1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Analysis/GlobalsModRef.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/ValueHandle.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include <algorithm>
44using namespace llvm;
45
46#define DEBUG_TYPE "reassociate"
47
48STATISTIC(NumChanged, "Number of insts reassociated");
49STATISTIC(NumAnnihil, "Number of expr tree annihilated");
50STATISTIC(NumFactor , "Number of multiplies factored");
51
52namespace {
53  struct ValueEntry {
54    unsigned Rank;
55    Value *Op;
56    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
57  };
58  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
59    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
60  }
61}
62
63#ifndef NDEBUG
64/// Print out the expression identified in the Ops list.
65///
66static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
67  Module *M = I->getModule();
68  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
69       << *Ops[0].Op->getType() << '\t';
70  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
71    dbgs() << "[ ";
72    Ops[i].Op->printAsOperand(dbgs(), false, M);
73    dbgs() << ", #" << Ops[i].Rank << "] ";
74  }
75}
76#endif
77
78namespace {
79  /// \brief Utility class representing a base and exponent pair which form one
80  /// factor of some product.
81  struct Factor {
82    Value *Base;
83    unsigned Power;
84
85    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
86
87    /// \brief Sort factors in descending order by their power.
88    struct PowerDescendingSorter {
89      bool operator()(const Factor &LHS, const Factor &RHS) {
90        return LHS.Power > RHS.Power;
91      }
92    };
93
94    /// \brief Compare factors for equal powers.
95    struct PowerEqual {
96      bool operator()(const Factor &LHS, const Factor &RHS) {
97        return LHS.Power == RHS.Power;
98      }
99    };
100  };
101
102  /// Utility class representing a non-constant Xor-operand. We classify
103  /// non-constant Xor-Operands into two categories:
104  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
105  ///  C2)
106  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
107  ///          constant.
108  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
109  ///          operand as "E | 0"
110  class XorOpnd {
111  public:
112    XorOpnd(Value *V);
113
114    bool isInvalid() const { return SymbolicPart == nullptr; }
115    bool isOrExpr() const { return isOr; }
116    Value *getValue() const { return OrigVal; }
117    Value *getSymbolicPart() const { return SymbolicPart; }
118    unsigned getSymbolicRank() const { return SymbolicRank; }
119    const APInt &getConstPart() const { return ConstPart; }
120
121    void Invalidate() { SymbolicPart = OrigVal = nullptr; }
122    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
123
124    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
125    // The purpose is twofold:
126    // 1) Cluster together the operands sharing the same symbolic-value.
127    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
128    //   could potentially shorten crital path, and expose more loop-invariants.
129    //   Note that values' rank are basically defined in RPO order (FIXME).
130    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
131    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
132    //   "z" in the order of X-Y-Z is better than any other orders.
133    struct PtrSortFunctor {
134      bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
135        return LHS->getSymbolicRank() < RHS->getSymbolicRank();
136      }
137    };
138  private:
139    Value *OrigVal;
140    Value *SymbolicPart;
141    APInt ConstPart;
142    unsigned SymbolicRank;
143    bool isOr;
144  };
145}
146
147namespace {
148  class Reassociate : public FunctionPass {
149    DenseMap<BasicBlock*, unsigned> RankMap;
150    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
151    SetVector<AssertingVH<Instruction> > RedoInsts;
152    bool MadeChange;
153  public:
154    static char ID; // Pass identification, replacement for typeid
155    Reassociate() : FunctionPass(ID) {
156      initializeReassociatePass(*PassRegistry::getPassRegistry());
157    }
158
159    bool runOnFunction(Function &F) override;
160
161    void getAnalysisUsage(AnalysisUsage &AU) const override {
162      AU.setPreservesCFG();
163      AU.addPreserved<GlobalsAAWrapperPass>();
164    }
165  private:
166    void BuildRankMap(Function &F);
167    unsigned getRank(Value *V);
168    void canonicalizeOperands(Instruction *I);
169    void ReassociateExpression(BinaryOperator *I);
170    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
171    Value *OptimizeExpression(BinaryOperator *I,
172                              SmallVectorImpl<ValueEntry> &Ops);
173    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
174    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
175    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
176                        Value *&Res);
177    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
178                        APInt &ConstOpnd, Value *&Res);
179    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
180                                SmallVectorImpl<Factor> &Factors);
181    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
182                                   SmallVectorImpl<Factor> &Factors);
183    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
184    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
185    void EraseInst(Instruction *I);
186    void RecursivelyEraseDeadInsts(Instruction *I,
187                                   SetVector<AssertingVH<Instruction>> &Insts);
188    void OptimizeInst(Instruction *I);
189    Instruction *canonicalizeNegConstExpr(Instruction *I);
190  };
191}
192
193XorOpnd::XorOpnd(Value *V) {
194  assert(!isa<ConstantInt>(V) && "No ConstantInt");
195  OrigVal = V;
196  Instruction *I = dyn_cast<Instruction>(V);
197  SymbolicRank = 0;
198
199  if (I && (I->getOpcode() == Instruction::Or ||
200            I->getOpcode() == Instruction::And)) {
201    Value *V0 = I->getOperand(0);
202    Value *V1 = I->getOperand(1);
203    if (isa<ConstantInt>(V0))
204      std::swap(V0, V1);
205
206    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
207      ConstPart = C->getValue();
208      SymbolicPart = V0;
209      isOr = (I->getOpcode() == Instruction::Or);
210      return;
211    }
212  }
213
214  // view the operand as "V | 0"
215  SymbolicPart = V;
216  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
217  isOr = true;
218}
219
220char Reassociate::ID = 0;
221INITIALIZE_PASS(Reassociate, "reassociate",
222                "Reassociate expressions", false, false)
223
224// Public interface to the Reassociate pass
225FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
226
227/// Return true if V is an instruction of the specified opcode and if it
228/// only has one use.
229static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
230  if (V->hasOneUse() && isa<Instruction>(V) &&
231      cast<Instruction>(V)->getOpcode() == Opcode &&
232      (!isa<FPMathOperator>(V) ||
233       cast<Instruction>(V)->hasUnsafeAlgebra()))
234    return cast<BinaryOperator>(V);
235  return nullptr;
236}
237
238static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
239                                        unsigned Opcode2) {
240  if (V->hasOneUse() && isa<Instruction>(V) &&
241      (cast<Instruction>(V)->getOpcode() == Opcode1 ||
242       cast<Instruction>(V)->getOpcode() == Opcode2) &&
243      (!isa<FPMathOperator>(V) ||
244       cast<Instruction>(V)->hasUnsafeAlgebra()))
245    return cast<BinaryOperator>(V);
246  return nullptr;
247}
248
249void Reassociate::BuildRankMap(Function &F) {
250  unsigned i = 2;
251
252  // Assign distinct ranks to function arguments.
253  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
254    ValueRankMap[&*I] = ++i;
255    DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
256  }
257
258  ReversePostOrderTraversal<Function*> RPOT(&F);
259  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
260         E = RPOT.end(); I != E; ++I) {
261    BasicBlock *BB = *I;
262    unsigned BBRank = RankMap[BB] = ++i << 16;
263
264    // Walk the basic block, adding precomputed ranks for any instructions that
265    // we cannot move.  This ensures that the ranks for these instructions are
266    // all different in the block.
267    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
268      if (mayBeMemoryDependent(*I))
269        ValueRankMap[&*I] = ++BBRank;
270  }
271}
272
273unsigned Reassociate::getRank(Value *V) {
274  Instruction *I = dyn_cast<Instruction>(V);
275  if (!I) {
276    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
277    return 0;  // Otherwise it's a global or constant, rank 0.
278  }
279
280  if (unsigned Rank = ValueRankMap[I])
281    return Rank;    // Rank already known?
282
283  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
284  // we can reassociate expressions for code motion!  Since we do not recurse
285  // for PHI nodes, we cannot have infinite recursion here, because there
286  // cannot be loops in the value graph that do not go through PHI nodes.
287  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
288  for (unsigned i = 0, e = I->getNumOperands();
289       i != e && Rank != MaxRank; ++i)
290    Rank = std::max(Rank, getRank(I->getOperand(i)));
291
292  // If this is a not or neg instruction, do not count it for rank.  This
293  // assures us that X and ~X will have the same rank.
294  if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
295       !BinaryOperator::isFNeg(I))
296    ++Rank;
297
298  DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
299
300  return ValueRankMap[I] = Rank;
301}
302
303// Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
304void Reassociate::canonicalizeOperands(Instruction *I) {
305  assert(isa<BinaryOperator>(I) && "Expected binary operator.");
306  assert(I->isCommutative() && "Expected commutative operator.");
307
308  Value *LHS = I->getOperand(0);
309  Value *RHS = I->getOperand(1);
310  unsigned LHSRank = getRank(LHS);
311  unsigned RHSRank = getRank(RHS);
312
313  if (isa<Constant>(RHS))
314    return;
315
316  if (isa<Constant>(LHS) || RHSRank < LHSRank)
317    cast<BinaryOperator>(I)->swapOperands();
318}
319
320static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
321                                 Instruction *InsertBefore, Value *FlagsOp) {
322  if (S1->getType()->isIntOrIntVectorTy())
323    return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
324  else {
325    BinaryOperator *Res =
326        BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
327    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
328    return Res;
329  }
330}
331
332static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
333                                 Instruction *InsertBefore, Value *FlagsOp) {
334  if (S1->getType()->isIntOrIntVectorTy())
335    return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
336  else {
337    BinaryOperator *Res =
338      BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
339    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
340    return Res;
341  }
342}
343
344static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
345                                 Instruction *InsertBefore, Value *FlagsOp) {
346  if (S1->getType()->isIntOrIntVectorTy())
347    return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
348  else {
349    BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
350    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
351    return Res;
352  }
353}
354
355/// Replace 0-X with X*-1.
