Reassociate.cpp revision 280031
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/IR/CFG.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/ValueHandle.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include <algorithm>
42using namespace llvm;
43
44#define DEBUG_TYPE "reassociate"
45
46STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
49
50namespace {
51  struct ValueEntry {
52    unsigned Rank;
53    Value *Op;
54    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55  };
56  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58  }
59}
60
61#ifndef NDEBUG
62/// PrintOps - Print out the expression identified in the Ops list.
63///
64static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65  Module *M = I->getParent()->getParent()->getParent();
66  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67       << *Ops[0].Op->getType() << '\t';
68  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69    dbgs() << "[ ";
70    Ops[i].Op->printAsOperand(dbgs(), false, M);
71    dbgs() << ", #" << Ops[i].Rank << "] ";
72  }
73}
74#endif
75
76namespace {
77  /// \brief Utility class representing a base and exponent pair which form one
78  /// factor of some product.
79  struct Factor {
80    Value *Base;
81    unsigned Power;
82
83    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85    /// \brief Sort factors by their Base.
86    struct BaseSorter {
87      bool operator()(const Factor &LHS, const Factor &RHS) {
88        return LHS.Base < RHS.Base;
89      }
90    };
91
92    /// \brief Compare factors for equal bases.
93    struct BaseEqual {
94      bool operator()(const Factor &LHS, const Factor &RHS) {
95        return LHS.Base == RHS.Base;
96      }
97    };
98
99    /// \brief Sort factors in descending order by their power.
100    struct PowerDescendingSorter {
101      bool operator()(const Factor &LHS, const Factor &RHS) {
102        return LHS.Power > RHS.Power;
103      }
104    };
105
106    /// \brief Compare factors for equal powers.
107    struct PowerEqual {
108      bool operator()(const Factor &LHS, const Factor &RHS) {
109        return LHS.Power == RHS.Power;
110      }
111    };
112  };
113
114  /// Utility class representing a non-constant Xor-operand. We classify
115  /// non-constant Xor-Operands into two categories:
116  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
117  ///  C2)
118  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
119  ///          constant.
120  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121  ///          operand as "E | 0"
122  class XorOpnd {
123  public:
124    XorOpnd(Value *V);
125
126    bool isInvalid() const { return SymbolicPart == nullptr; }
127    bool isOrExpr() const { return isOr; }
128    Value *getValue() const { return OrigVal; }
129    Value *getSymbolicPart() const { return SymbolicPart; }
130    unsigned getSymbolicRank() const { return SymbolicRank; }
131    const APInt &getConstPart() const { return ConstPart; }
132
133    void Invalidate() { SymbolicPart = OrigVal = nullptr; }
134    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135
136    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137    // The purpose is twofold:
138    // 1) Cluster together the operands sharing the same symbolic-value.
139    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140    //   could potentially shorten crital path, and expose more loop-invariants.
141    //   Note that values' rank are basically defined in RPO order (FIXME).
142    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144    //   "z" in the order of X-Y-Z is better than any other orders.
145    struct PtrSortFunctor {
146      bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147        return LHS->getSymbolicRank() < RHS->getSymbolicRank();
148      }
149    };
150  private:
151    Value *OrigVal;
152    Value *SymbolicPart;
153    APInt ConstPart;
154    unsigned SymbolicRank;
155    bool isOr;
156  };
157}
158
159namespace {
160  class Reassociate : public FunctionPass {
161    DenseMap<BasicBlock*, unsigned> RankMap;
162    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
163    SetVector<AssertingVH<Instruction> > RedoInsts;
164    bool MadeChange;
165  public:
166    static char ID; // Pass identification, replacement for typeid
167    Reassociate() : FunctionPass(ID) {
168      initializeReassociatePass(*PassRegistry::getPassRegistry());
169    }
170
171    bool runOnFunction(Function &F) override;
172
173    void getAnalysisUsage(AnalysisUsage &AU) const override {
174      AU.setPreservesCFG();
175    }
176  private:
177    void BuildRankMap(Function &F);
178    unsigned getRank(Value *V);
179    void canonicalizeOperands(Instruction *I);
180    void ReassociateExpression(BinaryOperator *I);
181    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
182    Value *OptimizeExpression(BinaryOperator *I,
183                              SmallVectorImpl<ValueEntry> &Ops);
184    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
186    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
187                        Value *&Res);
188    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
189                        APInt &ConstOpnd, Value *&Res);
190    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
191                                SmallVectorImpl<Factor> &Factors);
192    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
193                                   SmallVectorImpl<Factor> &Factors);
194    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
195    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
196    void EraseInst(Instruction *I);
197    void OptimizeInst(Instruction *I);
198    Instruction *canonicalizeNegConstExpr(Instruction *I);
199  };
200}
201
202XorOpnd::XorOpnd(Value *V) {
203  assert(!isa<ConstantInt>(V) && "No ConstantInt");
204  OrigVal = V;
205  Instruction *I = dyn_cast<Instruction>(V);
206  SymbolicRank = 0;
207
208  if (I && (I->getOpcode() == Instruction::Or ||
209            I->getOpcode() == Instruction::And)) {
210    Value *V0 = I->getOperand(0);
211    Value *V1 = I->getOperand(1);
212    if (isa<ConstantInt>(V0))
213      std::swap(V0, V1);
214
215    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
216      ConstPart = C->getValue();
217      SymbolicPart = V0;
218      isOr = (I->getOpcode() == Instruction::Or);
219      return;
220    }
221  }
222
223  // view the operand as "V | 0"
224  SymbolicPart = V;
225  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
226  isOr = true;
227}
228
229char Reassociate::ID = 0;
230INITIALIZE_PASS(Reassociate, "reassociate",
231                "Reassociate expressions", false, false)
232
233// Public interface to the Reassociate pass
234FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
235
236/// isReassociableOp - Return true if V is an instruction of the specified
237/// opcode and if it only has one use.
238static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
239  if (V->hasOneUse() && isa<Instruction>(V) &&
240      cast<Instruction>(V)->getOpcode() == Opcode &&
241      (!isa<FPMathOperator>(V) ||
242       cast<Instruction>(V)->hasUnsafeAlgebra()))
243    return cast<BinaryOperator>(V);
244  return nullptr;
245}
246
247static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
248                                        unsigned Opcode2) {
249  if (V->hasOneUse() && isa<Instruction>(V) &&
250      (cast<Instruction>(V)->getOpcode() == Opcode1 ||
251       cast<Instruction>(V)->getOpcode() == Opcode2) &&
252      (!isa<FPMathOperator>(V) ||
253       cast<Instruction>(V)->hasUnsafeAlgebra()))
254    return cast<BinaryOperator>(V);
255  return nullptr;
256}
257
258static bool isUnmovableInstruction(Instruction *I) {
259  switch (I->getOpcode()) {
260  case Instruction::PHI:
261  case Instruction::LandingPad:
262  case Instruction::Alloca:
263  case Instruction::Load:
264  case Instruction::Invoke:
265  case Instruction::UDiv:
266  case Instruction::SDiv:
267  case Instruction::FDiv:
268  case Instruction::URem:
269  case Instruction::SRem:
270  case Instruction::FRem:
271    return true;
272  case Instruction::Call:
273    return !isa<DbgInfoIntrinsic>(I);
274  default:
275    return false;
276  }
277}
278
279void Reassociate::BuildRankMap(Function &F) {
280  unsigned i = 2;
281
282  // Assign distinct ranks to function arguments.
283  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
284    ValueRankMap[&*I] = ++i;
285    DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
286  }
287
288  ReversePostOrderTraversal<Function*> RPOT(&F);
289  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
290         E = RPOT.end(); I != E; ++I) {
291    BasicBlock *BB = *I;
292    unsigned BBRank = RankMap[BB] = ++i << 16;
293
294    // Walk the basic block, adding precomputed ranks for any instructions that
295    // we cannot move.  This ensures that the ranks for these instructions are
296    // all different in the block.
297    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
298      if (isUnmovableInstruction(I))
299        ValueRankMap[&*I] = ++BBRank;
300  }
301}
302
303unsigned Reassociate::getRank(Value *V) {
304  Instruction *I = dyn_cast<Instruction>(V);
305  if (!I) {
306    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
307    return 0;  // Otherwise it's a global or constant, rank 0.
308  }
309
310  if (unsigned Rank = ValueRankMap[I])
311    return Rank;    // Rank already known?
312
313  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
314  // we can reassociate expressions for code motion!  Since we do not recurse
315  // for PHI nodes, we cannot have infinite recursion here, because there
316  // cannot be loops in the value graph that do not go through PHI nodes.
317  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
318  for (unsigned i = 0, e = I->getNumOperands();
319       i != e && Rank != MaxRank; ++i)
320    Rank = std::max(Rank, getRank(I->getOperand(i)));
321
322  // If this is a not or neg instruction, do not count it for rank.  This
323  // assures us that X and ~X will have the same rank.
