1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/Transforms/Scalar.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/GlobalsModRef.h"
34#include "llvm/Analysis/AssumptionCache.h"
35#include "llvm/Analysis/CodeMetrics.h"
36#include "llvm/Analysis/InstructionSimplify.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/LoopPass.h"
39#include "llvm/Analysis/ScalarEvolution.h"
40#include "llvm/Analysis/TargetTransformInfo.h"
41#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
42#include "llvm/Analysis/BlockFrequencyInfo.h"
43#include "llvm/Analysis/BranchProbabilityInfo.h"
44#include "llvm/Support/BranchProbability.h"
45#include "llvm/IR/Constants.h"
46#include "llvm/IR/DerivedTypes.h"
47#include "llvm/IR/Dominators.h"
48#include "llvm/IR/Function.h"
49#include "llvm/IR/Instructions.h"
50#include "llvm/IR/Module.h"
51#include "llvm/IR/MDBuilder.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Transforms/Utils/BasicBlockUtils.h"
56#include "llvm/Transforms/Utils/Cloning.h"
57#include "llvm/Transforms/Utils/Local.h"
58#include <algorithm>
59#include <map>
60#include <set>
61using namespace llvm;
62
63#define DEBUG_TYPE "loop-unswitch"
64
65STATISTIC(NumBranches, "Number of branches unswitched");
66STATISTIC(NumSwitches, "Number of switches unswitched");
67STATISTIC(NumSelects , "Number of selects unswitched");
68STATISTIC(NumTrivial , "Number of unswitches that are trivial");
69STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
70STATISTIC(TotalInsts,  "Total number of instructions analyzed");
71
72// The specific value of 100 here was chosen based only on intuition and a
73// few specific examples.
74static cl::opt<unsigned>
75Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
76          cl::init(100), cl::Hidden);
77
78static cl::opt<bool>
79LoopUnswitchWithBlockFrequency("loop-unswitch-with-block-frequency",
80    cl::init(false), cl::Hidden,
81    cl::desc("Enable the use of the block frequency analysis to access PGO "
82             "heuristics to minimize code growth in cold regions."));
83
84static cl::opt<unsigned>
85ColdnessThreshold("loop-unswitch-coldness-threshold", cl::init(1), cl::Hidden,
86    cl::desc("Coldness threshold in percentage. The loop header frequency "
87             "(relative to the entry frequency) is compared with this "
88             "threshold to determine if non-trivial unswitching should be "
89             "enabled."));
90
91namespace {
92
93  class LUAnalysisCache {
94
95    typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
96      UnswitchedValsMap;
97
98    typedef UnswitchedValsMap::iterator UnswitchedValsIt;
99
100    struct LoopProperties {
101      unsigned CanBeUnswitchedCount;
102      unsigned WasUnswitchedCount;
103      unsigned SizeEstimation;
104      UnswitchedValsMap UnswitchedVals;
105    };
106
107    // Here we use std::map instead of DenseMap, since we need to keep valid
108    // LoopProperties pointer for current loop for better performance.
109    typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
110    typedef LoopPropsMap::iterator LoopPropsMapIt;
111
112    LoopPropsMap LoopsProperties;
113    UnswitchedValsMap *CurLoopInstructions;
114    LoopProperties *CurrentLoopProperties;
115
116    // A loop unswitching with an estimated cost above this threshold
117    // is not performed. MaxSize is turned into unswitching quota for
118    // the current loop, and reduced correspondingly, though note that
119    // the quota is returned by releaseMemory() when the loop has been
120    // processed, so that MaxSize will return to its previous
121    // value. So in most cases MaxSize will equal the Threshold flag
122    // when a new loop is processed. An exception to that is that
123    // MaxSize will have a smaller value while processing nested loops
124    // that were introduced due to loop unswitching of an outer loop.
125    //
126    // FIXME: The way that MaxSize works is subtle and depends on the
127    // pass manager processing loops and calling releaseMemory() in a
128    // specific order. It would be good to find a more straightforward
129    // way of doing what MaxSize does.
130    unsigned MaxSize;
131
132  public:
133    LUAnalysisCache()
134        : CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr),
135          MaxSize(Threshold) {}
136
137    // Analyze loop. Check its size, calculate is it possible to unswitch
138    // it. Returns true if we can unswitch this loop.
139    bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
140                   AssumptionCache *AC);
141
142    // Clean all data related to given loop.
143    void forgetLoop(const Loop *L);
144
145    // Mark case value as unswitched.
146    // Since SI instruction can be partly unswitched, in order to avoid
147    // extra unswitching in cloned loops keep track all unswitched values.
148    void setUnswitched(const SwitchInst *SI, const Value *V);
149
150    // Check was this case value unswitched before or not.
151    bool isUnswitched(const SwitchInst *SI, const Value *V);
152
153    // Returns true if another unswitching could be done within the cost
154    // threshold.
155    bool CostAllowsUnswitching();
156
157    // Clone all loop-unswitch related loop properties.
158    // Redistribute unswitching quotas.
159    // Note, that new loop data is stored inside the VMap.
160    void cloneData(const Loop *NewLoop, const Loop *OldLoop,
161                   const ValueToValueMapTy &VMap);
162  };
163
164  class LoopUnswitch : public LoopPass {
165    LoopInfo *LI;  // Loop information
166    LPPassManager *LPM;
167    AssumptionCache *AC;
168
169    // Used to check if second loop needs processing after
170    // RewriteLoopBodyWithConditionConstant rewrites first loop.
171    std::vector<Loop*> LoopProcessWorklist;
172
173    LUAnalysisCache BranchesInfo;
174
175    bool EnabledPGO;
176
177    // BFI and ColdEntryFreq are only used when PGO and
178    // LoopUnswitchWithBlockFrequency are enabled.
