1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Analysis/GlobalsModRef.h"
32#include "llvm/Analysis/LoopInfo.h"
33#include "llvm/Analysis/LoopPass.h"
34#include "llvm/Analysis/ScalarEvolutionExpander.h"
35#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36#include "llvm/Analysis/TargetLibraryInfo.h"
37#include "llvm/Analysis/TargetTransformInfo.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/CFG.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/Dominators.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/PatternMatch.h"
47#include "llvm/IR/Type.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Transforms/Utils/BasicBlockUtils.h"
52#include "llvm/Transforms/Utils/Local.h"
53#include "llvm/Transforms/Utils/LoopUtils.h"
54#include "llvm/Transforms/Utils/SimplifyIndVar.h"
55using namespace llvm;
56
57#define DEBUG_TYPE "indvars"
58
59STATISTIC(NumWidened     , "Number of indvars widened");
60STATISTIC(NumReplaced    , "Number of exit values replaced");
61STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
62STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
63STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
64
65// Trip count verification can be enabled by default under NDEBUG if we
66// implement a strong expression equivalence checker in SCEV. Until then, we
67// use the verify-indvars flag, which may assert in some cases.
68static cl::opt<bool> VerifyIndvars(
69  "verify-indvars", cl::Hidden,
70  cl::desc("Verify the ScalarEvolution result after running indvars"));
71
72static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
73  cl::desc("Reduce live induction variables."));
74
75enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
76
77static cl::opt<ReplaceExitVal> ReplaceExitValue(
78    "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
79    cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
80    cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
81               clEnumValN(OnlyCheapRepl, "cheap",
82                          "only replace exit value when the cost is cheap"),
83               clEnumValN(AlwaysRepl, "always",
84                          "always replace exit value whenever possible"),
85               clEnumValEnd));
86
87namespace {
88struct RewritePhi;
89
90class IndVarSimplify : public LoopPass {
91  LoopInfo                  *LI;
92  ScalarEvolution           *SE;
93  DominatorTree             *DT;
94  TargetLibraryInfo         *TLI;
95  const TargetTransformInfo *TTI;
96
97  SmallVector<WeakVH, 16> DeadInsts;
98  bool Changed;
99public:
100
101  static char ID; // Pass identification, replacement for typeid
102  IndVarSimplify()
103    : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
104    initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
105  }
106
107  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
108
109  void getAnalysisUsage(AnalysisUsage &AU) const override {
110    AU.addRequired<DominatorTreeWrapperPass>();
111    AU.addRequired<LoopInfoWrapperPass>();
112    AU.addRequired<ScalarEvolutionWrapperPass>();
113    AU.addRequiredID(LoopSimplifyID);
114    AU.addRequiredID(LCSSAID);
115    AU.addPreserved<GlobalsAAWrapperPass>();
116    AU.addPreserved<ScalarEvolutionWrapperPass>();
117    AU.addPreservedID(LoopSimplifyID);
118    AU.addPreservedID(LCSSAID);
119    AU.setPreservesCFG();
120  }
121
122private:
123  void releaseMemory() override {
124    DeadInsts.clear();
125  }
126
127  bool isValidRewrite(Value *FromVal, Value *ToVal);
128
129  void handleFloatingPointIV(Loop *L, PHINode *PH);
130  void rewriteNonIntegerIVs(Loop *L);
131
132  void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
133
134  bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
135  void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
136
137  Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
138                                   PHINode *IndVar, SCEVExpander &Rewriter);
139
140  void sinkUnusedInvariants(Loop *L);
141
142  Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
143                            Instruction *InsertPt, Type *Ty);
144};
145}
146
147char IndVarSimplify::ID = 0;
148INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
149                "Induction Variable Simplification", false, false)
150INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
151INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
152INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
153INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
154INITIALIZE_PASS_DEPENDENCY(LCSSA)
155INITIALIZE_PASS_END(IndVarSimplify, "indvars",
156                "Induction Variable Simplification", false, false)
157
158Pass *llvm::createIndVarSimplifyPass() {
159  return new IndVarSimplify();
160}
161
162/// Return true if the SCEV expansion generated by the rewriter can replace the
163/// original value. SCEV guarantees that it produces the same value, but the way
164/// it is produced may be illegal IR.  Ideally, this function will only be
165/// called for verification.
166bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
167  // If an SCEV expression subsumed multiple pointers, its expansion could
168  // reassociate the GEP changing the base pointer. This is illegal because the
169  // final address produced by a GEP chain must be inbounds relative to its
170  // underlying object. Otherwise basic alias analysis, among other things,
171  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
172  // producing an expression involving multiple pointers. Until then, we must
173  // bail out here.
174  //
175  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
176  // because it understands lcssa phis while SCEV does not.
177  Value *FromPtr = FromVal;
178  Value *ToPtr = ToVal;
179  if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
180    FromPtr = GEP->getPointerOperand();
181  }
182  if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
183    ToPtr = GEP->getPointerOperand();
184  }
185  if (FromPtr != FromVal || ToPtr != ToVal) {
186    // Quickly check the common case
187    if (FromPtr == ToPtr)
188      return true;
189
190    // SCEV may have rewritten an expression that produces the GEP's pointer
191    // operand. That's ok as long as the pointer operand has the same base
192    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
193    // base of a recurrence. This handles the case in which SCEV expansion
194    // converts a pointer type recurrence into a nonrecurrent pointer base
195    // indexed by an integer recurrence.
196
197    // If the GEP base pointer is a vector of pointers, abort.
198    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
199      return false;
200
201    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
202    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
203    if (FromBase == ToBase)
204      return true;
205
206    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
207          << *FromBase << " != " << *ToBase << "\n");
208
209    return false;
210  }
211  return true;
212}
213
214/// Determine the insertion point for this user. By default, insert immediately
215/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
216/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
217/// common dominator for the incoming blocks.
218static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
219                                          DominatorTree *DT, LoopInfo *LI) {
220  PHINode *PHI = dyn_cast<PHINode>(User);
221  if (!PHI)
222    return User;
223
224  Instruction *InsertPt = nullptr;
225  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
226    if (PHI->getIncomingValue(i) != Def)
227      continue;
228
229    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
230    if (!InsertPt) {
231      InsertPt = InsertBB->getTerminator();
232      continue;
233    }
234    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
235    InsertPt = InsertBB->getTerminator();
236  }
237  assert(InsertPt && "Missing phi operand");
238
239  auto *DefI = dyn_cast<Instruction>(Def);
240  if (!DefI)
241    return InsertPt;
242
243  assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
244
245  auto *L = LI->getLoopFor(DefI->getParent());
246  assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
247
248  for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
249    if (LI->getLoopFor(DTN->getBlock()) == L)
250      return DTN->getBlock()->getTerminator();
251
252  llvm_unreachable("DefI dominates InsertPt!");
253}
254
255//===----------------------------------------------------------------------===//
256// rewriteNonIntegerIVs and helpers. Prefer integer IVs.
257//===----------------------------------------------------------------------===//
258
259/// Convert APF to an integer, if possible.
260static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
261  bool isExact = false;
262  // See if we can convert this to an int64_t
263  uint64_t UIntVal;
264  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
265                           &isExact) != APFloat::opOK || !isExact)
266    return false;
267  IntVal = UIntVal;
268  return true;
269}
270
271/// If the loop has floating induction variable then insert corresponding
272/// integer induction variable if possible.
273/// For example,
274/// for(double i = 0; i < 10000; ++i)
275///   bar(i)
276/// is converted into
277/// for(int i = 0; i < 10000; ++i)
278///   bar((double)i);
279///
280void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
281  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
282  unsigned BackEdge     = IncomingEdge^1;
283
284  // Check incoming value.
285  auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
286
287  int64_t InitValue;
288  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
289    return;
290
291  // Check IV increment. Reject this PN if increment operation is not
292  // an add or increment value can not be represented by an integer.
293  auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
294  if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
295
296  // If this is not an add of the PHI with a constantfp, or if the constant fp
297  // is not an integer, bail out.
298  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
299  int64_t IncValue;
300  if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
301      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
302    return;
303
304  // Check Incr uses. One user is PN and the other user is an exit condition
305  // used by the conditional terminator.
306  Value::user_iterator IncrUse = Incr->user_begin();
307  Instruction *U1 = cast<Instruction>(*IncrUse++);
308  if (IncrUse == Incr->user_end()) return;
309  Instruction *U2 = cast<Instruction>(*IncrUse++);
310  if (IncrUse != Incr->user_end()) return;
311
312  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
313  // only used by a branch, we can't transform it.
314  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
315  if (!Compare)
316    Compare = dyn_cast<FCmpInst>(U2);
317  if (!Compare || !Compare->hasOneUse() ||
318      !isa<BranchInst>(Compare->user_back()))
319    return;
320
321  BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
322
323  // We need to verify that the branch actually controls the iteration count
324  // of the loop.  If not, the new IV can overflow and no one will notice.