356static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
357  Type *Ty = Neg->getType();
358  Constant *NegOne = Ty->isIntOrIntVectorTy() ?
359    ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
360
361  BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
362  Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
363  Res->takeName(Neg);
364  Neg->replaceAllUsesWith(Res);
365  Res->setDebugLoc(Neg->getDebugLoc());
366  return Res;
367}
368
369/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
370/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
371/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
372/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
373/// even x in Bitwidth-bit arithmetic.
374static unsigned CarmichaelShift(unsigned Bitwidth) {
375  if (Bitwidth < 3)
376    return Bitwidth - 1;
377  return Bitwidth - 2;
378}
379
380/// Add the extra weight 'RHS' to the existing weight 'LHS',
381/// reducing the combined weight using any special properties of the operation.
382/// The existing weight LHS represents the computation X op X op ... op X where
383/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
384/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
385/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
386/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
387static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
388  // If we were working with infinite precision arithmetic then the combined
389  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
390  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
391  // for nilpotent operations and addition, but not for idempotent operations
392  // and multiplication), so it is important to correctly reduce the combined
393  // weight back into range if wrapping would be wrong.
394
395  // If RHS is zero then the weight didn't change.
396  if (RHS.isMinValue())
397    return;
398  // If LHS is zero then the combined weight is RHS.
399  if (LHS.isMinValue()) {
400    LHS = RHS;
401    return;
402  }
403  // From this point on we know that neither LHS nor RHS is zero.
404
405  if (Instruction::isIdempotent(Opcode)) {
406    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
407    // weight of 1.  Keeping weights at zero or one also means that wrapping is
408    // not a problem.
409    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
410    return; // Return a weight of 1.
411  }
412  if (Instruction::isNilpotent(Opcode)) {
413    // Nilpotent means X op X === 0, so reduce weights modulo 2.
414    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
415    LHS = 0; // 1 + 1 === 0 modulo 2.
416    return;
417  }
418  if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
419    // TODO: Reduce the weight by exploiting nsw/nuw?
420    LHS += RHS;
421    return;
422  }
423
424  assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
425         "Unknown associative operation!");
426  unsigned Bitwidth = LHS.getBitWidth();
427  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
428  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
429  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
430  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
431  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
432  // which by a happy accident means that they can always be represented using
433  // Bitwidth bits.
434  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
435  // the Carmichael number).
436  if (Bitwidth > 3) {
437    /// CM - The value of Carmichael's lambda function.
438    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
439    // Any weight W >= Threshold can be replaced with W - CM.
440    APInt Threshold = CM + Bitwidth;
441    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
442    // For Bitwidth 4 or more the following sum does not overflow.
443    LHS += RHS;
444    while (LHS.uge(Threshold))
445      LHS -= CM;
446  } else {
447    // To avoid problems with overflow do everything the same as above but using
448    // a larger type.
449    unsigned CM = 1U << CarmichaelShift(Bitwidth);
450    unsigned Threshold = CM + Bitwidth;
451    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
452           "Weights not reduced!");
453    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
454    while (Total >= Threshold)
455      Total -= CM;
456    LHS = Total;
457  }
458}
459
460typedef std::pair<Value*, APInt> RepeatedValue;
461
462/// Given an associative binary expression, return the leaf
463/// nodes in Ops along with their weights (how many times the leaf occurs).  The
464/// original expression is the same as
465///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
466/// op
467///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
468/// op
469///   ...
470/// op
471///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
472///
473/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
474///
475/// This routine may modify the function, in which case it returns 'true'.  The
476/// changes it makes may well be destructive, changing the value computed by 'I'
477/// to something completely different.  Thus if the routine returns 'true' then
478/// you MUST either replace I with a new expression computed from the Ops array,
479/// or use RewriteExprTree to put the values back in.
480///
481/// A leaf node is either not a binary operation of the same kind as the root
482/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
483/// opcode), or is the same kind of binary operator but has a use which either
484/// does not belong to the expression, or does belong to the expression but is
485/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
486/// of the expression, while for non-leaf nodes (except for the root 'I') every
487/// use is a non-leaf node of the expression.
488///
489/// For example:
490///           expression graph        node names
491///
492///                     +        |        I
493///                    / \       |
494///                   +   +      |      A,  B
495///                  / \ / \     |
496///                 *   +   *    |    C,  D,  E
497///                / \ / \ / \   |
498///                   +   *      |      F,  G
499///
500/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
501/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
502///
503/// The expression is maximal: if some instruction is a binary operator of the
504/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
505/// then the instruction also belongs to the expression, is not a leaf node of
506/// it, and its operands also belong to the expression (but may be leaf nodes).
507///
508/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
509/// order to ensure that every non-root node in the expression has *exactly one*
510/// use by a non-leaf node of the expression.  This destruction means that the
511/// caller MUST either replace 'I' with a new expression or use something like
512/// RewriteExprTree to put the values back in if the routine indicates that it
513/// made a change by returning 'true'.
514///
515/// In the above example either the right operand of A or the left operand of B
516/// will be replaced by undef.  If it is B's operand then this gives:
517///
518///                     +        |        I
519///                    / \       |
520///                   +   +      |      A,  B - operand of B replaced with undef
521///                  / \   \     |
522///                 *   +   *    |    C,  D,  E
523///                / \ / \ / \   |
524///                   +   *      |      F,  G
525///
526/// Note that such undef operands can only be reached by passing through 'I'.
527/// For example, if you visit operands recursively starting from a leaf node
528/// then you will never see such an undef operand unless you get back to 'I',
529/// which requires passing through a phi node.
530///
531/// Note that this routine may also mutate binary operators of the wrong type
532/// that have all uses inside the expression (i.e. only used by non-leaf nodes
533/// of the expression) if it can turn them into binary operators of the right
534/// type and thus make the expression bigger.
535
536static bool LinearizeExprTree(BinaryOperator *I,
537                              SmallVectorImpl<RepeatedValue> &Ops) {
538  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
539  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
540  unsigned Opcode = I->getOpcode();
541  assert(I->isAssociative() && I->isCommutative() &&
542         "Expected an associative and commutative operation!");
543
544  // Visit all operands of the expression, keeping track of their weight (the
545  // number of paths from the expression root to the operand, or if you like
546  // the number of times that operand occurs in the linearized expression).
547  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
548  // while A has weight two.
549
550  // Worklist of non-leaf nodes (their operands are in the expression too) along
551  // with their weights, representing a certain number of paths to the operator.
552  // If an operator occurs in the worklist multiple times then we found multiple
553  // ways to get to it.
554  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
555  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
556  bool Changed = false;
557
558  // Leaves of the expression are values that either aren't the right kind of
559  // operation (eg: a constant, or a multiply in an add tree), or are, but have
560  // some uses that are not inside the expression.  For example, in I = X + X,
561  // X = A + B, the value X has two uses (by I) that are in the expression.  If
562  // X has any other uses, for example in a return instruction, then we consider
563  // X to be a leaf, and won't analyze it further.  When we first visit a value,
564  // if it has more than one use then at first we conservatively consider it to
565  // be a leaf.  Later, as the expression is explored, we may discover some more
566  // uses of the value from inside the expression.  If all uses turn out to be
567  // from within the expression (and the value is a binary operator of the right
568  // kind) then the value is no longer considered to be a leaf, and its operands
569  // are explored.
570
571  // Leaves - Keeps track of the set of putative leaves as well as the number of
572  // paths to each leaf seen so far.
573  typedef DenseMap<Value*, APInt> LeafMap;
574  LeafMap Leaves; // Leaf -> Total weight so far.
575  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
576
577#ifndef NDEBUG
578  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
579#endif
580  while (!Worklist.empty()) {
581    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
582    I = P.first; // We examine the operands of this binary operator.
583
584    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
585      Value *Op = I->getOperand(OpIdx);
586      APInt Weight = P.second; // Number of paths to this operand.
587      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
588      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
589
590      // If this is a binary operation of the right kind with only one use then
591      // add its operands to the expression.
592      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
593        assert(Visited.insert(Op).second && "Not first visit!");
594        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
595        Worklist.push_back(std::make_pair(BO, Weight));
596        continue;
597      }
598
599      // Appears to be a leaf.  Is the operand already in the set of leaves?
600      LeafMap::iterator It = Leaves.find(Op);
601      if (It == Leaves.end()) {
602        // Not in the leaf map.  Must be the first time we saw this operand.
603        assert(Visited.insert(Op).second && "Not first visit!");
604        if (!Op->hasOneUse()) {
605          // This value has uses not accounted for by the expression, so it is
606          // not safe to modify.  Mark it as being a leaf.
607          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
608          LeafOrder.push_back(Op);
609          Leaves[Op] = Weight;
610          continue;
611        }
612        // No uses outside the expression, try morphing it.
613      } else if (It != Leaves.end()) {
614        // Already in the leaf map.
615        assert(Visited.count(Op) && "In leaf map but not visited!");
616
617        // Update the number of paths to the leaf.
618        IncorporateWeight(It->second, Weight, Opcode);
619
620#if 0   // TODO: Re-enable once PR13021 is fixed.
621        // The leaf already has one use from inside the expression.  As we want
622        // exactly one such use, drop this new use of the leaf.