324  Type *Ty = V->getType();
325  if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
326      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
327       !BinaryOperator::isFNeg(I)))
328    ++Rank;
329
330  DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
331
332  return ValueRankMap[I] = Rank;
333}
334
335// Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
336void Reassociate::canonicalizeOperands(Instruction *I) {
337  assert(isa<BinaryOperator>(I) && "Expected binary operator.");
338  assert(I->isCommutative() && "Expected commutative operator.");
339
340  Value *LHS = I->getOperand(0);
341  Value *RHS = I->getOperand(1);
342  unsigned LHSRank = getRank(LHS);
343  unsigned RHSRank = getRank(RHS);
344
345  if (isa<Constant>(RHS))
346    return;
347
348  if (isa<Constant>(LHS) || RHSRank < LHSRank)
349    cast<BinaryOperator>(I)->swapOperands();
350}
351
352static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
353                                 Instruction *InsertBefore, Value *FlagsOp) {
354  if (S1->getType()->isIntegerTy())
355    return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
356  else {
357    BinaryOperator *Res =
358        BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
359    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
360    return Res;
361  }
362}
363
364static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
365                                 Instruction *InsertBefore, Value *FlagsOp) {
366  if (S1->getType()->isIntegerTy())
367    return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
368  else {
369    BinaryOperator *Res =
370      BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
371    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
372    return Res;
373  }
374}
375
376static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
377                                 Instruction *InsertBefore, Value *FlagsOp) {
378  if (S1->getType()->isIntegerTy())
379    return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
380  else {
381    BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
382    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
383    return Res;
384  }
385}
386
387/// LowerNegateToMultiply - Replace 0-X with X*-1.
388///
389static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
390  Type *Ty = Neg->getType();
391  Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
392                                       : ConstantFP::get(Ty, -1.0);
393
394  BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
395  Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
396  Res->takeName(Neg);
397  Neg->replaceAllUsesWith(Res);
398  Res->setDebugLoc(Neg->getDebugLoc());
399  return Res;
400}
401
402/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
403/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
404/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
405/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
406/// even x in Bitwidth-bit arithmetic.
407static unsigned CarmichaelShift(unsigned Bitwidth) {
408  if (Bitwidth < 3)
409    return Bitwidth - 1;
410  return Bitwidth - 2;
411}
412
413/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
414/// reducing the combined weight using any special properties of the operation.
415/// The existing weight LHS represents the computation X op X op ... op X where
416/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
417/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
418/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
419/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
420static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
421  // If we were working with infinite precision arithmetic then the combined
422  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
423  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
424  // for nilpotent operations and addition, but not for idempotent operations
425  // and multiplication), so it is important to correctly reduce the combined
426  // weight back into range if wrapping would be wrong.
427
428  // If RHS is zero then the weight didn't change.
429  if (RHS.isMinValue())
430    return;
431  // If LHS is zero then the combined weight is RHS.
432  if (LHS.isMinValue()) {
433    LHS = RHS;
434    return;
435  }
436  // From this point on we know that neither LHS nor RHS is zero.
437
438  if (Instruction::isIdempotent(Opcode)) {
439    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
440    // weight of 1.  Keeping weights at zero or one also means that wrapping is
441    // not a problem.
442    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
443    return; // Return a weight of 1.
444  }
445  if (Instruction::isNilpotent(Opcode)) {
446    // Nilpotent means X op X === 0, so reduce weights modulo 2.
447    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
448    LHS = 0; // 1 + 1 === 0 modulo 2.
449    return;
450  }
451  if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
452    // TODO: Reduce the weight by exploiting nsw/nuw?
453    LHS += RHS;
454    return;
455  }
456
457  assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
458         "Unknown associative operation!");
459  unsigned Bitwidth = LHS.getBitWidth();
460  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
461  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
462  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
463  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
464  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
465  // which by a happy accident means that they can always be represented using
466  // Bitwidth bits.
467  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
468  // the Carmichael number).
469  if (Bitwidth > 3) {
470    /// CM - The value of Carmichael's lambda function.
471    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
472    // Any weight W >= Threshold can be replaced with W - CM.
473    APInt Threshold = CM + Bitwidth;
474    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
475    // For Bitwidth 4 or more the following sum does not overflow.
476    LHS += RHS;
477    while (LHS.uge(Threshold))
478      LHS -= CM;
479  } else {
480    // To avoid problems with overflow do everything the same as above but using
481    // a larger type.
482    unsigned CM = 1U << CarmichaelShift(Bitwidth);
483    unsigned Threshold = CM + Bitwidth;
484    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
485           "Weights not reduced!");
486    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
487    while (Total >= Threshold)
488      Total -= CM;
489    LHS = Total;
490  }
491}
492
493typedef std::pair<Value*, APInt> RepeatedValue;
494
495/// LinearizeExprTree - Given an associative binary expression, return the leaf
496/// nodes in Ops along with their weights (how many times the leaf occurs).  The
497/// original expression is the same as
498///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
499/// op
500///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
501/// op
502///   ...
503/// op
504///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
505///
506/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
507///
508/// This routine may modify the function, in which case it returns 'true'.  The
509/// changes it makes may well be destructive, changing the value computed by 'I'
510/// to something completely different.  Thus if the routine returns 'true' then
511/// you MUST either replace I with a new expression computed from the Ops array,
512/// or use RewriteExprTree to put the values back in.
513///
514/// A leaf node is either not a binary operation of the same kind as the root
515/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
516/// opcode), or is the same kind of binary operator but has a use which either
517/// does not belong to the expression, or does belong to the expression but is
518/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
519/// of the expression, while for non-leaf nodes (except for the root 'I') every
520/// use is a non-leaf node of the expression.
521///
522/// For example:
523///           expression graph        node names
524///
525///                     +        |        I
526///                    / \       |
527///                   +   +      |      A,  B
528///                  / \ / \     |
529///                 *   +   *    |    C,  D,  E
530///                / \ / \ / \   |
531///                   +   *      |      F,  G
532///
533/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
534/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
535///
536/// The expression is maximal: if some instruction is a binary operator of the
537/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
538/// then the instruction also belongs to the expression, is not a leaf node of
539/// it, and its operands also belong to the expression (but may be leaf nodes).
540///
541/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
542/// order to ensure that every non-root node in the expression has *exactly one*
543/// use by a non-leaf node of the expression.  This destruction means that the
544/// caller MUST either replace 'I' with a new expression or use something like
545/// RewriteExprTree to put the values back in if the routine indicates that it
546/// made a change by returning 'true'.
547///
548/// In the above example either the right operand of A or the left operand of B
549/// will be replaced by undef.  If it is B's operand then this gives:
550///
551///                     +        |        I
552///                    / \       |
553///                   +   +      |      A,  B - operand of B replaced with undef
554///                  / \   \     |
555///                 *   +   *    |    C,  D,  E
556///                / \ / \ / \   |
557///                   +   *      |      F,  G
558///
559/// Note that such undef operands can only be reached by passing through 'I'.
560/// For example, if you visit operands recursively starting from a leaf node
561/// then you will never see such an undef operand unless you get back to 'I',
562/// which requires passing through a phi node.
563///
564/// Note that this routine may also mutate binary operators of the wrong type
565/// that have all uses inside the expression (i.e. only used by non-leaf nodes
566/// of the expression) if it can turn them into binary operators of the right
567/// type and thus make the expression bigger.
568
569static bool LinearizeExprTree(BinaryOperator *I,
570                              SmallVectorImpl<RepeatedValue> &Ops) {
571  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
572  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
573  unsigned Opcode = I->getOpcode();
574  assert(I->isAssociative() && I->isCommutative() &&
575         "Expected an associative and commutative operation!");
576
577  // Visit all operands of the expression, keeping track of their weight (the
578  // number of paths from the expression root to the operand, or if you like
579  // the number of times that operand occurs in the linearized expression).
580  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
581  // while A has weight two.
582
583  // Worklist of non-leaf nodes (their operands are in the expression too) along
584  // with their weights, representing a certain number of paths to the operator.
585  // If an operator occurs in the worklist multiple times then we found multiple
586  // ways to get to it.
587  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
588  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
589  bool Changed = false;
590
591  // Leaves of the expression are values that either aren't the right kind of
592  // operation (eg: a constant, or a multiply in an add tree), or are, but have
593  // some uses that are not inside the expression.  For example, in I = X + X,
594  // X = A + B, the value X has two uses (by I) that are in the expression.  If
595  // X has any other uses, for example in a return instruction, then we consider
596  // X to be a leaf, and won't analyze it further.  When we first visit a value,
597  // if it has more than one use then at first we conservatively consider it to
598  // be a leaf.  Later, as the expression is explored, we may discover some more
599  // uses of the value from inside the expression.  If all uses turn out to be
600  // from within the expression (and the value is a binary operator of the right
601  // kind) then the value is no longer considered to be a leaf, and its operands
602  // are explored.
603
604  // Leaves - Keeps track of the set of putative leaves as well as the number of
605  // paths to each leaf seen so far.
606  typedef DenseMap<Value*, APInt> LeafMap;
607  LeafMap Leaves; // Leaf -> Total weight so far.
608  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
609
610#ifndef NDEBUG
611  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
612#endif
613  while (!Worklist.empty()) {
614    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
615    I = P.first; // We examine the operands of this binary operator.
616
617    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
618      Value *Op = I->getOperand(OpIdx);
619      APInt Weight = P.second; // Number of paths to this operand.
620      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
621      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
622
623      // If this is a binary operation of the right kind with only one use then
624      // add its operands to the expression.
625      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
626        assert(Visited.insert(Op).second && "Not first visit!");
627        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
628        Worklist.push_back(std::make_pair(BO, Weight));
629        continue;
630      }
631
632      // Appears to be a leaf.  Is the operand already in the set of leaves?