325  // The branch block must be in the loop and one of the successors must be out
326  // of the loop.
327  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
328  if (!L->contains(TheBr->getParent()) ||
329      (L->contains(TheBr->getSuccessor(0)) &&
330       L->contains(TheBr->getSuccessor(1))))
331    return;
332
333
334  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
335  // transform it.
336  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
337  int64_t ExitValue;
338  if (ExitValueVal == nullptr ||
339      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
340    return;
341
342  // Find new predicate for integer comparison.
343  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
344  switch (Compare->getPredicate()) {
345  default: return;  // Unknown comparison.
346  case CmpInst::FCMP_OEQ:
347  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
348  case CmpInst::FCMP_ONE:
349  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
350  case CmpInst::FCMP_OGT:
351  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
352  case CmpInst::FCMP_OGE:
353  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
354  case CmpInst::FCMP_OLT:
355  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
356  case CmpInst::FCMP_OLE:
357  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
358  }
359
360  // We convert the floating point induction variable to a signed i32 value if
361  // we can.  This is only safe if the comparison will not overflow in a way
362  // that won't be trapped by the integer equivalent operations.  Check for this
363  // now.
364  // TODO: We could use i64 if it is native and the range requires it.
365
366  // The start/stride/exit values must all fit in signed i32.
367  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
368    return;
369
370  // If not actually striding (add x, 0.0), avoid touching the code.
371  if (IncValue == 0)
372    return;
373
374  // Positive and negative strides have different safety conditions.
375  if (IncValue > 0) {
376    // If we have a positive stride, we require the init to be less than the
377    // exit value.
378    if (InitValue >= ExitValue)
379      return;
380
381    uint32_t Range = uint32_t(ExitValue-InitValue);
382    // Check for infinite loop, either:
383    // while (i <= Exit) or until (i > Exit)
384    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
385      if (++Range == 0) return;  // Range overflows.
386    }
387
388    unsigned Leftover = Range % uint32_t(IncValue);
389
390    // If this is an equality comparison, we require that the strided value
391    // exactly land on the exit value, otherwise the IV condition will wrap
392    // around and do things the fp IV wouldn't.
393    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
394        Leftover != 0)
395      return;
396
397    // If the stride would wrap around the i32 before exiting, we can't
398    // transform the IV.
399    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
400      return;
401
402  } else {
403    // If we have a negative stride, we require the init to be greater than the
404    // exit value.
405    if (InitValue <= ExitValue)
406      return;
407
408    uint32_t Range = uint32_t(InitValue-ExitValue);
409    // Check for infinite loop, either:
410    // while (i >= Exit) or until (i < Exit)
411    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
412      if (++Range == 0) return;  // Range overflows.
413    }
414
415    unsigned Leftover = Range % uint32_t(-IncValue);
416
417    // If this is an equality comparison, we require that the strided value
418    // exactly land on the exit value, otherwise the IV condition will wrap
419    // around and do things the fp IV wouldn't.
420    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
421        Leftover != 0)
422      return;
423
424    // If the stride would wrap around the i32 before exiting, we can't
425    // transform the IV.
426    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
427      return;
428  }
429
430  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
431
432  // Insert new integer induction variable.
433  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
434  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
435                      PN->getIncomingBlock(IncomingEdge));
436
437  Value *NewAdd =
438    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
439                              Incr->getName()+".int", Incr);
440  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
441
442  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
443                                      ConstantInt::get(Int32Ty, ExitValue),
444                                      Compare->getName());
445
446  // In the following deletions, PN may become dead and may be deleted.
447  // Use a WeakVH to observe whether this happens.
448  WeakVH WeakPH = PN;
449
450  // Delete the old floating point exit comparison.  The branch starts using the
451  // new comparison.
452  NewCompare->takeName(Compare);
453  Compare->replaceAllUsesWith(NewCompare);
454  RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
455
456  // Delete the old floating point increment.
457  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
458  RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
459
460  // If the FP induction variable still has uses, this is because something else
461  // in the loop uses its value.  In order to canonicalize the induction
462  // variable, we chose to eliminate the IV and rewrite it in terms of an
463  // int->fp cast.
464  //
465  // We give preference to sitofp over uitofp because it is faster on most
466  // platforms.
467  if (WeakPH) {
468    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
469                                 &*PN->getParent()->getFirstInsertionPt());
470    PN->replaceAllUsesWith(Conv);
471    RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
472  }
473  Changed = true;
474}
475
476void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
477  // First step.  Check to see if there are any floating-point recurrences.
478  // If there are, change them into integer recurrences, permitting analysis by
479  // the SCEV routines.
480  //
481  BasicBlock *Header = L->getHeader();
482
483  SmallVector<WeakVH, 8> PHIs;
484  for (BasicBlock::iterator I = Header->begin();
485       PHINode *PN = dyn_cast<PHINode>(I); ++I)
486    PHIs.push_back(PN);
487
488  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
489    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
490      handleFloatingPointIV(L, PN);
491
492  // If the loop previously had floating-point IV, ScalarEvolution
493  // may not have been able to compute a trip count. Now that we've done some
494  // re-writing, the trip count may be computable.
495  if (Changed)
496    SE->forgetLoop(L);
497}
498
499namespace {
500// Collect information about PHI nodes which can be transformed in
501// rewriteLoopExitValues.
502struct RewritePhi {
503  PHINode *PN;
504  unsigned Ith;  // Ith incoming value.
505  Value *Val;    // Exit value after expansion.
506  bool HighCost; // High Cost when expansion.
507  bool SafePhi;  // LCSSASafePhiForRAUW.
508
509  RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S)
510      : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {}
511};
512}
513
514Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
515                                          Loop *L, Instruction *InsertPt,
516                                          Type *ResultTy) {
517  // Before expanding S into an expensive LLVM expression, see if we can use an
518  // already existing value as the expansion for S.
519  if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L))
520    if (ExistingValue->getType() == ResultTy)
521      return ExistingValue;
522
523  // We didn't find anything, fall back to using SCEVExpander.
524  return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
525}
526
527//===----------------------------------------------------------------------===//
528// rewriteLoopExitValues - Optimize IV users outside the loop.
529// As a side effect, reduces the amount of IV processing within the loop.
530//===----------------------------------------------------------------------===//
531
532/// Check to see if this loop has a computable loop-invariant execution count.
533/// If so, this means that we can compute the final value of any expressions
534/// that are recurrent in the loop, and substitute the exit values from the loop
535/// into any instructions outside of the loop that use the final values of the
536/// current expressions.
537///
538/// This is mostly redundant with the regular IndVarSimplify activities that
539/// happen later, except that it's more powerful in some cases, because it's
540/// able to brute-force evaluate arbitrary instructions as long as they have
541/// constant operands at the beginning of the loop.
542void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
543  // Check a pre-condition.
544  assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
545
546  SmallVector<BasicBlock*, 8> ExitBlocks;
547  L->getUniqueExitBlocks(ExitBlocks);
548
549  SmallVector<RewritePhi, 8> RewritePhiSet;
550  // Find all values that are computed inside the loop, but used outside of it.
551  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
552  // the exit blocks of the loop to find them.
553  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
554    BasicBlock *ExitBB = ExitBlocks[i];
555
556    // If there are no PHI nodes in this exit block, then no values defined
557    // inside the loop are used on this path, skip it.
558    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
559    if (!PN) continue;
560
561    unsigned NumPreds = PN->getNumIncomingValues();
562
563    // We would like to be able to RAUW single-incoming value PHI nodes. We
564    // have to be certain this is safe even when this is an LCSSA PHI node.
565    // While the computed exit value is no longer varying in *this* loop, the
566    // exit block may be an exit block for an outer containing loop as well,
567    // the exit value may be varying in the outer loop, and thus it may still
568    // require an LCSSA PHI node. The safe case is when this is
569    // single-predecessor PHI node (LCSSA) and the exit block containing it is
570    // part of the enclosing loop, or this is the outer most loop of the nest.
571    // In either case the exit value could (at most) be varying in the same
572    // loop body as the phi node itself. Thus if it is in turn used outside of
573    // an enclosing loop it will only be via a separate LCSSA node.
574    bool LCSSASafePhiForRAUW =
575        NumPreds == 1 &&
576        (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
577
578    // Iterate over all of the PHI nodes.
579    BasicBlock::iterator BBI = ExitBB->begin();
580    while ((PN = dyn_cast<PHINode>(BBI++))) {
581      if (PN->use_empty())
582        continue; // dead use, don't replace it
583
584      // SCEV only supports integer expressions for now.
585      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
586        continue;
587
588      // It's necessary to tell ScalarEvolution about this explicitly so that
589      // it can walk the def-use list and forget all SCEVs, as it may not be
590      // watching the PHI itself. Once the new exit value is in place, there
591      // may not be a def-use connection between the loop and every instruction
592      // which got a SCEVAddRecExpr for that loop.
