.getInt32(LiveStart + i);
1329
1330    Type *Ty = LiveVariables[i]->getType();
1331    if (!TypeToDeclMap.count(Ty))
1332      TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1333    Value *GCRelocateDecl = TypeToDeclMap[Ty];
1334
1335    // only specify a debug name if we can give a useful one
1336    CallInst *Reloc = Builder.CreateCall(
1337        GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1338        suffixed_name_or(LiveVariables[i], ".relocated", ""));
1339    // Trick CodeGen into thinking there are lots of free registers at this
1340    // fake call.
1341    Reloc->setCallingConv(CallingConv::Cold);
1342  }
1343}
1344
1345namespace {
1346
1347/// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1348/// avoids having to worry about keeping around dangling pointers to Values.
1349class DeferredReplacement {
1350  AssertingVH<Instruction> Old;
1351  AssertingVH<Instruction> New;
1352
1353public:
1354  explicit DeferredReplacement(Instruction *Old, Instruction *New) :
1355    Old(Old), New(New) {
1356    assert(Old != New && "Not allowed!");
1357  }
1358
1359  /// Does the task represented by this instance.
1360  void doReplacement() {
1361    Instruction *OldI = Old;
1362    Instruction *NewI = New;
1363
1364    assert(OldI != NewI && "Disallowed at construction?!");
1365
1366    Old = nullptr;
1367    New = nullptr;
1368
1369    if (NewI)
1370      OldI->replaceAllUsesWith(NewI);
1371    OldI->eraseFromParent();
1372  }
1373};
1374}
1375
1376static void
1377makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1378                           const SmallVectorImpl<Value *> &BasePtrs,
1379                           const SmallVectorImpl<Value *> &LiveVariables,
1380                           PartiallyConstructedSafepointRecord &Result,
1381                           std::vector<DeferredReplacement> &Replacements) {
1382  assert(BasePtrs.size() == LiveVariables.size());
1383  assert((UseDeoptBundles || isStatepoint(CS)) &&
1384         "This method expects to be rewriting a statepoint");
1385
1386  // Then go ahead and use the builder do actually do the inserts.  We insert
1387  // immediately before the previous instruction under the assumption that all
1388  // arguments will be available here.  We can't insert afterwards since we may
1389  // be replacing a terminator.
1390  Instruction *InsertBefore = CS.getInstruction();
1391  IRBuilder<> Builder(InsertBefore);
1392
1393  ArrayRef<Value *> GCArgs(LiveVariables);
1394  uint64_t StatepointID = 0xABCDEF00;
1395  uint32_t NumPatchBytes = 0;
1396  uint32_t Flags = uint32_t(StatepointFlags::None);
1397
1398  ArrayRef<Use> CallArgs;
1399  ArrayRef<Use> DeoptArgs;
1400  ArrayRef<Use> TransitionArgs;
1401
1402  Value *CallTarget = nullptr;
1403
1404  if (UseDeoptBundles) {
1405    CallArgs = {CS.arg_begin(), CS.arg_end()};
1406    DeoptArgs = GetDeoptBundleOperands(CS);
1407    // TODO: we don't fill in TransitionArgs or Flags in this branch, but we
1408    // could have an operand bundle for that too.
1409    AttributeSet OriginalAttrs = CS.getAttributes();
1410
1411    Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex,
1412                                                  "statepoint-id");
1413    if (AttrID.isStringAttribute())
1414      AttrID.getValueAsString().getAsInteger(10, StatepointID);
1415
1416    Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
1417        AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
1418    if (AttrNumPatchBytes.isStringAttribute())
1419      AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
1420
1421    CallTarget = CS.getCalledValue();
1422  } else {
1423    // This branch will be gone soon, and we will soon only support the
1424    // UseDeoptBundles == true configuration.
1425    Statepoint OldSP(CS);
1426    StatepointID = OldSP.getID();
1427    NumPatchBytes = OldSP.getNumPatchBytes();
1428    Flags = OldSP.getFlags();
1429
1430    CallArgs = {OldSP.arg_begin(), OldSP.arg_end()};
1431    DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()};
1432    TransitionArgs = {OldSP.gc_transition_args_begin(),
1433                      OldSP.gc_transition_args_end()};
1434    CallTarget = OldSP.getCalledValue();
1435  }
1436
1437  // Create the statepoint given all the arguments
1438  Instruction *Token = nullptr;
1439  AttributeSet ReturnAttrs;
1440  if (CS.isCall()) {
1441    CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1442    CallInst *Call = Builder.CreateGCStatepointCall(
1443        StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1444        TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1445
1446    Call->setTailCall(ToReplace->isTailCall());
1447    Call->setCallingConv(ToReplace->getCallingConv());
1448
1449    // Currently we will fail on parameter attributes and on certain
1450    // function attributes.
1451    AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1452    // In case if we can handle this set of attributes - set up function attrs
1453    // directly on statepoint and return attrs later for gc_result intrinsic.
1454    Call->setAttributes(NewAttrs.getFnAttributes());
1455    ReturnAttrs = NewAttrs.getRetAttributes();
1456
1457    Token = Call;
1458
1459    // Put the following gc_result and gc_relocate calls immediately after the
1460    // the old call (which we're about to delete)
1461    assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1462    Builder.SetInsertPoint(ToReplace->getNextNode());
1463    Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1464  } else {
1465    InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1466
1467    // Insert the new invoke into the old block.  We'll remove the old one in a
1468    // moment at which point this will become the new terminator for the
1469    // original block.
1470    InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1471        StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1472        ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1473        GCArgs, "statepoint_token");
1474
1475    Invoke->setCallingConv(ToReplace->getCallingConv());
1476
1477    // Currently we will fail on parameter attributes and on certain
1478    // function attributes.
1479    AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1480    // In case if we can handle this set of attributes - set up function attrs
1481    // directly on statepoint and return attrs later for gc_result intrinsic.
1482    Invoke->setAttributes(NewAttrs.getFnAttributes());
1483    ReturnAttrs = NewAttrs.getRetAttributes();
1484
1485    Token = Invoke;
1486
1487    // Generate gc relocates in exceptional path
1488    BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1489    assert(!isa<PHINode>(UnwindBlock->begin()) &&
1490           UnwindBlock->getUniquePredecessor() &&
1491           "can't safely insert in this block!");
1492
1493    Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1494    Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1495
1496    // Attach exceptional gc relocates to the landingpad.
1497    Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1498    Result.UnwindToken = ExceptionalToken;
1499
1500    const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1501    CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1502                      Builder);
1503
1504    // Generate gc relocates and returns for normal block
1505    BasicBlock *NormalDest = ToReplace->getNormalDest();
1506    assert(!isa<PHINode>(NormalDest->begin()) &&
1507           NormalDest->getUniquePredecessor() &&
1508           "can't safely insert in this block!");
1509
1510    Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1511
1512    // gc relocates will be generated later as if it were regular call
1513    // statepoint
1514  }
1515  assert(Token && "Should be set in one of the above branches!");
1516
1517  if (UseDeoptBundles) {
1518    Token->setName("statepoint_token");
1519    if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1520      StringRef Name =
1521          CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1522      CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1523      GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1524
1525      // We cannot RAUW or delete CS.getInstruction() because it could be in the
1526      // live set of some other safepoint, in which case that safepoint's
1527      // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1528      // llvm::Instruction.  Instead, we defer the replacement and deletion to
1529      // after the live sets have been made explicit in the IR, and we no longer
1530      // have raw pointers to worry about.
