1//===- InstCombineVectorOps.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements instcombine for ExtractElement, InsertElement and
11// ShuffleVector.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombineInternal.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/VectorUtils.h"
19#include "llvm/IR/PatternMatch.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23#define DEBUG_TYPE "instcombine"
24
25/// Return true if the value is cheaper to scalarize than it is to leave as a
26/// vector operation. isConstant indicates whether we're extracting one known
27/// element. If false we're extracting a variable index.
28static bool cheapToScalarize(Value *V, bool isConstant) {
29  if (Constant *C = dyn_cast<Constant>(V)) {
30    if (isConstant) return true;
31
32    // If all elts are the same, we can extract it and use any of the values.
33    if (Constant *Op0 = C->getAggregateElement(0U)) {
34      for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
35           ++i)
36        if (C->getAggregateElement(i) != Op0)
37          return false;
38      return true;
39    }
40  }
41  Instruction *I = dyn_cast<Instruction>(V);
42  if (!I) return false;
43
44  // Insert element gets simplified to the inserted element or is deleted if
45  // this is constant idx extract element and its a constant idx insertelt.
46  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
47      isa<ConstantInt>(I->getOperand(2)))
48    return true;
49  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
50    return true;
51  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
52    if (BO->hasOneUse() &&
53        (cheapToScalarize(BO->getOperand(0), isConstant) ||
54         cheapToScalarize(BO->getOperand(1), isConstant)))
55      return true;
56  if (CmpInst *CI = dyn_cast<CmpInst>(I))
57    if (CI->hasOneUse() &&
58        (cheapToScalarize(CI->getOperand(0), isConstant) ||
59         cheapToScalarize(CI->getOperand(1), isConstant)))
60      return true;
61
62  return false;
63}
64
65// If we have a PHI node with a vector type that has only 2 uses: feed
66// itself and be an operand of extractelement at a constant location,
67// try to replace the PHI of the vector type with a PHI of a scalar type.
68Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
69  // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
70  if (!PN->hasNUses(2))
71    return nullptr;
72
73  // If so, it's known at this point that one operand is PHI and the other is
74  // an extractelement node. Find the PHI user that is not the extractelement
75  // node.
76  auto iu = PN->user_begin();
77  Instruction *PHIUser = dyn_cast<Instruction>(*iu);
78  if (PHIUser == cast<Instruction>(&EI))
79    PHIUser = cast<Instruction>(*(++iu));
80
81  // Verify that this PHI user has one use, which is the PHI itself,
82  // and that it is a binary operation which is cheap to scalarize.
83  // otherwise return NULL.
84  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
85      !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
86    return nullptr;
87
88  // Create a scalar PHI node that will replace the vector PHI node
89  // just before the current PHI node.
90  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
91      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
92  // Scalarize each PHI operand.
93  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
94    Value *PHIInVal = PN->getIncomingValue(i);
95    BasicBlock *inBB = PN->getIncomingBlock(i);
96    Value *Elt = EI.getIndexOperand();
97    // If the operand is the PHI induction variable:
98    if (PHIInVal == PHIUser) {
99      // Scalarize the binary operation. Its first operand is the
100      // scalar PHI, and the second operand is extracted from the other
101      // vector operand.
102      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
103      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
104      Value *Op = InsertNewInstWith(
105          ExtractElementInst::Create(B0->getOperand(opId), Elt,
106                                     B0->getOperand(opId)->getName() + ".Elt"),
107          *B0);
108      Value *newPHIUser = InsertNewInstWith(
109          BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
110      scalarPHI->addIncoming(newPHIUser, inBB);
111    } else {
112      // Scalarize PHI input:
113      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
114      // Insert the new instruction into the predecessor basic block.