593      SE->forgetValue(PN);
594
595      // Iterate over all of the values in all the PHI nodes.
596      for (unsigned i = 0; i != NumPreds; ++i) {
597        // If the value being merged in is not integer or is not defined
598        // in the loop, skip it.
599        Value *InVal = PN->getIncomingValue(i);
600        if (!isa<Instruction>(InVal))
601          continue;
602
603        // If this pred is for a subloop, not L itself, skip it.
604        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
605          continue; // The Block is in a subloop, skip it.
606
607        // Check that InVal is defined in the loop.
608        Instruction *Inst = cast<Instruction>(InVal);
609        if (!L->contains(Inst))
610          continue;
611
612        // Okay, this instruction has a user outside of the current loop
613        // and varies predictably *inside* the loop.  Evaluate the value it
614        // contains when the loop exits, if possible.
615        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
616        if (!SE->isLoopInvariant(ExitValue, L) ||
617            !isSafeToExpand(ExitValue, *SE))
618          continue;
619
620        // Computing the value outside of the loop brings no benefit if :
621        //  - it is definitely used inside the loop in a way which can not be
622        //    optimized away.
623        //  - no use outside of the loop can take advantage of hoisting the
624        //    computation out of the loop
625        if (ExitValue->getSCEVType()>=scMulExpr) {
626          unsigned NumHardInternalUses = 0;
627          unsigned NumSoftExternalUses = 0;
628          unsigned NumUses = 0;
629          for (auto IB = Inst->user_begin(), IE = Inst->user_end();
630               IB != IE && NumUses <= 6; ++IB) {
631            Instruction *UseInstr = cast<Instruction>(*IB);
632            unsigned Opc = UseInstr->getOpcode();
633            NumUses++;
634            if (L->contains(UseInstr)) {
635              if (Opc == Instruction::Call || Opc == Instruction::Ret)
636                NumHardInternalUses++;
637            } else {
638              if (Opc == Instruction::PHI) {
639                // Do not count the Phi as a use. LCSSA may have inserted
640                // plenty of trivial ones.
641                NumUses--;
642                for (auto PB = UseInstr->user_begin(),
643                          PE = UseInstr->user_end();
644                     PB != PE && NumUses <= 6; ++PB, ++NumUses) {
645                  unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
646                  if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
647                    NumSoftExternalUses++;
648                }
649                continue;
650              }
651              if (Opc != Instruction::Call && Opc != Instruction::Ret)
652                NumSoftExternalUses++;
653            }
654          }
655          if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
656            continue;
657        }
658
659        bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
660        Value *ExitVal =
661            expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
662
663        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
664                     << "  LoopVal = " << *Inst << "\n");
665
666        if (!isValidRewrite(Inst, ExitVal)) {
667          DeadInsts.push_back(ExitVal);
668          continue;
669        }
670
671        // Collect all the candidate PHINodes to be rewritten.
672        RewritePhiSet.push_back(
673            RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW));
674      }
675    }
676  }
677
678  bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
679
680  // Transformation.
681  for (const RewritePhi &Phi : RewritePhiSet) {
682    PHINode *PN = Phi.PN;
683    Value *ExitVal = Phi.Val;
684
685    // Only do the rewrite when the ExitValue can be expanded cheaply.
686    // If LoopCanBeDel is true, rewrite exit value aggressively.
687    if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
688      DeadInsts.push_back(ExitVal);
689      continue;
690    }
691
692    Changed = true;
693    ++NumReplaced;
694    Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
695    PN->setIncomingValue(Phi.Ith, ExitVal);
696
697    // If this instruction is dead now, delete it. Don't do it now to avoid
698    // invalidating iterators.
699    if (isInstructionTriviallyDead(Inst, TLI))
700      DeadInsts.push_back(Inst);
701
702    // If we determined that this PHI is safe to replace even if an LCSSA
703    // PHI, do so.
704    if (Phi.SafePhi) {
705      PN->replaceAllUsesWith(ExitVal);
706      PN->eraseFromParent();
707    }
708  }
709
710  // The insertion point instruction may have been deleted; clear it out
711  // so that the rewriter doesn't trip over it later.
712  Rewriter.clearInsertPoint();
713}
714
715/// Check whether it is possible to delete the loop after rewriting exit
716/// value. If it is possible, ignore ReplaceExitValue and do rewriting
717/// aggressively.
718bool IndVarSimplify::canLoopBeDeleted(
719    Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
720
721  BasicBlock *Preheader = L->getLoopPreheader();
722  // If there is no preheader, the loop will not be deleted.
723  if (!Preheader)
724    return false;
725
726  // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
727  // We obviate multiple ExitingBlocks case for simplicity.
728  // TODO: If we see testcase with multiple ExitingBlocks can be deleted
729  // after exit value rewriting, we can enhance the logic here.
730  SmallVector<BasicBlock *, 4> ExitingBlocks;
731  L->getExitingBlocks(ExitingBlocks);
732  SmallVector<BasicBlock *, 8> ExitBlocks;
733  L->getUniqueExitBlocks(ExitBlocks);
734  if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
735    return false;
736
737  BasicBlock *ExitBlock = ExitBlocks[0];
738  BasicBlock::iterator BI = ExitBlock->begin();
739  while (PHINode *P = dyn_cast<PHINode>(BI)) {
740    Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
741
742    // If the Incoming value of P is found in RewritePhiSet, we know it
743    // could be rewritten to use a loop invariant value in transformation
744    // phase later. Skip it in the loop invariant check below.
745    bool found = false;
746    for (const RewritePhi &Phi : RewritePhiSet) {
747      unsigned i = Phi.Ith;
748      if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
749        found = true;
750        break;
751      }
752    }
753
754    Instruction *I;
755    if (!found && (I = dyn_cast<Instruction>(Incoming)))
756      if (!L->hasLoopInvariantOperands(I))
757        return false;
758
759    ++BI;
760  }
761
762  for (auto *BB : L->blocks())
763    if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
764      return false;
765
766  return true;
767}
768
769//===----------------------------------------------------------------------===//
770//  IV Widening - Extend the width of an IV to cover its widest uses.
771//===----------------------------------------------------------------------===//
772
773namespace {
774// Collect information about induction variables that are used by sign/zero
775// extend operations. This information is recorded by CollectExtend and provides
776// the input to WidenIV.
777struct WideIVInfo {
778  PHINode *NarrowIV = nullptr;
779  Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
780  bool IsSigned = false;            // Was a sext user seen before a zext?
781};
782}
783
784/// Update information about the induction variable that is extended by this
785/// sign or zero extend operation. This is used to determine the final width of
786/// the IV before actually widening it.
787static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
788                        const TargetTransformInfo *TTI) {
789  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
790  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
791    return;
792
793  Type *Ty = Cast->getType();
794  uint64_t Width = SE->getTypeSizeInBits(Ty);
795  if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
796    return;
797
798  // Cast is either an sext or zext up to this point.
799  // We should not widen an indvar if arithmetics on the wider indvar are more
800  // expensive than those on the narrower indvar. We check only the cost of ADD
801  // because at least an ADD is required to increment the induction variable. We
802  // could compute more comprehensively the cost of all instructions on the
803  // induction variable when necessary.
804  if (TTI &&
805      TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
806          TTI->getArithmeticInstrCost(Instruction::Add,
807                                      Cast->getOperand(0)->getType())) {
808    return;
809  }
810
811  if (!WI.WidestNativeType) {
812    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
813    WI.IsSigned = IsSigned;
814    return;
815  }
816
817  // We extend the IV to satisfy the sign of its first user, arbitrarily.
818  if (WI.IsSigned != IsSigned)
819    return;
820
821  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
822    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
823}
824
825namespace {
826
827/// Record a link in the Narrow IV def-use chain along with the WideIV that
828/// computes the same value as the Narrow IV def.  This avoids caching Use*
829/// pointers.
830struct NarrowIVDefUse {
831  Instruction *NarrowDef = nullptr;
832  Instruction *NarrowUse = nullptr;
833  Instruction *WideDef = nullptr;
834
835  // True if the narrow def is never negative.  Tracking this information lets
836  // us use a sign extension instead of a zero extension or vice versa, when
837  // profitable and legal.
838  bool NeverNegative = false;
839
840  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
841                 bool NeverNegative)
842      : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
843        NeverNegative(NeverNegative) {}
844};
845
846/// The goal of this transform is to remove sign and zero extends without
847/// creating any new induction variables. To do this, it creates a new phi of
848/// the wider type and redirects all users, either removing extends or inserting
849/// truncs whenever we stop propagating the type.