1531      Replacements.emplace_back(CS.getInstruction(), GCResult);
1532    } else {
1533      Replacements.emplace_back(CS.getInstruction(), nullptr);
1534    }
1535  } else {
1536    assert(!CS.getInstruction()->hasNUsesOrMore(2) &&
1537           "only valid use before rewrite is gc.result");
1538    assert(!CS.getInstruction()->hasOneUse() ||
1539           isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin())));
1540
1541    // Take the name of the original statepoint token if there was one.
1542    Token->takeName(CS.getInstruction());
1543
1544    // Update the gc.result of the original statepoint (if any) to use the newly
1545    // inserted statepoint.  This is safe to do here since the token can't be
1546    // considered a live reference.
1547    CS.getInstruction()->replaceAllUsesWith(Token);
1548    CS.getInstruction()->eraseFromParent();
1549  }
1550
1551  Result.StatepointToken = Token;
1552
1553  // Second, create a gc.relocate for every live variable
1554  const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1555  CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1556}
1557
1558namespace {
1559struct NameOrdering {
1560  Value *Base;
1561  Value *Derived;
1562
1563  bool operator()(NameOrdering const &a, NameOrdering const &b) {
1564    return -1 == a.Derived->getName().compare(b.Derived->getName());
1565  }
1566};
1567}
1568
1569static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
1570                           SmallVectorImpl<Value *> &LiveVec) {
1571  assert(BaseVec.size() == LiveVec.size());
1572
1573  SmallVector<NameOrdering, 64> Temp;
1574  for (size_t i = 0; i < BaseVec.size(); i++) {
1575    NameOrdering v;
1576    v.Base = BaseVec[i];
1577    v.Derived = LiveVec[i];
1578    Temp.push_back(v);
1579  }
1580
1581  std::sort(Temp.begin(), Temp.end(), NameOrdering());
1582  for (size_t i = 0; i < BaseVec.size(); i++) {
1583    BaseVec[i] = Temp[i].Base;
1584    LiveVec[i] = Temp[i].Derived;
1585  }
1586}
1587
1588// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1589// which make the relocations happening at this safepoint explicit.
1590//
1591// WARNING: Does not do any fixup to adjust users of the original live
1592// values.  That's the callers responsibility.
1593static void
1594makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
1595                       PartiallyConstructedSafepointRecord &Result,
1596                       std::vector<DeferredReplacement> &Replacements) {
1597  const auto &LiveSet = Result.LiveSet;
1598  const auto &PointerToBase = Result.PointerToBase;
1599
1600  // Convert to vector for efficient cross referencing.
1601  SmallVector<Value *, 64> BaseVec, LiveVec;
1602  LiveVec.reserve(LiveSet.size());
1603  BaseVec.reserve(LiveSet.size());
1604  for (Value *L : LiveSet) {
1605    LiveVec.push_back(L);
1606    assert(PointerToBase.count(L));
1607    Value *Base = PointerToBase.find(L)->second;
1608    BaseVec.push_back(Base);
1609  }
1610  assert(LiveVec.size() == BaseVec.size());
1611
1612  // To make the output IR slightly more stable (for use in diffs), ensure a
1613  // fixed order of the values in the safepoint (by sorting the value name).
1614  // The order is otherwise meaningless.
1615  StabilizeOrder(BaseVec, LiveVec);
1616
1617  // Do the actual rewriting and delete the old statepoint
1618  makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1619}
1620
1621// Helper function for the relocationViaAlloca.
1622//
1623// It receives iterator to the statepoint gc relocates and emits a store to the
1624// assigned location (via allocaMap) for the each one of them.  It adds the
1625// visited values into the visitedLiveValues set, which we will later use them
1626// for sanity checking.
1627static void
1628insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1629                       DenseMap<Value *, Value *> &AllocaMap,
1630                       DenseSet<Value *> &VisitedLiveValues) {
1631
1632  for (User *U : GCRelocs) {
1633    GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1634    if (!Relocate)
1635      continue;
1636
1637    Value *OriginalValue = const_cast<Value *>(Relocate->getDerivedPtr());
1638    assert(AllocaMap.count(OriginalValue));
1639    Value *Alloca = AllocaMap[OriginalValue];
1640
1641    // Emit store into the related alloca
1642    // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1643    // the correct type according to alloca.
1644    assert(Relocate->getNextNode() &&
1645           "Should always have one since it's not a terminator");
1646    IRBuilder<> Builder(Relocate->getNextNode());
1647    Value *CastedRelocatedValue =
1648      Builder.CreateBitCast(Relocate,
1649                            cast<AllocaInst>(Alloca)->getAllocatedType(),
1650                            suffixed_name_or(Relocate, ".casted", ""));
1651
1652    StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1653    Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1654
1655#ifndef NDEBUG
1656    VisitedLiveValues.insert(OriginalValue);
1657#endif
1658  }
1659}
1660
1661// Helper function for the "relocationViaAlloca". Similar to the
1662// "insertRelocationStores" but works for rematerialized values.
1663static void
1664insertRematerializationStores(
1665  RematerializedValueMapTy RematerializedValues,
1666  DenseMap<Value *, Value *> &AllocaMap,
1667  DenseSet<Value *> &VisitedLiveValues) {
1668
1669  for (auto RematerializedValuePair: RematerializedValues) {
1670    Instruction *RematerializedValue = RematerializedValuePair.first;
1671    Value *OriginalValue = RematerializedValuePair.second;
1672
1673    assert(AllocaMap.count(OriginalValue) &&
1674           "Can not find alloca for rematerialized value");
1675    Value *Alloca = AllocaMap[OriginalValue];
1676
1677    StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1678    Store->insertAfter(RematerializedValue);
1679
1680#ifndef NDEBUG
1681    VisitedLiveValues.insert(OriginalValue);
1682#endif
1683  }
1684}
1685
1686/// Do all the relocation update via allocas and mem2reg
1687static void relocationViaAlloca(
1688    Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1689    ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1690#ifndef NDEBUG
1691  // record initial number of (static) allocas; we'll check we have the same
1692  // number when we get done.
1693  int InitialAllocaNum = 0;
1694  for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1695       I++)
1696    if (isa<AllocaInst>(*I))
1697      InitialAllocaNum++;
1698#endif
1699
1700  // TODO-PERF: change data structures, reserve
1701  DenseMap<Value *, Value *> AllocaMap;
1702  SmallVector<AllocaInst *, 200> PromotableAllocas;
1703  // Used later to chack that we have enough allocas to store all values
1704  std::size_t NumRematerializedValues = 0;
1705  PromotableAllocas.reserve(Live.size());
1706
1707  // Emit alloca for "LiveValue" and record it in "allocaMap" and
1708  // "PromotableAllocas"
1709  auto emitAllocaFor = [&](Value *LiveValue) {
1710    AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1711                                        F.getEntryBlock().getFirstNonPHI());
1712    AllocaMap[LiveValue] = Alloca;
1713    PromotableAllocas.push_back(Alloca);
1714  };
1715
1716  // Emit alloca for each live gc pointer
1717  for (Value *V : Live)
1718    emitAllocaFor(V);
1719
1720  // Emit allocas for rematerialized values
1721  for (const auto &Info : Records)
1722    for (auto RematerializedValuePair : Info.RematerializedValues) {
1723      Value *OriginalValue = RematerializedValuePair.second;
1724      if (AllocaMap.count(OriginalValue) != 0)
1725        continue;
1726
1727      emitAllocaFor(OriginalValue);
1728      ++NumRematerializedValues;
1729    }
1730
1731  // The next two loops are part of the same conceptual operation.  We need to
1732  // insert a store to the alloca after the original def and at each
1733  // redefinition.  We need to insert a load before each use.  These are split
1734  // into distinct loops for performance reasons.