623        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
624        I->setOperand(OpIdx, UndefValue::get(I->getType()));
625        Changed = true;
626
627        // If the leaf is a binary operation of the right kind and we now see
628        // that its multiple original uses were in fact all by nodes belonging
629        // to the expression, then no longer consider it to be a leaf and add
630        // its operands to the expression.
631        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
632          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
633          Worklist.push_back(std::make_pair(BO, It->second));
634          Leaves.erase(It);
635          continue;
636        }
637#endif
638
639        // If we still have uses that are not accounted for by the expression
640        // then it is not safe to modify the value.
641        if (!Op->hasOneUse())
642          continue;
643
644        // No uses outside the expression, try morphing it.
645        Weight = It->second;
646        Leaves.erase(It); // Since the value may be morphed below.
647      }
648
649      // At this point we have a value which, first of all, is not a binary
650      // expression of the right kind, and secondly, is only used inside the
651      // expression.  This means that it can safely be modified.  See if we
652      // can usefully morph it into an expression of the right kind.
653      assert((!isa<Instruction>(Op) ||
654              cast<Instruction>(Op)->getOpcode() != Opcode
655              || (isa<FPMathOperator>(Op) &&
656                  !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
657             "Should have been handled above!");
658      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
659
660      // If this is a multiply expression, turn any internal negations into
661      // multiplies by -1 so they can be reassociated.
662      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
663        if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
664            (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
665          DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
666          BO = LowerNegateToMultiply(BO);
667          DEBUG(dbgs() << *BO << '\n');
668          Worklist.push_back(std::make_pair(BO, Weight));
669          Changed = true;
670          continue;
671        }
672
673      // Failed to morph into an expression of the right type.  This really is
674      // a leaf.
675      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
676      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
677      LeafOrder.push_back(Op);
678      Leaves[Op] = Weight;
679    }
680  }
681
682  // The leaves, repeated according to their weights, represent the linearized
683  // form of the expression.
684  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
685    Value *V = LeafOrder[i];
686    LeafMap::iterator It = Leaves.find(V);
687    if (It == Leaves.end())
688      // Node initially thought to be a leaf wasn't.
689      continue;
690    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
691    APInt Weight = It->second;
692    if (Weight.isMinValue())
693      // Leaf already output or weight reduction eliminated it.
694      continue;
695    // Ensure the leaf is only output once.
696    It->second = 0;
697    Ops.push_back(std::make_pair(V, Weight));
698  }
699
700  // For nilpotent operations or addition there may be no operands, for example
701  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
702  // in both cases the weight reduces to 0 causing the value to be skipped.
703  if (Ops.empty()) {
704    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
705    assert(Identity && "Associative operation without identity!");
706    Ops.emplace_back(Identity, APInt(Bitwidth, 1));
707  }
708
709  return Changed;
710}
711
712/// Now that the operands for this expression tree are
713/// linearized and optimized, emit them in-order.
714void Reassociate::RewriteExprTree(BinaryOperator *I,
715                                  SmallVectorImpl<ValueEntry> &Ops) {
716  assert(Ops.size() > 1 && "Single values should be used directly!");
717
718  // Since our optimizations should never increase the number of operations, the
719  // new expression can usually be written reusing the existing binary operators
720  // from the original expression tree, without creating any new instructions,
721  // though the rewritten expression may have a completely different topology.
722  // We take care to not change anything if the new expression will be the same
723  // as the original.  If more than trivial changes (like commuting operands)
724  // were made then we are obliged to clear out any optional subclass data like
725  // nsw flags.
726
727  /// NodesToRewrite - Nodes from the original expression available for writing
728  /// the new expression into.
729  SmallVector<BinaryOperator*, 8> NodesToRewrite;
730  unsigned Opcode = I->getOpcode();
731  BinaryOperator *Op = I;
732
733  /// NotRewritable - The operands being written will be the leaves of the new
734  /// expression and must not be used as inner nodes (via NodesToRewrite) by
735  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
736  /// (if they were they would have been incorporated into the expression and so
737  /// would not be leaves), so most of the time there is no danger of this.  But
738  /// in rare cases a leaf may become reassociable if an optimization kills uses
739  /// of it, or it may momentarily become reassociable during rewriting (below)
740  /// due it being removed as an operand of one of its uses.  Ensure that misuse
741  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
742  /// leaves and refusing to reuse any of them as inner nodes.
743  SmallPtrSet<Value*, 8> NotRewritable;
744  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
745    NotRewritable.insert(Ops[i].Op);
746
747  // ExpressionChanged - Non-null if the rewritten expression differs from the
748  // original in some non-trivial way, requiring the clearing of optional flags.
749  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
750  BinaryOperator *ExpressionChanged = nullptr;
751  for (unsigned i = 0; ; ++i) {
752    // The last operation (which comes earliest in the IR) is special as both
753    // operands will come from Ops, rather than just one with the other being
754    // a subexpression.
755    if (i+2 == Ops.size()) {
756      Value *NewLHS = Ops[i].Op;
757      Value *NewRHS = Ops[i+1].Op;
758      Value *OldLHS = Op->getOperand(0);
759      Value *OldRHS = Op->getOperand(1);
760
761      if (NewLHS == OldLHS && NewRHS == OldRHS)
762        // Nothing changed, leave it alone.
763        break;
764
765      if (NewLHS == OldRHS && NewRHS == OldLHS) {
766        // The order of the operands was reversed.  Swap them.
767        DEBUG(dbgs() << "RA: " << *Op << '\n');
768        Op->swapOperands();
769        DEBUG(dbgs() << "TO: " << *Op << '\n');
770        MadeChange = true;
771        ++NumChanged;
772        break;
773      }
774
775      // The new operation differs non-trivially from the original. Overwrite
776      // the old operands with the new ones.
777      DEBUG(dbgs() << "RA: " << *Op << '\n');
778      if (NewLHS != OldLHS) {
779        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
780        if (BO && !NotRewritable.count(BO))
781          NodesToRewrite.push_back(BO);
782        Op->setOperand(0, NewLHS);
783      }
784      if (NewRHS != OldRHS) {
785        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
786        if (BO && !NotRewritable.count(BO))
787          NodesToRewrite.push_back(BO);
788        Op->setOperand(1, NewRHS);
789      }
790      DEBUG(dbgs() << "TO: " << *Op << '\n');
791
792      ExpressionChanged = Op;
793      MadeChange = true;
794      ++NumChanged;
795
796      break;
797    }
798
799    // Not the last operation.  The left-hand side will be a sub-expression
800    // while the right-hand side will be the current element of Ops.
801    Value *NewRHS = Ops[i].Op;
802    if (NewRHS != Op->getOperand(1)) {
803      DEBUG(dbgs() << "RA: " << *Op << '\n');
804      if (NewRHS == Op->getOperand(0)) {
805        // The new right-hand side was already present as the left operand.  If
806        // we are lucky then swapping the operands will sort out both of them.
807        Op->swapOperands();
808      } else {
809        // Overwrite with the new right-hand side.
810        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
811        if (BO && !NotRewritable.count(BO))
812          NodesToRewrite.push_back(BO);
813        Op->setOperand(1, NewRHS);
814        ExpressionChanged = Op;
815      }
816      DEBUG(dbgs() << "TO: " << *Op << '\n');
817      MadeChange = true;
818      ++NumChanged;
819    }
820
821    // Now deal with the left-hand side.  If this is already an operation node
822    // from the original expression then just rewrite the rest of the expression
823    // into it.
824    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
825    if (BO && !NotRewritable.count(BO)) {
826      Op = BO;
827      continue;
828    }
829
830    // Otherwise, grab a spare node from the original expression and use that as
831    // the left-hand side.  If there are no nodes left then the optimizers made
832    // an expression with more nodes than the original!  This usually means that
833    // they did something stupid but it might mean that the problem was just too
834    // hard (finding the mimimal number of multiplications needed to realize a
835    // multiplication expression is NP-complete).  Whatever the reason, smart or
836    // stupid, create a new node if there are none left.
837    BinaryOperator *NewOp;
838    if (NodesToRewrite.empty()) {
839      Constant *Undef = UndefValue::get(I->getType());
840      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
841                                     Undef, Undef, "", I);
842      if (NewOp->getType()->isFPOrFPVectorTy())
843        NewOp->setFastMathFlags(I->getFastMathFlags());
844    } else {
845      NewOp = NodesToRewrite.pop_back_val();
846    }
847
848    DEBUG(dbgs() << "RA: " << *Op << '\n');
849    Op->setOperand(0, NewOp);
850    DEBUG(dbgs() << "TO: " << *Op << '\n');
851    ExpressionChanged = Op;
852    MadeChange = true;
853    ++NumChanged;
854    Op = NewOp;
855  }
856
857  // If the expression changed non-trivially then clear out all subclass data
858  // starting from the operator specified in ExpressionChanged, and compactify
859  // the operators to just before the expression root to guarantee that the
860  // expression tree is dominated by all of Ops.
861  if (ExpressionChanged)
862    do {
863      // Preserve FastMathFlags.
864      if (isa<FPMathOperator>(I)) {
865        FastMathFlags Flags = I->getFastMathFlags();
866        ExpressionChanged->clearSubclassOptionalData();
867        ExpressionChanged->setFastMathFlags(Flags);
868      } else
869        ExpressionChanged->clearSubclassOptionalData();
870
871      if (ExpressionChanged == I)
872        break;
873      ExpressionChanged->moveBefore(I);
874      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
875    } while (1);
876
877  // Throw away any left over nodes from the original expression.