115      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
116      BasicBlock::iterator InsertPos;
117      if (pos && !isa<PHINode>(pos)) {
118        InsertPos = ++pos->getIterator();
119      } else {
120        InsertPos = inBB->getFirstInsertionPt();
121      }
122
123      InsertNewInstWith(newEI, *InsertPos);
124
125      scalarPHI->addIncoming(newEI, inBB);
126    }
127  }
128  return ReplaceInstUsesWith(EI, scalarPHI);
129}
130
131Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
132  if (Value *V = SimplifyExtractElementInst(
133          EI.getVectorOperand(), EI.getIndexOperand(), DL, TLI, DT, AC))
134    return ReplaceInstUsesWith(EI, V);
135
136  // If vector val is constant with all elements the same, replace EI with
137  // that element.  We handle a known element # below.
138  if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
139    if (cheapToScalarize(C, false))
140      return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
141
142  // If extracting a specified index from the vector, see if we can recursively
143  // find a previously computed scalar that was inserted into the vector.
144  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
145    unsigned IndexVal = IdxC->getZExtValue();
146    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
147
148    // InstSimplify handles cases where the index is invalid.
149    assert(IndexVal < VectorWidth);
150
151    // This instruction only demands the single element from the input vector.
152    // If the input vector has a single use, simplify it based on this use
153    // property.
154    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
155      APInt UndefElts(VectorWidth, 0);
156      APInt DemandedMask(VectorWidth, 0);
157      DemandedMask.setBit(IndexVal);
158      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask,
159                                                UndefElts)) {
160        EI.setOperand(0, V);
161        return &EI;
162      }
163    }
164
165    // If this extractelement is directly using a bitcast from a vector of
166    // the same number of elements, see if we can find the source element from
167    // it.  In this case, we will end up needing to bitcast the scalars.
168    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
169      if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
170        if (VT->getNumElements() == VectorWidth)
171          if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal))
172            return new BitCastInst(Elt, EI.getType());
173    }
174
175    // If there's a vector PHI feeding a scalar use through this extractelement
176    // instruction, try to scalarize the PHI.
177    if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
178      Instruction *scalarPHI = scalarizePHI(EI, PN);
179      if (scalarPHI)
180        return scalarPHI;
181    }
182  }
183
184  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
185    // Push extractelement into predecessor operation if legal and
186    // profitable to do so.
187    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
188      if (I->hasOneUse() &&
189          cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
190        Value *newEI0 =
191          Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
192                                        EI.getName()+".lhs");
193        Value *newEI1 =
194          Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
195                                        EI.getName()+".rhs");
196        return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
197      }
198    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
199      // Extracting the inserted element?
200      if (IE->getOperand(2) == EI.getOperand(1))
201        return ReplaceInstUsesWith(EI, IE->getOperand(1));
202      // If the inserted and extracted elements are constants, they must not
203      // be the same value, extract from the pre-inserted value instead.
204      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
205        Worklist.AddValue(EI.getOperand(0));
206        EI.setOperand(0, IE->getOperand(0));
207        return &EI;
208      }
209    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
210      // If this is extracting an element from a shufflevector, figure out where
211      // it came from and extract from the appropriate input element instead.
212      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
213        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
214        Value *Src;
215        unsigned LHSWidth =
216          SVI->getOperand(0)->getType()->getVectorNumElements();
217
218        if (SrcIdx < 0)
219          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
220        if (SrcIdx < (int)LHSWidth)
221          Src = SVI->getOperand(0);
222        else {
223          SrcIdx -= LHSWidth;
224          Src = SVI->getOperand(1);
225        }
226        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
227        return ExtractElementInst::Create(Src,
228                                          ConstantInt::get(Int32Ty,
229                                                           SrcIdx, false));
230      }
231    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
232      // Canonicalize extractelement(cast) -> cast(extractelement).
233      // Bitcasts can change the number of vector elements, and they cost
234      // nothing.
235      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
236        Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
237                                                  EI.getIndexOperand());
238        Worklist.AddValue(EE);
239        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
240      }
241    } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
242      if (SI->hasOneUse()) {
243        // TODO: For a select on vectors, it might be useful to do this if it
244        // has multiple extractelement uses. For vector select, that seems to
245        // fight the vectorizer.