850///
851class WidenIV {
852  // Parameters
853  PHINode *OrigPhi;
854  Type *WideType;
855  bool IsSigned;
856
857  // Context
858  LoopInfo        *LI;
859  Loop            *L;
860  ScalarEvolution *SE;
861  DominatorTree   *DT;
862
863  // Result
864  PHINode *WidePhi;
865  Instruction *WideInc;
866  const SCEV *WideIncExpr;
867  SmallVectorImpl<WeakVH> &DeadInsts;
868
869  SmallPtrSet<Instruction*,16> Widened;
870  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
871
872public:
873  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
874          ScalarEvolution *SEv, DominatorTree *DTree,
875          SmallVectorImpl<WeakVH> &DI) :
876    OrigPhi(WI.NarrowIV),
877    WideType(WI.WidestNativeType),
878    IsSigned(WI.IsSigned),
879    LI(LInfo),
880    L(LI->getLoopFor(OrigPhi->getParent())),
881    SE(SEv),
882    DT(DTree),
883    WidePhi(nullptr),
884    WideInc(nullptr),
885    WideIncExpr(nullptr),
886    DeadInsts(DI) {
887    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
888  }
889
890  PHINode *createWideIV(SCEVExpander &Rewriter);
891
892protected:
893  Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
894                          Instruction *Use);
895
896  Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
897  Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
898                                     const SCEVAddRecExpr *WideAR);
899  Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
900
901  const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
902
903  const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
904
905  const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
906                              unsigned OpCode) const;
907
908  Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
909
910  bool widenLoopCompare(NarrowIVDefUse DU);
911
912  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
913};
914} // anonymous namespace
915
916/// Perform a quick domtree based check for loop invariance assuming that V is
917/// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
918/// purpose.
919static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
920  Instruction *Inst = dyn_cast<Instruction>(V);
921  if (!Inst)
922    return true;
923
924  return DT->properlyDominates(Inst->getParent(), L->getHeader());
925}
926
927Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
928                                 bool IsSigned, Instruction *Use) {
929  // Set the debug location and conservative insertion point.
930  IRBuilder<> Builder(Use);
931  // Hoist the insertion point into loop preheaders as far as possible.
932  for (const Loop *L = LI->getLoopFor(Use->getParent());
933       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
934       L = L->getParentLoop())
935    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
936
937  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
938                    Builder.CreateZExt(NarrowOper, WideType);
939}
940
941/// Instantiate a wide operation to replace a narrow operation. This only needs
942/// to handle operations that can evaluation to SCEVAddRec. It can safely return
943/// 0 for any operation we decide not to clone.
944Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
945                                  const SCEVAddRecExpr *WideAR) {
946  unsigned Opcode = DU.NarrowUse->getOpcode();
947  switch (Opcode) {
948  default:
949    return nullptr;
950  case Instruction::Add:
951  case Instruction::Mul:
952  case Instruction::UDiv:
953  case Instruction::Sub:
954    return cloneArithmeticIVUser(DU, WideAR);
955
956  case Instruction::And:
957  case Instruction::Or:
958  case Instruction::Xor:
959  case Instruction::Shl:
960  case Instruction::LShr:
961  case Instruction::AShr:
962    return cloneBitwiseIVUser(DU);
963  }
964}
965
966Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
967  Instruction *NarrowUse = DU.NarrowUse;
968  Instruction *NarrowDef = DU.NarrowDef;
969  Instruction *WideDef = DU.WideDef;
970
971  DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
972
973  // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
974  // about the narrow operand yet so must insert a [sz]ext. It is probably loop
975  // invariant and will be folded or hoisted. If it actually comes from a
976  // widened IV, it should be removed during a future call to widenIVUse.
977  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
978                   ? WideDef
979                   : createExtendInst(NarrowUse->getOperand(0), WideType,
980                                      IsSigned, NarrowUse);
981  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
982                   ? WideDef
983                   : createExtendInst(NarrowUse->getOperand(1), WideType,
984                                      IsSigned, NarrowUse);
985
986  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
987  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
988                                        NarrowBO->getName());
989  IRBuilder<> Builder(NarrowUse);
990  Builder.Insert(WideBO);
991  WideBO->copyIRFlags(NarrowBO);
992  return WideBO;
993}
994
995Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
996                                            const SCEVAddRecExpr *WideAR) {
997  Instruction *NarrowUse = DU.NarrowUse;
998  Instruction *NarrowDef = DU.NarrowDef;
999  Instruction *WideDef = DU.WideDef;
1000
1001  DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1002
1003  unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1004
1005  // We're trying to find X such that
1006  //
1007  //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1008  //
1009  // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1010  // and check using SCEV if any of them are correct.
1011
1012  // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1013  // correct solution to X.
1014  auto GuessNonIVOperand = [&](bool SignExt) {
1015    const SCEV *WideLHS;
1016    const SCEV *WideRHS;
1017
1018    auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1019      if (SignExt)
1020        return SE->getSignExtendExpr(S, Ty);
1021      return SE->getZeroExtendExpr(S, Ty);
1022    };
1023
1024    if (IVOpIdx == 0) {
1025      WideLHS = SE->getSCEV(WideDef);
1026      const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1027      WideRHS = GetExtend(NarrowRHS, WideType);
1028    } else {
1029      const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1030      WideLHS = GetExtend(NarrowLHS, WideType);
1031      WideRHS = SE->getSCEV(WideDef);
1032    }
1033
1034    // WideUse is "WideDef `op.wide` X" as described in the comment.
1035    const SCEV *WideUse = nullptr;
1036
1037    switch (NarrowUse->getOpcode()) {
1038    default:
1039      llvm_unreachable("No other possibility!");
1040
1041    case Instruction::Add:
1042      WideUse = SE->getAddExpr(WideLHS, WideRHS);
1043      break;
1044
1045    case Instruction::Mul:
1046      WideUse = SE->getMulExpr(WideLHS, WideRHS);
1047      break;
1048
1049    case Instruction::UDiv:
1050      WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1051      break;
1052
1053    case Instruction::Sub:
1054      WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1055      break;
1056    }
1057
1058    return WideUse == WideAR;
1059  };
1060
1061  bool SignExtend = IsSigned;
1062  if (!GuessNonIVOperand(SignExtend)) {
1063    SignExtend = !SignExtend;
1064    if (!GuessNonIVOperand(SignExtend))
1065      return nullptr;
1066  }
1067
1068  Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1069                   ? WideDef
1070                   : createExtendInst(NarrowUse->getOperand(0), WideType,
1071                                      SignExtend, NarrowUse);
1072  Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1073                   ? WideDef
1074                   : createExtendInst(NarrowUse->getOperand(1), WideType,
1075                                      SignExtend, NarrowUse);
1076
1077  auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1078  auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1079                                        NarrowBO->getName());
1080
1081  IRBuilder<> Builder(NarrowUse);
1082  Builder.Insert(WideBO);
1083  WideBO->copyIRFlags(NarrowBO);
1084  return WideBO;
1085}
1086
1087const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1088                                     unsigned OpCode) const {
1089  if (OpCode == Instruction::Add)
1090    return SE->getAddExpr(LHS, RHS);
1091  if (OpCode == Instruction::Sub)
1092    return SE->getMinusSCEV(LHS, RHS);
1093  if (OpCode == Instruction::Mul)
1094    return SE->getMulExpr(LHS, RHS);
1095
1096  llvm_unreachable("Unsupported opcode.");
1097}
1098
1099/// No-wrap operations can transfer sign extension of their result to their
1100/// operands. Generate the SCEV value for the widened operation without
1101/// actually modifying the IR yet. If the expression after extending the
1102/// operands is an AddRec for this loop, return it.
1103const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1104
1105  // Handle the common case of add<nsw/nuw>
1106  const unsigned OpCode = DU.NarrowUse->getOpcode();
1107  // Only Add/Sub/Mul instructions supported yet.
1108  if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1109      OpCode != Instruction::Mul)
1110    return nullptr;
1111
1112  // One operand (NarrowDef) has already been extended to WideDef. Now determine
1113  // if extending the other will lead to a recurrence.
1114  const unsigned ExtendOperIdx =
1115      DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1116  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1117
1118  const SCEV *ExtendOperExpr = nullptr;
1119  const OverflowingBinaryOperator *OBO =
1120    cast<OverflowingBinaryOperator>(DU.NarrowUse);
1121  if (IsSigned && OBO->hasNoSignedWrap())
1122    ExtendOperExpr = SE->getSignExtendExpr(
1123      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1124  else if(!IsSigned && OBO->hasNoUnsignedWrap())
1125    ExtendOperExpr = SE->getZeroExtendExpr(
1126      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1127  else
1128    return nullptr;
1129
1130  // When creating this SCEV expr, don't apply the current operations NSW or NUW
1131  // flags. This instruction may be guarded by control flow that the no-wrap
1132  // behavior depends on. Non-control-equivalent instructions can be mapped to
1133  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1134  // semantics to those operations.
1135  const SCEV *lhs = SE->getSCEV(DU.WideDef);
1136  const SCEV *rhs = ExtendOperExpr;
1137
1138  // Let's swap operands to the initial order for the case of non-commutative
1139  // operations, like SUB. See PR21014.