878  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
879    RedoInsts.insert(NodesToRewrite[i]);
880}
881
882/// Insert instructions before the instruction pointed to by BI,
883/// that computes the negative version of the value specified.  The negative
884/// version of the value is returned, and BI is left pointing at the instruction
885/// that should be processed next by the reassociation pass.
886/// Also add intermediate instructions to the redo list that are modified while
887/// pushing the negates through adds.  These will be revisited to see if
888/// additional opportunities have been exposed.
889static Value *NegateValue(Value *V, Instruction *BI,
890                          SetVector<AssertingVH<Instruction>> &ToRedo) {
891  if (Constant *C = dyn_cast<Constant>(V)) {
892    if (C->getType()->isFPOrFPVectorTy()) {
893      return ConstantExpr::getFNeg(C);
894    }
895    return ConstantExpr::getNeg(C);
896  }
897
898
899  // We are trying to expose opportunity for reassociation.  One of the things
900  // that we want to do to achieve this is to push a negation as deep into an
901  // expression chain as possible, to expose the add instructions.  In practice,
902  // this means that we turn this:
903  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
904  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
905  // the constants.  We assume that instcombine will clean up the mess later if
906  // we introduce tons of unnecessary negation instructions.
907  //
908  if (BinaryOperator *I =
909          isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
910    // Push the negates through the add.
911    I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
912    I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
913    if (I->getOpcode() == Instruction::Add) {
914      I->setHasNoUnsignedWrap(false);
915      I->setHasNoSignedWrap(false);
916    }
917
918    // We must move the add instruction here, because the neg instructions do
919    // not dominate the old add instruction in general.  By moving it, we are
920    // assured that the neg instructions we just inserted dominate the
921    // instruction we are about to insert after them.
922    //
923    I->moveBefore(BI);
924    I->setName(I->getName()+".neg");
925
926    // Add the intermediate negates to the redo list as processing them later
927    // could expose more reassociating opportunities.
928    ToRedo.insert(I);
929    return I;
930  }
931
932  // Okay, we need to materialize a negated version of V with an instruction.
933  // Scan the use lists of V to see if we have one already.
934  for (User *U : V->users()) {
935    if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
936      continue;
937
938    // We found one!  Now we have to make sure that the definition dominates
939    // this use.  We do this by moving it to the entry block (if it is a
940    // non-instruction value) or right after the definition.  These negates will
941    // be zapped by reassociate later, so we don't need much finesse here.
942    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
943
944    // Verify that the negate is in this function, V might be a constant expr.
945    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
946      continue;
947
948    BasicBlock::iterator InsertPt;
949    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
950      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
951        InsertPt = II->getNormalDest()->begin();
952      } else {
953        InsertPt = ++InstInput->getIterator();
954      }
955      while (isa<PHINode>(InsertPt)) ++InsertPt;
956    } else {
957      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
958    }
959    TheNeg->moveBefore(&*InsertPt);
960    if (TheNeg->getOpcode() == Instruction::Sub) {
961      TheNeg->setHasNoUnsignedWrap(false);
962      TheNeg->setHasNoSignedWrap(false);
963    } else {
964      TheNeg->andIRFlags(BI);
965    }
966    ToRedo.insert(TheNeg);
967    return TheNeg;
968  }
969
970  // Insert a 'neg' instruction that subtracts the value from zero to get the
971  // negation.
972  BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
973  ToRedo.insert(NewNeg);
974  return NewNeg;
975}
976
977/// Return true if we should break up this subtract of X-Y into (X + -Y).
978static bool ShouldBreakUpSubtract(Instruction *Sub) {
979  // If this is a negation, we can't split it up!
980  if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
981    return false;
982
983  // Don't breakup X - undef.
984  if (isa<UndefValue>(Sub->getOperand(1)))
985    return false;
986
987  // Don't bother to break this up unless either the LHS is an associable add or
988  // subtract or if this is only used by one.
989  Value *V0 = Sub->getOperand(0);
990  if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
991      isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
992    return true;
993  Value *V1 = Sub->getOperand(1);
994  if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
995      isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
996    return true;
997  Value *VB = Sub->user_back();
998  if (Sub->hasOneUse() &&
999      (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1000       isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1001    return true;
1002
1003  return false;
1004}
1005
1006/// If we have (X-Y), and if either X is an add, or if this is only used by an
1007/// add, transform this into (X+(0-Y)) to promote better reassociation.
1008static BinaryOperator *
1009BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
1010  // Convert a subtract into an add and a neg instruction. This allows sub
1011  // instructions to be commuted with other add instructions.
1012  //
1013  // Calculate the negative value of Operand 1 of the sub instruction,
1014  // and set it as the RHS of the add instruction we just made.
1015  //
1016  Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1017  BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1018  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1019  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1020  New->takeName(Sub);
1021
1022  // Everyone now refers to the add instruction.
1023  Sub->replaceAllUsesWith(New);
1024  New->setDebugLoc(Sub->getDebugLoc());
1025
1026  DEBUG(dbgs() << "Negated: " << *New << '\n');
1027  return New;
1028}
1029
1030/// If this is a shift of a reassociable multiply or is used by one, change
1031/// this into a multiply by a constant to assist with further reassociation.
1032static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1033  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1034  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
1035
1036  BinaryOperator *Mul =
1037    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1038  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1039  Mul->takeName(Shl);
1040
1041  // Everyone now refers to the mul instruction.
1042  Shl->replaceAllUsesWith(Mul);
1043  Mul->setDebugLoc(Shl->getDebugLoc());
1044
1045  // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1046  // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1047  // handling.
1048  bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1049  bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1050  if (NSW && NUW)
1051    Mul->setHasNoSignedWrap(true);
1052  Mul->setHasNoUnsignedWrap(NUW);
1053  return Mul;
1054}
1055
1056/// Scan backwards and forwards among values with the same rank as element i
1057/// to see if X exists.  If X does not exist, return i.  This is useful when
1058/// scanning for 'x' when we see '-x' because they both get the same rank.
1059static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
1060                                  Value *X) {
1061  unsigned XRank = Ops[i].Rank;
1062  unsigned e = Ops.size();
1063  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1064    if (Ops[j].Op == X)
1065      return j;
1066    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1067      if (Instruction *I2 = dyn_cast<Instruction>(X))
1068        if (I1->isIdenticalTo(I2))
1069          return j;
1070  }
1071  // Scan backwards.
1072  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1073    if (Ops[j].Op == X)
1074      return j;
1075    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1076      if (Instruction *I2 = dyn_cast<Instruction>(X))
1077        if (I1->isIdenticalTo(I2))
1078          return j;
1079  }
1080  return i;
1081}
1082
1083/// Emit a tree of add instructions, summing Ops together
1084/// and returning the result.  Insert the tree before I.
1085static Value *EmitAddTreeOfValues(Instruction *I,
1086                                  SmallVectorImpl<WeakVH> &Ops){
1087  if (Ops.size() == 1) return Ops.back();
1088
1089  Value *V1 = Ops.back();
1090  Ops.pop_back();
1091  Value *V2 = EmitAddTreeOfValues(I, Ops);
1092  return CreateAdd(V2, V1, "tmp", I, I);
1093}
1094
1095/// If V is an expression tree that is a multiplication sequence,
1096/// and if this sequence contains a multiply by Factor,
1097/// remove Factor from the tree and return the new tree.
1098Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
1099  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1100  if (!BO)
1101    return nullptr;
1102
1103  SmallVector<RepeatedValue, 8> Tree;
1104  MadeChange |= LinearizeExprTree(BO, Tree);
1105  SmallVector<ValueEntry, 8> Factors;
1106  Factors.reserve(Tree.size());
1107  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1108    RepeatedValue E = Tree[i];
1109    Factors.append(E.second.getZExtValue(),
1110                   ValueEntry(getRank(E.first), E.first));
1111  }
1112
1113  bool FoundFactor = false;
1114  bool NeedsNegate = false;
1115  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1116    if (Factors[i].Op == Factor) {
1117      FoundFactor = true;
1118      Factors.erase(Factors.begin()+i);
1119      break;
1120    }
1121
1122    // If this is a negative version of this factor, remove it.
1123    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1124      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1125        if (FC1->getValue() == -FC2->getValue()) {
1126          FoundFactor = NeedsNegate = true;
1127          Factors.erase(Factors.begin()+i);
1128          break;
1129        }
1130    } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1131      if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1132        APFloat F1(FC1->getValueAPF());
1133        APFloat F2(FC2->getValueAPF());
1134        F2.changeSign();
1135        if (F1.compare(F2) == APFloat::cmpEqual) {
1136          FoundFactor = NeedsNegate = true;
1137          Factors.erase(Factors.begin() + i);
1138          break;
1139        }
1140      }
1141    }
1142  }
1143
1144  if (!FoundFactor) {
1145    // Make sure to restore the operands to the expression tree.
1146    RewriteExprTree(BO, Factors);
1147    return nullptr;
1148  }
1149
1150  BasicBlock::iterator InsertPt = ++BO->getIterator();
1151
1152  // If this was just a single multiply, remove the multiply and return the only
1153  // remaining operand.
1154  if (Factors.size() == 1) {
1155    RedoInsts.insert(BO);
1156    V = Factors[0].Op;
1157  } else {
1158    RewriteExprTree(BO, Factors);
1159    V = BO;
1160  }
1161
1162  if (NeedsNegate)
1163    V = CreateNeg(V, "neg", &*InsertPt, BO);
1164
1165  return V;
1166}
1167
1168/// If V is a single-use multiply, recursively add its operands as factors,
1169/// otherwise add V to the list of factors.