633      LeafMap::iterator It = Leaves.find(Op);
634      if (It == Leaves.end()) {
635        // Not in the leaf map.  Must be the first time we saw this operand.
636        assert(Visited.insert(Op).second && "Not first visit!");
637        if (!Op->hasOneUse()) {
638          // This value has uses not accounted for by the expression, so it is
639          // not safe to modify.  Mark it as being a leaf.
640          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
641          LeafOrder.push_back(Op);
642          Leaves[Op] = Weight;
643          continue;
644        }
645        // No uses outside the expression, try morphing it.
646      } else if (It != Leaves.end()) {
647        // Already in the leaf map.
648        assert(Visited.count(Op) && "In leaf map but not visited!");
649
650        // Update the number of paths to the leaf.
651        IncorporateWeight(It->second, Weight, Opcode);
652
653#if 0   // TODO: Re-enable once PR13021 is fixed.
654        // The leaf already has one use from inside the expression.  As we want
655        // exactly one such use, drop this new use of the leaf.
656        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
657        I->setOperand(OpIdx, UndefValue::get(I->getType()));
658        Changed = true;
659
660        // If the leaf is a binary operation of the right kind and we now see
661        // that its multiple original uses were in fact all by nodes belonging
662        // to the expression, then no longer consider it to be a leaf and add
663        // its operands to the expression.
664        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
665          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
666          Worklist.push_back(std::make_pair(BO, It->second));
667          Leaves.erase(It);
668          continue;
669        }
670#endif
671
672        // If we still have uses that are not accounted for by the expression
673        // then it is not safe to modify the value.
674        if (!Op->hasOneUse())
675          continue;
676
677        // No uses outside the expression, try morphing it.
678        Weight = It->second;
679        Leaves.erase(It); // Since the value may be morphed below.
680      }
681
682      // At this point we have a value which, first of all, is not a binary
683      // expression of the right kind, and secondly, is only used inside the
684      // expression.  This means that it can safely be modified.  See if we
685      // can usefully morph it into an expression of the right kind.
686      assert((!isa<Instruction>(Op) ||
687              cast<Instruction>(Op)->getOpcode() != Opcode
688              || (isa<FPMathOperator>(Op) &&
689                  !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
690             "Should have been handled above!");
691      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
692
693      // If this is a multiply expression, turn any internal negations into
694      // multiplies by -1 so they can be reassociated.
695      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
696        if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
697            (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
698          DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
699          BO = LowerNegateToMultiply(BO);
700          DEBUG(dbgs() << *BO << '\n');
701          Worklist.push_back(std::make_pair(BO, Weight));
702          Changed = true;
703          continue;
704        }
705
706      // Failed to morph into an expression of the right type.  This really is
707      // a leaf.
708      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
709      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
710      LeafOrder.push_back(Op);
711      Leaves[Op] = Weight;
712    }
713  }
714
715  // The leaves, repeated according to their weights, represent the linearized
716  // form of the expression.
717  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
718    Value *V = LeafOrder[i];
719    LeafMap::iterator It = Leaves.find(V);
720    if (It == Leaves.end())
721      // Node initially thought to be a leaf wasn't.
722      continue;
723    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
724    APInt Weight = It->second;
725    if (Weight.isMinValue())
726      // Leaf already output or weight reduction eliminated it.
727      continue;
728    // Ensure the leaf is only output once.
729    It->second = 0;
730    Ops.push_back(std::make_pair(V, Weight));
731  }
732
733  // For nilpotent operations or addition there may be no operands, for example
734  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
735  // in both cases the weight reduces to 0 causing the value to be skipped.
736  if (Ops.empty()) {
737    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
738    assert(Identity && "Associative operation without identity!");
739    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
740  }
741
742  return Changed;
743}
744
745// RewriteExprTree - Now that the operands for this expression tree are
746// linearized and optimized, emit them in-order.
747void Reassociate::RewriteExprTree(BinaryOperator *I,
748                                  SmallVectorImpl<ValueEntry> &Ops) {
749  assert(Ops.size() > 1 && "Single values should be used directly!");
750
751  // Since our optimizations should never increase the number of operations, the
752  // new expression can usually be written reusing the existing binary operators
753  // from the original expression tree, without creating any new instructions,
754  // though the rewritten expression may have a completely different topology.
755  // We take care to not change anything if the new expression will be the same
756  // as the original.  If more than trivial changes (like commuting operands)
757  // were made then we are obliged to clear out any optional subclass data like
758  // nsw flags.
759
760  /// NodesToRewrite - Nodes from the original expression available for writing
761  /// the new expression into.
762  SmallVector<BinaryOperator*, 8> NodesToRewrite;
763  unsigned Opcode = I->getOpcode();
764  BinaryOperator *Op = I;
765
766  /// NotRewritable - The operands being written will be the leaves of the new
767  /// expression and must not be used as inner nodes (via NodesToRewrite) by
768  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
769  /// (if they were they would have been incorporated into the expression and so
770  /// would not be leaves), so most of the time there is no danger of this.  But
771  /// in rare cases a leaf may become reassociable if an optimization kills uses
772  /// of it, or it may momentarily become reassociable during rewriting (below)
773  /// due it being removed as an operand of one of its uses.  Ensure that misuse
774  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
775  /// leaves and refusing to reuse any of them as inner nodes.
776  SmallPtrSet<Value*, 8> NotRewritable;
777  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
778    NotRewritable.insert(Ops[i].Op);
779
780  // ExpressionChanged - Non-null if the rewritten expression differs from the
781  // original in some non-trivial way, requiring the clearing of optional flags.
782  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
783  BinaryOperator *ExpressionChanged = nullptr;
784  for (unsigned i = 0; ; ++i) {
785    // The last operation (which comes earliest in the IR) is special as both
786    // operands will come from Ops, rather than just one with the other being
787    // a subexpression.
788    if (i+2 == Ops.size()) {
789      Value *NewLHS = Ops[i].Op;
790      Value *NewRHS = Ops[i+1].Op;
791      Value *OldLHS = Op->getOperand(0);
792      Value *OldRHS = Op->getOperand(1);
793
794      if (NewLHS == OldLHS && NewRHS == OldRHS)
795        // Nothing changed, leave it alone.
796        break;
797
798      if (NewLHS == OldRHS && NewRHS == OldLHS) {
799        // The order of the operands was reversed.  Swap them.
800        DEBUG(dbgs() << "RA: " << *Op << '\n');
801        Op->swapOperands();
802        DEBUG(dbgs() << "TO: " << *Op << '\n');
803        MadeChange = true;
804        ++NumChanged;
805        break;
806      }
807
808      // The new operation differs non-trivially from the original. Overwrite
809      // the old operands with the new ones.
810      DEBUG(dbgs() << "RA: " << *Op << '\n');
811      if (NewLHS != OldLHS) {
812        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
813        if (BO && !NotRewritable.count(BO))
814          NodesToRewrite.push_back(BO);
815        Op->setOperand(0, NewLHS);
816      }
817      if (NewRHS != OldRHS) {
818        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
819        if (BO && !NotRewritable.count(BO))
820          NodesToRewrite.push_back(BO);
821        Op->setOperand(1, NewRHS);
822      }
823      DEBUG(dbgs() << "TO: " << *Op << '\n');
824
825      ExpressionChanged = Op;
826      MadeChange = true;
827      ++NumChanged;
828
829      break;
830    }
831
832    // Not the last operation.  The left-hand side will be a sub-expression
833    // while the right-hand side will be the current element of Ops.
834    Value *NewRHS = Ops[i].Op;
835    if (NewRHS != Op->getOperand(1)) {
836      DEBUG(dbgs() << "RA: " << *Op << '\n');
837      if (NewRHS == Op->getOperand(0)) {
838        // The new right-hand side was already present as the left operand.  If
839        // we are lucky then swapping the operands will sort out both of them.
840        Op->swapOperands();
841      } else {
842        // Overwrite with the new right-hand side.
843        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
844        if (BO && !NotRewritable.count(BO))
845          NodesToRewrite.push_back(BO);
846        Op->setOperand(1, NewRHS);
847        ExpressionChanged = Op;
848      }
849      DEBUG(dbgs() << "TO: " << *Op << '\n');
850      MadeChange = true;
851      ++NumChanged;
852    }
853
854    // Now deal with the left-hand side.  If this is already an operation node
855    // from the original expression then just rewrite the rest of the expression
856    // into it.
857    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
858    if (BO && !NotRewritable.count(BO)) {
859      Op = BO;
860      continue;
861    }
862
863    // Otherwise, grab a spare node from the original expression and use that as
864    // the left-hand side.  If there are no nodes left then the optimizers made
865    // an expression with more nodes than the original!  This usually means that
866    // they did something stupid but it might mean that the problem was just too
867    // hard (finding the mimimal number of multiplications needed to realize a
868    // multiplication expression is NP-complete).  Whatever the reason, smart or
869    // stupid, create a new node if there are none left.