1140  if (ExtendOperIdx == 0)
1141    std::swap(lhs, rhs);
1142  const SCEVAddRecExpr *AddRec =
1143      dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1144
1145  if (!AddRec || AddRec->getLoop() != L)
1146    return nullptr;
1147  return AddRec;
1148}
1149
1150/// Is this instruction potentially interesting for further simplification after
1151/// widening it's type? In other words, can the extend be safely hoisted out of
1152/// the loop with SCEV reducing the value to a recurrence on the same loop. If
1153/// so, return the sign or zero extended recurrence. Otherwise return NULL.
1154const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
1155  if (!SE->isSCEVable(NarrowUse->getType()))
1156    return nullptr;
1157
1158  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1159  if (SE->getTypeSizeInBits(NarrowExpr->getType())
1160      >= SE->getTypeSizeInBits(WideType)) {
1161    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1162    // index. So don't follow this use.
1163    return nullptr;
1164  }
1165
1166  const SCEV *WideExpr = IsSigned ?
1167    SE->getSignExtendExpr(NarrowExpr, WideType) :
1168    SE->getZeroExtendExpr(NarrowExpr, WideType);
1169  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1170  if (!AddRec || AddRec->getLoop() != L)
1171    return nullptr;
1172  return AddRec;
1173}
1174
1175/// This IV user cannot be widen. Replace this use of the original narrow IV
1176/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1177static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1178  DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1179        << " for user " << *DU.NarrowUse << "\n");
1180  IRBuilder<> Builder(
1181      getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1182  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1183  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1184}
1185
1186/// If the narrow use is a compare instruction, then widen the compare
1187//  (and possibly the other operand).  The extend operation is hoisted into the
1188// loop preheader as far as possible.
1189bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1190  ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1191  if (!Cmp)
1192    return false;
1193
1194  // We can legally widen the comparison in the following two cases:
1195  //
1196  //  - The signedness of the IV extension and comparison match
1197  //
1198  //  - The narrow IV is always positive (and thus its sign extension is equal
1199  //    to its zero extension).  For instance, let's say we're zero extending
1200  //    %narrow for the following use
1201  //
1202  //      icmp slt i32 %narrow, %val   ... (A)
1203  //
1204  //    and %narrow is always positive.  Then
1205  //
1206  //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1207  //          == icmp slt i32 zext(%narrow), sext(%val)
1208
1209  if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1210    return false;
1211
1212  Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1213  unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1214  unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1215  assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1216
1217  // Widen the compare instruction.
1218  IRBuilder<> Builder(
1219      getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1220  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1221
1222  // Widen the other operand of the compare, if necessary.
1223  if (CastWidth < IVWidth) {
1224    Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1225    DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1226  }
1227  return true;
1228}
1229
1230/// Determine whether an individual user of the narrow IV can be widened. If so,
1231/// return the wide clone of the user.
1232Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1233
1234  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1235  if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1236    if (LI->getLoopFor(UsePhi->getParent()) != L) {
1237      // For LCSSA phis, sink the truncate outside the loop.
1238      // After SimplifyCFG most loop exit targets have a single predecessor.
1239      // Otherwise fall back to a truncate within the loop.
1240      if (UsePhi->getNumOperands() != 1)
1241        truncateIVUse(DU, DT, LI);
1242      else {
1243        PHINode *WidePhi =
1244          PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1245                          UsePhi);
1246        WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1247        IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1248        Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1249        UsePhi->replaceAllUsesWith(Trunc);
1250        DeadInsts.emplace_back(UsePhi);
1251        DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1252              << " to " << *WidePhi << "\n");
1253      }
1254      return nullptr;
1255    }
1256  }
1257  // Our raison d'etre! Eliminate sign and zero extension.
1258  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1259    Value *NewDef = DU.WideDef;
1260    if (DU.NarrowUse->getType() != WideType) {
1261      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1262      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1263      if (CastWidth < IVWidth) {
1264        // The cast isn't as wide as the IV, so insert a Trunc.
1265        IRBuilder<> Builder(DU.NarrowUse);
1266        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1267      }
1268      else {
1269        // A wider extend was hidden behind a narrower one. This may induce
1270        // another round of IV widening in which the intermediate IV becomes
1271        // dead. It should be very rare.
1272        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1273              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1274        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1275        NewDef = DU.NarrowUse;
1276      }
1277    }
1278    if (NewDef != DU.NarrowUse) {
1279      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1280            << " replaced by " << *DU.WideDef << "\n");
1281      ++NumElimExt;
1282      DU.NarrowUse->replaceAllUsesWith(NewDef);
1283      DeadInsts.emplace_back(DU.NarrowUse);
1284    }
1285    // Now that the extend is gone, we want to expose it's uses for potential
1286    // further simplification. We don't need to directly inform SimplifyIVUsers
1287    // of the new users, because their parent IV will be processed later as a
1288    // new loop phi. If we preserved IVUsers analysis, we would also want to
1289    // push the uses of WideDef here.
1290
1291    // No further widening is needed. The deceased [sz]ext had done it for us.
1292    return nullptr;
1293  }
1294
1295  // Does this user itself evaluate to a recurrence after widening?
1296  const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
1297  if (!WideAddRec)
1298    WideAddRec = getExtendedOperandRecurrence(DU);
1299
1300  if (!WideAddRec) {
1301    // If use is a loop condition, try to promote the condition instead of
1302    // truncating the IV first.
1303    if (widenLoopCompare(DU))
1304      return nullptr;
1305
1306    // This user does not evaluate to a recurence after widening, so don't
1307    // follow it. Instead insert a Trunc to kill off the original use,
1308    // eventually isolating the original narrow IV so it can be removed.
1309    truncateIVUse(DU, DT, LI);
1310    return nullptr;
1311  }
1312  // Assume block terminators cannot evaluate to a recurrence. We can't to
1313  // insert a Trunc after a terminator if there happens to be a critical edge.
1314  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1315         "SCEV is not expected to evaluate a block terminator");
1316
1317  // Reuse the IV increment that SCEVExpander created as long as it dominates
1318  // NarrowUse.
1319  Instruction *WideUse = nullptr;
1320  if (WideAddRec == WideIncExpr
1321      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1322    WideUse = WideInc;
1323  else {
1324    WideUse = cloneIVUser(DU, WideAddRec);
1325    if (!WideUse)
1326      return nullptr;
1327  }
1328  // Evaluation of WideAddRec ensured that the narrow expression could be
1329  // extended outside the loop without overflow. This suggests that the wide use
1330  // evaluates to the same expression as the extended narrow use, but doesn't
1331  // absolutely guarantee it. Hence the following failsafe check. In rare cases
1332  // where it fails, we simply throw away the newly created wide use.
1333  if (WideAddRec != SE->getSCEV(WideUse)) {
1334    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1335          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1336    DeadInsts.emplace_back(WideUse);
1337    return nullptr;
1338  }
1339
1340  // Returning WideUse pushes it on the worklist.
1341  return WideUse;
1342}
1343
1344/// Add eligible users of NarrowDef to NarrowIVUsers.
1345///
1346void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1347  const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1348  bool NeverNegative =
1349      SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1350                           SE->getConstant(NarrowSCEV->getType(), 0));
1351  for (User *U : NarrowDef->users()) {
1352    Instruction *NarrowUser = cast<Instruction>(U);
1353
1354    // Handle data flow merges and bizarre phi cycles.
1355    if (!Widened.insert(NarrowUser).second)
1356      continue;
1357
1358    NarrowIVUsers.push_back(
1359        NarrowIVDefUse(NarrowDef, NarrowUser, WideDef, NeverNegative));
1360  }
1361}
1362
1363/// Process a single induction variable. First use the SCEVExpander to create a
1364/// wide induction variable that evaluates to the same recurrence as the
1365/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1366/// def-use chain. After widenIVUse has processed all interesting IV users, the
1367/// narrow IV will be isolated for removal by DeleteDeadPHIs.
1368///
1369/// It would be simpler to delete uses as they are processed, but we must avoid
1370/// invalidating SCEV expressions.
1371///
1372PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1373  // Is this phi an induction variable?
1374  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1375  if (!AddRec)
1376    return nullptr;
1377
1378  // Widen the induction variable expression.
1379  const SCEV *WideIVExpr = IsSigned ?
1380    SE->getSignExtendExpr(AddRec, WideType) :
1381    SE->getZeroExtendExpr(AddRec, WideType);
1382
1383  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1384         "Expect the new IV expression to preserve its type");
1385
1386  // Can the IV be extended outside the loop without overflow?
1387  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1388  if (!AddRec || AddRec->getLoop() != L)
1389    return nullptr;
1390
1391  // An AddRec must have loop-invariant operands. Since this AddRec is
1392  // materialized by a loop header phi, the expression cannot have any post-loop
1393  // operands, so they must dominate the loop header.