1170///
1171/// Ops is the top-level list of add operands we're trying to factor.
1172static void FindSingleUseMultiplyFactors(Value *V,
1173                                         SmallVectorImpl<Value*> &Factors,
1174                                       const SmallVectorImpl<ValueEntry> &Ops) {
1175  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1176  if (!BO) {
1177    Factors.push_back(V);
1178    return;
1179  }
1180
1181  // Otherwise, add the LHS and RHS to the list of factors.
1182  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1183  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1184}
1185
1186/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1187/// This optimizes based on identities.  If it can be reduced to a single Value,
1188/// it is returned, otherwise the Ops list is mutated as necessary.
1189static Value *OptimizeAndOrXor(unsigned Opcode,
1190                               SmallVectorImpl<ValueEntry> &Ops) {
1191  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1192  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1193  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1194    // First, check for X and ~X in the operand list.
1195    assert(i < Ops.size());
1196    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1197      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1198      unsigned FoundX = FindInOperandList(Ops, i, X);
1199      if (FoundX != i) {
1200        if (Opcode == Instruction::And)   // ...&X&~X = 0
1201          return Constant::getNullValue(X->getType());
1202
1203        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1204          return Constant::getAllOnesValue(X->getType());
1205      }
1206    }
1207
1208    // Next, check for duplicate pairs of values, which we assume are next to
1209    // each other, due to our sorting criteria.
1210    assert(i < Ops.size());
1211    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1212      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1213        // Drop duplicate values for And and Or.
1214        Ops.erase(Ops.begin()+i);
1215        --i; --e;
1216        ++NumAnnihil;
1217        continue;
1218      }
1219
1220      // Drop pairs of values for Xor.
1221      assert(Opcode == Instruction::Xor);
1222      if (e == 2)
1223        return Constant::getNullValue(Ops[0].Op->getType());
1224
1225      // Y ^ X^X -> Y
1226      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1227      i -= 1; e -= 2;
1228      ++NumAnnihil;
1229    }
1230  }
1231  return nullptr;
1232}
1233
1234/// Helper function of CombineXorOpnd(). It creates a bitwise-and
1235/// instruction with the given two operands, and return the resulting
1236/// instruction. There are two special cases: 1) if the constant operand is 0,
1237/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1238/// be returned.
1239static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1240                             const APInt &ConstOpnd) {
1241  if (ConstOpnd != 0) {
1242    if (!ConstOpnd.isAllOnesValue()) {
1243      LLVMContext &Ctx = Opnd->getType()->getContext();
1244      Instruction *I;
1245      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1246                                    "and.ra", InsertBefore);
1247      I->setDebugLoc(InsertBefore->getDebugLoc());
1248      return I;
1249    }
1250    return Opnd;
1251  }
1252  return nullptr;
1253}
1254
1255// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1256// into "R ^ C", where C would be 0, and R is a symbolic value.
1257//
1258// If it was successful, true is returned, and the "R" and "C" is returned
1259// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1260// and both "Res" and "ConstOpnd" remain unchanged.
1261//
1262bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1263                                 APInt &ConstOpnd, Value *&Res) {
1264  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1265  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1266  //                       = (x & ~c1) ^ (c1 ^ c2)
1267  // It is useful only when c1 == c2.
1268  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1269    if (!Opnd1->getValue()->hasOneUse())
1270      return false;
1271
1272    const APInt &C1 = Opnd1->getConstPart();
1273    if (C1 != ConstOpnd)
1274      return false;
1275
1276    Value *X = Opnd1->getSymbolicPart();
1277    Res = createAndInstr(I, X, ~C1);
1278    // ConstOpnd was C2, now C1 ^ C2.
1279    ConstOpnd ^= C1;
1280
1281    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1282      RedoInsts.insert(T);
1283    return true;
1284  }
1285  return false;
1286}
1287
1288
1289// Helper function of OptimizeXor(). It tries to simplify
1290// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1291// symbolic value.
1292//
1293// If it was successful, true is returned, and the "R" and "C" is returned
1294// via "Res" and "ConstOpnd", respectively (If the entire expression is
1295// evaluated to a constant, the Res is set to NULL); otherwise, false is
1296// returned, and both "Res" and "ConstOpnd" remain unchanged.
1297bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1298                                 APInt &ConstOpnd, Value *&Res) {
1299  Value *X = Opnd1->getSymbolicPart();
1300  if (X != Opnd2->getSymbolicPart())
1301    return false;
1302
1303  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1304  int DeadInstNum = 1;
1305  if (Opnd1->getValue()->hasOneUse())
1306    DeadInstNum++;
1307  if (Opnd2->getValue()->hasOneUse())
1308    DeadInstNum++;
1309
1310  // Xor-Rule 2:
1311  //  (x | c1) ^ (x & c2)
1312  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1313  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1314  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1315  //
1316  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1317    if (Opnd2->isOrExpr())
1318      std::swap(Opnd1, Opnd2);
1319
1320    const APInt &C1 = Opnd1->getConstPart();
1321    const APInt &C2 = Opnd2->getConstPart();
1322    APInt C3((~C1) ^ C2);
1323
1324    // Do not increase code size!
1325    if (C3 != 0 && !C3.isAllOnesValue()) {
1326      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1327      if (NewInstNum > DeadInstNum)
1328        return false;
1329    }
1330
1331    Res = createAndInstr(I, X, C3);
1332    ConstOpnd ^= C1;
1333
1334  } else if (Opnd1->isOrExpr()) {
1335    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1336    //
1337    const APInt &C1 = Opnd1->getConstPart();
1338    const APInt &C2 = Opnd2->getConstPart();
1339    APInt C3 = C1 ^ C2;
1340
1341    // Do not increase code size
1342    if (C3 != 0 && !C3.isAllOnesValue()) {
1343      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1344      if (NewInstNum > DeadInstNum)
1345        return false;
1346    }
1347
1348    Res = createAndInstr(I, X, C3);
1349    ConstOpnd ^= C3;
1350  } else {
1351    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1352    //
1353    const APInt &C1 = Opnd1->getConstPart();
1354    const APInt &C2 = Opnd2->getConstPart();
1355    APInt C3 = C1 ^ C2;
1356    Res = createAndInstr(I, X, C3);
1357  }
1358
1359  // Put the original operands in the Redo list; hope they will be deleted
1360  // as dead code.
1361  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1362    RedoInsts.insert(T);
1363  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1364    RedoInsts.insert(T);
1365
1366  return true;
1367}
1368
1369/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1370/// to a single Value, it is returned, otherwise the Ops list is mutated as
1371/// necessary.
1372Value *Reassociate::OptimizeXor(Instruction *I,
1373                                SmallVectorImpl<ValueEntry> &Ops) {
1374  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1375    return V;
1376
1377  if (Ops.size() == 1)
1378    return nullptr;
1379
1380  SmallVector<XorOpnd, 8> Opnds;
1381  SmallVector<XorOpnd*, 8> OpndPtrs;
1382  Type *Ty = Ops[0].Op->getType();
1383  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1384
1385  // Step 1: Convert ValueEntry to XorOpnd
1386  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1387    Value *V = Ops[i].Op;
1388    if (!isa<ConstantInt>(V)) {
1389      XorOpnd O(V);
1390      O.setSymbolicRank(getRank(O.getSymbolicPart()));
1391      Opnds.push_back(O);
1392    } else
1393      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1394  }
1395
1396  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1397  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1398  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1399  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1400  //  when new elements are added to the vector.
1401  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1402    OpndPtrs.push_back(&Opnds[i]);
1403
1404  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1405  //  the same symbolic value cluster together. For instance, the input operand
1406  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1407  //  ("x | 123", "x & 789", "y & 456").
1408  std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1409
1410  // Step 3: Combine adjacent operands
1411  XorOpnd *PrevOpnd = nullptr;
1412  bool Changed = false;
1413  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1414    XorOpnd *CurrOpnd = OpndPtrs[i];
1415    // The combined value
1416    Value *CV;
1417
1418    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1419    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1420      Changed = true;
1421      if (CV)
1422        *CurrOpnd = XorOpnd(CV);
1423      else {
1424        CurrOpnd->Invalidate();
1425        continue;
1426      }
1427    }
1428
1429    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1430      PrevOpnd = CurrOpnd;
1431      continue;
1432    }
1433
1434    // step 3.2: When previous and current operands share the same symbolic
1435    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1436    //
1437    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1438      // Remove previous operand
1439      PrevOpnd->Invalidate();
1440      if (CV) {
1441        *CurrOpnd = XorOpnd(CV);
1442        PrevOpnd = CurrOpnd;
1443      } else {
1444        CurrOpnd->Invalidate();
1445        PrevOpnd = nullptr;
1446      }
1447      Changed = true;
1448    }
1449  }
1450
1451  // Step 4: Reassemble the Ops
1452  if (Changed) {
1453    Ops.clear();
1454    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1455      XorOpnd &O = Opnds[i];
1456      if (O.isInvalid())
1457        continue;
1458      ValueEntry VE(getRank(O.getValue()), O.getValue());
1459      Ops.push_back(VE);
1460    }
1461    if (ConstOpnd != 0) {
1462      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1463      ValueEntry VE(getRank(C), C);
1464      Ops.push_back(VE);
1465    }
1466    int Sz = Ops.size();
1467    if (Sz == 1)
1468      return Ops.back().Op;
1469    else if (Sz == 0) {
1470      assert(ConstOpnd == 0);
1471      return ConstantInt::get(Ty->getContext(), ConstOpnd);
1472    }
1473  }
1474
1475  return nullptr;
1476}
1477
1478/// Optimize a series of operands to an 'add' instruction.  This
1479/// optimizes based on identities.  If it can be reduced to a single Value, it
1480/// is returned, otherwise the Ops list is mutated as necessary.