1735
1736  // Update gc pointer after each statepoint: either store a relocated value or
1737  // null (if no relocated value was found for this gc pointer and it is not a
1738  // gc_result).  This must happen before we update the statepoint with load of
1739  // alloca otherwise we lose the link between statepoint and old def.
1740  for (const auto &Info : Records) {
1741    Value *Statepoint = Info.StatepointToken;
1742
1743    // This will be used for consistency check
1744    DenseSet<Value *> VisitedLiveValues;
1745
1746    // Insert stores for normal statepoint gc relocates
1747    insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1748
1749    // In case if it was invoke statepoint
1750    // we will insert stores for exceptional path gc relocates.
1751    if (isa<InvokeInst>(Statepoint)) {
1752      insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1753                             VisitedLiveValues);
1754    }
1755
1756    // Do similar thing with rematerialized values
1757    insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1758                                  VisitedLiveValues);
1759
1760    if (ClobberNonLive) {
1761      // As a debugging aid, pretend that an unrelocated pointer becomes null at
1762      // the gc.statepoint.  This will turn some subtle GC problems into
1763      // slightly easier to debug SEGVs.  Note that on large IR files with
1764      // lots of gc.statepoints this is extremely costly both memory and time
1765      // wise.
1766      SmallVector<AllocaInst *, 64> ToClobber;
1767      for (auto Pair : AllocaMap) {
1768        Value *Def = Pair.first;
1769        AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1770
1771        // This value was relocated
1772        if (VisitedLiveValues.count(Def)) {
1773          continue;
1774        }
1775        ToClobber.push_back(Alloca);
1776      }
1777
1778      auto InsertClobbersAt = [&](Instruction *IP) {
1779        for (auto *AI : ToClobber) {
1780          auto AIType = cast<PointerType>(AI->getType());
1781          auto PT = cast<PointerType>(AIType->getElementType());
1782          Constant *CPN = ConstantPointerNull::get(PT);
1783          StoreInst *Store = new StoreInst(CPN, AI);
1784          Store->insertBefore(IP);
1785        }
1786      };
1787
1788      // Insert the clobbering stores.  These may get intermixed with the
1789      // gc.results and gc.relocates, but that's fine.
1790      if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1791        InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1792        InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1793      } else {
1794        InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1795      }
1796    }
1797  }
1798
1799  // Update use with load allocas and add store for gc_relocated.
1800  for (auto Pair : AllocaMap) {
1801    Value *Def = Pair.first;
1802    Value *Alloca = Pair.second;
1803
1804    // We pre-record the uses of allocas so that we dont have to worry about
1805    // later update that changes the user information..
1806
1807    SmallVector<Instruction *, 20> Uses;
1808    // PERF: trade a linear scan for repeated reallocation
1809    Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1810    for (User *U : Def->users()) {
1811      if (!isa<ConstantExpr>(U)) {
1812        // If the def has a ConstantExpr use, then the def is either a
1813        // ConstantExpr use itself or null.  In either case
1814        // (recursively in the first, directly in the second), the oop
1815        // it is ultimately dependent on is null and this particular
1816        // use does not need to be fixed up.
1817        Uses.push_back(cast<Instruction>(U));
1818      }
1819    }
1820
1821    std::sort(Uses.begin(), Uses.end());
1822    auto Last = std::unique(Uses.begin(), Uses.end());
1823    Uses.erase(Last, Uses.end());
1824
1825    for (Instruction *Use : Uses) {
1826      if (isa<PHINode>(Use)) {
1827        PHINode *Phi = cast<PHINode>(Use);
1828        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1829          if (Def == Phi->getIncomingValue(i)) {
1830            LoadInst *Load = new LoadInst(
1831                Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1832            Phi->setIncomingValue(i, Load);
1833          }
1834        }
1835      } else {
1836        LoadInst *Load = new LoadInst(Alloca, "", Use);
1837        Use->replaceUsesOfWith(Def, Load);
1838      }
1839    }
1840
1841    // Emit store for the initial gc value.  Store must be inserted after load,
1842    // otherwise store will be in alloca's use list and an extra load will be
1843    // inserted before it.
1844    StoreInst *Store = new StoreInst(Def, Alloca);
1845    if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1846      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1847        // InvokeInst is a TerminatorInst so the store need to be inserted
1848        // into its normal destination block.
1849        BasicBlock *NormalDest = Invoke->getNormalDest();
1850        Store->insertBefore(NormalDest->getFirstNonPHI());
1851      } else {
1852        assert(!Inst->isTerminator() &&
1853               "The only TerminatorInst that can produce a value is "
1854               "InvokeInst which is handled above.");
1855        Store->insertAfter(Inst);
1856      }
1857    } else {
1858      assert(isa<Argument>(Def));
1859      Store->insertAfter(cast<Instruction>(Alloca));
1860    }
1861  }
1862
1863  assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1864         "we must have the same allocas with lives");
1865  if (!PromotableAllocas.empty()) {
1866    // Apply mem2reg to promote alloca to SSA
1867    PromoteMemToReg(PromotableAllocas, DT);
1868  }
1869
1870#ifndef NDEBUG
1871  for (auto &I : F.getEntryBlock())
1872    if (isa<AllocaInst>(I))
1873      InitialAllocaNum--;
1874  assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1875#endif
1876}
1877
1878/// Implement a unique function which doesn't require we sort the input
1879/// vector.  Doing so has the effect of changing the output of a couple of
1880/// tests in ways which make them less useful in testing fused safepoints.
1881template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1882  SmallSet<T, 8> Seen;
1883  Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1884              return !Seen.insert(V).second;
1885            }), Vec.end());
1886}
1887
1888/// Insert holders so that each Value is obviously live through the entire
1889/// lifetime of the call.
1890static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1891                                 SmallVectorImpl<CallInst *> &Holders) {
1892  if (Values.empty())
1893    // No values to hold live, might as well not insert the empty holder
1894    return;
1895
1896  Module *M = CS.getInstruction()->getModule();
1897  // Use a dummy vararg function to actually hold the values live
1898  Function *Func = cast<Function>(M->getOrInsertFunction(
1899      "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1900  if (CS.isCall()) {
1901    // For call safepoints insert dummy calls right after safepoint
1902    Holders.push_back(CallInst::Create(Func, Values, "",
1903                                       &*++CS.getInstruction()->getIterator()));
1904    return;
1905  }
1906  // For invoke safepooints insert dummy calls both in normal and
1907  // exceptional destination blocks
1908  auto *II = cast<InvokeInst>(CS.getInstruction());
1909  Holders.push_back(CallInst::Create(
1910      Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1911  Holders.push_back(CallInst::Create(
1912      Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1913}
1914
1915static void findLiveReferences(
1916    Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1917    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1918  GCPtrLivenessData OriginalLivenessData;
1919  computeLiveInValues(DT, F, OriginalLivenessData);
1920  for (size_t i = 0; i < records.size(); i++) {
1921    struct PartiallyConstructedSafepointRecord &info = records[i];
1922    const CallSite &CS = toUpdate[i];
1923    analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
1924  }
1925}
1926
1927/// Remove any vector of pointers from the live set by scalarizing them over the
1928/// statepoint instruction.  Adds the scalarized pieces to the live set.  It
1929/// would be preferable to include the vector in the statepoint itself, but
1930/// the lowering code currently does not handle that.  Extending it would be
1931/// slightly non-trivial since it requires a format change.  Given how rare
1932/// such cases are (for the moment?) scalarizing is an acceptable compromise.