1394  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1395         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1396         && "Loop header phi recurrence inputs do not dominate the loop");
1397
1398  // The rewriter provides a value for the desired IV expression. This may
1399  // either find an existing phi or materialize a new one. Either way, we
1400  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1401  // of the phi-SCC dominates the loop entry.
1402  Instruction *InsertPt = &L->getHeader()->front();
1403  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1404
1405  // Remembering the WideIV increment generated by SCEVExpander allows
1406  // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1407  // employ a general reuse mechanism because the call above is the only call to
1408  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1409  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1410    WideInc =
1411      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1412    WideIncExpr = SE->getSCEV(WideInc);
1413  }
1414
1415  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1416  ++NumWidened;
1417
1418  // Traverse the def-use chain using a worklist starting at the original IV.
1419  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1420
1421  Widened.insert(OrigPhi);
1422  pushNarrowIVUsers(OrigPhi, WidePhi);
1423
1424  while (!NarrowIVUsers.empty()) {
1425    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1426
1427    // Process a def-use edge. This may replace the use, so don't hold a
1428    // use_iterator across it.
1429    Instruction *WideUse = widenIVUse(DU, Rewriter);
1430
1431    // Follow all def-use edges from the previous narrow use.
1432    if (WideUse)
1433      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1434
1435    // widenIVUse may have removed the def-use edge.
1436    if (DU.NarrowDef->use_empty())
1437      DeadInsts.emplace_back(DU.NarrowDef);
1438  }
1439  return WidePhi;
1440}
1441
1442//===----------------------------------------------------------------------===//
1443//  Live IV Reduction - Minimize IVs live across the loop.
1444//===----------------------------------------------------------------------===//
1445
1446
1447//===----------------------------------------------------------------------===//
1448//  Simplification of IV users based on SCEV evaluation.
1449//===----------------------------------------------------------------------===//
1450
1451namespace {
1452class IndVarSimplifyVisitor : public IVVisitor {
1453  ScalarEvolution *SE;
1454  const TargetTransformInfo *TTI;
1455  PHINode *IVPhi;
1456
1457public:
1458  WideIVInfo WI;
1459
1460  IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1461                        const TargetTransformInfo *TTI,
1462                        const DominatorTree *DTree)
1463    : SE(SCEV), TTI(TTI), IVPhi(IV) {
1464    DT = DTree;
1465    WI.NarrowIV = IVPhi;
1466    if (ReduceLiveIVs)
1467      setSplitOverflowIntrinsics();
1468  }
1469
1470  // Implement the interface used by simplifyUsersOfIV.
1471  void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1472};
1473}
1474
1475/// Iteratively perform simplification on a worklist of IV users. Each
1476/// successive simplification may push more users which may themselves be
1477/// candidates for simplification.
1478///
1479/// Sign/Zero extend elimination is interleaved with IV simplification.
1480///
1481void IndVarSimplify::simplifyAndExtend(Loop *L,
1482                                       SCEVExpander &Rewriter,
1483                                       LoopInfo *LI) {
1484  SmallVector<WideIVInfo, 8> WideIVs;
1485
1486  SmallVector<PHINode*, 8> LoopPhis;
1487  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1488    LoopPhis.push_back(cast<PHINode>(I));
1489  }
1490  // Each round of simplification iterates through the SimplifyIVUsers worklist
1491  // for all current phis, then determines whether any IVs can be
1492  // widened. Widening adds new phis to LoopPhis, inducing another round of
1493  // simplification on the wide IVs.
1494  while (!LoopPhis.empty()) {
1495    // Evaluate as many IV expressions as possible before widening any IVs. This
1496    // forces SCEV to set no-wrap flags before evaluating sign/zero
1497    // extension. The first time SCEV attempts to normalize sign/zero extension,
1498    // the result becomes final. So for the most predictable results, we delay
1499    // evaluation of sign/zero extend evaluation until needed, and avoid running
1500    // other SCEV based analysis prior to simplifyAndExtend.
1501    do {
1502      PHINode *CurrIV = LoopPhis.pop_back_val();
1503
1504      // Information about sign/zero extensions of CurrIV.
1505      IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1506
1507      Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1508
1509      if (Visitor.WI.WidestNativeType) {
1510        WideIVs.push_back(Visitor.WI);
1511      }
1512    } while(!LoopPhis.empty());
1513
1514    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1515      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1516      if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1517        Changed = true;
1518        LoopPhis.push_back(WidePhi);
1519      }
1520    }
1521  }
1522}
1523
1524//===----------------------------------------------------------------------===//
1525//  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1526//===----------------------------------------------------------------------===//
1527
1528/// Return true if this loop's backedge taken count expression can be safely and
1529/// cheaply expanded into an instruction sequence that can be used by
1530/// linearFunctionTestReplace.
1531///
1532/// TODO: This fails for pointer-type loop counters with greater than one byte
1533/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1534/// we could skip this check in the case that the LFTR loop counter (chosen by
1535/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1536/// the loop test to an inequality test by checking the target data's alignment
1537/// of element types (given that the initial pointer value originates from or is
1538/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1539/// However, we don't yet have a strong motivation for converting loop tests
1540/// into inequality tests.
1541static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1542                                        SCEVExpander &Rewriter) {
1543  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1544  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1545      BackedgeTakenCount->isZero())
1546    return false;
1547
1548  if (!L->getExitingBlock())
1549    return false;
1550
1551  // Can't rewrite non-branch yet.
1552  if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1553    return false;
1554
1555  if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1556    return false;
1557
1558  return true;
1559}
1560
1561/// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1562static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1563  Instruction *IncI = dyn_cast<Instruction>(IncV);
1564  if (!IncI)
1565    return nullptr;
1566
1567  switch (IncI->getOpcode()) {
1568  case Instruction::Add:
1569  case Instruction::Sub:
1570    break;
1571  case Instruction::GetElementPtr:
1572    // An IV counter must preserve its type.
1573    if (IncI->getNumOperands() == 2)
1574      break;
1575  default:
1576    return nullptr;
1577  }
1578
1579  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1580  if (Phi && Phi->getParent() == L->getHeader()) {
1581    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1582      return Phi;
1583    return nullptr;
1584  }
1585  if (IncI->getOpcode() == Instruction::GetElementPtr)
1586    return nullptr;
1587
1588  // Allow add/sub to be commuted.
1589  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1590  if (Phi && Phi->getParent() == L->getHeader()) {
1591    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1592      return Phi;
1593  }
1594  return nullptr;
1595}
1596
1597/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1598static ICmpInst *getLoopTest(Loop *L) {
1599  assert(L->getExitingBlock() && "expected loop exit");
1600
1601  BasicBlock *LatchBlock = L->getLoopLatch();
1602  // Don't bother with LFTR if the loop is not properly simplified.
1603  if (!LatchBlock)
1604    return nullptr;
1605
1606  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1607  assert(BI && "expected exit branch");
1608
1609  return dyn_cast<ICmpInst>(BI->getCondition());
1610}
1611
1612/// linearFunctionTestReplace policy. Return true unless we can show that the
1613/// current exit test is already sufficiently canonical.
1614static bool needsLFTR(Loop *L, DominatorTree *DT) {
1615  // Do LFTR to simplify the exit condition to an ICMP.
1616  ICmpInst *Cond = getLoopTest(L);
1617  if (!Cond)
1618    return true;
1619
1620  // Do LFTR to simplify the exit ICMP to EQ/NE
1621  ICmpInst::Predicate Pred = Cond->getPredicate();
1622  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1623    return true;
1624
1625  // Look for a loop invariant RHS
1626  Value *LHS = Cond->getOperand(0);
1627  Value *RHS = Cond->getOperand(1);
1628  if (!isLoopInvariant(RHS, L, DT)) {
1629    if (!isLoopInvariant(LHS, L, DT))
1630      return true;
1631    std::swap(LHS, RHS);
1632  }
1633  // Look for a simple IV counter LHS
1634  PHINode *Phi = dyn_cast<PHINode>(LHS);
1635  if (!Phi)
1636    Phi = getLoopPhiForCounter(LHS, L, DT);
1637
1638  if (!Phi)
1639    return true;
1640
1641  // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1642  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1643  if (Idx < 0)
1644    return true;
1645
1646  // Do LFTR if the exit condition's IV is *not* a simple counter.
1647  Value *IncV = Phi->getIncomingValue(Idx);
1648  return Phi != getLoopPhiForCounter(IncV, L, DT);
1649}
1650
1651/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1652/// down to checking that all operands are constant and listing instructions
1653/// that may hide undef.
1654static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1655                               unsigned Depth) {
1656  if (isa<Constant>(V))
1657    return !isa<UndefValue>(V);
1658
1659  if (Depth >= 6)
1660    return false;
1661
1662  // Conservatively handle non-constant non-instructions. For example, Arguments
1663  // may be undef.
