1//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Loop Distribution Pass.  Its main focus is to
11// distribute loops that cannot be vectorized due to dependence cycles.  It
12// tries to isolate the offending dependences into a new loop allowing
13// vectorization of the remaining parts.
14//
15// For dependence analysis, the pass uses the LoopVectorizer's
16// LoopAccessAnalysis.  Because this analysis presumes no change in the order of
17// memory operations, special care is taken to preserve the lexical order of
18// these operations.
19//
20// Similarly to the Vectorizer, the pass also supports loop versioning to
21// run-time disambiguate potentially overlapping arrays.
22//
23//===----------------------------------------------------------------------===//
24
25#include "llvm/ADT/DepthFirstIterator.h"
26#include "llvm/ADT/EquivalenceClasses.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Analysis/LoopAccessAnalysis.h"
30#include "llvm/Analysis/LoopInfo.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/Pass.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/Cloning.h"
37#include "llvm/Transforms/Utils/LoopUtils.h"
38#include "llvm/Transforms/Utils/LoopVersioning.h"
39#include <list>
40
41#define LDIST_NAME "loop-distribute"
42#define DEBUG_TYPE LDIST_NAME
43
44using namespace llvm;
45
46static cl::opt<bool>
47    LDistVerify("loop-distribute-verify", cl::Hidden,
48                cl::desc("Turn on DominatorTree and LoopInfo verification "
49                         "after Loop Distribution"),
50                cl::init(false));
51
52static cl::opt<bool> DistributeNonIfConvertible(
53    "loop-distribute-non-if-convertible", cl::Hidden,
54    cl::desc("Whether to distribute into a loop that may not be "
55             "if-convertible by the loop vectorizer"),
56    cl::init(false));
57
58static cl::opt<unsigned> DistributeSCEVCheckThreshold(
59    "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
60    cl::desc("The maximum number of SCEV checks allowed for Loop "
61             "Distribution"));
62
63STATISTIC(NumLoopsDistributed, "Number of loops distributed");
64
65namespace {
66/// \brief Maintains the set of instructions of the loop for a partition before
67/// cloning.  After cloning, it hosts the new loop.
68class InstPartition {
69  typedef SmallPtrSet<Instruction *, 8> InstructionSet;
70
71public:
72  InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
73      : DepCycle(DepCycle), OrigLoop(L), ClonedLoop(nullptr) {
74    Set.insert(I);
75  }
76
77  /// \brief Returns whether this partition contains a dependence cycle.
78  bool hasDepCycle() const { return DepCycle; }
79
80  /// \brief Adds an instruction to this partition.
81  void add(Instruction *I) { Set.insert(I); }
82
83  /// \brief Collection accessors.
84  InstructionSet::iterator begin() { return Set.begin(); }
85  InstructionSet::iterator end() { return Set.end(); }
86  InstructionSet::const_iterator begin() const { return Set.begin(); }
87  InstructionSet::const_iterator end() const { return Set.end(); }
88  bool empty() const { return Set.empty(); }
89
90  /// \brief Moves this partition into \p Other.  This partition becomes empty
91  /// after this.
92  void moveTo(InstPartition &Other) {
93    Other.Set.insert(Set.begin(), Set.end());
94    Set.clear();
95    Other.DepCycle |= DepCycle;
96  }
97
98  /// \brief Populates the partition with a transitive closure of all the
99  /// instructions that the seeded instructions dependent on.
100  void populateUsedSet() {
101    // FIXME: We currently don't use control-dependence but simply include all
102    // blocks (possibly empty at the end) and let simplifycfg mostly clean this
103    // up.
104    for (auto *B : OrigLoop->getBlocks())
105      Set.insert(B->getTerminator());
106
107    // Follow the use-def chains to form a transitive closure of all the
108    // instructions that the originally seeded instructions depend on.
109    SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
110    while (!Worklist.empty()) {
111      Instruction *I = Worklist.pop_back_val();
112      // Insert instructions from the loop that we depend on.
113      for (Value *V : I->operand_values()) {
114        auto *I = dyn_cast<Instruction>(V);
115        if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
116          Worklist.push_back(I);
117      }
118    }
119  }
120
121  /// \brief Clones the original loop.