1933static void splitVectorValues(Instruction *StatepointInst,
1934                              StatepointLiveSetTy &LiveSet,
1935                              DenseMap<Value *, Value *>& PointerToBase,
1936                              DominatorTree &DT) {
1937  SmallVector<Value *, 16> ToSplit;
1938  for (Value *V : LiveSet)
1939    if (isa<VectorType>(V->getType()))
1940      ToSplit.push_back(V);
1941
1942  if (ToSplit.empty())
1943    return;
1944
1945  DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1946
1947  Function &F = *(StatepointInst->getParent()->getParent());
1948
1949  DenseMap<Value *, AllocaInst *> AllocaMap;
1950  // First is normal return, second is exceptional return (invoke only)
1951  DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
1952  for (Value *V : ToSplit) {
1953    AllocaInst *Alloca =
1954        new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
1955    AllocaMap[V] = Alloca;
1956
1957    VectorType *VT = cast<VectorType>(V->getType());
1958    IRBuilder<> Builder(StatepointInst);
1959    SmallVector<Value *, 16> Elements;
1960    for (unsigned i = 0; i < VT->getNumElements(); i++)
1961      Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
1962    ElementMapping[V] = Elements;
1963
1964    auto InsertVectorReform = [&](Instruction *IP) {
1965      Builder.SetInsertPoint(IP);
1966      Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1967      Value *ResultVec = UndefValue::get(VT);
1968      for (unsigned i = 0; i < VT->getNumElements(); i++)
1969        ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1970                                                Builder.getInt32(i));
1971      return ResultVec;
1972    };
1973
1974    if (isa<CallInst>(StatepointInst)) {
1975      BasicBlock::iterator Next(StatepointInst);
1976      Next++;
1977      Instruction *IP = &*(Next);
1978      Replacements[V].first = InsertVectorReform(IP);
1979      Replacements[V].second = nullptr;
1980    } else {
1981      InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
1982      // We've already normalized - check that we don't have shared destination
1983      // blocks
1984      BasicBlock *NormalDest = Invoke->getNormalDest();
1985      assert(!isa<PHINode>(NormalDest->begin()));
1986      BasicBlock *UnwindDest = Invoke->getUnwindDest();
1987      assert(!isa<PHINode>(UnwindDest->begin()));
1988      // Insert insert element sequences in both successors
1989      Instruction *IP = &*(NormalDest->getFirstInsertionPt());
1990      Replacements[V].first = InsertVectorReform(IP);
1991      IP = &*(UnwindDest->getFirstInsertionPt());
1992      Replacements[V].second = InsertVectorReform(IP);
1993    }
1994  }
1995
1996  for (Value *V : ToSplit) {
1997    AllocaInst *Alloca = AllocaMap[V];
1998
1999    // Capture all users before we start mutating use lists
2000    SmallVector<Instruction *, 16> Users;
2001    for (User *U : V->users())
2002      Users.push_back(cast<Instruction>(U));
2003
2004    for (Instruction *I : Users) {
2005      if (auto Phi = dyn_cast<PHINode>(I)) {
2006        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
2007          if (V == Phi->getIncomingValue(i)) {
2008            LoadInst *Load = new LoadInst(
2009                Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
2010            Phi->setIncomingValue(i, Load);
2011          }
2012      } else {
2013        LoadInst *Load = new LoadInst(Alloca, "", I);
2014        I->replaceUsesOfWith(V, Load);
2015      }
2016    }
2017
2018    // Store the original value and the replacement value into the alloca
2019    StoreInst *Store = new StoreInst(V, Alloca);
2020    if (auto I = dyn_cast<Instruction>(V))
2021      Store->insertAfter(I);
2022    else
2023      Store->insertAfter(Alloca);
2024
2025    // Normal return for invoke, or call return
2026    Instruction *Replacement = cast<Instruction>(Replacements[V].first);
2027    (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2028    // Unwind return for invoke only
2029    Replacement = cast_or_null<Instruction>(Replacements[V].second);
2030    if (Replacement)
2031      (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2032  }
2033
2034  // apply mem2reg to promote alloca to SSA
2035  SmallVector<AllocaInst *, 16> Allocas;
2036  for (Value *V : ToSplit)
2037    Allocas.push_back(AllocaMap[V]);
2038  PromoteMemToReg(Allocas, DT);
2039
2040  // Update our tracking of live pointers and base mappings to account for the
2041  // changes we just made.
2042  for (Value *V : ToSplit) {
2043    auto &Elements = ElementMapping[V];
2044
2045    LiveSet.erase(V);
2046    LiveSet.insert(Elements.begin(), Elements.end());
2047    // We need to update the base mapping as well.
2048    assert(PointerToBase.count(V));
2049    Value *OldBase = PointerToBase[V];
2050    auto &BaseElements = ElementMapping[OldBase];
2051    PointerToBase.erase(V);
2052    assert(Elements.size() == BaseElements.size());
2053    for (unsigned i = 0; i < Elements.size(); i++) {
2054      Value *Elem = Elements[i];
2055      PointerToBase[Elem] = BaseElements[i];
2056    }
2057  }
2058}
2059
2060// Helper function for the "rematerializeLiveValues". It walks use chain
2061// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
2062// values are visited (currently it is GEP's and casts). Returns true if it
2063// successfully reached "BaseValue" and false otherwise.
2064// Fills "ChainToBase" array with all visited values. "BaseValue" is not
2065// recorded.
2066static bool findRematerializableChainToBasePointer(
2067  SmallVectorImpl<Instruction*> &ChainToBase,
2068  Value *CurrentValue, Value *BaseValue) {
2069
2070  // We have found a base value
2071  if (CurrentValue == BaseValue) {
2072    return true;
2073  }
2074
2075  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2076    ChainToBase.push_back(GEP);
2077    return findRematerializableChainToBasePointer(ChainToBase,
2078                                                  GEP->getPointerOperand(),
2079                                                  BaseValue);
2080  }
2081
2082  if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2083    if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2084      return false;
2085
2086    ChainToBase.push_back(CI);
2087    return findRematerializableChainToBasePointer(ChainToBase,
2088                                                  CI->getOperand(0), BaseValue);
2089  }
2090
2091  // Not supported instruction in the chain
2092  return false;
2093}
2094
2095// Helper function for the "rematerializeLiveValues". Compute cost of the use
2096// chain we are going to rematerialize.
2097static unsigned
2098chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
2099                       TargetTransformInfo &TTI) {
2100  unsigned Cost = 0;
2101
2102  for (Instruction *Instr : Chain) {
2103    if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2104      assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2105             "non noop cast is found during rematerialization");
2106
2107      Type *SrcTy = CI->getOperand(0)->getType();
2108      Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
2109
2110    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2111      // Cost of the address calculation
2112      Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
2113      Cost += TTI.getAddressComputationCost(ValTy);
2114
2115      // And cost of the GEP itself
2116      // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2117      //       allowed for the external usage)
2118      if (!GEP->hasAllConstantIndices())
2119        Cost += 2;
2120
2121    } else {
2122      llvm_unreachable("unsupported instruciton type during rematerialization");
2123    }
2124  }
2125
2126  return Cost;
2127}
2128
2129// From the statepoint live set pick values that are cheaper to recompute then
2130// to relocate. Remove this values from the live set, rematerialize them after
2131// statepoint and record them in "Info" structure. Note that similar to
2132// relocated values we don't do any user adjustments here.