179    BlockFrequencyInfo BFI;
180    BlockFrequency ColdEntryFreq;
181
182    bool OptimizeForSize;
183    bool redoLoop;
184
185    Loop *currentLoop;
186    DominatorTree *DT;
187    BasicBlock *loopHeader;
188    BasicBlock *loopPreheader;
189
190    // LoopBlocks contains all of the basic blocks of the loop, including the
191    // preheader of the loop, the body of the loop, and the exit blocks of the
192    // loop, in that order.
193    std::vector<BasicBlock*> LoopBlocks;
194    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
195    std::vector<BasicBlock*> NewBlocks;
196
197  public:
198    static char ID; // Pass ID, replacement for typeid
199    explicit LoopUnswitch(bool Os = false) :
200      LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
201      currentLoop(nullptr), DT(nullptr), loopHeader(nullptr),
202      loopPreheader(nullptr) {
203        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
204      }
205
206    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
207    bool processCurrentLoop();
208
209    /// This transformation requires natural loop information & requires that
210    /// loop preheaders be inserted into the CFG.
211    ///
212    void getAnalysisUsage(AnalysisUsage &AU) const override {
213      AU.addRequired<AssumptionCacheTracker>();
214      AU.addRequiredID(LoopSimplifyID);
215      AU.addPreservedID(LoopSimplifyID);
216      AU.addRequired<LoopInfoWrapperPass>();
217      AU.addPreserved<LoopInfoWrapperPass>();
218      AU.addRequiredID(LCSSAID);
219      AU.addPreservedID(LCSSAID);
220      AU.addRequired<DominatorTreeWrapperPass>();
221      AU.addPreserved<DominatorTreeWrapperPass>();
222      AU.addPreserved<ScalarEvolutionWrapperPass>();
223      AU.addRequired<TargetTransformInfoWrapperPass>();
224      AU.addPreserved<GlobalsAAWrapperPass>();
225    }
226
227  private:
228
229    void releaseMemory() override {
230      BranchesInfo.forgetLoop(currentLoop);
231    }
232
233    void initLoopData() {
234      loopHeader = currentLoop->getHeader();
235      loopPreheader = currentLoop->getLoopPreheader();
236    }
237
238    /// Split all of the edges from inside the loop to their exit blocks.
239    /// Update the appropriate Phi nodes as we do so.
240    void SplitExitEdges(Loop *L,
241                        const SmallVectorImpl<BasicBlock *> &ExitBlocks);
242
243    bool TryTrivialLoopUnswitch(bool &Changed);
244
245    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
246                              TerminatorInst *TI = nullptr);
247    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
248                                  BasicBlock *ExitBlock, TerminatorInst *TI);
249    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
250                                     TerminatorInst *TI);
251
252    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
253                                              Constant *Val, bool isEqual);
254
255    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
256                                        BasicBlock *TrueDest,
257                                        BasicBlock *FalseDest,
258                                        Instruction *InsertPt,
259                                        TerminatorInst *TI);
260
261    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
262  };
263}
264
265// Analyze loop. Check its size, calculate is it possible to unswitch
266// it. Returns true if we can unswitch this loop.
267bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
268                                AssumptionCache *AC) {
269
270  LoopPropsMapIt PropsIt;
271  bool Inserted;
272  std::tie(PropsIt, Inserted) =
273      LoopsProperties.insert(std::make_pair(L, LoopProperties()));
274
275  LoopProperties &Props = PropsIt->second;
276
277  if (Inserted) {
278    // New loop.
279
280    // Limit the number of instructions to avoid causing significant code
281    // expansion, and the number of basic blocks, to avoid loops with
282    // large numbers of branches which cause loop unswitching to go crazy.
283    // This is a very ad-hoc heuristic.
284
285    SmallPtrSet<const Value *, 32> EphValues;
286    CodeMetrics::collectEphemeralValues(L, AC, EphValues);
287
288    // FIXME: This is overly conservative because it does not take into
289    // consideration code simplification opportunities and code that can
290    // be shared by the resultant unswitched loops.
291    CodeMetrics Metrics;
292    for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
293         ++I)
294      Metrics.analyzeBasicBlock(*I, TTI, EphValues);
295
296    Props.SizeEstimation = Metrics.NumInsts;
297    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
298    Props.WasUnswitchedCount = 0;
299    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
300
301    if (Metrics.notDuplicatable) {
302      DEBUG(dbgs() << "NOT unswitching loop %"
303                   << L->getHeader()->getName() << ", contents cannot be "
304                   << "duplicated!\n");
305      return false;
306    }
307  }
308
309  // Be careful. This links are good only before new loop addition.
310  CurrentLoopProperties = &Props;
311  CurLoopInstructions = &Props.UnswitchedVals;
312
313  return true;
314}
315
316// Clean all data related to given loop.
317void LUAnalysisCache::forgetLoop(const Loop *L) {
318
319  LoopPropsMapIt LIt = LoopsProperties.find(L);
320
321  if (LIt != LoopsProperties.end()) {
322    LoopProperties &Props = LIt->second;
323    MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
324               Props.SizeEstimation;
325    LoopsProperties.erase(LIt);
326  }
327
328  CurrentLoopProperties = nullptr;
329  CurLoopInstructions = nullptr;
330}
331
332// Mark case value as unswitched.
333// Since SI instruction can be partly unswitched, in order to avoid
334// extra unswitching in cloned loops keep track all unswitched values.
335void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
336  (*CurLoopInstructions)[SI].insert(V);
337}
338
339// Check was this case value unswitched before or not.
340bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
341  return (*CurLoopInstructions)[SI].count(V);
342}
343
344bool LUAnalysisCache::CostAllowsUnswitching() {
345  return CurrentLoopProperties->CanBeUnswitchedCount > 0;
346}
347
348// Clone all loop-unswitch related loop properties.
349// Redistribute unswitching quotas.
350// Note, that new loop data is stored inside the VMap.
351void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
352                                const ValueToValueMapTy &VMap) {
353
354  LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
355  LoopProperties &OldLoopProps = *CurrentLoopProperties;
356  UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
357
358  // Reallocate "can-be-unswitched quota"
359
360  --OldLoopProps.CanBeUnswitchedCount;
361  ++OldLoopProps.WasUnswitchedCount;
362  NewLoopProps.WasUnswitchedCount = 0;
363  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
364  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
365  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
366
367  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
368
369  // Clone unswitched values info:
370  // for new loop switches we clone info about values that was
371  // already unswitched and has redundant successors.
372  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
373    const SwitchInst *OldInst = I->first;
374    Value *NewI = VMap.lookup(OldInst);
375    const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
376    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
377
378    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
379  }
380}
381
382char LoopUnswitch::ID = 0;
383INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
384                      false, false)
385INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
386INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
387INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
388INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
389INITIALIZE_PASS_DEPENDENCY(LCSSA)
390INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
391                      false, false)
392
393Pass *llvm::createLoopUnswitchPass(bool Os) {
394  return new LoopUnswitch(Os);
395}
396
397/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
398/// an invariant piece, return the invariant. Otherwise, return null.
399static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
400
401  // We started analyze new instruction, increment scanned instructions counter.
402  ++TotalInsts;
403
404  // We can never unswitch on vector conditions.
405  if (Cond->getType()->isVectorTy())
406    return nullptr;
407
408  // Constants should be folded, not unswitched on!
409  if (isa<Constant>(Cond)) return nullptr;
410
411  // TODO: Handle: br (VARIANT|INVARIANT).
412
413  // Hoist simple values out.
414  if (L->makeLoopInvariant(Cond, Changed))
415    return Cond;
416
417  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
418    if (BO->getOpcode() == Instruction::And ||
419        BO->getOpcode() == Instruction::Or) {
420      // If either the left or right side is invariant, we can unswitch on this,
421      // which will cause the branch to go away in one loop and the condition to
422      // simplify in the other one.
423      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
424        return LHS;
425      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
426        return RHS;
427    }
428
429  return nullptr;
430}
431
432bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
433  if (skipOptnoneFunction(L))
434    return false;
435
436  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
437      *L->getHeader()->getParent());
438  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
439  LPM = &LPM_Ref;
440  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
441  currentLoop = L;
442  Function *F = currentLoop->getHeader()->getParent();
443
444  EnabledPGO = F->getEntryCount().hasValue();
445
446  if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
447    BranchProbabilityInfo BPI(*F, *LI);
448    BFI.calculate(*L->getHeader()->getParent(), BPI, *LI);
449
450    // Use BranchProbability to compute a minimum frequency based on
451    // function entry baseline frequency. Loops with headers below this
452    // frequency are considered as cold.
453    const BranchProbability ColdProb(ColdnessThreshold, 100);
454    ColdEntryFreq = BlockFrequency(BFI.getEntryFreq()) * ColdProb;
455  }
456
457  bool Changed = false;
458  do {
459    assert(currentLoop->isLCSSAForm(*DT));
460    redoLoop = false;
461    Changed |= processCurrentLoop();
462  } while(redoLoop);
463
464  // FIXME: Reconstruct dom info, because it is not preserved properly.
465  if (Changed)
466    DT->recalculate(*F);
467  return Changed;
468}
469
470/// Do actual work and unswitch loop if possible and profitable.
471bool LoopUnswitch::processCurrentLoop() {
472  bool Changed = false;
473
474  initLoopData();
475
476  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
477  if (!loopPreheader)
478    return false;
479
480  // Loops with indirectbr cannot be cloned.
481  if (!currentLoop->isSafeToClone())
482    return false;
483
484  // Without dedicated exits, splitting the exit edge may fail.
485  if (!currentLoop->hasDedicatedExits())
486    return false;
487
488  LLVMContext &Context = loopHeader->getContext();
489
490  // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
491  if (!BranchesInfo.countLoop(
492          currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
493                           *currentLoop->getHeader()->getParent()),
494          AC))
495    return false;
496
497  // Try trivial unswitch first before loop over other basic blocks in the loop.
498  if (TryTrivialLoopUnswitch(Changed)) {
499    return true;
500  }
501
502  // Do not unswitch loops containing convergent operations, as we might be
503  // making them control dependent on the unswitch value when they were not
504  // before.
505  // FIXME: This could be refined to only bail if the convergent operation is
506  // not already control-dependent on the unswitch value.
507  for (const auto BB : currentLoop->blocks()) {
508    for (auto &I : *BB) {
509      auto CS = CallSite(&I);
510      if (!CS) continue;
511      if (CS.hasFnAttr(Attribute::Convergent))
512        return false;
513    }
514  }
515
516  // Do not do non-trivial unswitch while optimizing for size.
517  // FIXME: Use Function::optForSize().
518  if (OptimizeForSize ||
519      loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
520    return false;
521
522  if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
523    // Compute the weighted frequency of the hottest block in the
524    // loop (loopHeader in this case since inner loops should be
525    // processed before outer loop). If it is less than ColdFrequency,
526    // we should not unswitch.