122  ///
123  /// Updates LoopInfo and DominatorTree using the information that block \p
124  /// LoopDomBB dominates the loop.
125  Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
126                               unsigned Index, LoopInfo *LI,
127                               DominatorTree *DT) {
128    ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
129                                          VMap, Twine(".ldist") + Twine(Index),
130                                          LI, DT, ClonedLoopBlocks);
131    return ClonedLoop;
132  }
133
134  /// \brief The cloned loop.  If this partition is mapped to the original loop,
135  /// this is null.
136  const Loop *getClonedLoop() const { return ClonedLoop; }
137
138  /// \brief Returns the loop where this partition ends up after distribution.
139  /// If this partition is mapped to the original loop then use the block from
140  /// the loop.
141  const Loop *getDistributedLoop() const {
142    return ClonedLoop ? ClonedLoop : OrigLoop;
143  }
144
145  /// \brief The VMap that is populated by cloning and then used in
146  /// remapinstruction to remap the cloned instructions.
147  ValueToValueMapTy &getVMap() { return VMap; }
148
149  /// \brief Remaps the cloned instructions using VMap.
150  void remapInstructions() {
151    remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
152  }
153
154  /// \brief Based on the set of instructions selected for this partition,
155  /// removes the unnecessary ones.
156  void removeUnusedInsts() {
157    SmallVector<Instruction *, 8> Unused;
158
159    for (auto *Block : OrigLoop->getBlocks())
160      for (auto &Inst : *Block)
161        if (!Set.count(&Inst)) {
162          Instruction *NewInst = &Inst;
163          if (!VMap.empty())
164            NewInst = cast<Instruction>(VMap[NewInst]);
165
166          assert(!isa<BranchInst>(NewInst) &&
167                 "Branches are marked used early on");
168          Unused.push_back(NewInst);
169        }
170
171    // Delete the instructions backwards, as it has a reduced likelihood of
172    // having to update as many def-use and use-def chains.
173    for (auto *Inst : make_range(Unused.rbegin(), Unused.rend())) {
174      if (!Inst->use_empty())
175        Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
176      Inst->eraseFromParent();
177    }
178  }
179
180  void print() const {
181    if (DepCycle)
182      dbgs() << "  (cycle)\n";
183    for (auto *I : Set)
184      // Prefix with the block name.
185      dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
186  }
187
188  void printBlocks() const {
189    for (auto *BB : getDistributedLoop()->getBlocks())
190      dbgs() << *BB;
191  }
192
193private:
194  /// \brief Instructions from OrigLoop selected for this partition.
195  InstructionSet Set;
196
197  /// \brief Whether this partition contains a dependence cycle.
198  bool DepCycle;
199
200  /// \brief The original loop.
201  Loop *OrigLoop;
202
203  /// \brief The cloned loop.  If this partition is mapped to the original loop,
204  /// this is null.
205  Loop *ClonedLoop;
206
207  /// \brief The blocks of ClonedLoop including the preheader.  If this
208  /// partition is mapped to the original loop, this is empty.
209  SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
210
211  /// \brief These gets populated once the set of instructions have been
212  /// finalized. If this partition is mapped to the original loop, these are not
213  /// set.
214  ValueToValueMapTy VMap;
215};
216
217/// \brief Holds the set of Partitions.  It populates them, merges them and then
218/// clones the loops.
219class InstPartitionContainer {
220  typedef DenseMap<Instruction *, int> InstToPartitionIdT;
221
222public:
223  InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
224      : L(L), LI(LI), DT(DT) {}
225
226  /// \brief Returns the number of partitions.
227  unsigned getSize() const { return PartitionContainer.size(); }
228
229  /// \brief Adds \p Inst into the current partition if that is marked to
230  /// contain cycles.  Otherwise start a new partition for it.
231  void addToCyclicPartition(Instruction *Inst) {
232    // If the current partition is non-cyclic.  Start a new one.
233    if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
234      PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
235    else
236      PartitionContainer.back().add(Inst);
237  }
238
239  /// \brief Adds \p Inst into a partition that is not marked to contain
240  /// dependence cycles.
241  ///
242  //  Initially we isolate memory instructions into as many partitions as
243  //  possible, then later we may merge them back together.