1664  Instruction *I = dyn_cast<Instruction>(V);
1665  if (!I)
1666    return false;
1667
1668  // Load and return values may be undef.
1669  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1670    return false;
1671
1672  // Optimistically handle other instructions.
1673  for (Value *Op : I->operands()) {
1674    if (!Visited.insert(Op).second)
1675      continue;
1676    if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1677      return false;
1678  }
1679  return true;
1680}
1681
1682/// Return true if the given value is concrete. We must prove that undef can
1683/// never reach it.
1684///
1685/// TODO: If we decide that this is a good approach to checking for undef, we
1686/// may factor it into a common location.
1687static bool hasConcreteDef(Value *V) {
1688  SmallPtrSet<Value*, 8> Visited;
1689  Visited.insert(V);
1690  return hasConcreteDefImpl(V, Visited, 0);
1691}
1692
1693/// Return true if this IV has any uses other than the (soon to be rewritten)
1694/// loop exit test.
1695static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1696  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1697  Value *IncV = Phi->getIncomingValue(LatchIdx);
1698
1699  for (User *U : Phi->users())
1700    if (U != Cond && U != IncV) return false;
1701
1702  for (User *U : IncV->users())
1703    if (U != Cond && U != Phi) return false;
1704  return true;
1705}
1706
1707/// Find an affine IV in canonical form.
1708///
1709/// BECount may be an i8* pointer type. The pointer difference is already
1710/// valid count without scaling the address stride, so it remains a pointer
1711/// expression as far as SCEV is concerned.
1712///
1713/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1714///
1715/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1716///
1717/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1718/// This is difficult in general for SCEV because of potential overflow. But we
1719/// could at least handle constant BECounts.
1720static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1721                                ScalarEvolution *SE, DominatorTree *DT) {
1722  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1723
1724  Value *Cond =
1725    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1726
1727  // Loop over all of the PHI nodes, looking for a simple counter.
1728  PHINode *BestPhi = nullptr;
1729  const SCEV *BestInit = nullptr;
1730  BasicBlock *LatchBlock = L->getLoopLatch();
1731  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1732
1733  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1734    PHINode *Phi = cast<PHINode>(I);
1735    if (!SE->isSCEVable(Phi->getType()))
1736      continue;
1737
1738    // Avoid comparing an integer IV against a pointer Limit.
1739    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1740      continue;
1741
1742    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1743    if (!AR || AR->getLoop() != L || !AR->isAffine())
1744      continue;
1745
1746    // AR may be a pointer type, while BECount is an integer type.
1747    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1748    // AR may not be a narrower type, or we may never exit.
1749    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1750    if (PhiWidth < BCWidth ||
1751        !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
1752      continue;
1753
1754    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1755    if (!Step || !Step->isOne())
1756      continue;
1757
1758    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1759    Value *IncV = Phi->getIncomingValue(LatchIdx);
1760    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1761      continue;
1762
1763    // Avoid reusing a potentially undef value to compute other values that may
1764    // have originally had a concrete definition.
1765    if (!hasConcreteDef(Phi)) {
1766      // We explicitly allow unknown phis as long as they are already used by
1767      // the loop test. In this case we assume that performing LFTR could not
1768      // increase the number of undef users.
1769      if (ICmpInst *Cond = getLoopTest(L)) {
1770        if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1771            && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1772          continue;
1773        }
1774      }
1775    }
1776    const SCEV *Init = AR->getStart();
1777
1778    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1779      // Don't force a live loop counter if another IV can be used.
1780      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1781        continue;
1782
1783      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1784      // also prefers integer to pointer IVs.
1785      if (BestInit->isZero() != Init->isZero()) {
1786        if (BestInit->isZero())
1787          continue;
1788      }
1789      // If two IVs both count from zero or both count from nonzero then the
1790      // narrower is likely a dead phi that has been widened. Use the wider phi
1791      // to allow the other to be eliminated.
1792      else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1793        continue;
1794    }
1795    BestPhi = Phi;
1796    BestInit = Init;
1797  }
1798  return BestPhi;
1799}
1800
1801/// Help linearFunctionTestReplace by generating a value that holds the RHS of
1802/// the new loop test.
1803static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1804                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1805  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1806  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1807  const SCEV *IVInit = AR->getStart();
1808
1809  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1810  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1811  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1812  // the existing GEPs whenever possible.
1813  if (IndVar->getType()->isPointerTy()
1814      && !IVCount->getType()->isPointerTy()) {
1815
1816    // IVOffset will be the new GEP offset that is interpreted by GEP as a
1817    // signed value. IVCount on the other hand represents the loop trip count,
1818    // which is an unsigned value. FindLoopCounter only allows induction
1819    // variables that have a positive unit stride of one. This means we don't
1820    // have to handle the case of negative offsets (yet) and just need to zero
1821    // extend IVCount.
1822    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1823    const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1824
1825    // Expand the code for the iteration count.
1826    assert(SE->isLoopInvariant(IVOffset, L) &&
1827           "Computed iteration count is not loop invariant!");
1828    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1829    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1830
1831    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1832    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1833    // We could handle pointer IVs other than i8*, but we need to compensate for
1834    // gep index scaling. See canExpandBackedgeTakenCount comments.
1835    assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1836             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1837           && "unit stride pointer IV must be i8*");
1838
1839    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1840    return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1841  }
1842  else {
1843    // In any other case, convert both IVInit and IVCount to integers before
1844    // comparing. This may result in SCEV expension of pointers, but in practice
1845    // SCEV will fold the pointer arithmetic away as such:
1846    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1847    //
1848    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1849    // for simple memset-style loops.
1850    //
1851    // IVInit integer and IVCount pointer would only occur if a canonical IV
1852    // were generated on top of case #2, which is not expected.
1853
1854    const SCEV *IVLimit = nullptr;
1855    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1856    // For non-zero Start, compute IVCount here.
1857    if (AR->getStart()->isZero())
1858      IVLimit = IVCount;
1859    else {
1860      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1861      const SCEV *IVInit = AR->getStart();
1862
1863      // For integer IVs, truncate the IV before computing IVInit + BECount.
1864      if (SE->getTypeSizeInBits(IVInit->getType())
1865          > SE->getTypeSizeInBits(IVCount->getType()))
1866        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1867
1868      IVLimit = SE->getAddExpr(IVInit, IVCount);
1869    }
1870    // Expand the code for the iteration count.
1871    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1872    IRBuilder<> Builder(BI);
1873    assert(SE->isLoopInvariant(IVLimit, L) &&
1874           "Computed iteration count is not loop invariant!");
1875    // Ensure that we generate the same type as IndVar, or a smaller integer
1876    // type. In the presence of null pointer values, we have an integer type
1877    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1878    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1879      IndVar->getType() : IVCount->getType();
1880    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1881  }
1882}
1883
1884/// This method rewrites the exit condition of the loop to be a canonical !=
1885/// comparison against the incremented loop induction variable.  This pass is
1886/// able to rewrite the exit tests of any loop where the SCEV analysis can
1887/// determine a loop-invariant trip count of the loop, which is actually a much
1888/// broader range than just linear tests.
1889Value *IndVarSimplify::
1890linearFunctionTestReplace(Loop *L,
1891                          const SCEV *BackedgeTakenCount,
1892                          PHINode *IndVar,
1893                          SCEVExpander &Rewriter) {
1894  assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1895
1896  // Initialize CmpIndVar and IVCount to their preincremented values.
1897  Value *CmpIndVar = IndVar;
1898  const SCEV *IVCount = BackedgeTakenCount;
1899
1900  // If the exiting block is the same as the backedge block, we prefer to
1901  // compare against the post-incremented value, otherwise we must compare
1902  // against the preincremented value.
1903  if (L->getExitingBlock() == L->getLoopLatch()) {
1904    // Add one to the "backedge-taken" count to get the trip count.
1905    // This addition may overflow, which is valid as long as the comparison is
1906    // truncated to BackedgeTakenCount->getType().
1907    IVCount = SE->getAddExpr(BackedgeTakenCount,
1908                             SE->getOne(BackedgeTakenCount->getType()));
1909    // The BackedgeTaken expression contains the number of times that the
1910    // backedge branches to the loop header.  This is one less than the
1911    // number of times the loop executes, so use the incremented indvar.
1912    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1913  }
1914
1915  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1916  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1917         && "genLoopLimit missed a cast");
1918
1919  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1920  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1921  ICmpInst::Predicate P;
1922  if (L->contains(BI->getSuccessor(0)))
1923    P = ICmpInst::ICMP_NE;
1924  else
1925    P = ICmpInst::ICMP_EQ;
1926
1927  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1928               << "      LHS:" << *CmpIndVar << '\n'
1929               << "       op:\t"
1930               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1931               << "      RHS:\t" << *ExitCnt << "\n"
1932               << "  IVCount:\t" << *IVCount << "\n");
1933
1934  IRBuilder<> Builder(BI);
1935
1936  // LFTR can ignore IV overflow and truncate to the width of
1937  // BECount. This avoids materializing the add(zext(add)) expression.