527    BlockFrequency LoopEntryFreq = BFI.getBlockFreq(loopHeader);
528    if (LoopEntryFreq < ColdEntryFreq)
529      return false;
530  }
531
532  // Loop over all of the basic blocks in the loop.  If we find an interior
533  // block that is branching on a loop-invariant condition, we can unswitch this
534  // loop.
535  for (Loop::block_iterator I = currentLoop->block_begin(),
536         E = currentLoop->block_end(); I != E; ++I) {
537    TerminatorInst *TI = (*I)->getTerminator();
538    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
539      // If this isn't branching on an invariant condition, we can't unswitch
540      // it.
541      if (BI->isConditional()) {
542        // See if this, or some part of it, is loop invariant.  If so, we can
543        // unswitch on it if we desire.
544        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
545                                               currentLoop, Changed);
546        if (LoopCond &&
547            UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
548          ++NumBranches;
549          return true;
550        }
551      }
552    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
553      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
554                                             currentLoop, Changed);
555      unsigned NumCases = SI->getNumCases();
556      if (LoopCond && NumCases) {
557        // Find a value to unswitch on:
558        // FIXME: this should chose the most expensive case!
559        // FIXME: scan for a case with a non-critical edge?
560        Constant *UnswitchVal = nullptr;
561
562        // Do not process same value again and again.
563        // At this point we have some cases already unswitched and
564        // some not yet unswitched. Let's find the first not yet unswitched one.
565        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
566             i != e; ++i) {
567          Constant *UnswitchValCandidate = i.getCaseValue();
568          if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
569            UnswitchVal = UnswitchValCandidate;
570            break;
571          }
572        }
573
574        if (!UnswitchVal)
575          continue;
576
577        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
578          ++NumSwitches;
579          return true;
580        }
581      }
582    }
583
584    // Scan the instructions to check for unswitchable values.
585    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
586         BBI != E; ++BBI)
587      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
588        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
589                                               currentLoop, Changed);
590        if (LoopCond && UnswitchIfProfitable(LoopCond,
591                                             ConstantInt::getTrue(Context))) {
592          ++NumSelects;
593          return true;
594        }
595      }
596  }
597  return Changed;
598}
599
600/// Check to see if all paths from BB exit the loop with no side effects
601/// (including infinite loops).
602///
603/// If true, we return true and set ExitBB to the block we
604/// exit through.
605///
606static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
607                                         BasicBlock *&ExitBB,
608                                         std::set<BasicBlock*> &Visited) {
609  if (!Visited.insert(BB).second) {
610    // Already visited. Without more analysis, this could indicate an infinite
611    // loop.
612    return false;
613  }
614  if (!L->contains(BB)) {
615    // Otherwise, this is a loop exit, this is fine so long as this is the
616    // first exit.
617    if (ExitBB) return false;
618    ExitBB = BB;
619    return true;
620  }
621
622  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
623  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
624    // Check to see if the successor is a trivial loop exit.
625    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
626      return false;
627  }
628
629  // Okay, everything after this looks good, check to make sure that this block
630  // doesn't include any side effects.
631  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
632    if (I->mayHaveSideEffects())
633      return false;
634
635  return true;
636}
637
638/// Return true if the specified block unconditionally leads to an exit from
639/// the specified loop, and has no side-effects in the process. If so, return
640/// the block that is exited to, otherwise return null.
641static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
642  std::set<BasicBlock*> Visited;
643  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
644  BasicBlock *ExitBB = nullptr;
645  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
646    return ExitBB;
647  return nullptr;
648}
649
650/// We have found that we can unswitch currentLoop when LoopCond == Val to
651/// simplify the loop.  If we decide that this is profitable,
652/// unswitch the loop, reprocess the pieces, then return true.
653bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
654                                        TerminatorInst *TI) {
655  // Check to see if it would be profitable to unswitch current loop.
656  if (!BranchesInfo.CostAllowsUnswitching()) {
657    DEBUG(dbgs() << "NOT unswitching loop %"
658                 << currentLoop->getHeader()->getName()
659                 << " at non-trivial condition '" << *Val
660                 << "' == " << *LoopCond << "\n"
661                 << ". Cost too high.\n");
662    return false;
663  }
664
665  UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
666  return true;
667}
668
669/// Recursively clone the specified loop and all of its children,
670/// mapping the blocks with the specified map.
671static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
672                       LoopInfo *LI, LPPassManager *LPM) {
673  Loop &New = LPM->addLoop(PL);
674
675  // Add all of the blocks in L to the new loop.
676  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
677       I != E; ++I)
678    if (LI->getLoopFor(*I) == L)
679      New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
680
681  // Add all of the subloops to the new loop.
682  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
683    CloneLoop(*I, &New, VM, LI, LPM);
684
685  return &New;
686}
687
688static void copyMetadata(Instruction *DstInst, const Instruction *SrcInst,
689                         bool Swapped) {
690  if (!SrcInst || !SrcInst->hasMetadata())
691    return;
692
693  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
694  SrcInst->getAllMetadata(MDs);
695  for (auto &MD : MDs) {
696    switch (MD.first) {
697    default:
698      break;
699    case LLVMContext::MD_prof:
700      if (Swapped && MD.second->getNumOperands() == 3 &&
701          isa<MDString>(MD.second->getOperand(0))) {
702        MDString *MDName = cast<MDString>(MD.second->getOperand(0));
703        if (MDName->getString() == "branch_weights") {
704          auto *ValT = cast_or_null<ConstantAsMetadata>(
705                           MD.second->getOperand(1))->getValue();
706          auto *ValF = cast_or_null<ConstantAsMetadata>(
707                           MD.second->getOperand(2))->getValue();
708          assert(ValT && ValF && "Invalid Operands of branch_weights");
709          auto NewMD =
710              MDBuilder(DstInst->getParent()->getContext())
711                  .createBranchWeights(cast<ConstantInt>(ValF)->getZExtValue(),
712                                       cast<ConstantInt>(ValT)->getZExtValue());
713          MD.second = NewMD;
714        }
715      }
716      // fallthrough.