870    BinaryOperator *NewOp;
871    if (NodesToRewrite.empty()) {
872      Constant *Undef = UndefValue::get(I->getType());
873      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
874                                     Undef, Undef, "", I);
875      if (NewOp->getType()->isFloatingPointTy())
876        NewOp->setFastMathFlags(I->getFastMathFlags());
877    } else {
878      NewOp = NodesToRewrite.pop_back_val();
879    }
880
881    DEBUG(dbgs() << "RA: " << *Op << '\n');
882    Op->setOperand(0, NewOp);
883    DEBUG(dbgs() << "TO: " << *Op << '\n');
884    ExpressionChanged = Op;
885    MadeChange = true;
886    ++NumChanged;
887    Op = NewOp;
888  }
889
890  // If the expression changed non-trivially then clear out all subclass data
891  // starting from the operator specified in ExpressionChanged, and compactify
892  // the operators to just before the expression root to guarantee that the
893  // expression tree is dominated by all of Ops.
894  if (ExpressionChanged)
895    do {
896      // Preserve FastMathFlags.
897      if (isa<FPMathOperator>(I)) {
898        FastMathFlags Flags = I->getFastMathFlags();
899        ExpressionChanged->clearSubclassOptionalData();
900        ExpressionChanged->setFastMathFlags(Flags);
901      } else
902        ExpressionChanged->clearSubclassOptionalData();
903
904      if (ExpressionChanged == I)
905        break;
906      ExpressionChanged->moveBefore(I);
907      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
908    } while (1);
909
910  // Throw away any left over nodes from the original expression.
911  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
912    RedoInsts.insert(NodesToRewrite[i]);
913}
914
915/// NegateValue - Insert instructions before the instruction pointed to by BI,
916/// that computes the negative version of the value specified.  The negative
917/// version of the value is returned, and BI is left pointing at the instruction
918/// that should be processed next by the reassociation pass.
919static Value *NegateValue(Value *V, Instruction *BI) {
920  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
921    return ConstantExpr::getFNeg(C);
922  if (Constant *C = dyn_cast<Constant>(V))
923    return ConstantExpr::getNeg(C);
924
925  // We are trying to expose opportunity for reassociation.  One of the things
926  // that we want to do to achieve this is to push a negation as deep into an
927  // expression chain as possible, to expose the add instructions.  In practice,
928  // this means that we turn this:
929  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
930  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
931  // the constants.  We assume that instcombine will clean up the mess later if
932  // we introduce tons of unnecessary negation instructions.
933  //
934  if (BinaryOperator *I =
935          isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
936    // Push the negates through the add.
937    I->setOperand(0, NegateValue(I->getOperand(0), BI));
938    I->setOperand(1, NegateValue(I->getOperand(1), BI));
939
940    // We must move the add instruction here, because the neg instructions do
941    // not dominate the old add instruction in general.  By moving it, we are
942    // assured that the neg instructions we just inserted dominate the
943    // instruction we are about to insert after them.
944    //
945    I->moveBefore(BI);
946    I->setName(I->getName()+".neg");
947    return I;
948  }
949
950  // Okay, we need to materialize a negated version of V with an instruction.
951  // Scan the use lists of V to see if we have one already.
952  for (User *U : V->users()) {
953    if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
954      continue;
955
956    // We found one!  Now we have to make sure that the definition dominates
957    // this use.  We do this by moving it to the entry block (if it is a
958    // non-instruction value) or right after the definition.  These negates will
959    // be zapped by reassociate later, so we don't need much finesse here.
960    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
961
962    // Verify that the negate is in this function, V might be a constant expr.
963    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
964      continue;
965
966    BasicBlock::iterator InsertPt;
967    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
968      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
969        InsertPt = II->getNormalDest()->begin();
970      } else {
971        InsertPt = InstInput;
972        ++InsertPt;
973      }
974      while (isa<PHINode>(InsertPt)) ++InsertPt;
975    } else {
976      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
977    }
978    TheNeg->moveBefore(InsertPt);
979    return TheNeg;
980  }
981
982  // Insert a 'neg' instruction that subtracts the value from zero to get the
983  // negation.
984  return CreateNeg(V, V->getName() + ".neg", BI, BI);
985}
986
987/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
988/// X-Y into (X + -Y).
989static bool ShouldBreakUpSubtract(Instruction *Sub) {
990  // If this is a negation, we can't split it up!
991  if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
992    return false;
993
994  // Don't breakup X - undef.
995  if (isa<UndefValue>(Sub->getOperand(1)))
996    return false;
997
998  // Don't bother to break this up unless either the LHS is an associable add or
999  // subtract or if this is only used by one.
1000  Value *V0 = Sub->getOperand(0);
1001  if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1002      isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1003    return true;
1004  Value *V1 = Sub->getOperand(1);
1005  if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1006      isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1007    return true;
1008  Value *VB = Sub->user_back();
1009  if (Sub->hasOneUse() &&
1010      (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1011       isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1012    return true;
1013
1014  return false;
1015}
1016
1017/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
1018/// only used by an add, transform this into (X+(0-Y)) to promote better
1019/// reassociation.
1020static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
1021  // Convert a subtract into an add and a neg instruction. This allows sub
1022  // instructions to be commuted with other add instructions.
1023  //
1024  // Calculate the negative value of Operand 1 of the sub instruction,
1025  // and set it as the RHS of the add instruction we just made.
1026  //
1027  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
1028  BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1029  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1030  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1031  New->takeName(Sub);
1032
1033  // Everyone now refers to the add instruction.
1034  Sub->replaceAllUsesWith(New);
1035  New->setDebugLoc(Sub->getDebugLoc());
1036
1037  DEBUG(dbgs() << "Negated: " << *New << '\n');
1038  return New;
1039}
1040
1041/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
1042/// by one, change this into a multiply by a constant to assist with further
1043/// reassociation.
1044static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1045  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1046  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
1047
1048  BinaryOperator *Mul =
1049    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1050  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1051  Mul->takeName(Shl);
1052
1053  // Everyone now refers to the mul instruction.
1054  Shl->replaceAllUsesWith(Mul);
1055  Mul->setDebugLoc(Shl->getDebugLoc());
1056
1057  // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1058  // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1059  // handling.
1060  bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1061  bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1062  if (NSW && NUW)
1063    Mul->setHasNoSignedWrap(true);
1064  Mul->setHasNoUnsignedWrap(NUW);
1065  return Mul;
1066}
1067
1068/// FindInOperandList - Scan backwards and forwards among values with the same
1069/// rank as element i to see if X exists.  If X does not exist, return i.  This
1070/// is useful when scanning for 'x' when we see '-x' because they both get the
1071/// same rank.
1072static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
1073                                  Value *X) {
1074  unsigned XRank = Ops[i].Rank;
1075  unsigned e = Ops.size();
1076  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1077    if (Ops[j].Op == X)
1078      return j;
1079    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1080      if (Instruction *I2 = dyn_cast<Instruction>(X))
1081        if (I1->isIdenticalTo(I2))
1082          return j;
1083  }
1084  // Scan backwards.
1085  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1086    if (Ops[j].Op == X)
1087      return j;
1088    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1089      if (Instruction *I2 = dyn_cast<Instruction>(X))
1090        if (I1->isIdenticalTo(I2))
1091          return j;
1092  }
1093  return i;
1094}
1095
1096/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
1097/// and returning the result.  Insert the tree before I.
1098static Value *EmitAddTreeOfValues(Instruction *I,
1099                                  SmallVectorImpl<WeakVH> &Ops){
1100  if (Ops.size() == 1) return Ops.back();
1101
1102  Value *V1 = Ops.back();
1103  Ops.pop_back();
1104  Value *V2 = EmitAddTreeOfValues(I, Ops);
1105  return CreateAdd(V2, V1, "tmp", I, I);
1106}
1107
1108/// RemoveFactorFromExpression - If V is an expression tree that is a
1109/// multiplication sequence, and if this sequence contains a multiply by Factor,
1110/// remove Factor from the tree and return the new tree.
1111Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
1112  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1113  if (!BO)
1114    return nullptr;
1115
1116  SmallVector<RepeatedValue, 8> Tree;
1117  MadeChange |= LinearizeExprTree(BO, Tree);
1118  SmallVector<ValueEntry, 8> Factors;
1119  Factors.reserve(Tree.size());
1120  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1121    RepeatedValue E = Tree[i];
1122    Factors.append(E.second.getZExtValue(),
1123                   ValueEntry(getRank(E.first), E.first));
1124  }
1125
1126  bool FoundFactor = false;
1127  bool NeedsNegate = false;
1128  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1129    if (Factors[i].Op == Factor) {
1130      FoundFactor = true;
1131      Factors.erase(Factors.begin()+i);
1132      break;
1133    }
1134
1135    // If this is a negative version of this factor, remove it.
1136    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1137      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1138        if (FC1->getValue() == -FC2->getValue()) {
1139          FoundFactor = NeedsNegate = true;
1140          Factors.erase(Factors.begin()+i);
1141          break;
1142        }
1143    } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1144      if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1145        APFloat F1(FC1->getValueAPF());
1146        APFloat F2(FC2->getValueAPF());
1147        F2.changeSign();
1148        if (F1.compare(F2) == APFloat::cmpEqual) {
1149          FoundFactor = NeedsNegate = true;
1150          Factors.erase(Factors.begin() + i);
1151          break;
1152        }
1153      }
1154    }
1155  }
1156
1157  if (!FoundFactor) {
1158    // Make sure to restore the operands to the expression tree.
1159    RewriteExprTree(BO, Factors);
1160    return nullptr;
1161  }
1162
1163  BasicBlock::iterator InsertPt = BO; ++InsertPt;
1164
1165  // If this was just a single multiply, remove the multiply and return the only
1166  // remaining operand.