1481Value *Reassociate::OptimizeAdd(Instruction *I,
1482                                SmallVectorImpl<ValueEntry> &Ops) {
1483  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1484  // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1485  // scan for any
1486  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1487
1488  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1489    Value *TheOp = Ops[i].Op;
1490    // Check to see if we've seen this operand before.  If so, we factor all
1491    // instances of the operand together.  Due to our sorting criteria, we know
1492    // that these need to be next to each other in the vector.
1493    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1494      // Rescan the list, remove all instances of this operand from the expr.
1495      unsigned NumFound = 0;
1496      do {
1497        Ops.erase(Ops.begin()+i);
1498        ++NumFound;
1499      } while (i != Ops.size() && Ops[i].Op == TheOp);
1500
1501      DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1502      ++NumFactor;
1503
1504      // Insert a new multiply.
1505      Type *Ty = TheOp->getType();
1506      Constant *C = Ty->isIntOrIntVectorTy() ?
1507        ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1508      Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1509
1510      // Now that we have inserted a multiply, optimize it. This allows us to
1511      // handle cases that require multiple factoring steps, such as this:
1512      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1513      RedoInsts.insert(Mul);
1514
1515      // If every add operand was a duplicate, return the multiply.
1516      if (Ops.empty())
1517        return Mul;
1518
1519      // Otherwise, we had some input that didn't have the dupe, such as
1520      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1521      // things being added by this operation.
1522      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1523
1524      --i;
1525      e = Ops.size();
1526      continue;
1527    }
1528
1529    // Check for X and -X or X and ~X in the operand list.
1530    if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1531        !BinaryOperator::isNot(TheOp))
1532      continue;
1533
1534    Value *X = nullptr;
1535    if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1536      X = BinaryOperator::getNegArgument(TheOp);
1537    else if (BinaryOperator::isNot(TheOp))
1538      X = BinaryOperator::getNotArgument(TheOp);
1539
1540    unsigned FoundX = FindInOperandList(Ops, i, X);
1541    if (FoundX == i)
1542      continue;
1543
1544    // Remove X and -X from the operand list.
1545    if (Ops.size() == 2 &&
1546        (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1547      return Constant::getNullValue(X->getType());
1548
1549    // Remove X and ~X from the operand list.
1550    if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1551      return Constant::getAllOnesValue(X->getType());
1552
1553    Ops.erase(Ops.begin()+i);
1554    if (i < FoundX)
1555      --FoundX;
1556    else
1557      --i;   // Need to back up an extra one.
1558    Ops.erase(Ops.begin()+FoundX);
1559    ++NumAnnihil;
1560    --i;     // Revisit element.
1561    e -= 2;  // Removed two elements.
1562
1563    // if X and ~X we append -1 to the operand list.
1564    if (BinaryOperator::isNot(TheOp)) {
1565      Value *V = Constant::getAllOnesValue(X->getType());
1566      Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1567      e += 1;
1568    }
1569  }
1570
1571  // Scan the operand list, checking to see if there are any common factors
1572  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1573  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1574  // To efficiently find this, we count the number of times a factor occurs
1575  // for any ADD operands that are MULs.
1576  DenseMap<Value*, unsigned> FactorOccurrences;
1577
1578  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1579  // where they are actually the same multiply.
1580  unsigned MaxOcc = 0;
1581  Value *MaxOccVal = nullptr;
1582  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1583    BinaryOperator *BOp =
1584        isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1585    if (!BOp)
1586      continue;
1587
1588    // Compute all of the factors of this added value.
1589    SmallVector<Value*, 8> Factors;
1590    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1591    assert(Factors.size() > 1 && "Bad linearize!");
1592
1593    // Add one to FactorOccurrences for each unique factor in this op.
1594    SmallPtrSet<Value*, 8> Duplicates;
1595    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1596      Value *Factor = Factors[i];
1597      if (!Duplicates.insert(Factor).second)
1598        continue;
1599
1600      unsigned Occ = ++FactorOccurrences[Factor];
1601      if (Occ > MaxOcc) {
1602        MaxOcc = Occ;
1603        MaxOccVal = Factor;
1604      }
1605
1606      // If Factor is a negative constant, add the negated value as a factor
1607      // because we can percolate the negate out.  Watch for minint, which
1608      // cannot be positivified.
1609      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1610        if (CI->isNegative() && !CI->isMinValue(true)) {
1611          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1612          assert(!Duplicates.count(Factor) &&
1613                 "Shouldn't have two constant factors, missed a canonicalize");
1614          unsigned Occ = ++FactorOccurrences[Factor];
1615          if (Occ > MaxOcc) {
1616            MaxOcc = Occ;
1617            MaxOccVal = Factor;
1618          }
1619        }
1620      } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1621        if (CF->isNegative()) {
1622          APFloat F(CF->getValueAPF());
1623          F.changeSign();
1624          Factor = ConstantFP::get(CF->getContext(), F);
1625          assert(!Duplicates.count(Factor) &&
1626                 "Shouldn't have two constant factors, missed a canonicalize");
1627          unsigned Occ = ++FactorOccurrences[Factor];
1628          if (Occ > MaxOcc) {
1629            MaxOcc = Occ;
1630            MaxOccVal = Factor;
1631          }
1632        }
1633      }
1634    }
1635  }
1636
1637  // If any factor occurred more than one time, we can pull it out.
1638  if (MaxOcc > 1) {
1639    DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1640    ++NumFactor;
1641
1642    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1643    // this, we could otherwise run into situations where removing a factor
1644    // from an expression will drop a use of maxocc, and this can cause
1645    // RemoveFactorFromExpression on successive values to behave differently.
1646    Instruction *DummyInst =
1647        I->getType()->isIntOrIntVectorTy()
1648            ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1649            : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1650
1651    SmallVector<WeakVH, 4> NewMulOps;
1652    for (unsigned i = 0; i != Ops.size(); ++i) {
1653      // Only try to remove factors from expressions we're allowed to.
1654      BinaryOperator *BOp =
1655          isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1656      if (!BOp)
1657        continue;
1658
1659      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1660        // The factorized operand may occur several times.  Convert them all in
1661        // one fell swoop.
1662        for (unsigned j = Ops.size(); j != i;) {
1663          --j;
1664          if (Ops[j].Op == Ops[i].Op) {
1665            NewMulOps.push_back(V);
1666            Ops.erase(Ops.begin()+j);
1667          }
1668        }
1669        --i;
1670      }
1671    }
1672
1673    // No need for extra uses anymore.
1674    delete DummyInst;
1675
1676    unsigned NumAddedValues = NewMulOps.size();
1677    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1678
1679    // Now that we have inserted the add tree, optimize it. This allows us to
1680    // handle cases that require multiple factoring steps, such as this:
1681    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1682    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1683    (void)NumAddedValues;
1684    if (Instruction *VI = dyn_cast<Instruction>(V))
1685      RedoInsts.insert(VI);
1686
1687    // Create the multiply.
1688    Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
1689
1690    // Rerun associate on the multiply in case the inner expression turned into
1691    // a multiply.  We want to make sure that we keep things in canonical form.
1692    RedoInsts.insert(V2);
1693
1694    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1695    // entire result expression is just the multiply "A*(B+C)".
1696    if (Ops.empty())
1697      return V2;
1698
1699    // Otherwise, we had some input that didn't have the factor, such as
1700    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1701    // things being added by this operation.
1702    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1703  }
1704
1705  return nullptr;
1706}
1707
1708/// \brief Build up a vector of value/power pairs factoring a product.
1709///
1710/// Given a series of multiplication operands, build a vector of factors and
1711/// the powers each is raised to when forming the final product. Sort them in
1712/// the order of descending power.
1713///
1714///      (x*x)          -> [(x, 2)]
1715///     ((x*x)*x)       -> [(x, 3)]
1716///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1717///
1718/// \returns Whether any factors have a power greater than one.
1719bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1720                                         SmallVectorImpl<Factor> &Factors) {
1721  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1722  // Compute the sum of powers of simplifiable factors.
1723  unsigned FactorPowerSum = 0;
1724  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1725    Value *Op = Ops[Idx-1].Op;
1726
1727    // Count the number of occurrences of this value.
1728    unsigned Count = 1;
1729    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1730      ++Count;
1731    // Track for simplification all factors which occur 2 or more times.
1732    if (Count > 1)
1733      FactorPowerSum += Count;
1734  }
1735
1736  // We can only simplify factors if the sum of the powers of our simplifiable
1737  // factors is 4 or higher. When that is the case, we will *always* have
1738  // a simplification. This is an important invariant to prevent cyclicly
1739  // trying to simplify already minimal formations.
1740  if (FactorPowerSum < 4)
1741    return false;
1742
1743  // Now gather the simplifiable factors, removing them from Ops.
1744  FactorPowerSum = 0;
1745  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1746    Value *Op = Ops[Idx-1].Op;
1747
1748    // Count the number of occurrences of this value.
1749    unsigned Count = 1;
1750    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1751      ++Count;
1752    if (Count == 1)
1753      continue;
1754    // Move an even number of occurrences to Factors.