717    case LLVMContext::MD_make_implicit:
718    case LLVMContext::MD_dbg:
719      DstInst->setMetadata(MD.first, MD.second);
720    }
721  }
722}
723
724/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
725/// otherwise branch to FalseDest. Insert the code immediately before InsertPt.
726void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
727                                                  BasicBlock *TrueDest,
728                                                  BasicBlock *FalseDest,
729                                                  Instruction *InsertPt,
730                                                  TerminatorInst *TI) {
731  // Insert a conditional branch on LIC to the two preheaders.  The original
732  // code is the true version and the new code is the false version.
733  Value *BranchVal = LIC;
734  bool Swapped = false;
735  if (!isa<ConstantInt>(Val) ||
736      Val->getType() != Type::getInt1Ty(LIC->getContext()))
737    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
738  else if (Val != ConstantInt::getTrue(Val->getContext())) {
739    // We want to enter the new loop when the condition is true.
740    std::swap(TrueDest, FalseDest);
741    Swapped = true;
742  }
743
744  // Insert the new branch.
745  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
746  copyMetadata(BI, TI, Swapped);
747
748  // If either edge is critical, split it. This helps preserve LoopSimplify
749  // form for enclosing loops.
750  auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
751  SplitCriticalEdge(BI, 0, Options);
752  SplitCriticalEdge(BI, 1, Options);
753}
754
755/// Given a loop that has a trivial unswitchable condition in it (a cond branch
756/// from its header block to its latch block, where the path through the loop
757/// that doesn't execute its body has no side-effects), unswitch it. This
758/// doesn't involve any code duplication, just moving the conditional branch
759/// outside of the loop and updating loop info.
760void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
761                                            BasicBlock *ExitBlock,
762                                            TerminatorInst *TI) {
763  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
764               << loopHeader->getName() << " [" << L->getBlocks().size()
765               << " blocks] in Function "
766               << L->getHeader()->getParent()->getName() << " on cond: " << *Val
767               << " == " << *Cond << "\n");
768
769  // First step, split the preheader, so that we know that there is a safe place
770  // to insert the conditional branch.  We will change loopPreheader to have a
771  // conditional branch on Cond.
772  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
773
774  // Now that we have a place to insert the conditional branch, create a place
775  // to branch to: this is the exit block out of the loop that we should
776  // short-circuit to.
777
778  // Split this block now, so that the loop maintains its exit block, and so
779  // that the jump from the preheader can execute the contents of the exit block
780  // without actually branching to it (the exit block should be dominated by the
781  // loop header, not the preheader).
782  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
783  BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
784
785  // Okay, now we have a position to branch from and a position to branch to,
786  // insert the new conditional branch.
787  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
788                                 loopPreheader->getTerminator(), TI);
789  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
790  loopPreheader->getTerminator()->eraseFromParent();
791
792  // We need to reprocess this loop, it could be unswitched again.
793  redoLoop = true;
794
795  // Now that we know that the loop is never entered when this condition is a
796  // particular value, rewrite the loop with this info.  We know that this will
797  // at least eliminate the old branch.
798  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
799  ++NumTrivial;
800}
801
802/// Check if the first non-constant condition starting from the loop header is
803/// a trivial unswitch condition: that is, a condition controls whether or not
804/// the loop does anything at all. If it is a trivial condition, unswitching
805/// produces no code duplications (equivalently, it produces a simpler loop and
806/// a new empty loop, which gets deleted). Therefore always unswitch trivial
807/// condition.
808bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
809  BasicBlock *CurrentBB = currentLoop->getHeader();
810  TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
811  LLVMContext &Context = CurrentBB->getContext();
812
813  // If loop header has only one reachable successor (currently via an
814  // unconditional branch or constant foldable conditional branch, but
815  // should also consider adding constant foldable switch instruction in
816  // future), we should keep looking for trivial condition candidates in
817  // the successor as well. An alternative is to constant fold conditions
818  // and merge successors into loop header (then we only need to check header's
819  // terminator). The reason for not doing this in LoopUnswitch pass is that
820  // it could potentially break LoopPassManager's invariants. Folding dead
821  // branches could either eliminate the current loop or make other loops
822  // unreachable. LCSSA form might also not be preserved after deleting
823  // branches. The following code keeps traversing loop header's successors
824  // until it finds the trivial condition candidate (condition that is not a
825  // constant). Since unswitching generates branches with constant conditions,
826  // this scenario could be very common in practice.
827  SmallSet<BasicBlock*, 8> Visited;
828
829  while (true) {
830    // If we exit loop or reach a previous visited block, then
831    // we can not reach any trivial condition candidates (unfoldable
832    // branch instructions or switch instructions) and no unswitch
833    // can happen. Exit and return false.
834    if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
835      return false;
836
837    // Check if this loop will execute any side-effecting instructions (e.g.
838    // stores, calls, volatile loads) in the part of the loop that the code
839    // *would* execute. Check the header first.
840    for (Instruction &I : *CurrentBB)
841      if (I.mayHaveSideEffects())
842        return false;
843
844    // FIXME: add check for constant foldable switch instructions.
845    if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
846      if (BI->isUnconditional()) {
847        CurrentBB = BI->getSuccessor(0);
848      } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
849        CurrentBB = BI->getSuccessor(0);
850      } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
851        CurrentBB = BI->getSuccessor(1);
852      } else {
853        // Found a trivial condition candidate: non-foldable conditional branch.