246
247        // If we are extracting an element from a vector select or a select on
248        // vectors, create a select on the scalars extracted from the vector
249        // arguments.
250        Value *TrueVal = SI->getTrueValue();
251        Value *FalseVal = SI->getFalseValue();
252
253        Value *Cond = SI->getCondition();
254        if (Cond->getType()->isVectorTy()) {
255          Cond = Builder->CreateExtractElement(Cond,
256                                               EI.getIndexOperand(),
257                                               Cond->getName() + ".elt");
258        }
259
260        Value *V1Elem
261          = Builder->CreateExtractElement(TrueVal,
262                                          EI.getIndexOperand(),
263                                          TrueVal->getName() + ".elt");
264
265        Value *V2Elem
266          = Builder->CreateExtractElement(FalseVal,
267                                          EI.getIndexOperand(),
268                                          FalseVal->getName() + ".elt");
269        return SelectInst::Create(Cond,
270                                  V1Elem,
271                                  V2Elem,
272                                  SI->getName() + ".elt");
273      }
274    }
275  }
276  return nullptr;
277}
278
279/// If V is a shuffle of values that ONLY returns elements from either LHS or
280/// RHS, return the shuffle mask and true. Otherwise, return false.
281static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
282                                         SmallVectorImpl<Constant*> &Mask) {
283  assert(LHS->getType() == RHS->getType() &&
284         "Invalid CollectSingleShuffleElements");
285  unsigned NumElts = V->getType()->getVectorNumElements();
286
287  if (isa<UndefValue>(V)) {
288    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
289    return true;
290  }
291
292  if (V == LHS) {
293    for (unsigned i = 0; i != NumElts; ++i)
294      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
295    return true;
296  }
297
298  if (V == RHS) {
299    for (unsigned i = 0; i != NumElts; ++i)
300      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
301                                      i+NumElts));
302    return true;
303  }
304
305  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
306    // If this is an insert of an extract from some other vector, include it.
307    Value *VecOp    = IEI->getOperand(0);
308    Value *ScalarOp = IEI->getOperand(1);
309    Value *IdxOp    = IEI->getOperand(2);
310
311    if (!isa<ConstantInt>(IdxOp))
312      return false;
313    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
314
315    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
316      // We can handle this if the vector we are inserting into is
317      // transitively ok.
318      if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
319        // If so, update the mask to reflect the inserted undef.
320        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
321        return true;
322      }
323    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
324      if (isa<ConstantInt>(EI->getOperand(1))) {
325        unsigned ExtractedIdx =
326        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
327        unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
328
329        // This must be extracting from either LHS or RHS.
330        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
331          // We can handle this if the vector we are inserting into is
332          // transitively ok.
333          if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
334            // If so, update the mask to reflect the inserted value.
335            if (EI->getOperand(0) == LHS) {
336              Mask[InsertedIdx % NumElts] =
337              ConstantInt::get(Type::getInt32Ty(V->getContext()),
338                               ExtractedIdx);
339            } else {
340              assert(EI->getOperand(0) == RHS);
341              Mask[InsertedIdx % NumElts] =
342              ConstantInt::get(Type::getInt32Ty(V->getContext()),
343                               ExtractedIdx + NumLHSElts);
344            }
345            return true;
346          }
347        }
348      }
349    }
350  }
351
352  return false;
353}
354
355/// If we have insertion into a vector that is wider than the vector that we
356/// are extracting from, try to widen the source vector to allow a single
357/// shufflevector to replace one or more insert/extract pairs.
358static void replaceExtractElements(InsertElementInst *InsElt,
359                                   ExtractElementInst *ExtElt,
360                                   InstCombiner &IC) {
361  VectorType *InsVecType = InsElt->getType();
362  VectorType *ExtVecType = ExtElt->getVectorOperandType();
363  unsigned NumInsElts = InsVecType->getVectorNumElements();
364  unsigned NumExtElts = ExtVecType->getVectorNumElements();
365
366  // The inserted-to vector must be wider than the extracted-from vector.