1755    Count &= ~1U;
1756    Idx -= Count;
1757    FactorPowerSum += Count;
1758    Factors.push_back(Factor(Op, Count));
1759    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1760  }
1761
1762  // None of the adjustments above should have reduced the sum of factor powers
1763  // below our mininum of '4'.
1764  assert(FactorPowerSum >= 4);
1765
1766  std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1767  return true;
1768}
1769
1770/// \brief Build a tree of multiplies, computing the product of Ops.
1771static Value *buildMultiplyTree(IRBuilder<> &Builder,
1772                                SmallVectorImpl<Value*> &Ops) {
1773  if (Ops.size() == 1)
1774    return Ops.back();
1775
1776  Value *LHS = Ops.pop_back_val();
1777  do {
1778    if (LHS->getType()->isIntOrIntVectorTy())
1779      LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1780    else
1781      LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1782  } while (!Ops.empty());
1783
1784  return LHS;
1785}
1786
1787/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1788///
1789/// Given a vector of values raised to various powers, where no two values are
1790/// equal and the powers are sorted in decreasing order, compute the minimal
1791/// DAG of multiplies to compute the final product, and return that product
1792/// value.
1793Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1794                                            SmallVectorImpl<Factor> &Factors) {
1795  assert(Factors[0].Power);
1796  SmallVector<Value *, 4> OuterProduct;
1797  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1798       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1799    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1800      LastIdx = Idx;
1801      continue;
1802    }
1803
1804    // We want to multiply across all the factors with the same power so that
1805    // we can raise them to that power as a single entity. Build a mini tree
1806    // for that.
1807    SmallVector<Value *, 4> InnerProduct;
1808    InnerProduct.push_back(Factors[LastIdx].Base);
1809    do {
1810      InnerProduct.push_back(Factors[Idx].Base);
1811      ++Idx;
1812    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1813
1814    // Reset the base value of the first factor to the new expression tree.
1815    // We'll remove all the factors with the same power in a second pass.
1816    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1817    if (Instruction *MI = dyn_cast<Instruction>(M))
1818      RedoInsts.insert(MI);
1819
1820    LastIdx = Idx;
1821  }
1822  // Unique factors with equal powers -- we've folded them into the first one's
1823  // base.
1824  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1825                            Factor::PowerEqual()),
1826                Factors.end());
1827
1828  // Iteratively collect the base of each factor with an add power into the
1829  // outer product, and halve each power in preparation for squaring the
1830  // expression.
1831  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1832    if (Factors[Idx].Power & 1)
1833      OuterProduct.push_back(Factors[Idx].Base);
1834    Factors[Idx].Power >>= 1;
1835  }
1836  if (Factors[0].Power) {
1837    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1838    OuterProduct.push_back(SquareRoot);
1839    OuterProduct.push_back(SquareRoot);
1840  }
1841  if (OuterProduct.size() == 1)
1842    return OuterProduct.front();
1843
1844  Value *V = buildMultiplyTree(Builder, OuterProduct);
1845  return V;
1846}
1847
1848Value *Reassociate::OptimizeMul(BinaryOperator *I,
1849                                SmallVectorImpl<ValueEntry> &Ops) {
1850  // We can only optimize the multiplies when there is a chain of more than
1851  // three, such that a balanced tree might require fewer total multiplies.
1852  if (Ops.size() < 4)
1853    return nullptr;
1854
1855  // Try to turn linear trees of multiplies without other uses of the
1856  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1857  // re-use.
1858  SmallVector<Factor, 4> Factors;
1859  if (!collectMultiplyFactors(Ops, Factors))
1860    return nullptr; // All distinct factors, so nothing left for us to do.
1861
1862  IRBuilder<> Builder(I);
1863  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1864  if (Ops.empty())
1865    return V;
1866
1867  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1868  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1869  return nullptr;
1870}
1871
1872Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1873                                       SmallVectorImpl<ValueEntry> &Ops) {
1874  // Now that we have the linearized expression tree, try to optimize it.
1875  // Start by folding any constants that we found.
1876  Constant *Cst = nullptr;
1877  unsigned Opcode = I->getOpcode();
1878  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1879    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1880    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1881  }
1882  // If there was nothing but constants then we are done.
1883  if (Ops.empty())
1884    return Cst;
1885
1886  // Put the combined constant back at the end of the operand list, except if
1887  // there is no point.  For example, an add of 0 gets dropped here, while a
1888  // multiplication by zero turns the whole expression into zero.
1889  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1890    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1891      return Cst;
1892    Ops.push_back(ValueEntry(0, Cst));
1893  }
1894
1895  if (Ops.size() == 1) return Ops[0].Op;
1896
1897  // Handle destructive annihilation due to identities between elements in the
1898  // argument list here.
1899  unsigned NumOps = Ops.size();
1900  switch (Opcode) {
1901  default: break;
1902  case Instruction::And:
1903  case Instruction::Or:
1904    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1905      return Result;
1906    break;
1907
1908  case Instruction::Xor:
1909    if (Value *Result = OptimizeXor(I, Ops))
1910      return Result;
1911    break;
1912
1913  case Instruction::Add:
1914  case Instruction::FAdd:
1915    if (Value *Result = OptimizeAdd(I, Ops))
1916      return Result;
1917    break;
1918
1919  case Instruction::Mul:
1920  case Instruction::FMul:
1921    if (Value *Result = OptimizeMul(I, Ops))
1922      return Result;
1923    break;
1924  }
1925
1926  if (Ops.size() != NumOps)
1927    return OptimizeExpression(I, Ops);
1928  return nullptr;
1929}
1930
1931// Remove dead instructions and if any operands are trivially dead add them to
1932// Insts so they will be removed as well.
1933void Reassociate::RecursivelyEraseDeadInsts(
1934    Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1935  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1936  SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1937  ValueRankMap.erase(I);
1938  Insts.remove(I);
1939  RedoInsts.remove(I);
1940  I->eraseFromParent();
1941  for (auto Op : Ops)
1942    if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1943      if (OpInst->use_empty())
1944        Insts.insert(OpInst);
1945}
1946
1947/// Zap the given instruction, adding interesting operands to the work list.
1948void Reassociate::EraseInst(Instruction *I) {
1949  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1950  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1951  // Erase the dead instruction.
1952  ValueRankMap.erase(I);
1953  RedoInsts.remove(I);
1954  I->eraseFromParent();
1955  // Optimize its operands.
1956  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1957  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1958    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1959      // If this is a node in an expression tree, climb to the expression root
1960      // and add that since that's where optimization actually happens.
1961      unsigned Opcode = Op->getOpcode();
1962      while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1963             Visited.insert(Op).second)
1964        Op = Op->user_back();
1965      RedoInsts.insert(Op);
1966    }
1967}
1968
1969// Canonicalize expressions of the following form:
1970//  x + (-Constant * y) -> x - (Constant * y)
1971//  x - (-Constant * y) -> x + (Constant * y)
1972Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1973  if (!I->hasOneUse() || I->getType()->isVectorTy())
1974    return nullptr;
1975
1976  // Must be a fmul or fdiv instruction.
1977  unsigned Opcode = I->getOpcode();
1978  if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1979    return nullptr;
1980
1981  auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1982  auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1983
1984  // Both operands are constant, let it get constant folded away.
1985  if (C0 && C1)
1986    return nullptr;
1987
1988  ConstantFP *CF = C0 ? C0 : C1;
1989
1990  // Must have one constant operand.
1991  if (!CF)
1992    return nullptr;
1993
1994  // Must be a negative ConstantFP.
1995  if (!CF->isNegative())
1996    return nullptr;
1997
1998  // User must be a binary operator with one or more uses.
1999  Instruction *User = I->user_back();
2000  if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
2001    return nullptr;
2002
2003  unsigned UserOpcode = User->getOpcode();
2004  if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
2005    return nullptr;
2006
2007  // Subtraction is not commutative. Explicitly, the following transform is
2008  // not valid: (-Constant * y) - x  -> x + (Constant * y)
2009  if (!User->isCommutative() && User->getOperand(1) != I)
2010    return nullptr;
2011
2012  // Change the sign of the constant.
2013  APFloat Val = CF->getValueAPF();
2014  Val.changeSign();
2015  I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
2016
2017  // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2018  // ((-Const*y) + x) -> (x + (-Const*y)).
2019  if (User->getOperand(0) == I && User->isCommutative())
2020    cast<BinaryOperator>(User)->swapOperands();
2021
2022  Value *Op0 = User->getOperand(0);
2023  Value *Op1 = User->getOperand(1);
2024  BinaryOperator *NI;
2025  switch (UserOpcode) {
2026  default:
2027    llvm_unreachable("Unexpected Opcode!");
2028  case Instruction::FAdd:
2029    NI = BinaryOperator::CreateFSub(Op0, Op1);
2030    NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2031    break;
2032  case Instruction::FSub:
2033    NI = BinaryOperator::CreateFAdd(Op0, Op1);
2034    NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2035    break;
2036  }
2037
2038  NI->insertBefore(User);
2039  NI->setName(User->getName());
2040  User->replaceAllUsesWith(NI);
2041  NI->setDebugLoc(I->getDebugLoc());
2042  RedoInsts.insert(I);
2043  MadeChange = true;
2044  return NI;
2045}
2046
2047/// Inspect and optimize the given instruction. Note that erasing
2048/// instructions is not allowed.
2049void Reassociate::OptimizeInst(Instruction *I) {
2050  // Only consider operations that we understand.
2051  if (!isa<BinaryOperator>(I))
2052    return;
2053
2054  if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2055    // If an operand of this shift is a reassociable multiply, or if the shift
2056    // is used by a reassociable multiply or add, turn into a multiply.