854        break;
855      }
856    } else {
857      break;
858    }
859
860    CurrentTerm = CurrentBB->getTerminator();
861  }
862
863  // CondVal is the condition that controls the trivial condition.
864  // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
865  Constant *CondVal = nullptr;
866  BasicBlock *LoopExitBB = nullptr;
867
868  if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
869    // If this isn't branching on an invariant condition, we can't unswitch it.
870    if (!BI->isConditional())
871      return false;
872
873    Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
874                                           currentLoop, Changed);
875
876    // Unswitch only if the trivial condition itself is an LIV (not
877    // partial LIV which could occur in and/or)
878    if (!LoopCond || LoopCond != BI->getCondition())
879      return false;
880
881    // Check to see if a successor of the branch is guaranteed to
882    // exit through a unique exit block without having any
883    // side-effects.  If so, determine the value of Cond that causes
884    // it to do this.
885    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
886                                             BI->getSuccessor(0)))) {
887      CondVal = ConstantInt::getTrue(Context);
888    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
889                                                    BI->getSuccessor(1)))) {
890      CondVal = ConstantInt::getFalse(Context);
891    }
892
893    // If we didn't find a single unique LoopExit block, or if the loop exit
894    // block contains phi nodes, this isn't trivial.
895    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
896      return false;   // Can't handle this.
897
898    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
899                             CurrentTerm);
900    ++NumBranches;
901    return true;
902  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
903    // If this isn't switching on an invariant condition, we can't unswitch it.
904    Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
905                                           currentLoop, Changed);
906
907    // Unswitch only if the trivial condition itself is an LIV (not
908    // partial LIV which could occur in and/or)
909    if (!LoopCond || LoopCond != SI->getCondition())
910      return false;
911
912    // Check to see if a successor of the switch is guaranteed to go to the
913    // latch block or exit through a one exit block without having any
914    // side-effects.  If so, determine the value of Cond that causes it to do
915    // this.
916    // Note that we can't trivially unswitch on the default case or
917    // on already unswitched cases.
918    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
919         i != e; ++i) {
920      BasicBlock *LoopExitCandidate;
921      if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
922                                               i.getCaseSuccessor()))) {
923        // Okay, we found a trivial case, remember the value that is trivial.
924        ConstantInt *CaseVal = i.getCaseValue();
925
926        // Check that it was not unswitched before, since already unswitched
927        // trivial vals are looks trivial too.
928        if (BranchesInfo.isUnswitched(SI, CaseVal))
929          continue;
930        LoopExitBB = LoopExitCandidate;
931        CondVal = CaseVal;
932        break;
933      }
934    }
935
936    // If we didn't find a single unique LoopExit block, or if the loop exit
937    // block contains phi nodes, this isn't trivial.
938    if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
939      return false;   // Can't handle this.
940
941    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
942                             nullptr);
943    ++NumSwitches;
944    return true;
945  }
946  return false;
947}
948
949/// Split all of the edges from inside the loop to their exit blocks.
950/// Update the appropriate Phi nodes as we do so.
951void LoopUnswitch::SplitExitEdges(Loop *L,
952                               const SmallVectorImpl<BasicBlock *> &ExitBlocks){
953
954  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
955    BasicBlock *ExitBlock = ExitBlocks[i];
956    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
957                                       pred_end(ExitBlock));
958
959    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
960    // general, if we call it on all predecessors of all exits then it does.
961    SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
962                           /*PreserveLCSSA*/ true);
963  }
964}
965
966/// We determined that the loop is profitable to unswitch when LIC equal Val.
967/// Split it into loop versions and test the condition outside of either loop.
968/// Return the loops created as Out1/Out2.
969void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
970                                               Loop *L, TerminatorInst *TI) {
971  Function *F = loopHeader->getParent();
972  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
973        << loopHeader->getName() << " [" << L->getBlocks().size()
974        << " blocks] in Function " << F->getName()
975        << " when '" << *Val << "' == " << *LIC << "\n");
976
977  if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
978    SEWP->getSE().forgetLoop(L);
979
980  LoopBlocks.clear();
981  NewBlocks.clear();
982
983  // First step, split the preheader and exit blocks, and add these blocks to
984  // the LoopBlocks list.
985  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
986  LoopBlocks.push_back(NewPreheader);
987
988  // We want the loop to come after the preheader, but before the exit blocks.
989  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
990
991  SmallVector<BasicBlock*, 8> ExitBlocks;
992  L->getUniqueExitBlocks(ExitBlocks);
993
994  // Split all of the edges from inside the loop to their exit blocks.  Update
995  // the appropriate Phi nodes as we do so.
996  SplitExitEdges(L, ExitBlocks);
997
998  // The exit blocks may have been changed due to edge splitting, recompute.
999  ExitBlocks.clear();
1000  L->getUniqueExitBlocks(ExitBlocks);
1001
1002  // Add exit blocks to the loop blocks.
1003  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1004
1005  // Next step, clone all of the basic blocks that make up the loop (including
1006  // the loop preheader and exit blocks), keeping track of the mapping between
1007  // the instructions and blocks.
1008  NewBlocks.reserve(LoopBlocks.size());
1009  ValueToValueMapTy VMap;
1010  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1011    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1012
1013    NewBlocks.push_back(NewBB);
1014    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
1015    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1016  }
1017
1018  // Splice the newly inserted blocks into the function right before the
1019  // original preheader.
1020  F->getBasicBlockList().splice(NewPreheader->getIterator(),
1021                                F->getBasicBlockList(),
1022                                NewBlocks[0]->getIterator(), F->end());
1023
1024  // FIXME: We could register any cloned assumptions instead of clearing the
1025  // whole function's cache.