244  void addToNewNonCyclicPartition(Instruction *Inst) {
245    PartitionContainer.emplace_back(Inst, L);
246  }
247
248  /// \brief Merges adjacent non-cyclic partitions.
249  ///
250  /// The idea is that we currently only want to isolate the non-vectorizable
251  /// partition.  We could later allow more distribution among these partition
252  /// too.
253  void mergeAdjacentNonCyclic() {
254    mergeAdjacentPartitionsIf(
255        [](const InstPartition *P) { return !P->hasDepCycle(); });
256  }
257
258  /// \brief If a partition contains only conditional stores, we won't vectorize
259  /// it.  Try to merge it with a previous cyclic partition.
260  void mergeNonIfConvertible() {
261    mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
262      if (Partition->hasDepCycle())
263        return true;
264
265      // Now, check if all stores are conditional in this partition.
266      bool seenStore = false;
267
268      for (auto *Inst : *Partition)
269        if (isa<StoreInst>(Inst)) {
270          seenStore = true;
271          if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
272            return false;
273        }
274      return seenStore;
275    });
276  }
277
278  /// \brief Merges the partitions according to various heuristics.
279  void mergeBeforePopulating() {
280    mergeAdjacentNonCyclic();
281    if (!DistributeNonIfConvertible)
282      mergeNonIfConvertible();
283  }
284
285  /// \brief Merges partitions in order to ensure that no loads are duplicated.
286  ///
287  /// We can't duplicate loads because that could potentially reorder them.
288  /// LoopAccessAnalysis provides dependency information with the context that
289  /// the order of memory operation is preserved.
290  ///
291  /// Return if any partitions were merged.
292  bool mergeToAvoidDuplicatedLoads() {
293    typedef DenseMap<Instruction *, InstPartition *> LoadToPartitionT;
294    typedef EquivalenceClasses<InstPartition *> ToBeMergedT;
295
296    LoadToPartitionT LoadToPartition;
297    ToBeMergedT ToBeMerged;
298
299    // Step through the partitions and create equivalence between partitions
300    // that contain the same load.  Also put partitions in between them in the
301    // same equivalence class to avoid reordering of memory operations.
302    for (PartitionContainerT::iterator I = PartitionContainer.begin(),
303                                       E = PartitionContainer.end();
304         I != E; ++I) {
305      auto *PartI = &*I;
306
307      // If a load occurs in two partitions PartI and PartJ, merge all
308      // partitions (PartI, PartJ] into PartI.
309      for (Instruction *Inst : *PartI)
310        if (isa<LoadInst>(Inst)) {
311          bool NewElt;
312          LoadToPartitionT::iterator LoadToPart;
313
314          std::tie(LoadToPart, NewElt) =
315              LoadToPartition.insert(std::make_pair(Inst, PartI));
316          if (!NewElt) {
317            DEBUG(dbgs() << "Merging partitions due to this load in multiple "
318                         << "partitions: " << PartI << ", "
319                         << LoadToPart->second << "\n" << *Inst << "\n");
320
321            auto PartJ = I;
322            do {
323              --PartJ;
324              ToBeMerged.unionSets(PartI, &*PartJ);
325            } while (&*PartJ != LoadToPart->second);
326          }
327        }
328    }
329    if (ToBeMerged.empty())
330      return false;
331
332    // Merge the member of an equivalence class into its class leader.  This
333    // makes the members empty.
334    for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
335         I != E; ++I) {
336      if (!I->isLeader())
337        continue;
338
339      auto PartI = I->getData();
340      for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
341                                   ToBeMerged.member_end())) {
342        PartJ->moveTo(*PartI);
343      }
344    }
345
346    // Remove the empty partitions.
347    PartitionContainer.remove_if(
348        [](const InstPartition &P) { return P.empty(); });
349
350    return true;
351  }
352
353  /// \brief Sets up the mapping between instructions to partitions.  If the
354  /// instruction is duplicated across multiple partitions, set the entry to -1.
355  void setupPartitionIdOnInstructions() {
356    int PartitionID = 0;
357    for (const auto &Partition : PartitionContainer) {
358      for (Instruction *Inst : Partition) {
359        bool NewElt;
360        InstToPartitionIdT::iterator Iter;
361
362        std::tie(Iter, NewElt) =
363            InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
364        if (!NewElt)
365          Iter->second = -1;
366      }
367      ++PartitionID;
368    }
369  }
370
371  /// \brief Populates the partition with everything that the seeding
372  /// instructions require.