1938  unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1939  unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1940  if (CmpIndVarSize > ExitCntSize) {
1941    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1942    const SCEV *ARStart = AR->getStart();
1943    const SCEV *ARStep = AR->getStepRecurrence(*SE);
1944    // For constant IVCount, avoid truncation.
1945    if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1946      const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
1947      APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
1948      // Note that the post-inc value of BackedgeTakenCount may have overflowed
1949      // above such that IVCount is now zero.
1950      if (IVCount != BackedgeTakenCount && Count == 0) {
1951        Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1952        ++Count;
1953      }
1954      else
1955        Count = Count.zext(CmpIndVarSize);
1956      APInt NewLimit;
1957      if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1958        NewLimit = Start - Count;
1959      else
1960        NewLimit = Start + Count;
1961      ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1962
1963      DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
1964    } else {
1965      CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1966                                      "lftr.wideiv");
1967    }
1968  }
1969  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1970  Value *OrigCond = BI->getCondition();
1971  // It's tempting to use replaceAllUsesWith here to fully replace the old
1972  // comparison, but that's not immediately safe, since users of the old
1973  // comparison may not be dominated by the new comparison. Instead, just
1974  // update the branch to use the new comparison; in the common case this
1975  // will make old comparison dead.
1976  BI->setCondition(Cond);
1977  DeadInsts.push_back(OrigCond);
1978
1979  ++NumLFTR;
1980  Changed = true;
1981  return Cond;
1982}
1983
1984//===----------------------------------------------------------------------===//
1985//  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1986//===----------------------------------------------------------------------===//
1987
1988/// If there's a single exit block, sink any loop-invariant values that
1989/// were defined in the preheader but not used inside the loop into the
1990/// exit block to reduce register pressure in the loop.
1991void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1992  BasicBlock *ExitBlock = L->getExitBlock();
1993  if (!ExitBlock) return;
1994
1995  BasicBlock *Preheader = L->getLoopPreheader();
1996  if (!Preheader) return;
1997
1998  Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
1999  BasicBlock::iterator I(Preheader->getTerminator());
2000  while (I != Preheader->begin()) {
2001    --I;
2002    // New instructions were inserted at the end of the preheader.
2003    if (isa<PHINode>(I))
2004      break;
2005
2006    // Don't move instructions which might have side effects, since the side
2007    // effects need to complete before instructions inside the loop.  Also don't
2008    // move instructions which might read memory, since the loop may modify
2009    // memory. Note that it's okay if the instruction might have undefined
2010    // behavior: LoopSimplify guarantees that the preheader dominates the exit
2011    // block.
2012    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2013      continue;
2014
2015    // Skip debug info intrinsics.
2016    if (isa<DbgInfoIntrinsic>(I))
2017      continue;
2018
2019    // Skip eh pad instructions.
2020    if (I->isEHPad())
2021      continue;
2022
2023    // Don't sink alloca: we never want to sink static alloca's out of the
2024    // entry block, and correctly sinking dynamic alloca's requires
2025    // checks for stacksave/stackrestore intrinsics.
2026    // FIXME: Refactor this check somehow?
2027    if (isa<AllocaInst>(I))
2028      continue;
2029
2030    // Determine if there is a use in or before the loop (direct or
2031    // otherwise).
2032    bool UsedInLoop = false;
2033    for (Use &U : I->uses()) {
2034      Instruction *User = cast<Instruction>(U.getUser());
2035      BasicBlock *UseBB = User->getParent();
2036      if (PHINode *P = dyn_cast<PHINode>(User)) {
2037        unsigned i =
2038          PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2039        UseBB = P->getIncomingBlock(i);
2040      }
2041      if (UseBB == Preheader || L->contains(UseBB)) {
2042        UsedInLoop = true;
2043        break;
2044      }
2045    }
2046
2047    // If there is, the def must remain in the preheader.
2048    if (UsedInLoop)
2049      continue;
2050
2051    // Otherwise, sink it to the exit block.
2052    Instruction *ToMove = &*I;
2053    bool Done = false;
2054
2055    if (I != Preheader->begin()) {
2056      // Skip debug info intrinsics.
2057      do {
2058        --I;
2059      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2060
2061      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2062        Done = true;
2063    } else {
2064      Done = true;
2065    }
2066
2067    ToMove->moveBefore(InsertPt);
2068    if (Done) break;
2069    InsertPt = ToMove;
2070  }
2071}
2072
2073//===----------------------------------------------------------------------===//
2074//  IndVarSimplify driver. Manage several subpasses of IV simplification.
2075//===----------------------------------------------------------------------===//
2076
2077bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
2078  if (skipOptnoneFunction(L))
2079    return false;
2080
2081  // If LoopSimplify form is not available, stay out of trouble. Some notes:
2082  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2083  //    canonicalization can be a pessimization without LSR to "clean up"
2084  //    afterwards.
2085  //  - We depend on having a preheader; in particular,
2086  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2087  //    and we're in trouble if we can't find the induction variable even when
2088  //    we've manually inserted one.
2089  if (!L->isLoopSimplifyForm())
2090    return false;
2091
2092  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2093  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2094  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2095  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2096  TLI = TLIP ? &TLIP->getTLI() : nullptr;
2097  auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2098  TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2099  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2100
2101  DeadInsts.clear();
2102  Changed = false;
2103
2104  // If there are any floating-point recurrences, attempt to
2105  // transform them to use integer recurrences.
2106  rewriteNonIntegerIVs(L);
2107
2108  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2109
2110  // Create a rewriter object which we'll use to transform the code with.
2111  SCEVExpander Rewriter(*SE, DL, "indvars");
2112#ifndef NDEBUG
2113  Rewriter.setDebugType(DEBUG_TYPE);
2114#endif
2115
2116  // Eliminate redundant IV users.
2117  //
2118  // Simplification works best when run before other consumers of SCEV. We
2119  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2120  // other expressions involving loop IVs have been evaluated. This helps SCEV
2121  // set no-wrap flags before normalizing sign/zero extension.
2122  Rewriter.disableCanonicalMode();
2123  simplifyAndExtend(L, Rewriter, LI);
2124
2125  // Check to see if this loop has a computable loop-invariant execution count.
2126  // If so, this means that we can compute the final value of any expressions
2127  // that are recurrent in the loop, and substitute the exit values from the
2128  // loop into any instructions outside of the loop that use the final values of
2129  // the current expressions.
2130  //
2131  if (ReplaceExitValue != NeverRepl &&
2132      !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2133    rewriteLoopExitValues(L, Rewriter);
2134
2135  // Eliminate redundant IV cycles.
2136  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2137
2138  // If we have a trip count expression, rewrite the loop's exit condition
2139  // using it.  We can currently only handle loops with a single exit.
2140  if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2141    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2142    if (IndVar) {
2143      // Check preconditions for proper SCEVExpander operation. SCEV does not
2144      // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2145      // pass that uses the SCEVExpander must do it. This does not work well for
2146      // loop passes because SCEVExpander makes assumptions about all loops,
2147      // while LoopPassManager only forces the current loop to be simplified.
2148      //
2149      // FIXME: SCEV expansion has no way to bail out, so the caller must
2150      // explicitly check any assumptions made by SCEV. Brittle.
2151      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2152      if (!AR || AR->getLoop()->getLoopPreheader())
2153        (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2154                                        Rewriter);
2155    }
2156  }
2157  // Clear the rewriter cache, because values that are in the rewriter's cache
2158  // can be deleted in the loop below, causing the AssertingVH in the cache to
2159  // trigger.
2160  Rewriter.clear();
2161
2162  // Now that we're done iterating through lists, clean up any instructions
2163  // which are now dead.
2164  while (!DeadInsts.empty())
2165    if (Instruction *Inst =
2166            dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2167      RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2168
2169  // The Rewriter may not be used from this point on.
2170
2171  // Loop-invariant instructions in the preheader that aren't used in the
2172  // loop may be sunk below the loop to reduce register pressure.
2173  sinkUnusedInvariants(L);
2174
2175  // Clean up dead instructions.
2176  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2177
2178  // Check a post-condition.
2179  assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
2180
2181  // Verify that LFTR, and any other change have not interfered with SCEV's
2182  // ability to compute trip count.
2183#ifndef NDEBUG
2184  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2185    SE->forgetLoop(L);
2186    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2187    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2188        SE->getTypeSizeInBits(NewBECount->getType()))
2189      NewBECount = SE->getTruncateOrNoop(NewBECount,
2190                                         BackedgeTakenCount->getType());
2191    else
2192      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2193                                                 NewBECount->getType());
2194    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2195  }
2196#endif
2197
2198  return Changed;
2199}
2200