1026  AC->clear();
1027
1028  // Now we create the new Loop object for the versioned loop.
1029  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1030
1031  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1032  // Probably clone more loop-unswitch related loop properties.
1033  BranchesInfo.cloneData(NewLoop, L, VMap);
1034
1035  Loop *ParentLoop = L->getParentLoop();
1036  if (ParentLoop) {
1037    // Make sure to add the cloned preheader and exit blocks to the parent loop
1038    // as well.
1039    ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1040  }
1041
1042  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1043    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1044    // The new exit block should be in the same loop as the old one.
1045    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1046      ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1047
1048    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1049           "Exit block should have been split to have one successor!");
1050    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1051
1052    // If the successor of the exit block had PHI nodes, add an entry for
1053    // NewExit.
1054    for (BasicBlock::iterator I = ExitSucc->begin();
1055         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1056      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
1057      ValueToValueMapTy::iterator It = VMap.find(V);
1058      if (It != VMap.end()) V = It->second;
1059      PN->addIncoming(V, NewExit);
1060    }
1061
1062    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1063      PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1064                                    &*ExitSucc->getFirstInsertionPt());
1065
1066      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1067           I != E; ++I) {
1068        BasicBlock *BB = *I;
1069        LandingPadInst *LPI = BB->getLandingPadInst();
1070        LPI->replaceAllUsesWith(PN);
1071        PN->addIncoming(LPI, BB);
1072      }
1073    }
1074  }
1075
1076  // Rewrite the code to refer to itself.
1077  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
1078    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
1079           E = NewBlocks[i]->end(); I != E; ++I)
1080      RemapInstruction(&*I, VMap,
1081                       RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
1082
1083  // Rewrite the original preheader to select between versions of the loop.
1084  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1085  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1086         "Preheader splitting did not work correctly!");
1087
1088  // Emit the new branch that selects between the two versions of this loop.
1089  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1090                                 TI);
1091  LPM->deleteSimpleAnalysisValue(OldBR, L);
1092  OldBR->eraseFromParent();
1093
1094  LoopProcessWorklist.push_back(NewLoop);
1095  redoLoop = true;
1096
1097  // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
1098  // deletes the instruction (for example by simplifying a PHI that feeds into
1099  // the condition that we're unswitching on), we don't rewrite the second
1100  // iteration.
1101  WeakVH LICHandle(LIC);
1102
1103  // Now we rewrite the original code to know that the condition is true and the
1104  // new code to know that the condition is false.
1105  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1106
1107  // It's possible that simplifying one loop could cause the other to be
1108  // changed to another value or a constant.  If its a constant, don't simplify
1109  // it.
1110  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1111      LICHandle && !isa<Constant>(LICHandle))
1112    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1113}
1114
1115/// Remove all instances of I from the worklist vector specified.
1116static void RemoveFromWorklist(Instruction *I,
1117                               std::vector<Instruction*> &Worklist) {
1118
1119  Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1120                 Worklist.end());
1121}
1122
1123/// When we find that I really equals V, remove I from the
1124/// program, replacing all uses with V and update the worklist.
1125static void ReplaceUsesOfWith(Instruction *I, Value *V,
1126                              std::vector<Instruction*> &Worklist,
1127                              Loop *L, LPPassManager *LPM) {
1128  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
1129
1130  // Add uses to the worklist, which may be dead now.
1131  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1132    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1133      Worklist.push_back(Use);
1134
1135  // Add users to the worklist which may be simplified now.
1136  for (User *U : I->users())
1137    Worklist.push_back(cast<Instruction>(U));
1138  LPM->deleteSimpleAnalysisValue(I, L);
1139  RemoveFromWorklist(I, Worklist);
1140  I->replaceAllUsesWith(V);
1141  I->eraseFromParent();
1142  ++NumSimplify;
1143}
1144
1145/// We know either that the value LIC has the value specified by Val in the
1146/// specified loop, or we know it does NOT have that value.
1147/// Rewrite any uses of LIC or of properties correlated to it.
1148void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1149                                                        Constant *Val,
1150                                                        bool IsEqual) {
1151  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1152
1153  // FIXME: Support correlated properties, like:
1154  //  for (...)
1155  //    if (li1 < li2)
1156  //      ...
1157  //    if (li1 > li2)
1158  //      ...
1159
1160  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1161  // selects, switches.
1162  std::vector<Instruction*> Worklist;
1163  LLVMContext &Context = Val->getContext();
1164
1165  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1166  // in the loop with the appropriate one directly.
1167  if (IsEqual || (isa<ConstantInt>(Val) &&
1168      Val->getType()->isIntegerTy(1))) {
1169    Value *Replacement;
1170    if (IsEqual)
1171      Replacement = Val;
1172    else
1173      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1174                                     !cast<ConstantInt>(Val)->getZExtValue());
1175
1176    for (User *U : LIC->users()) {
1177      Instruction *UI = dyn_cast<Instruction>(U);
1178      if (!UI || !L->contains(UI))
1179        continue;
1180      Worklist.push_back(UI);
1181    }
1182
1183    for (std::vector<Instruction*>::iterator UI = Worklist.begin(),
1184         UE = Worklist.end(); UI != UE; ++UI)
1185      (*UI)->replaceUsesOfWith(LIC, Replacement);
1186
1187    SimplifyCode(Worklist, L);
1188    return;
1189  }
1190
1191  // Otherwise, we don't know the precise value of LIC, but we do know that it
1192  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1193  // can.  This case occurs when we unswitch switch statements.