2133static void rematerializeLiveValues(CallSite CS,
2134                                    PartiallyConstructedSafepointRecord &Info,
2135                                    TargetTransformInfo &TTI) {
2136  const unsigned int ChainLengthThreshold = 10;
2137
2138  // Record values we are going to delete from this statepoint live set.
2139  // We can not di this in following loop due to iterator invalidation.
2140  SmallVector<Value *, 32> LiveValuesToBeDeleted;
2141
2142  for (Value *LiveValue: Info.LiveSet) {
2143    // For each live pointer find it's defining chain
2144    SmallVector<Instruction *, 3> ChainToBase;
2145    assert(Info.PointerToBase.count(LiveValue));
2146    bool FoundChain =
2147      findRematerializableChainToBasePointer(ChainToBase,
2148                                             LiveValue,
2149                                             Info.PointerToBase[LiveValue]);
2150    // Nothing to do, or chain is too long
2151    if (!FoundChain ||
2152        ChainToBase.size() == 0 ||
2153        ChainToBase.size() > ChainLengthThreshold)
2154      continue;
2155
2156    // Compute cost of this chain
2157    unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2158    // TODO: We can also account for cases when we will be able to remove some
2159    //       of the rematerialized values by later optimization passes. I.e if
2160    //       we rematerialized several intersecting chains. Or if original values
2161    //       don't have any uses besides this statepoint.
2162
2163    // For invokes we need to rematerialize each chain twice - for normal and
2164    // for unwind basic blocks. Model this by multiplying cost by two.
2165    if (CS.isInvoke()) {
2166      Cost *= 2;
2167    }
2168    // If it's too expensive - skip it
2169    if (Cost >= RematerializationThreshold)
2170      continue;
2171
2172    // Remove value from the live set
2173    LiveValuesToBeDeleted.push_back(LiveValue);
2174
2175    // Clone instructions and record them inside "Info" structure
2176
2177    // Walk backwards to visit top-most instructions first
2178    std::reverse(ChainToBase.begin(), ChainToBase.end());
2179
2180    // Utility function which clones all instructions from "ChainToBase"
2181    // and inserts them before "InsertBefore". Returns rematerialized value
2182    // which should be used after statepoint.
2183    auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
2184      Instruction *LastClonedValue = nullptr;
2185      Instruction *LastValue = nullptr;
2186      for (Instruction *Instr: ChainToBase) {
2187        // Only GEP's and casts are suported as we need to be careful to not
2188        // introduce any new uses of pointers not in the liveset.
2189        // Note that it's fine to introduce new uses of pointers which were
2190        // otherwise not used after this statepoint.
2191        assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2192
2193        Instruction *ClonedValue = Instr->clone();
2194        ClonedValue->insertBefore(InsertBefore);
2195        ClonedValue->setName(Instr->getName() + ".remat");
2196
2197        // If it is not first instruction in the chain then it uses previously
2198        // cloned value. We should update it to use cloned value.
2199        if (LastClonedValue) {
2200          assert(LastValue);
2201          ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2202#ifndef NDEBUG
2203          // Assert that cloned instruction does not use any instructions from
2204          // this chain other than LastClonedValue
2205          for (auto OpValue : ClonedValue->operand_values()) {
2206            assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2207                       ChainToBase.end() &&
2208                   "incorrect use in rematerialization chain");
2209          }
2210#endif
2211        }
2212
2213        LastClonedValue = ClonedValue;
2214        LastValue = Instr;
2215      }
2216      assert(LastClonedValue);
2217      return LastClonedValue;
2218    };
2219
2220    // Different cases for calls and invokes. For invokes we need to clone
2221    // instructions both on normal and unwind path.
2222    if (CS.isCall()) {
2223      Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2224      assert(InsertBefore);
2225      Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2226      Info.RematerializedValues[RematerializedValue] = LiveValue;
2227    } else {
2228      InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2229
2230      Instruction *NormalInsertBefore =
2231          &*Invoke->getNormalDest()->getFirstInsertionPt();
2232      Instruction *UnwindInsertBefore =
2233          &*Invoke->getUnwindDest()->getFirstInsertionPt();
2234
2235      Instruction *NormalRematerializedValue =
2236          rematerializeChain(NormalInsertBefore);
2237      Instruction *UnwindRematerializedValue =
2238          rematerializeChain(UnwindInsertBefore);
2239
2240      Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2241      Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2242    }
2243  }
2244
2245  // Remove rematerializaed values from the live set
2246  for (auto LiveValue: LiveValuesToBeDeleted) {
2247    Info.LiveSet.erase(LiveValue);
2248  }
2249}
2250
2251static bool insertParsePoints(Function &F, DominatorTree &DT,
2252                              TargetTransformInfo &TTI,
2253                              SmallVectorImpl<CallSite> &ToUpdate) {
2254#ifndef NDEBUG
2255  // sanity check the input
2256  std::set<CallSite> Uniqued;
2257  Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2258  assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2259
2260  for (CallSite CS : ToUpdate) {
2261    assert(CS.getInstruction()->getParent()->getParent() == &F);
2262    assert((UseDeoptBundles || isStatepoint(CS)) &&
2263           "expected to already be a deopt statepoint");
2264  }
2265#endif
2266
2267  // When inserting gc.relocates for invokes, we need to be able to insert at
2268  // the top of the successor blocks.  See the comment on
2269  // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2270  // may restructure the CFG.
2271  for (CallSite CS : ToUpdate) {
2272    if (!CS.isInvoke())
2273      continue;
2274    auto *II = cast<InvokeInst>(CS.getInstruction());
2275    normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2276    normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2277  }
2278
2279  // A list of dummy calls added to the IR to keep various values obviously
2280  // live in the IR.  We'll remove all of these when done.
2281  SmallVector<CallInst *, 64> Holders;
2282
2283  // Insert a dummy call with all of the arguments to the vm_state we'll need
2284  // for the actual safepoint insertion.  This ensures reference arguments in
2285  // the deopt argument list are considered live through the safepoint (and
2286  // thus makes sure they get relocated.)
2287  for (CallSite CS : ToUpdate) {
2288    SmallVector<Value *, 64> DeoptValues;
2289
2290    iterator_range<const Use *> DeoptStateRange =
2291        UseDeoptBundles
2292            ? iterator_range<const Use *>(GetDeoptBundleOperands(CS))
2293            : iterator_range<const Use *>(Statepoint(CS).vm_state_args());
2294
2295    for (Value *Arg : DeoptStateRange) {
2296      assert(!isUnhandledGCPointerType(Arg->getType()) &&
2297             "support for FCA unimplemented");
2298      if (isHandledGCPointerType(Arg->getType()))
2299        DeoptValues.push_back(Arg);
2300    }
2301
2302    insertUseHolderAfter(CS, DeoptValues, Holders);
2303  }
2304
2305  SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2306
2307  // A) Identify all gc pointers which are statically live at the given call
2308  // site.
2309  findLiveReferences(F, DT, ToUpdate, Records);
2310
2311  // B) Find the base pointers for each live pointer
2312  /* scope for caching */ {
2313    // Cache the 'defining value' relation used in the computation and
2314    // insertion of base phis and selects.  This ensures that we don't insert
2315    // large numbers of duplicate base_phis.