373  void populateUsedSet() {
374    for (auto &P : PartitionContainer)
375      P.populateUsedSet();
376  }
377
378  /// \brief This performs the main chunk of the work of cloning the loops for
379  /// the partitions.
380  void cloneLoops() {
381    BasicBlock *OrigPH = L->getLoopPreheader();
382    // At this point the predecessor of the preheader is either the memcheck
383    // block or the top part of the original preheader.
384    BasicBlock *Pred = OrigPH->getSinglePredecessor();
385    assert(Pred && "Preheader does not have a single predecessor");
386    BasicBlock *ExitBlock = L->getExitBlock();
387    assert(ExitBlock && "No single exit block");
388    Loop *NewLoop;
389
390    assert(!PartitionContainer.empty() && "at least two partitions expected");
391    // We're cloning the preheader along with the loop so we already made sure
392    // it was empty.
393    assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
394           "preheader not empty");
395
396    // Create a loop for each partition except the last.  Clone the original
397    // loop before PH along with adding a preheader for the cloned loop.  Then
398    // update PH to point to the newly added preheader.
399    BasicBlock *TopPH = OrigPH;
400    unsigned Index = getSize() - 1;
401    for (auto I = std::next(PartitionContainer.rbegin()),
402              E = PartitionContainer.rend();
403         I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
404      auto *Part = &*I;
405
406      NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
407
408      Part->getVMap()[ExitBlock] = TopPH;
409      Part->remapInstructions();
410    }
411    Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
412
413    // Now go in forward order and update the immediate dominator for the
414    // preheaders with the exiting block of the previous loop.  Dominance
415    // within the loop is updated in cloneLoopWithPreheader.
416    for (auto Curr = PartitionContainer.cbegin(),
417              Next = std::next(PartitionContainer.cbegin()),
418              E = PartitionContainer.cend();
419         Next != E; ++Curr, ++Next)
420      DT->changeImmediateDominator(
421          Next->getDistributedLoop()->getLoopPreheader(),
422          Curr->getDistributedLoop()->getExitingBlock());
423  }
424
425  /// \brief Removes the dead instructions from the cloned loops.
426  void removeUnusedInsts() {
427    for (auto &Partition : PartitionContainer)
428      Partition.removeUnusedInsts();
429  }
430
431  /// \brief For each memory pointer, it computes the partitionId the pointer is
432  /// used in.
433  ///
434  /// This returns an array of int where the I-th entry corresponds to I-th
435  /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
436  /// partitions its entry is set to -1.
437  SmallVector<int, 8>
438  computePartitionSetForPointers(const LoopAccessInfo &LAI) {
439    const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
440
441    unsigned N = RtPtrCheck->Pointers.size();
442    SmallVector<int, 8> PtrToPartitions(N);
443    for (unsigned I = 0; I < N; ++I) {
444      Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
445      auto Instructions =
446          LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
447
448      int &Partition = PtrToPartitions[I];
449      // First set it to uninitialized.
450      Partition = -2;
451      for (Instruction *Inst : Instructions) {
452        // Note that this could be -1 if Inst is duplicated across multiple
453        // partitions.
454        int ThisPartition = this->InstToPartitionId[Inst];
455        if (Partition == -2)
456          Partition = ThisPartition;
457        // -1 means belonging to multiple partitions.
458        else if (Partition == -1)
459          break;
460        else if (Partition != (int)ThisPartition)
461          Partition = -1;
462      }
463      assert(Partition != -2 && "Pointer not belonging to any partition");
464    }
465
466    return PtrToPartitions;
467  }
468
469  void print(raw_ostream &OS) const {
470    unsigned Index = 0;
471    for (const auto &P : PartitionContainer) {
472      OS << "Partition " << Index++ << " (" << &P << "):\n";
473      P.print();
474    }
475  }
476
477  void dump() const { print(dbgs()); }
478
479#ifndef NDEBUG
480  friend raw_ostream &operator<<(raw_ostream &OS,
481                                 const InstPartitionContainer &Partitions) {
482    Partitions.print(OS);
483    return OS;
484  }
485#endif
486
487  void printBlocks() const {
488    unsigned Index = 0;
489    for (const auto &P : PartitionContainer) {
490      dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
491      P.printBlocks();
492    }
493  }
494
495private:
496  typedef std::list<InstPartition> PartitionContainerT;
497
498  /// \brief List of partitions.