1194  for (User *U : LIC->users()) {
1195    Instruction *UI = dyn_cast<Instruction>(U);
1196    if (!UI || !L->contains(UI))
1197      continue;
1198
1199    Worklist.push_back(UI);
1200
1201    // TODO: We could do other simplifications, for example, turning
1202    // 'icmp eq LIC, Val' -> false.
1203
1204    // If we know that LIC is not Val, use this info to simplify code.
1205    SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1206    if (!SI || !isa<ConstantInt>(Val)) continue;
1207
1208    SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1209    // Default case is live for multiple values.
1210    if (DeadCase == SI->case_default()) continue;
1211
1212    // Found a dead case value.  Don't remove PHI nodes in the
1213    // successor if they become single-entry, those PHI nodes may
1214    // be in the Users list.
1215
1216    BasicBlock *Switch = SI->getParent();
1217    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1218    BasicBlock *Latch = L->getLoopLatch();
1219
1220    BranchesInfo.setUnswitched(SI, Val);
1221
1222    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1223    // If the DeadCase successor dominates the loop latch, then the
1224    // transformation isn't safe since it will delete the sole predecessor edge
1225    // to the latch.
1226    if (Latch && DT->dominates(SISucc, Latch))
1227      continue;
1228
1229    // FIXME: This is a hack.  We need to keep the successor around
1230    // and hooked up so as to preserve the loop structure, because
1231    // trying to update it is complicated.  So instead we preserve the
1232    // loop structure and put the block on a dead code path.
1233    SplitEdge(Switch, SISucc, DT, LI);
1234    // Compute the successors instead of relying on the return value
1235    // of SplitEdge, since it may have split the switch successor
1236    // after PHI nodes.
1237    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1238    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1239    // Create an "unreachable" destination.
1240    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1241                                           Switch->getParent(),
1242                                           OldSISucc);
1243    new UnreachableInst(Context, Abort);
1244    // Force the new case destination to branch to the "unreachable"
1245    // block while maintaining a (dead) CFG edge to the old block.
1246    NewSISucc->getTerminator()->eraseFromParent();
1247    BranchInst::Create(Abort, OldSISucc,
1248                       ConstantInt::getTrue(Context), NewSISucc);
1249    // Release the PHI operands for this edge.
1250    for (BasicBlock::iterator II = NewSISucc->begin();
1251         PHINode *PN = dyn_cast<PHINode>(II); ++II)
1252      PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1253                           UndefValue::get(PN->getType()));
1254    // Tell the domtree about the new block. We don't fully update the
1255    // domtree here -- instead we force it to do a full recomputation
1256    // after the pass is complete -- but we do need to inform it of
1257    // new blocks.
1258    DT->addNewBlock(Abort, NewSISucc);
1259  }
1260
1261  SimplifyCode(Worklist, L);
1262}
1263
1264/// Now that we have simplified some instructions in the loop, walk over it and
1265/// constant prop, dce, and fold control flow where possible. Note that this is
1266/// effectively a very simple loop-structure-aware optimizer. During processing
1267/// of this loop, L could very well be deleted, so it must not be used.
1268///
1269/// FIXME: When the loop optimizer is more mature, separate this out to a new
1270/// pass.
1271///
1272void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1273  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1274  while (!Worklist.empty()) {
1275    Instruction *I = Worklist.back();
1276    Worklist.pop_back();
1277
1278    // Simple DCE.
1279    if (isInstructionTriviallyDead(I)) {
1280      DEBUG(dbgs() << "Remove dead instruction '" << *I);
1281
1282      // Add uses to the worklist, which may be dead now.
1283      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1284        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1285          Worklist.push_back(Use);
1286      LPM->deleteSimpleAnalysisValue(I, L);
1287      RemoveFromWorklist(I, Worklist);
1288      I->eraseFromParent();
1289      ++NumSimplify;
1290      continue;
1291    }
1292
1293    // See if instruction simplification can hack this up.  This is common for
1294    // things like "select false, X, Y" after unswitching made the condition be
1295    // 'false'.  TODO: update the domtree properly so we can pass it here.
1296    if (Value *V = SimplifyInstruction(I, DL))
1297      if (LI->replacementPreservesLCSSAForm(I, V)) {
1298        ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1299        continue;
1300      }
1301
1302    // Special case hacks that appear commonly in unswitched code.
1303    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1304      if (BI->isUnconditional()) {
1305        // If BI's parent is the only pred of the successor, fold the two blocks
1306        // together.
1307        BasicBlock *Pred = BI->getParent();
1308        BasicBlock *Succ = BI->getSuccessor(0);
1309        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1310        if (!SinglePred) continue;  // Nothing to do.
1311        assert(SinglePred == Pred && "CFG broken");
1312
1313        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1314              << Succ->getName() << "\n");
1315
1316        // Resolve any single entry PHI nodes in Succ.
1317        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1318          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1319
1320        // If Succ has any successors with PHI nodes, update them to have
1321        // entries coming from Pred instead of Succ.
1322        Succ->replaceAllUsesWith(Pred);
1323
1324        // Move all of the successor contents from Succ to Pred.
1325        Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1326                                   Succ->begin(), Succ->end());
1327        LPM->deleteSimpleAnalysisValue(BI, L);
1328        BI->eraseFromParent();
1329        RemoveFromWorklist(BI, Worklist);
1330
1331        // Remove Succ from the loop tree.
1332        LI->removeBlock(Succ);
1333        LPM->deleteSimpleAnalysisValue(Succ, L);
1334        Succ->eraseFromParent();
1335        ++NumSimplify;
1336        continue;
1337      }
1338
1339      continue;
1340    }
1341  }
1342}
1343