1167  if (Factors.size() == 1) {
1168    RedoInsts.insert(BO);
1169    V = Factors[0].Op;
1170  } else {
1171    RewriteExprTree(BO, Factors);
1172    V = BO;
1173  }
1174
1175  if (NeedsNegate)
1176    V = CreateNeg(V, "neg", InsertPt, BO);
1177
1178  return V;
1179}
1180
1181/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1182/// add its operands as factors, otherwise add V to the list of factors.
1183///
1184/// Ops is the top-level list of add operands we're trying to factor.
1185static void FindSingleUseMultiplyFactors(Value *V,
1186                                         SmallVectorImpl<Value*> &Factors,
1187                                       const SmallVectorImpl<ValueEntry> &Ops) {
1188  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1189  if (!BO) {
1190    Factors.push_back(V);
1191    return;
1192  }
1193
1194  // Otherwise, add the LHS and RHS to the list of factors.
1195  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1196  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1197}
1198
1199/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1200/// instruction.  This optimizes based on identities.  If it can be reduced to
1201/// a single Value, it is returned, otherwise the Ops list is mutated as
1202/// necessary.
1203static Value *OptimizeAndOrXor(unsigned Opcode,
1204                               SmallVectorImpl<ValueEntry> &Ops) {
1205  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1206  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1207  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1208    // First, check for X and ~X in the operand list.
1209    assert(i < Ops.size());
1210    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1211      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1212      unsigned FoundX = FindInOperandList(Ops, i, X);
1213      if (FoundX != i) {
1214        if (Opcode == Instruction::And)   // ...&X&~X = 0
1215          return Constant::getNullValue(X->getType());
1216
1217        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1218          return Constant::getAllOnesValue(X->getType());
1219      }
1220    }
1221
1222    // Next, check for duplicate pairs of values, which we assume are next to
1223    // each other, due to our sorting criteria.
1224    assert(i < Ops.size());
1225    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1226      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1227        // Drop duplicate values for And and Or.
1228        Ops.erase(Ops.begin()+i);
1229        --i; --e;
1230        ++NumAnnihil;
1231        continue;
1232      }
1233
1234      // Drop pairs of values for Xor.
1235      assert(Opcode == Instruction::Xor);
1236      if (e == 2)
1237        return Constant::getNullValue(Ops[0].Op->getType());
1238
1239      // Y ^ X^X -> Y
1240      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1241      i -= 1; e -= 2;
1242      ++NumAnnihil;
1243    }
1244  }
1245  return nullptr;
1246}
1247
1248/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1249/// instruction with the given two operands, and return the resulting
1250/// instruction. There are two special cases: 1) if the constant operand is 0,
1251/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1252/// be returned.
1253static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1254                             const APInt &ConstOpnd) {
1255  if (ConstOpnd != 0) {
1256    if (!ConstOpnd.isAllOnesValue()) {
1257      LLVMContext &Ctx = Opnd->getType()->getContext();
1258      Instruction *I;
1259      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1260                                    "and.ra", InsertBefore);
1261      I->setDebugLoc(InsertBefore->getDebugLoc());
1262      return I;
1263    }
1264    return Opnd;
1265  }
1266  return nullptr;
1267}
1268
1269// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1270// into "R ^ C", where C would be 0, and R is a symbolic value.
1271//
1272// If it was successful, true is returned, and the "R" and "C" is returned
1273// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1274// and both "Res" and "ConstOpnd" remain unchanged.
1275//
1276bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1277                                 APInt &ConstOpnd, Value *&Res) {
1278  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1279  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1280  //                       = (x & ~c1) ^ (c1 ^ c2)
1281  // It is useful only when c1 == c2.
1282  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1283    if (!Opnd1->getValue()->hasOneUse())
1284      return false;
1285
1286    const APInt &C1 = Opnd1->getConstPart();
1287    if (C1 != ConstOpnd)
1288      return false;
1289
1290    Value *X = Opnd1->getSymbolicPart();
1291    Res = createAndInstr(I, X, ~C1);
1292    // ConstOpnd was C2, now C1 ^ C2.
1293    ConstOpnd ^= C1;
1294
1295    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1296      RedoInsts.insert(T);
1297    return true;
1298  }
1299  return false;
1300}
1301
1302
1303// Helper function of OptimizeXor(). It tries to simplify
1304// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1305// symbolic value.
1306//
1307// If it was successful, true is returned, and the "R" and "C" is returned
1308// via "Res" and "ConstOpnd", respectively (If the entire expression is
1309// evaluated to a constant, the Res is set to NULL); otherwise, false is
1310// returned, and both "Res" and "ConstOpnd" remain unchanged.
1311bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1312                                 APInt &ConstOpnd, Value *&Res) {
1313  Value *X = Opnd1->getSymbolicPart();
1314  if (X != Opnd2->getSymbolicPart())
1315    return false;
1316
1317  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1318  int DeadInstNum = 1;
1319  if (Opnd1->getValue()->hasOneUse())
1320    DeadInstNum++;
1321  if (Opnd2->getValue()->hasOneUse())
1322    DeadInstNum++;
1323
1324  // Xor-Rule 2:
1325  //  (x | c1) ^ (x & c2)
1326  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1327  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1328  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1329  //
1330  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1331    if (Opnd2->isOrExpr())
1332      std::swap(Opnd1, Opnd2);
1333
1334    const APInt &C1 = Opnd1->getConstPart();
1335    const APInt &C2 = Opnd2->getConstPart();
1336    APInt C3((~C1) ^ C2);
1337
1338    // Do not increase code size!
1339    if (C3 != 0 && !C3.isAllOnesValue()) {
1340      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1341      if (NewInstNum > DeadInstNum)
1342        return false;
1343    }
1344
1345    Res = createAndInstr(I, X, C3);
1346    ConstOpnd ^= C1;
1347
1348  } else if (Opnd1->isOrExpr()) {
1349    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1350    //
1351    const APInt &C1 = Opnd1->getConstPart();
1352    const APInt &C2 = Opnd2->getConstPart();
1353    APInt C3 = C1 ^ C2;
1354
1355    // Do not increase code size
1356    if (C3 != 0 && !C3.isAllOnesValue()) {
1357      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1358      if (NewInstNum > DeadInstNum)
1359        return false;
1360    }
1361
1362    Res = createAndInstr(I, X, C3);
1363    ConstOpnd ^= C3;
1364  } else {
1365    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1366    //
1367    const APInt &C1 = Opnd1->getConstPart();
1368    const APInt &C2 = Opnd2->getConstPart();
1369    APInt C3 = C1 ^ C2;
1370    Res = createAndInstr(I, X, C3);
1371  }
1372
1373  // Put the original operands in the Redo list; hope they will be deleted
1374  // as dead code.
1375  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1376    RedoInsts.insert(T);
1377  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1378    RedoInsts.insert(T);
1379
1380  return true;
1381}
1382
1383/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1384/// to a single Value, it is returned, otherwise the Ops list is mutated as
1385/// necessary.
1386Value *Reassociate::OptimizeXor(Instruction *I,
1387                                SmallVectorImpl<ValueEntry> &Ops) {
1388  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1389    return V;
1390
1391  if (Ops.size() == 1)
1392    return nullptr;
1393
1394  SmallVector<XorOpnd, 8> Opnds;
1395  SmallVector<XorOpnd*, 8> OpndPtrs;
1396  Type *Ty = Ops[0].Op->getType();
1397  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1398
1399  // Step 1: Convert ValueEntry to XorOpnd
1400  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1401    Value *V = Ops[i].Op;
1402    if (!isa<ConstantInt>(V)) {
1403      XorOpnd O(V);
1404      O.setSymbolicRank(getRank(O.getSymbolicPart()));
1405      Opnds.push_back(O);
1406    } else
1407      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1408  }
1409
1410  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1411  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1412  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1413  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1414  //  when new elements are added to the vector.
1415  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1416    OpndPtrs.push_back(&Opnds[i]);
1417
1418  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1419  //  the same symbolic value cluster together. For instance, the input operand
1420  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1421  //  ("x | 123", "x & 789", "y & 456").
1422  std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1423
1424  // Step 3: Combine adjacent operands
1425  XorOpnd *PrevOpnd = nullptr;
1426  bool Changed = false;
1427  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1428    XorOpnd *CurrOpnd = OpndPtrs[i];
1429    // The combined value
1430    Value *CV;
1431
1432    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1433    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1434      Changed = true;
1435      if (CV)
1436        *CurrOpnd = XorOpnd(CV);
1437      else {
1438        CurrOpnd->Invalidate();
1439        continue;
1440      }
1441    }
1442
1443    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1444      PrevOpnd = CurrOpnd;
1445      continue;
1446    }
1447
1448    // step 3.2: When previous and current operands share the same symbolic
1449    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1450    //
1451    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1452      // Remove previous operand
1453      PrevOpnd->Invalidate();
1454      if (CV) {
1455        *CurrOpnd = XorOpnd(CV);
1456        PrevOpnd = CurrOpnd;
1457      } else {
1458        CurrOpnd->Invalidate();
1459        PrevOpnd = nullptr;
1460      }
1461      Changed = true;
1462    }
1463  }
1464
1465  // Step 4: Reassemble the Ops
1466  if (Changed) {
1467    Ops.clear();
1468    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1469      XorOpnd &O = Opnds[i];
1470      if (O.isInvalid())
1471        continue;
1472      ValueEntry VE(getRank(O.getValue()), O.getValue());
1473      Ops.push_back(VE);
1474    }
1475    if (ConstOpnd != 0) {
1476      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1477      ValueEntry VE(getRank(C), C);
1478      Ops.push_back(VE);
1479    }
1480    int Sz = Ops.size();
1481    if (Sz == 1)
1482      return Ops.back().Op;
1483    else if (Sz == 0) {
1484      assert(ConstOpnd == 0);
1485      return ConstantInt::get(Ty->getContext(), ConstOpnd);
1486    }
1487  }
1488
1489  return nullptr;
1490}
1491
1492/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1493/// optimizes based on identities.  If it can be reduced to a single Value, it
1494/// is returned, otherwise the Ops list is mutated as necessary.