499  PartitionContainerT PartitionContainer;
500
501  /// \brief Mapping from Instruction to partition Id.  If the instruction
502  /// belongs to multiple partitions the entry contains -1.
503  InstToPartitionIdT InstToPartitionId;
504
505  Loop *L;
506  LoopInfo *LI;
507  DominatorTree *DT;
508
509  /// \brief The control structure to merge adjacent partitions if both satisfy
510  /// the \p Predicate.
511  template <class UnaryPredicate>
512  void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
513    InstPartition *PrevMatch = nullptr;
514    for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
515      auto DoesMatch = Predicate(&*I);
516      if (PrevMatch == nullptr && DoesMatch) {
517        PrevMatch = &*I;
518        ++I;
519      } else if (PrevMatch != nullptr && DoesMatch) {
520        I->moveTo(*PrevMatch);
521        I = PartitionContainer.erase(I);
522      } else {
523        PrevMatch = nullptr;
524        ++I;
525      }
526    }
527  }
528};
529
530/// \brief For each memory instruction, this class maintains difference of the
531/// number of unsafe dependences that start out from this instruction minus
532/// those that end here.
533///
534/// By traversing the memory instructions in program order and accumulating this
535/// number, we know whether any unsafe dependence crosses over a program point.
536class MemoryInstructionDependences {
537  typedef MemoryDepChecker::Dependence Dependence;
538
539public:
540  struct Entry {
541    Instruction *Inst;
542    unsigned NumUnsafeDependencesStartOrEnd;
543
544    Entry(Instruction *Inst) : Inst(Inst), NumUnsafeDependencesStartOrEnd(0) {}
545  };
546
547  typedef SmallVector<Entry, 8> AccessesType;
548
549  AccessesType::const_iterator begin() const { return Accesses.begin(); }
550  AccessesType::const_iterator end() const { return Accesses.end(); }
551
552  MemoryInstructionDependences(
553      const SmallVectorImpl<Instruction *> &Instructions,
554      const SmallVectorImpl<Dependence> &Dependences) {
555    Accesses.append(Instructions.begin(), Instructions.end());
556
557    DEBUG(dbgs() << "Backward dependences:\n");
558    for (auto &Dep : Dependences)
559      if (Dep.isPossiblyBackward()) {
560        // Note that the designations source and destination follow the program
561        // order, i.e. source is always first.  (The direction is given by the
562        // DepType.)
563        ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
564        --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
565
566        DEBUG(Dep.print(dbgs(), 2, Instructions));
567      }
568  }
569
570private:
571  AccessesType Accesses;
572};
573
574/// \brief The pass class.
575class LoopDistribute : public FunctionPass {
576public:
577  LoopDistribute() : FunctionPass(ID) {
578    initializeLoopDistributePass(*PassRegistry::getPassRegistry());
579  }
580
581  bool runOnFunction(Function &F) override {
582    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
583    LAA = &getAnalysis<LoopAccessAnalysis>();
584    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
585    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
586
587    // Build up a worklist of inner-loops to vectorize. This is necessary as the
588    // act of distributing a loop creates new loops and can invalidate iterators
589    // across the loops.
590    SmallVector<Loop *, 8> Worklist;
591
592    for (Loop *TopLevelLoop : *LI)
593      for (Loop *L : depth_first(TopLevelLoop))
594        // We only handle inner-most loops.
595        if (L->empty())
596          Worklist.push_back(L);
597
598    // Now walk the identified inner loops.
599    bool Changed = false;
600    for (Loop *L : Worklist)
601      Changed |= processLoop(L);
602
603    // Process each loop nest in the function.