2316    DefiningValueMapTy DVCache;
2317
2318    for (size_t i = 0; i < Records.size(); i++) {
2319      PartiallyConstructedSafepointRecord &info = Records[i];
2320      findBasePointers(DT, DVCache, ToUpdate[i], info);
2321    }
2322  } // end of cache scope
2323
2324  // The base phi insertion logic (for any safepoint) may have inserted new
2325  // instructions which are now live at some safepoint.  The simplest such
2326  // example is:
2327  // loop:
2328  //   phi a  <-- will be a new base_phi here
2329  //   safepoint 1 <-- that needs to be live here
2330  //   gep a + 1
2331  //   safepoint 2
2332  //   br loop
2333  // We insert some dummy calls after each safepoint to definitely hold live
2334  // the base pointers which were identified for that safepoint.  We'll then
2335  // ask liveness for _every_ base inserted to see what is now live.  Then we
2336  // remove the dummy calls.
2337  Holders.reserve(Holders.size() + Records.size());
2338  for (size_t i = 0; i < Records.size(); i++) {
2339    PartiallyConstructedSafepointRecord &Info = Records[i];
2340
2341    SmallVector<Value *, 128> Bases;
2342    for (auto Pair : Info.PointerToBase)
2343      Bases.push_back(Pair.second);
2344
2345    insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2346  }
2347
2348  // By selecting base pointers, we've effectively inserted new uses. Thus, we
2349  // need to rerun liveness.  We may *also* have inserted new defs, but that's
2350  // not the key issue.
2351  recomputeLiveInValues(F, DT, ToUpdate, Records);
2352
2353  if (PrintBasePointers) {
2354    for (auto &Info : Records) {
2355      errs() << "Base Pairs: (w/Relocation)\n";
2356      for (auto Pair : Info.PointerToBase) {
2357        errs() << " derived ";
2358        Pair.first->printAsOperand(errs(), false);
2359        errs() << " base ";
2360        Pair.second->printAsOperand(errs(), false);
2361        errs() << "\n";
2362      }
2363    }
2364  }
2365
2366  // It is possible that non-constant live variables have a constant base.  For
2367  // example, a GEP with a variable offset from a global.  In this case we can
2368  // remove it from the liveset.  We already don't add constants to the liveset
2369  // because we assume they won't move at runtime and the GC doesn't need to be
2370  // informed about them.  The same reasoning applies if the base is constant.
2371  // Note that the relocation placement code relies on this filtering for
2372  // correctness as it expects the base to be in the liveset, which isn't true
2373  // if the base is constant.
2374  for (auto &Info : Records)
2375    for (auto &BasePair : Info.PointerToBase)
2376      if (isa<Constant>(BasePair.second))
2377        Info.LiveSet.erase(BasePair.first);
2378
2379  for (CallInst *CI : Holders)
2380    CI->eraseFromParent();
2381
2382  Holders.clear();
2383
2384  // Do a limited scalarization of any live at safepoint vector values which
2385  // contain pointers.  This enables this pass to run after vectorization at
2386  // the cost of some possible performance loss.  Note: This is known to not
2387  // handle updating of the side tables correctly which can lead to relocation
2388  // bugs when the same vector is live at multiple statepoints.  We're in the
2389  // process of implementing the alternate lowering - relocating the
2390  // vector-of-pointers as first class item and updating the backend to
2391  // understand that - but that's not yet complete.
2392  if (UseVectorSplit)
2393    for (size_t i = 0; i < Records.size(); i++) {
2394      PartiallyConstructedSafepointRecord &Info = Records[i];
2395      Instruction *Statepoint = ToUpdate[i].getInstruction();
2396      splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
2397                        Info.PointerToBase, DT);
2398    }
2399
2400  // In order to reduce live set of statepoint we might choose to rematerialize
2401  // some values instead of relocating them. This is purely an optimization and
2402  // does not influence correctness.
2403  for (size_t i = 0; i < Records.size(); i++)
2404    rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2405
2406  // We need this to safely RAUW and delete call or invoke return values that
2407  // may themselves be live over a statepoint.  For details, please see usage in
2408  // makeStatepointExplicitImpl.
2409  std::vector<DeferredReplacement> Replacements;
2410
2411  // Now run through and replace the existing statepoints with new ones with
2412  // the live variables listed.  We do not yet update uses of the values being
2413  // relocated. We have references to live variables that need to
2414  // survive to the last iteration of this loop.  (By construction, the
2415  // previous statepoint can not be a live variable, thus we can and remove
2416  // the old statepoint calls as we go.)
2417  for (size_t i = 0; i < Records.size(); i++)
2418    makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2419
2420  ToUpdate.clear(); // prevent accident use of invalid CallSites
2421
2422  for (auto &PR : Replacements)
2423    PR.doReplacement();
2424
2425  Replacements.clear();
2426
2427  for (auto &Info : Records) {
2428    // These live sets may contain state Value pointers, since we replaced calls
2429    // with operand bundles with calls wrapped in gc.statepoint, and some of
2430    // those calls may have been def'ing live gc pointers.  Clear these out to
2431    // avoid accidentally using them.
2432    //
2433    // TODO: We should create a separate data structure that does not contain
2434    // these live sets, and migrate to using that data structure from this point
2435    // onward.
2436    Info.LiveSet.clear();
2437    Info.PointerToBase.clear();
2438  }
2439
2440  // Do all the fixups of the original live variables to their relocated selves
2441  SmallVector<Value *, 128> Live;
2442  for (size_t i = 0; i < Records.size(); i++) {
2443    PartiallyConstructedSafepointRecord &Info = Records[i];
2444
2445    // We can't simply save the live set from the original insertion.  One of
2446    // the live values might be the result of a call which needs a safepoint.
2447    // That Value* no longer exists and we need to use the new gc_result.
2448    // Thankfully, the live set is embedded in the statepoint (and updated), so
2449    // we just grab that.
2450    Statepoint Statepoint(Info.StatepointToken);
2451    Live.insert(Live.end(), Statepoint.gc_args_begin(),
2452                Statepoint.gc_args_end());
2453#ifndef NDEBUG
2454    // Do some basic sanity checks on our liveness results before performing
2455    // relocation.  Relocation can and will turn mistakes in liveness results
2456    // into non-sensical code which is must harder to debug.
2457    // TODO: It would be nice to test consistency as well
2458    assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2459           "statepoint must be reachable or liveness is meaningless");
2460    for (Value *V : Statepoint.gc_args()) {
2461      if (!isa<Instruction>(V))
2462        // Non-instruction values trivial dominate all possible uses
2463        continue;
2464      auto *LiveInst = cast<Instruction>(V);
2465      assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2466             "unreachable values should never be live");
2467      assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2468             "basic SSA liveness expectation violated by liveness analysis");
2469    }
2470#endif
2471  }
2472  unique_unsorted(Live);
2473
2474#ifndef NDEBUG
2475  // sanity check
2476  for (auto *Ptr : Live)
2477    assert(isHandledGCPointerType(Ptr->getType()) &&
2478           "must be a gc pointer type");
2479#endif
2480
2481  relocationViaAlloca(F, DT, Live, Records);
2482  return !Records.empty();
2483}
2484
2485// Handles both return values and arguments for Functions and CallSites.