1495Value *Reassociate::OptimizeAdd(Instruction *I,
1496                                SmallVectorImpl<ValueEntry> &Ops) {
1497  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1498  // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1499  // scan for any
1500  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1501
1502  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1503    Value *TheOp = Ops[i].Op;
1504    // Check to see if we've seen this operand before.  If so, we factor all
1505    // instances of the operand together.  Due to our sorting criteria, we know
1506    // that these need to be next to each other in the vector.
1507    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1508      // Rescan the list, remove all instances of this operand from the expr.
1509      unsigned NumFound = 0;
1510      do {
1511        Ops.erase(Ops.begin()+i);
1512        ++NumFound;
1513      } while (i != Ops.size() && Ops[i].Op == TheOp);
1514
1515      DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1516      ++NumFactor;
1517
1518      // Insert a new multiply.
1519      Type *Ty = TheOp->getType();
1520      Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
1521                                      : ConstantFP::get(Ty, NumFound);
1522      Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1523
1524      // Now that we have inserted a multiply, optimize it. This allows us to
1525      // handle cases that require multiple factoring steps, such as this:
1526      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1527      RedoInsts.insert(Mul);
1528
1529      // If every add operand was a duplicate, return the multiply.
1530      if (Ops.empty())
1531        return Mul;
1532
1533      // Otherwise, we had some input that didn't have the dupe, such as
1534      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1535      // things being added by this operation.
1536      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1537
1538      --i;
1539      e = Ops.size();
1540      continue;
1541    }
1542
1543    // Check for X and -X or X and ~X in the operand list.
1544    if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1545        !BinaryOperator::isNot(TheOp))
1546      continue;
1547
1548    Value *X = nullptr;
1549    if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1550      X = BinaryOperator::getNegArgument(TheOp);
1551    else if (BinaryOperator::isNot(TheOp))
1552      X = BinaryOperator::getNotArgument(TheOp);
1553
1554    unsigned FoundX = FindInOperandList(Ops, i, X);
1555    if (FoundX == i)
1556      continue;
1557
1558    // Remove X and -X from the operand list.
1559    if (Ops.size() == 2 &&
1560        (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1561      return Constant::getNullValue(X->getType());
1562
1563    // Remove X and ~X from the operand list.
1564    if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1565      return Constant::getAllOnesValue(X->getType());
1566
1567    Ops.erase(Ops.begin()+i);
1568    if (i < FoundX)
1569      --FoundX;
1570    else
1571      --i;   // Need to back up an extra one.
1572    Ops.erase(Ops.begin()+FoundX);
1573    ++NumAnnihil;
1574    --i;     // Revisit element.
1575    e -= 2;  // Removed two elements.
1576
1577    // if X and ~X we append -1 to the operand list.
1578    if (BinaryOperator::isNot(TheOp)) {
1579      Value *V = Constant::getAllOnesValue(X->getType());
1580      Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1581      e += 1;
1582    }
1583  }
1584
1585  // Scan the operand list, checking to see if there are any common factors
1586  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1587  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1588  // To efficiently find this, we count the number of times a factor occurs
1589  // for any ADD operands that are MULs.
1590  DenseMap<Value*, unsigned> FactorOccurrences;
1591
1592  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1593  // where they are actually the same multiply.
1594  unsigned MaxOcc = 0;
1595  Value *MaxOccVal = nullptr;
1596  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1597    BinaryOperator *BOp =
1598        isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1599    if (!BOp)
1600      continue;
1601
1602    // Compute all of the factors of this added value.
1603    SmallVector<Value*, 8> Factors;
1604    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1605    assert(Factors.size() > 1 && "Bad linearize!");
1606
1607    // Add one to FactorOccurrences for each unique factor in this op.
1608    SmallPtrSet<Value*, 8> Duplicates;
1609    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1610      Value *Factor = Factors[i];
1611      if (!Duplicates.insert(Factor).second)
1612        continue;
1613
1614      unsigned Occ = ++FactorOccurrences[Factor];
1615      if (Occ > MaxOcc) {
1616        MaxOcc = Occ;
1617        MaxOccVal = Factor;
1618      }
1619
1620      // If Factor is a negative constant, add the negated value as a factor
1621      // because we can percolate the negate out.  Watch for minint, which
1622      // cannot be positivified.
1623      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1624        if (CI->isNegative() && !CI->isMinValue(true)) {
1625          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1626          assert(!Duplicates.count(Factor) &&
1627                 "Shouldn't have two constant factors, missed a canonicalize");
1628          unsigned Occ = ++FactorOccurrences[Factor];
1629          if (Occ > MaxOcc) {
1630            MaxOcc = Occ;
1631            MaxOccVal = Factor;
1632          }
1633        }
1634      } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1635        if (CF->isNegative()) {
1636          APFloat F(CF->getValueAPF());
1637          F.changeSign();
1638          Factor = ConstantFP::get(CF->getContext(), F);
1639          assert(!Duplicates.count(Factor) &&
1640                 "Shouldn't have two constant factors, missed a canonicalize");
1641          unsigned Occ = ++FactorOccurrences[Factor];
1642          if (Occ > MaxOcc) {
1643            MaxOcc = Occ;
1644            MaxOccVal = Factor;
1645          }
1646        }
1647      }
1648    }
1649  }
1650
1651  // If any factor occurred more than one time, we can pull it out.
1652  if (MaxOcc > 1) {
1653    DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1654    ++NumFactor;
1655
1656    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1657    // this, we could otherwise run into situations where removing a factor
1658    // from an expression will drop a use of maxocc, and this can cause
1659    // RemoveFactorFromExpression on successive values to behave differently.
1660    Instruction *DummyInst =
1661        I->getType()->isIntegerTy()
1662            ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1663            : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1664
1665    SmallVector<WeakVH, 4> NewMulOps;
1666    for (unsigned i = 0; i != Ops.size(); ++i) {
1667      // Only try to remove factors from expressions we're allowed to.
1668      BinaryOperator *BOp =
1669          isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1670      if (!BOp)
1671        continue;
1672
1673      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1674        // The factorized operand may occur several times.  Convert them all in
1675        // one fell swoop.
1676        for (unsigned j = Ops.size(); j != i;) {
1677          --j;
1678          if (Ops[j].Op == Ops[i].Op) {
1679            NewMulOps.push_back(V);
1680            Ops.erase(Ops.begin()+j);
1681          }
1682        }
1683        --i;
1684      }
1685    }
1686
1687    // No need for extra uses anymore.
1688    delete DummyInst;
1689
1690    unsigned NumAddedValues = NewMulOps.size();
1691    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1692
1693    // Now that we have inserted the add tree, optimize it. This allows us to
1694    // handle cases that require multiple factoring steps, such as this:
1695    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1696    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1697    (void)NumAddedValues;
1698    if (Instruction *VI = dyn_cast<Instruction>(V))
1699      RedoInsts.insert(VI);
1700
1701    // Create the multiply.
1702    Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
1703
1704    // Rerun associate on the multiply in case the inner expression turned into
1705    // a multiply.  We want to make sure that we keep things in canonical form.
1706    RedoInsts.insert(V2);
1707
1708    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1709    // entire result expression is just the multiply "A*(B+C)".
1710    if (Ops.empty())
1711      return V2;
1712
1713    // Otherwise, we had some input that didn't have the factor, such as
1714    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1715    // things being added by this operation.
1716    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1717  }
1718
1719  return nullptr;
1720}
1721
1722/// \brief Build up a vector of value/power pairs factoring a product.
1723///
1724/// Given a series of multiplication operands, build a vector of factors and
1725/// the powers each is raised to when forming the final product. Sort them in
1726/// the order of descending power.
1727///
1728///      (x*x)          -> [(x, 2)]
1729///     ((x*x)*x)       -> [(x, 3)]
1730///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1731///
1732/// \returns Whether any factors have a power greater than one.
1733bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1734                                         SmallVectorImpl<Factor> &Factors) {
1735  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1736  // Compute the sum of powers of simplifiable factors.
1737  unsigned FactorPowerSum = 0;
1738  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1739    Value *Op = Ops[Idx-1].Op;
1740
1741    // Count the number of occurrences of this value.
1742    unsigned Count = 1;
1743    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1744      ++Count;
1745    // Track for simplification all factors which occur 2 or more times.
1746    if (Count > 1)
1747      FactorPowerSum += Count;
1748  }
1749
1750  // We can only simplify factors if the sum of the powers of our simplifiable
1751  // factors is 4 or higher. When that is the case, we will *always* have
1752  // a simplification. This is an important invariant to prevent cyclicly
1753  // trying to simplify already minimal formations.