604    return Changed;
605  }
606
607  void getAnalysisUsage(AnalysisUsage &AU) const override {
608    AU.addRequired<ScalarEvolutionWrapperPass>();
609    AU.addRequired<LoopInfoWrapperPass>();
610    AU.addPreserved<LoopInfoWrapperPass>();
611    AU.addRequired<LoopAccessAnalysis>();
612    AU.addRequired<DominatorTreeWrapperPass>();
613    AU.addPreserved<DominatorTreeWrapperPass>();
614  }
615
616  static char ID;
617
618private:
619  /// \brief Filter out checks between pointers from the same partition.
620  ///
621  /// \p PtrToPartition contains the partition number for pointers.  Partition
622  /// number -1 means that the pointer is used in multiple partitions.  In this
623  /// case we can't safely omit the check.
624  SmallVector<RuntimePointerChecking::PointerCheck, 4>
625  includeOnlyCrossPartitionChecks(
626      const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
627      const SmallVectorImpl<int> &PtrToPartition,
628      const RuntimePointerChecking *RtPtrChecking) {
629    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
630
631    std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
632                 [&](const RuntimePointerChecking::PointerCheck &Check) {
633                   for (unsigned PtrIdx1 : Check.first->Members)
634                     for (unsigned PtrIdx2 : Check.second->Members)
635                       // Only include this check if there is a pair of pointers
636                       // that require checking and the pointers fall into
637                       // separate partitions.
638                       //
639                       // (Note that we already know at this point that the two
640                       // pointer groups need checking but it doesn't follow
641                       // that each pair of pointers within the two groups need
642                       // checking as well.
643                       //
644                       // In other words we don't want to include a check just
645                       // because there is a pair of pointers between the two
646                       // pointer groups that require checks and a different
647                       // pair whose pointers fall into different partitions.)
648                       if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
649                           !RuntimePointerChecking::arePointersInSamePartition(
650                               PtrToPartition, PtrIdx1, PtrIdx2))
651                         return true;
652                   return false;
653                 });
654
655    return Checks;
656  }
657
658  /// \brief Try to distribute an inner-most loop.
659  bool processLoop(Loop *L) {
660    assert(L->empty() && "Only process inner loops.");
661
662    DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName()
663                 << "\" checking " << *L << "\n");
664
665    BasicBlock *PH = L->getLoopPreheader();
666    if (!PH) {
667      DEBUG(dbgs() << "Skipping; no preheader");
668      return false;
669    }
670    if (!L->getExitBlock()) {
671      DEBUG(dbgs() << "Skipping; multiple exit blocks");
672      return false;
673    }
674    // LAA will check that we only have a single exiting block.
675
676    const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
677
678    // Currently, we only distribute to isolate the part of the loop with
679    // dependence cycles to enable partial vectorization.
680    if (LAI.canVectorizeMemory()) {
681      DEBUG(dbgs() << "Skipping; memory operations are safe for vectorization");
682      return false;
683    }
684    auto *Dependences = LAI.getDepChecker().getDependences();
685    if (!Dependences || Dependences->empty()) {
686      DEBUG(dbgs() << "Skipping; No unsafe dependences to isolate");
687      return false;
688    }
689
690    InstPartitionContainer Partitions(L, LI, DT);
691
692    // First, go through each memory operation and assign them to consecutive
693    // partitions (the order of partitions follows program order).  Put those
694    // with unsafe dependences into "cyclic" partition otherwise put each store
695    // in its own "non-cyclic" partition (we'll merge these later).
696    //
697    // Note that a memory operation (e.g. Load2 below) at a program point that
698    // has an unsafe dependence (Store3->Load1) spanning over it must be
699    // included in the same cyclic partition as the dependent operations.  This
700    // is to preserve the original program order after distribution.  E.g.:
701    //
702    //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
703    //  Load1   -.                     1                       0->1
704    //  Load2    | /Unsafe/            0                       1
705    //  Store3  -'                    -1                       1->0
706    //  Load4                          0                       0
707    //
708    // NumUnsafeDependencesActive > 0 indicates this situation and in this case
709    // we just keep assigning to the same cyclic partition until
710    // NumUnsafeDependencesActive reaches 0.