2057    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2058        (I->hasOneUse() &&
2059         (isReassociableOp(I->user_back(), Instruction::Mul) ||
2060          isReassociableOp(I->user_back(), Instruction::Add)))) {
2061      Instruction *NI = ConvertShiftToMul(I);
2062      RedoInsts.insert(I);
2063      MadeChange = true;
2064      I = NI;
2065    }
2066
2067  // Canonicalize negative constants out of expressions.
2068  if (Instruction *Res = canonicalizeNegConstExpr(I))
2069    I = Res;
2070
2071  // Commute binary operators, to canonicalize the order of their operands.
2072  // This can potentially expose more CSE opportunities, and makes writing other
2073  // transformations simpler.
2074  if (I->isCommutative())
2075    canonicalizeOperands(I);
2076
2077  // TODO: We should optimize vector Xor instructions, but they are
2078  // currently unsupported.
2079  if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
2080    return;
2081
2082  // Don't optimize floating point instructions that don't have unsafe algebra.
2083  if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
2084    return;
2085
2086  // Do not reassociate boolean (i1) expressions.  We want to preserve the
2087  // original order of evaluation for short-circuited comparisons that
2088  // SimplifyCFG has folded to AND/OR expressions.  If the expression
2089  // is not further optimized, it is likely to be transformed back to a
2090  // short-circuited form for code gen, and the source order may have been
2091  // optimized for the most likely conditions.
2092  if (I->getType()->isIntegerTy(1))
2093    return;
2094
2095  // If this is a subtract instruction which is not already in negate form,
2096  // see if we can convert it to X+-Y.
2097  if (I->getOpcode() == Instruction::Sub) {
2098    if (ShouldBreakUpSubtract(I)) {
2099      Instruction *NI = BreakUpSubtract(I, RedoInsts);
2100      RedoInsts.insert(I);
2101      MadeChange = true;
2102      I = NI;
2103    } else if (BinaryOperator::isNeg(I)) {
2104      // Otherwise, this is a negation.  See if the operand is a multiply tree
2105      // and if this is not an inner node of a multiply tree.
2106      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2107          (!I->hasOneUse() ||
2108           !isReassociableOp(I->user_back(), Instruction::Mul))) {
2109        Instruction *NI = LowerNegateToMultiply(I);
2110        // If the negate was simplified, revisit the users to see if we can
2111        // reassociate further.
2112        for (User *U : NI->users()) {
2113          if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2114            RedoInsts.insert(Tmp);
2115        }
2116        RedoInsts.insert(I);
2117        MadeChange = true;
2118        I = NI;
2119      }
2120    }
2121  } else if (I->getOpcode() == Instruction::FSub) {
2122    if (ShouldBreakUpSubtract(I)) {
2123      Instruction *NI = BreakUpSubtract(I, RedoInsts);
2124      RedoInsts.insert(I);
2125      MadeChange = true;
2126      I = NI;
2127    } else if (BinaryOperator::isFNeg(I)) {
2128      // Otherwise, this is a negation.  See if the operand is a multiply tree
2129      // and if this is not an inner node of a multiply tree.
2130      if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2131          (!I->hasOneUse() ||
2132           !isReassociableOp(I->user_back(), Instruction::FMul))) {
2133        // If the negate was simplified, revisit the users to see if we can
2134        // reassociate further.
2135        Instruction *NI = LowerNegateToMultiply(I);
2136        for (User *U : NI->users()) {
2137          if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2138            RedoInsts.insert(Tmp);
2139        }
2140        RedoInsts.insert(I);
2141        MadeChange = true;
2142        I = NI;
2143      }
2144    }
2145  }
2146
2147  // If this instruction is an associative binary operator, process it.
2148  if (!I->isAssociative()) return;
2149  BinaryOperator *BO = cast<BinaryOperator>(I);
2150
2151  // If this is an interior node of a reassociable tree, ignore it until we
2152  // get to the root of the tree, to avoid N^2 analysis.
2153  unsigned Opcode = BO->getOpcode();
2154  if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2155    // During the initial run we will get to the root of the tree.
2156    // But if we get here while we are redoing instructions, there is no
2157    // guarantee that the root will be visited. So Redo later
2158    if (BO->user_back() != BO &&
2159        BO->getParent() == BO->user_back()->getParent())
2160      RedoInsts.insert(BO->user_back());
2161    return;
2162  }
2163
2164  // If this is an add tree that is used by a sub instruction, ignore it
2165  // until we process the subtract.
2166  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2167      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2168    return;
2169  if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2170      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2171    return;
2172
2173  ReassociateExpression(BO);
2174}
2175
2176void Reassociate::ReassociateExpression(BinaryOperator *I) {
2177  // First, walk the expression tree, linearizing the tree, collecting the
2178  // operand information.
2179  SmallVector<RepeatedValue, 8> Tree;
2180  MadeChange |= LinearizeExprTree(I, Tree);
2181  SmallVector<ValueEntry, 8> Ops;
2182  Ops.reserve(Tree.size());
2183  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2184    RepeatedValue E = Tree[i];
2185    Ops.append(E.second.getZExtValue(),
2186               ValueEntry(getRank(E.first), E.first));
2187  }
2188
2189  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2190
2191  // Now that we have linearized the tree to a list and have gathered all of
2192  // the operands and their ranks, sort the operands by their rank.  Use a
2193  // stable_sort so that values with equal ranks will have their relative
2194  // positions maintained (and so the compiler is deterministic).  Note that
2195  // this sorts so that the highest ranking values end up at the beginning of
2196  // the vector.
2197  std::stable_sort(Ops.begin(), Ops.end());
2198
2199  // Now that we have the expression tree in a convenient
2200  // sorted form, optimize it globally if possible.
2201  if (Value *V = OptimizeExpression(I, Ops)) {
2202    if (V == I)
2203      // Self-referential expression in unreachable code.
2204      return;
2205    // This expression tree simplified to something that isn't a tree,
2206    // eliminate it.
2207    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2208    I->replaceAllUsesWith(V);
2209    if (Instruction *VI = dyn_cast<Instruction>(V))
2210      VI->setDebugLoc(I->getDebugLoc());
2211    RedoInsts.insert(I);
2212    ++NumAnnihil;
2213    return;
2214  }
2215
2216  // We want to sink immediates as deeply as possible except in the case where
2217  // this is a multiply tree used only by an add, and the immediate is a -1.
2218  // In this case we reassociate to put the negation on the outside so that we
2219  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2220  if (I->hasOneUse()) {
2221    if (I->getOpcode() == Instruction::Mul &&
2222        cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2223        isa<ConstantInt>(Ops.back().Op) &&
2224        cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2225      ValueEntry Tmp = Ops.pop_back_val();
2226      Ops.insert(Ops.begin(), Tmp);
2227    } else if (I->getOpcode() == Instruction::FMul &&
2228               cast<Instruction>(I->user_back())->getOpcode() ==
2229                   Instruction::FAdd &&
2230               isa<ConstantFP>(Ops.back().Op) &&
2231               cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2232      ValueEntry Tmp = Ops.pop_back_val();
2233      Ops.insert(Ops.begin(), Tmp);
2234    }
2235  }
2236
2237  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2238
2239  if (Ops.size() == 1) {
2240    if (Ops[0].Op == I)
2241      // Self-referential expression in unreachable code.
2242      return;
2243
2244    // This expression tree simplified to something that isn't a tree,
2245    // eliminate it.
2246    I->replaceAllUsesWith(Ops[0].Op);
2247    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2248      OI->setDebugLoc(I->getDebugLoc());
2249    RedoInsts.insert(I);
2250    return;
2251  }
2252
2253  // Now that we ordered and optimized the expressions, splat them back into
2254  // the expression tree, removing any unneeded nodes.
2255  RewriteExprTree(I, Ops);
2256}
2257
2258bool Reassociate::runOnFunction(Function &F) {
2259  if (skipOptnoneFunction(F))
2260    return false;
2261
2262  // Calculate the rank map for F
2263  BuildRankMap(F);
2264
2265  MadeChange = false;
2266  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2267    // Optimize every instruction in the basic block.
2268    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2269      if (isInstructionTriviallyDead(&*II)) {
2270        EraseInst(&*II++);
2271      } else {
2272        OptimizeInst(&*II);
2273        assert(II->getParent() == BI && "Moved to a different block!");
2274        ++II;
2275      }
2276
2277    // Make a copy of all the instructions to be redone so we can remove dead
2278    // instructions.
2279    SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2280    // Iterate over all instructions to be reevaluated and remove trivially dead
2281    // instructions. If any operand of the trivially dead instruction becomes
2282    // dead mark it for deletion as well. Continue this process until all
2283    // trivially dead instructions have been removed.
2284    while (!ToRedo.empty()) {
2285      Instruction *I = ToRedo.pop_back_val();
2286      if (isInstructionTriviallyDead(I))
2287        RecursivelyEraseDeadInsts(I, ToRedo);
2288    }
2289
2290    // Now that we have removed dead instructions, we can reoptimize the
2291    // remaining instructions.
2292    while (!RedoInsts.empty()) {
2293      Instruction *I = RedoInsts.pop_back_val();
2294      if (isInstructionTriviallyDead(I))
2295        EraseInst(I);
2296      else
2297        OptimizeInst(I);
2298    }
2299  }
2300
2301  // We are done with the rank map.
2302  RankMap.clear();
2303  ValueRankMap.clear();
2304
2305  return MadeChange;
2306}
2307