1754  if (FactorPowerSum < 4)
1755    return false;
1756
1757  // Now gather the simplifiable factors, removing them from Ops.
1758  FactorPowerSum = 0;
1759  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1760    Value *Op = Ops[Idx-1].Op;
1761
1762    // Count the number of occurrences of this value.
1763    unsigned Count = 1;
1764    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1765      ++Count;
1766    if (Count == 1)
1767      continue;
1768    // Move an even number of occurrences to Factors.
1769    Count &= ~1U;
1770    Idx -= Count;
1771    FactorPowerSum += Count;
1772    Factors.push_back(Factor(Op, Count));
1773    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1774  }
1775
1776  // None of the adjustments above should have reduced the sum of factor powers
1777  // below our mininum of '4'.
1778  assert(FactorPowerSum >= 4);
1779
1780  std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1781  return true;
1782}
1783
1784/// \brief Build a tree of multiplies, computing the product of Ops.
1785static Value *buildMultiplyTree(IRBuilder<> &Builder,
1786                                SmallVectorImpl<Value*> &Ops) {
1787  if (Ops.size() == 1)
1788    return Ops.back();
1789
1790  Value *LHS = Ops.pop_back_val();
1791  do {
1792    if (LHS->getType()->isIntegerTy())
1793      LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1794    else
1795      LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1796  } while (!Ops.empty());
1797
1798  return LHS;
1799}
1800
1801/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1802///
1803/// Given a vector of values raised to various powers, where no two values are
1804/// equal and the powers are sorted in decreasing order, compute the minimal
1805/// DAG of multiplies to compute the final product, and return that product
1806/// value.
1807Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1808                                            SmallVectorImpl<Factor> &Factors) {
1809  assert(Factors[0].Power);
1810  SmallVector<Value *, 4> OuterProduct;
1811  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1812       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1813    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1814      LastIdx = Idx;
1815      continue;
1816    }
1817
1818    // We want to multiply across all the factors with the same power so that
1819    // we can raise them to that power as a single entity. Build a mini tree
1820    // for that.
1821    SmallVector<Value *, 4> InnerProduct;
1822    InnerProduct.push_back(Factors[LastIdx].Base);
1823    do {
1824      InnerProduct.push_back(Factors[Idx].Base);
1825      ++Idx;
1826    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1827
1828    // Reset the base value of the first factor to the new expression tree.
1829    // We'll remove all the factors with the same power in a second pass.
1830    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1831    if (Instruction *MI = dyn_cast<Instruction>(M))
1832      RedoInsts.insert(MI);
1833
1834    LastIdx = Idx;
1835  }
1836  // Unique factors with equal powers -- we've folded them into the first one's
1837  // base.
1838  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1839                            Factor::PowerEqual()),
1840                Factors.end());
1841
1842  // Iteratively collect the base of each factor with an add power into the
1843  // outer product, and halve each power in preparation for squaring the
1844  // expression.
1845  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1846    if (Factors[Idx].Power & 1)
1847      OuterProduct.push_back(Factors[Idx].Base);
1848    Factors[Idx].Power >>= 1;
1849  }
1850  if (Factors[0].Power) {
1851    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1852    OuterProduct.push_back(SquareRoot);
1853    OuterProduct.push_back(SquareRoot);
1854  }
1855  if (OuterProduct.size() == 1)
1856    return OuterProduct.front();
1857
1858  Value *V = buildMultiplyTree(Builder, OuterProduct);
1859  return V;
1860}
1861
1862Value *Reassociate::OptimizeMul(BinaryOperator *I,
1863                                SmallVectorImpl<ValueEntry> &Ops) {
1864  // We can only optimize the multiplies when there is a chain of more than
1865  // three, such that a balanced tree might require fewer total multiplies.
1866  if (Ops.size() < 4)
1867    return nullptr;
1868
1869  // Try to turn linear trees of multiplies without other uses of the
1870  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1871  // re-use.
1872  SmallVector<Factor, 4> Factors;
1873  if (!collectMultiplyFactors(Ops, Factors))
1874    return nullptr; // All distinct factors, so nothing left for us to do.
1875
1876  IRBuilder<> Builder(I);
1877  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1878  if (Ops.empty())
1879    return V;
1880
1881  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1882  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1883  return nullptr;
1884}
1885
1886Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1887                                       SmallVectorImpl<ValueEntry> &Ops) {
1888  // Now that we have the linearized expression tree, try to optimize it.
1889  // Start by folding any constants that we found.
1890  Constant *Cst = nullptr;
1891  unsigned Opcode = I->getOpcode();
1892  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1893    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1894    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1895  }
1896  // If there was nothing but constants then we are done.
1897  if (Ops.empty())
1898    return Cst;
1899
1900  // Put the combined constant back at the end of the operand list, except if
1901  // there is no point.  For example, an add of 0 gets dropped here, while a
1902  // multiplication by zero turns the whole expression into zero.
1903  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1904    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1905      return Cst;
1906    Ops.push_back(ValueEntry(0, Cst));
1907  }
1908
1909  if (Ops.size() == 1) return Ops[0].Op;
1910
1911  // Handle destructive annihilation due to identities between elements in the
1912  // argument list here.
1913  unsigned NumOps = Ops.size();
1914  switch (Opcode) {
1915  default: break;
1916  case Instruction::And:
1917  case Instruction::Or:
1918    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1919      return Result;
1920    break;
1921
1922  case Instruction::Xor:
1923    if (Value *Result = OptimizeXor(I, Ops))
1924      return Result;
1925    break;
1926
1927  case Instruction::Add:
1928  case Instruction::FAdd:
1929    if (Value *Result = OptimizeAdd(I, Ops))
1930      return Result;
1931    break;
1932
1933  case Instruction::Mul:
1934  case Instruction::FMul:
1935    if (Value *Result = OptimizeMul(I, Ops))
1936      return Result;
1937    break;
1938  }
1939
1940  if (Ops.size() != NumOps)
1941    return OptimizeExpression(I, Ops);
1942  return nullptr;
1943}
1944
1945/// EraseInst - Zap the given instruction, adding interesting operands to the
1946/// work list.
1947void Reassociate::EraseInst(Instruction *I) {
1948  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1949  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1950  // Erase the dead instruction.
1951  ValueRankMap.erase(I);
1952  RedoInsts.remove(I);
1953  I->eraseFromParent();
1954  // Optimize its operands.
1955  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1956  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1957    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1958      // If this is a node in an expression tree, climb to the expression root
1959      // and add that since that's where optimization actually happens.
1960      unsigned Opcode = Op->getOpcode();
1961      while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1962             Visited.insert(Op).second)
1963        Op = Op->user_back();
1964      RedoInsts.insert(Op);
1965    }
1966}
1967
1968// Canonicalize expressions of the following form:
1969//  x + (-Constant * y) -> x - (Constant * y)
1970//  x - (-Constant * y) -> x + (Constant * y)
1971Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1972  if (!I->hasOneUse() || I->getType()->isVectorTy())
1973    return nullptr;
1974
1975  // Must be a mul, fmul, or fdiv instruction.
1976  unsigned Opcode = I->getOpcode();
1977  if (Opcode != Instruction::Mul && Opcode != Instruction::FMul &&
1978      Opcode != Instruction::FDiv)
1979    return nullptr;
1980
1981  // Must have at least one constant operand.
1982  Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
1983  Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
1984  if (!C0 && !C1)
1985    return nullptr;
1986
1987  // Must be a negative ConstantInt or ConstantFP.
1988  Constant *C = C0 ? C0 : C1;
1989  unsigned ConstIdx = C0 ? 0 : 1;
1990  if (auto *CI = dyn_cast<ConstantInt>(C)) {
1991    if (!CI->isNegative())
1992      return nullptr;
1993  } else if (auto *CF = dyn_cast<ConstantFP>(C)) {
1994    if (!CF->isNegative())
1995      return nullptr;
1996  } else
1997    return nullptr;
1998
1999  // User must be a binary operator with one or more uses.
2000  Instruction *User = I->user_back();
2001  if (!isa<BinaryOperator>(User) || !User->getNumUses())
2002    return nullptr;
2003
2004  unsigned UserOpcode = User->getOpcode();
2005  if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd &&
2006      UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub)
2007    return nullptr;
2008
2009  // Subtraction is not commutative. Explicitly, the following transform is
2010  // not valid: (-Constant * y) - x  -> x + (Constant * y)
2011  if (!User->isCommutative() && User->getOperand(1) != I)
2012    return nullptr;
2013
2014  // Change the sign of the constant.
2015  if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
2016    I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue()));
2017  else {
2018    ConstantFP *CF = cast<ConstantFP>(C);
2019    APFloat Val = CF->getValueAPF();
2020    Val.changeSign();
2021    I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val));
2022  }
2023
2024  // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2025  // ((-Const*y) + x) -> (x + (-Const*y)).