711    const MemoryDepChecker &DepChecker = LAI.getDepChecker();
712    MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
713                                     *Dependences);
714
715    int NumUnsafeDependencesActive = 0;
716    for (auto &InstDep : MID) {
717      Instruction *I = InstDep.Inst;
718      // We update NumUnsafeDependencesActive post-instruction, catch the
719      // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
720      if (NumUnsafeDependencesActive ||
721          InstDep.NumUnsafeDependencesStartOrEnd > 0)
722        Partitions.addToCyclicPartition(I);
723      else
724        Partitions.addToNewNonCyclicPartition(I);
725      NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
726      assert(NumUnsafeDependencesActive >= 0 &&
727             "Negative number of dependences active");
728    }
729
730    // Add partitions for values used outside.  These partitions can be out of
731    // order from the original program order.  This is OK because if the
732    // partition uses a load we will merge this partition with the original
733    // partition of the load that we set up in the previous loop (see
734    // mergeToAvoidDuplicatedLoads).
735    auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
736    for (auto *Inst : DefsUsedOutside)
737      Partitions.addToNewNonCyclicPartition(Inst);
738
739    DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
740    if (Partitions.getSize() < 2)
741      return false;
742
743    // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
744    // should be able to vectorize these together.
745    Partitions.mergeBeforePopulating();
746    DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
747    if (Partitions.getSize() < 2)
748      return false;
749
750    // Now, populate the partitions with non-memory operations.
751    Partitions.populateUsedSet();
752    DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
753
754    // In order to preserve original lexical order for loads, keep them in the
755    // partition that we set up in the MemoryInstructionDependences loop.
756    if (Partitions.mergeToAvoidDuplicatedLoads()) {
757      DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
758                   << Partitions);
759      if (Partitions.getSize() < 2)
760        return false;
761    }
762
763    // Don't distribute the loop if we need too many SCEV run-time checks.
764    const SCEVUnionPredicate &Pred = LAI.PSE.getUnionPredicate();
765    if (Pred.getComplexity() > DistributeSCEVCheckThreshold) {
766      DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
767      return false;
768    }
769
770    DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
771    // We're done forming the partitions set up the reverse mapping from
772    // instructions to partitions.
773    Partitions.setupPartitionIdOnInstructions();
774
775    // To keep things simple have an empty preheader before we version or clone
776    // the loop.  (Also split if this has no predecessor, i.e. entry, because we
777    // rely on PH having a predecessor.)
778    if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
779      SplitBlock(PH, PH->getTerminator(), DT, LI);
780
781    // If we need run-time checks, version the loop now.
782    auto PtrToPartition = Partitions.computePartitionSetForPointers(LAI);
783    const auto *RtPtrChecking = LAI.getRuntimePointerChecking();
784    const auto &AllChecks = RtPtrChecking->getChecks();
785    auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
786                                                  RtPtrChecking);
787
788    if (!Pred.isAlwaysTrue() || !Checks.empty()) {
789      DEBUG(dbgs() << "\nPointers:\n");
790      DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
791      LoopVersioning LVer(LAI, L, LI, DT, SE, false);
792      LVer.setAliasChecks(std::move(Checks));
793      LVer.setSCEVChecks(LAI.PSE.getUnionPredicate());
794      LVer.versionLoop(DefsUsedOutside);
795    }
796
797    // Create identical copies of the original loop for each partition and hook
798    // them up sequentially.
799    Partitions.cloneLoops();
800
801    // Now, we remove the instruction from each loop that don't belong to that
802    // partition.
803    Partitions.removeUnusedInsts();
804    DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
805    DEBUG(Partitions.printBlocks());
806
807    if (LDistVerify) {
808      LI->verify();
809      DT->verifyDomTree();
810    }
811
812    ++NumLoopsDistributed;
813    return true;
814  }
815
816  // Analyses used.
817  LoopInfo *LI;
818  LoopAccessAnalysis *LAA;
819  DominatorTree *DT;
820  ScalarEvolution *SE;
821};
822} // anonymous namespace
823
824char LoopDistribute::ID;
825static const char ldist_name[] = "Loop Distribition";
826
827INITIALIZE_PASS_BEGIN(LoopDistribute, LDIST_NAME, ldist_name, false, false)
828INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
829INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
830INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
831INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
832INITIALIZE_PASS_END(LoopDistribute, LDIST_NAME, ldist_name, false, false)
833
834namespace llvm {
835FunctionPass *createLoopDistributePass() { return new LoopDistribute(); }
836}
837