2486template <typename AttrHolder>
2487static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2488                                      unsigned Index) {
2489  AttrBuilder R;
2490  if (AH.getDereferenceableBytes(Index))
2491    R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2492                                  AH.getDereferenceableBytes(Index)));
2493  if (AH.getDereferenceableOrNullBytes(Index))
2494    R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2495                                  AH.getDereferenceableOrNullBytes(Index)));
2496  if (AH.doesNotAlias(Index))
2497    R.addAttribute(Attribute::NoAlias);
2498
2499  if (!R.empty())
2500    AH.setAttributes(AH.getAttributes().removeAttributes(
2501        Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2502}
2503
2504void
2505RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2506  LLVMContext &Ctx = F.getContext();
2507
2508  for (Argument &A : F.args())
2509    if (isa<PointerType>(A.getType()))
2510      RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2511
2512  if (isa<PointerType>(F.getReturnType()))
2513    RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2514}
2515
2516void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2517  if (F.empty())
2518    return;
2519
2520  LLVMContext &Ctx = F.getContext();
2521  MDBuilder Builder(Ctx);
2522
2523  for (Instruction &I : instructions(F)) {
2524    if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2525      assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2526      bool IsImmutableTBAA =
2527          MD->getNumOperands() == 4 &&
2528          mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2529
2530      if (!IsImmutableTBAA)
2531        continue; // no work to do, MD_tbaa is already marked mutable
2532
2533      MDNode *Base = cast<MDNode>(MD->getOperand(0));
2534      MDNode *Access = cast<MDNode>(MD->getOperand(1));
2535      uint64_t Offset =
2536          mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2537
2538      MDNode *MutableTBAA =
2539          Builder.createTBAAStructTagNode(Base, Access, Offset);
2540      I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2541    }
2542
2543    if (CallSite CS = CallSite(&I)) {
2544      for (int i = 0, e = CS.arg_size(); i != e; i++)
2545        if (isa<PointerType>(CS.getArgument(i)->getType()))
2546          RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2547      if (isa<PointerType>(CS.getType()))
2548        RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2549    }
2550  }
2551}
2552
2553/// Returns true if this function should be rewritten by this pass.  The main
2554/// point of this function is as an extension point for custom logic.
2555static bool shouldRewriteStatepointsIn(Function &F) {
2556  // TODO: This should check the GCStrategy
2557  if (F.hasGC()) {
2558    const auto &FunctionGCName = F.getGC();
2559    const StringRef StatepointExampleName("statepoint-example");
2560    const StringRef CoreCLRName("coreclr");
2561    return (StatepointExampleName == FunctionGCName) ||
2562           (CoreCLRName == FunctionGCName);
2563  } else
2564    return false;
2565}
2566
2567void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2568#ifndef NDEBUG
2569  assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2570         "precondition!");
2571#endif
2572
2573  for (Function &F : M)
2574    stripNonValidAttributesFromPrototype(F);
2575
2576  for (Function &F : M)
2577    stripNonValidAttributesFromBody(F);
2578}
2579
2580bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2581  // Nothing to do for declarations.
2582  if (F.isDeclaration() || F.empty())
2583    return false;
2584
2585  // Policy choice says not to rewrite - the most common reason is that we're
2586  // compiling code without a GCStrategy.
2587  if (!shouldRewriteStatepointsIn(F))
2588    return false;
2589
2590  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2591  TargetTransformInfo &TTI =
2592      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2593
2594  auto NeedsRewrite = [](Instruction &I) {
2595    if (UseDeoptBundles) {
2596      if (ImmutableCallSite CS = ImmutableCallSite(&I))
2597        return !callsGCLeafFunction(CS);
2598      return false;
2599    }
2600
2601    return isStatepoint(I);
2602  };
2603
2604  // Gather all the statepoints which need rewritten.  Be careful to only
2605  // consider those in reachable code since we need to ask dominance queries
2606  // when rewriting.  We'll delete the unreachable ones in a moment.
2607  SmallVector<CallSite, 64> ParsePointNeeded;
2608  bool HasUnreachableStatepoint = false;
2609  for (Instruction &I : instructions(F)) {
2610    // TODO: only the ones with the flag set!
2611    if (NeedsRewrite(I)) {
2612      if (DT.isReachableFromEntry(I.getParent()))
2613        ParsePointNeeded.push_back(CallSite(&I));
2614      else
2615        HasUnreachableStatepoint = true;
2616    }
2617  }
2618
2619  bool MadeChange = false;
2620
2621  // Delete any unreachable statepoints so that we don't have unrewritten
2622  // statepoints surviving this pass.  This makes testing easier and the
2623  // resulting IR less confusing to human readers.  Rather than be fancy, we
2624  // just reuse a utility function which removes the unreachable blocks.
2625  if (HasUnreachableStatepoint)
2626    MadeChange |= removeUnreachableBlocks(F);
2627
2628  // Return early if no work to do.
2629  if (ParsePointNeeded.empty())
2630    return MadeChange;
2631
2632  // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2633  // These are created by LCSSA.  They have the effect of increasing the size
2634  // of liveness sets for no good reason.  It may be harder to do this post
2635  // insertion since relocations and base phis can confuse things.
2636  for (BasicBlock &BB : F)
2637    if (BB.getUniquePredecessor()) {
2638      MadeChange = true;
2639      FoldSingleEntryPHINodes(&BB);
2640    }
2641
2642  // Before we start introducing relocations, we want to tweak the IR a bit to
2643  // avoid unfortunate code generation effects.  The main example is that we
2644  // want to try to make sure the comparison feeding a branch is after any
2645  // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2646  // values feeding a branch after relocation.  This is semantically correct,
2647  // but results in extra register pressure since both the pre-relocation and
2648  // post-relocation copies must be available in registers.  For code without
2649  // relocations this is handled elsewhere, but teaching the scheduler to
2650  // reverse the transform we're about to do would be slightly complex.
2651  // Note: This may extend the live range of the inputs to the icmp and thus
2652  // increase the liveset of any statepoint we move over.  This is profitable
2653  // as long as all statepoints are in rare blocks.  If we had in-register
2654  // lowering for live values this would be a much safer transform.
2655  auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2656    if (auto *BI = dyn_cast<BranchInst>(TI))
2657      if (BI->isConditional())
2658        return dyn_cast<Instruction>(BI->getCondition());
2659    // TODO: Extend this to handle switches
2660    return nullptr;
2661  };
2662  for (BasicBlock &BB : F) {
2663    TerminatorInst *TI = BB.getTerminator();
2664    if (auto *Cond = getConditionInst(TI))
2665      // TODO: Handle more than just ICmps here.  We should be able to move
2666      // most instructions without side effects or memory access.
2667      if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2668        MadeChange = true;
2669        Cond->moveBefore(TI);
2670      }
2671  }
2672
2673  MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2674  return MadeChange;
2675}
2676
2677// liveness computation via standard dataflow
2678// -------------------------------------------------------------------
2679
2680// TODO: Consider using bitvectors for liveness, the set of potentially
2681// interesting values should be small and easy to pre-compute.
2682
2683/// Compute the live-in set for the location rbegin starting from
2684/// the live-out set of the basic block
2685static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2686                                BasicBlock::reverse_iterator rend,
2687                                DenseSet<Value *> &LiveTmp) {
2688
2689  for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2690    Instruction *I = &*ritr;
2691
2692    // KILL/Def - Remove this definition from LiveIn
2693    LiveTmp.erase(I);
2694
2695    // Don't consider *uses* in PHI nodes, we handle their contribution to
2696    // predecessor blocks when we seed the LiveOut sets
2697    if (isa<PHINode>(I))
2698      continue;
2699
2700    // USE - Add to the LiveIn set for this instruction
2701    for (Value *V : I->operands()) {
2702      assert(!isUnhandledGCPointerType(V->getType()) &&
2703             "support for FCA unimplemented");
2704      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2705        // The choice to exclude all things constant here is slightly subtle.
2706        // There are two independent reasons:
2707        // - We assume that things which are constant (from LLVM's definition)
2708        // do not move at runtime.  For example, the address of a global
2709        // variable is fixed, even though it's contents may not be.