2026  if (User->getOperand(0) == I && User->isCommutative())
2027    cast<BinaryOperator>(User)->swapOperands();
2028
2029  Value *Op0 = User->getOperand(0);
2030  Value *Op1 = User->getOperand(1);
2031  BinaryOperator *NI;
2032  switch(UserOpcode) {
2033  default:
2034    llvm_unreachable("Unexpected Opcode!");
2035  case Instruction::Add:
2036    NI = BinaryOperator::CreateSub(Op0, Op1);
2037    break;
2038  case Instruction::Sub:
2039    NI = BinaryOperator::CreateAdd(Op0, Op1);
2040    break;
2041  case Instruction::FAdd:
2042    NI = BinaryOperator::CreateFSub(Op0, Op1);
2043    NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2044    break;
2045  case Instruction::FSub:
2046    NI = BinaryOperator::CreateFAdd(Op0, Op1);
2047    NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2048    break;
2049  }
2050
2051  NI->insertBefore(User);
2052  NI->setName(User->getName());
2053  User->replaceAllUsesWith(NI);
2054  NI->setDebugLoc(I->getDebugLoc());
2055  RedoInsts.insert(I);
2056  MadeChange = true;
2057  return NI;
2058}
2059
2060/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
2061/// instructions is not allowed.
2062void Reassociate::OptimizeInst(Instruction *I) {
2063  // Only consider operations that we understand.
2064  if (!isa<BinaryOperator>(I))
2065    return;
2066
2067  if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2068    // If an operand of this shift is a reassociable multiply, or if the shift
2069    // is used by a reassociable multiply or add, turn into a multiply.
2070    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2071        (I->hasOneUse() &&
2072         (isReassociableOp(I->user_back(), Instruction::Mul) ||
2073          isReassociableOp(I->user_back(), Instruction::Add)))) {
2074      Instruction *NI = ConvertShiftToMul(I);
2075      RedoInsts.insert(I);
2076      MadeChange = true;
2077      I = NI;
2078    }
2079
2080  // Canonicalize negative constants out of expressions.
2081  if (Instruction *Res = canonicalizeNegConstExpr(I))
2082    I = Res;
2083
2084  // Commute binary operators, to canonicalize the order of their operands.
2085  // This can potentially expose more CSE opportunities, and makes writing other
2086  // transformations simpler.
2087  if (I->isCommutative())
2088    canonicalizeOperands(I);
2089
2090  // Don't optimize vector instructions.
2091  if (I->getType()->isVectorTy())
2092    return;
2093
2094  // Don't optimize floating point instructions that don't have unsafe algebra.
2095  if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
2096    return;
2097
2098  // Do not reassociate boolean (i1) expressions.  We want to preserve the
2099  // original order of evaluation for short-circuited comparisons that
2100  // SimplifyCFG has folded to AND/OR expressions.  If the expression
2101  // is not further optimized, it is likely to be transformed back to a
2102  // short-circuited form for code gen, and the source order may have been
2103  // optimized for the most likely conditions.
2104  if (I->getType()->isIntegerTy(1))
2105    return;
2106
2107  // If this is a subtract instruction which is not already in negate form,
2108  // see if we can convert it to X+-Y.
2109  if (I->getOpcode() == Instruction::Sub) {
2110    if (ShouldBreakUpSubtract(I)) {
2111      Instruction *NI = BreakUpSubtract(I);
2112      RedoInsts.insert(I);
2113      MadeChange = true;
2114      I = NI;
2115    } else if (BinaryOperator::isNeg(I)) {
2116      // Otherwise, this is a negation.  See if the operand is a multiply tree
2117      // and if this is not an inner node of a multiply tree.
2118      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2119          (!I->hasOneUse() ||
2120           !isReassociableOp(I->user_back(), Instruction::Mul))) {
2121        Instruction *NI = LowerNegateToMultiply(I);
2122        RedoInsts.insert(I);
2123        MadeChange = true;
2124        I = NI;
2125      }
2126    }
2127  } else if (I->getOpcode() == Instruction::FSub) {
2128    if (ShouldBreakUpSubtract(I)) {
2129      Instruction *NI = BreakUpSubtract(I);
2130      RedoInsts.insert(I);
2131      MadeChange = true;
2132      I = NI;
2133    } else if (BinaryOperator::isFNeg(I)) {
2134      // Otherwise, this is a negation.  See if the operand is a multiply tree
2135      // and if this is not an inner node of a multiply tree.
2136      if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2137          (!I->hasOneUse() ||
2138           !isReassociableOp(I->user_back(), Instruction::FMul))) {
2139        Instruction *NI = LowerNegateToMultiply(I);
2140        RedoInsts.insert(I);
2141        MadeChange = true;
2142        I = NI;
2143      }
2144    }
2145  }
2146
2147  // If this instruction is an associative binary operator, process it.
2148  if (!I->isAssociative()) return;
2149  BinaryOperator *BO = cast<BinaryOperator>(I);
2150
2151  // If this is an interior node of a reassociable tree, ignore it until we
2152  // get to the root of the tree, to avoid N^2 analysis.
2153  unsigned Opcode = BO->getOpcode();
2154  if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
2155    return;
2156
2157  // If this is an add tree that is used by a sub instruction, ignore it
2158  // until we process the subtract.
2159  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2160      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2161    return;
2162  if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2163      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2164    return;
2165
2166  ReassociateExpression(BO);
2167}
2168
2169void Reassociate::ReassociateExpression(BinaryOperator *I) {
2170  assert(!I->getType()->isVectorTy() &&
2171         "Reassociation of vector instructions is not supported.");
2172
2173  // First, walk the expression tree, linearizing the tree, collecting the
2174  // operand information.
2175  SmallVector<RepeatedValue, 8> Tree;
2176  MadeChange |= LinearizeExprTree(I, Tree);
2177  SmallVector<ValueEntry, 8> Ops;
2178  Ops.reserve(Tree.size());
2179  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2180    RepeatedValue E = Tree[i];
2181    Ops.append(E.second.getZExtValue(),
2182               ValueEntry(getRank(E.first), E.first));
2183  }
2184
2185  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2186
2187  // Now that we have linearized the tree to a list and have gathered all of
2188  // the operands and their ranks, sort the operands by their rank.  Use a
2189  // stable_sort so that values with equal ranks will have their relative
2190  // positions maintained (and so the compiler is deterministic).  Note that
2191  // this sorts so that the highest ranking values end up at the beginning of
2192  // the vector.
2193  std::stable_sort(Ops.begin(), Ops.end());
2194
2195  // OptimizeExpression - Now that we have the expression tree in a convenient
2196  // sorted form, optimize it globally if possible.
2197  if (Value *V = OptimizeExpression(I, Ops)) {
2198    if (V == I)
2199      // Self-referential expression in unreachable code.
2200      return;
2201    // This expression tree simplified to something that isn't a tree,
2202    // eliminate it.
2203    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2204    I->replaceAllUsesWith(V);
2205    if (Instruction *VI = dyn_cast<Instruction>(V))
2206      VI->setDebugLoc(I->getDebugLoc());
2207    RedoInsts.insert(I);
2208    ++NumAnnihil;
2209    return;
2210  }
2211
2212  // We want to sink immediates as deeply as possible except in the case where
2213  // this is a multiply tree used only by an add, and the immediate is a -1.
2214  // In this case we reassociate to put the negation on the outside so that we
2215  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2216  if (I->hasOneUse()) {
2217    if (I->getOpcode() == Instruction::Mul &&
2218        cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2219        isa<ConstantInt>(Ops.back().Op) &&
2220        cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2221      ValueEntry Tmp = Ops.pop_back_val();
2222      Ops.insert(Ops.begin(), Tmp);
2223    } else if (I->getOpcode() == Instruction::FMul &&
2224               cast<Instruction>(I->user_back())->getOpcode() ==
2225                   Instruction::FAdd &&
2226               isa<ConstantFP>(Ops.back().Op) &&
2227               cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2228      ValueEntry Tmp = Ops.pop_back_val();
2229      Ops.insert(Ops.begin(), Tmp);
2230    }
2231  }
2232
2233  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2234
2235  if (Ops.size() == 1) {
2236    if (Ops[0].Op == I)
2237      // Self-referential expression in unreachable code.
2238      return;
2239
2240    // This expression tree simplified to something that isn't a tree,
2241    // eliminate it.
2242    I->replaceAllUsesWith(Ops[0].Op);
2243    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2244      OI->setDebugLoc(I->getDebugLoc());
2245    RedoInsts.insert(I);
2246    return;
2247  }
2248
2249  // Now that we ordered and optimized the expressions, splat them back into
2250  // the expression tree, removing any unneeded nodes.
2251  RewriteExprTree(I, Ops);
2252}
2253
2254bool Reassociate::runOnFunction(Function &F) {
2255  if (skipOptnoneFunction(F))
2256    return false;
2257
2258  // Calculate the rank map for F
2259  BuildRankMap(F);
2260
2261  MadeChange = false;
2262  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2263    // Optimize every instruction in the basic block.
2264    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2265      if (isInstructionTriviallyDead(II)) {
2266        EraseInst(II++);
2267      } else {
2268        OptimizeInst(II);
2269        assert(II->getParent() == BI && "Moved to a different block!");
2270        ++II;
2271      }
2272
2273    // If this produced extra instructions to optimize, handle them now.
2274    while (!RedoInsts.empty()) {
2275      Instruction *I = RedoInsts.pop_back_val();
2276      if (isInstructionTriviallyDead(I))
2277        EraseInst(I);
2278      else
2279        OptimizeInst(I);
2280    }
2281  }
2282
2283  // We are done with the rank map.
2284  RankMap.clear();
2285  ValueRankMap.clear();
2286
2287  return MadeChange;
2288}
2289