2710        // - Second, we can't disallow arbitrary inttoptr constants even
2711        // if the language frontend does.  Optimization passes are free to
2712        // locally exploit facts without respect to global reachability.  This
2713        // can create sections of code which are dynamically unreachable and
2714        // contain just about anything.  (see constants.ll in tests)
2715        LiveTmp.insert(V);
2716      }
2717    }
2718  }
2719}
2720
2721static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2722
2723  for (BasicBlock *Succ : successors(BB)) {
2724    const BasicBlock::iterator E(Succ->getFirstNonPHI());
2725    for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2726      PHINode *Phi = cast<PHINode>(&*I);
2727      Value *V = Phi->getIncomingValueForBlock(BB);
2728      assert(!isUnhandledGCPointerType(V->getType()) &&
2729             "support for FCA unimplemented");
2730      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2731        LiveTmp.insert(V);
2732      }
2733    }
2734  }
2735}
2736
2737static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2738  DenseSet<Value *> KillSet;
2739  for (Instruction &I : *BB)
2740    if (isHandledGCPointerType(I.getType()))
2741      KillSet.insert(&I);
2742  return KillSet;
2743}
2744
2745#ifndef NDEBUG
2746/// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2747/// sanity check for the liveness computation.
2748static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2749                          TerminatorInst *TI, bool TermOkay = false) {
2750  for (Value *V : Live) {
2751    if (auto *I = dyn_cast<Instruction>(V)) {
2752      // The terminator can be a member of the LiveOut set.  LLVM's definition
2753      // of instruction dominance states that V does not dominate itself.  As
2754      // such, we need to special case this to allow it.
2755      if (TermOkay && TI == I)
2756        continue;
2757      assert(DT.dominates(I, TI) &&
2758             "basic SSA liveness expectation violated by liveness analysis");
2759    }
2760  }
2761}
2762
2763/// Check that all the liveness sets used during the computation of liveness
2764/// obey basic SSA properties.  This is useful for finding cases where we miss
2765/// a def.
2766static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2767                          BasicBlock &BB) {
2768  checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2769  checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2770  checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2771}
2772#endif
2773
2774static void computeLiveInValues(DominatorTree &DT, Function &F,
2775                                GCPtrLivenessData &Data) {
2776
2777  SmallSetVector<BasicBlock *, 200> Worklist;
2778  auto AddPredsToWorklist = [&](BasicBlock *BB) {
2779    // We use a SetVector so that we don't have duplicates in the worklist.
2780    Worklist.insert(pred_begin(BB), pred_end(BB));
2781  };
2782  auto NextItem = [&]() {
2783    BasicBlock *BB = Worklist.back();
2784    Worklist.pop_back();
2785    return BB;
2786  };
2787
2788  // Seed the liveness for each individual block
2789  for (BasicBlock &BB : F) {
2790    Data.KillSet[&BB] = computeKillSet(&BB);
2791    Data.LiveSet[&BB].clear();
2792    computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2793
2794#ifndef NDEBUG
2795    for (Value *Kill : Data.KillSet[&BB])
2796      assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2797#endif
2798
2799    Data.LiveOut[&BB] = DenseSet<Value *>();
2800    computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2801    Data.LiveIn[&BB] = Data.LiveSet[&BB];
2802    set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2803    set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2804    if (!Data.LiveIn[&BB].empty())
2805      AddPredsToWorklist(&BB);
2806  }
2807
2808  // Propagate that liveness until stable
2809  while (!Worklist.empty()) {
2810    BasicBlock *BB = NextItem();
2811
2812    // Compute our new liveout set, then exit early if it hasn't changed
2813    // despite the contribution of our successor.
2814    DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2815    const auto OldLiveOutSize = LiveOut.size();
2816    for (BasicBlock *Succ : successors(BB)) {
2817      assert(Data.LiveIn.count(Succ));
2818      set_union(LiveOut, Data.LiveIn[Succ]);
2819    }
2820    // assert OutLiveOut is a subset of LiveOut
2821    if (OldLiveOutSize == LiveOut.size()) {
2822      // If the sets are the same size, then we didn't actually add anything
2823      // when unioning our successors LiveIn  Thus, the LiveIn of this block
2824      // hasn't changed.
2825      continue;
2826    }
2827    Data.LiveOut[BB] = LiveOut;
2828
2829    // Apply the effects of this basic block
2830    DenseSet<Value *> LiveTmp = LiveOut;
2831    set_union(LiveTmp, Data.LiveSet[BB]);
2832    set_subtract(LiveTmp, Data.KillSet[BB]);
2833
2834    assert(Data.LiveIn.count(BB));
2835    const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2836    // assert: OldLiveIn is a subset of LiveTmp
2837    if (OldLiveIn.size() != LiveTmp.size()) {
2838      Data.LiveIn[BB] = LiveTmp;
2839      AddPredsToWorklist(BB);
2840    }
2841  } // while( !worklist.empty() )
2842
2843#ifndef NDEBUG
2844  // Sanity check our output against SSA properties.  This helps catch any
2845  // missing kills during the above iteration.
2846  for (BasicBlock &BB : F) {
2847    checkBasicSSA(DT, Data, BB);
2848  }
2849#endif
2850}
2851
2852static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2853                              StatepointLiveSetTy &Out) {
2854
2855  BasicBlock *BB = Inst->getParent();
2856
2857  // Note: The copy is intentional and required
2858  assert(Data.LiveOut.count(BB));
2859  DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2860
2861  // We want to handle the statepoint itself oddly.  It's
2862  // call result is not live (normal), nor are it's arguments
2863  // (unless they're used again later).  This adjustment is
2864  // specifically what we need to relocate
2865  BasicBlock::reverse_iterator rend(Inst->getIterator());
2866  computeLiveInValues(BB->rbegin(), rend, LiveOut);
2867  LiveOut.erase(Inst);
2868  Out.insert(LiveOut.begin(), LiveOut.end());
2869}
2870
2871static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2872                                  const CallSite &CS,
2873                                  PartiallyConstructedSafepointRecord &Info) {
2874  Instruction *Inst = CS.getInstruction();
2875  StatepointLiveSetTy Updated;
2876  findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2877
2878#ifndef NDEBUG
2879  DenseSet<Value *> Bases;
2880  for (auto KVPair : Info.PointerToBase) {
2881    Bases.insert(KVPair.second);
2882  }
2883#endif
2884  // We may have base pointers which are now live that weren't before.  We need
2885  // to update the PointerToBase structure to reflect this.
2886  for (auto V : Updated)
2887    if (!Info.PointerToBase.count(V)) {
2888      assert(Bases.count(V) && "can't find base for unexpected live value");
2889      Info.PointerToBase[V] = V;
2890      continue;
2891    }
2892
2893#ifndef NDEBUG
2894  for (auto V : Updated) {
2895    assert(Info.PointerToBase.count(V) &&
2896           "must be able to find base for live value");
2897  }
2898#endif
2899
2900  // Remove any stale base mappings - this can happen since our liveness is
2901  // more precise then the one inherent in the base pointer analysis
2902  DenseSet<Value *> ToErase;
2903  for (auto KVPair : Info.PointerToBase)
2904    if (!Updated.count(KVPair.first))
2905      ToErase.insert(KVPair.first);
2906  for (auto V : ToErase)
2907    Info.PointerToBase.erase(V);
2908
2909#ifndef NDEBUG
2910  for (auto KVPair : Info.PointerToBase)
2911    assert(Updated.count(KVPair.first) && "record for non-live value");
2912#endif
2913
2914  Info.LiveSet = Updated;
2915}
2916