367  if (InsVecType->getElementType() != ExtVecType->getElementType() ||
368      NumExtElts >= NumInsElts)
369    return;
370
371  // Create a shuffle mask to widen the extended-from vector using undefined
372  // values. The mask selects all of the values of the original vector followed
373  // by as many undefined values as needed to create a vector of the same length
374  // as the inserted-to vector.
375  SmallVector<Constant *, 16> ExtendMask;
376  IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
377  for (unsigned i = 0; i < NumExtElts; ++i)
378    ExtendMask.push_back(ConstantInt::get(IntType, i));
379  for (unsigned i = NumExtElts; i < NumInsElts; ++i)
380    ExtendMask.push_back(UndefValue::get(IntType));
381
382  Value *ExtVecOp = ExtElt->getVectorOperand();
383  auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
384  BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
385                                   ? ExtVecOpInst->getParent()
386                                   : ExtElt->getParent();
387
388  // TODO: This restriction matches the basic block check below when creating
389  // new extractelement instructions. If that limitation is removed, this one
390  // could also be removed. But for now, we just bail out to ensure that we
391  // will replace the extractelement instruction that is feeding our
392  // insertelement instruction. This allows the insertelement to then be
393  // replaced by a shufflevector. If the insertelement is not replaced, we can
394  // induce infinite looping because there's an optimization for extractelement
395  // that will delete our widening shuffle. This would trigger another attempt
396  // here to create that shuffle, and we spin forever.
397  if (InsertionBlock != InsElt->getParent())
398    return;
399
400  auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
401                                        ConstantVector::get(ExtendMask));
402
403  // Insert the new shuffle after the vector operand of the extract is defined
404  // (as long as it's not a PHI) or at the start of the basic block of the
405  // extract, so any subsequent extracts in the same basic block can use it.
406  // TODO: Insert before the earliest ExtractElementInst that is replaced.
407  if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
408    WideVec->insertAfter(ExtVecOpInst);
409  else
410    IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
411
412  // Replace extracts from the original narrow vector with extracts from the new
413  // wide vector.
414  for (User *U : ExtVecOp->users()) {
415    ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
416    if (!OldExt || OldExt->getParent() != WideVec->getParent())
417      continue;
418    auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
419    NewExt->insertAfter(WideVec);
420    IC.ReplaceInstUsesWith(*OldExt, NewExt);
421  }
422}
423
424/// We are building a shuffle to create V, which is a sequence of insertelement,
425/// extractelement pairs. If PermittedRHS is set, then we must either use it or
426/// not rely on the second vector source. Return a std::pair containing the
427/// left and right vectors of the proposed shuffle (or 0), and set the Mask
428/// parameter as required.
429///
430/// Note: we intentionally don't try to fold earlier shuffles since they have
431/// often been chosen carefully to be efficiently implementable on the target.
432typedef std::pair<Value *, Value *> ShuffleOps;
433
434static ShuffleOps collectShuffleElements(Value *V,
435                                         SmallVectorImpl<Constant *> &Mask,
436                                         Value *PermittedRHS,
437                                         InstCombiner &IC) {
438  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
439  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
440
441  if (isa<UndefValue>(V)) {
442    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
443    return std::make_pair(
444        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
445  }
446
447  if (isa<ConstantAggregateZero>(V)) {
448    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
449    return std::make_pair(V, nullptr);
450  }
451
452  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
453    // If this is an insert of an extract from some other vector, include it.
454    Value *VecOp    = IEI->getOperand(0);
455    Value *ScalarOp = IEI->getOperand(1);
456    Value *IdxOp    = IEI->getOperand(2);
457
458    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
459      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
460        unsigned ExtractedIdx =
461          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
462        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
463
464        // Either the extracted from or inserted into vector must be RHSVec,
465        // otherwise we'd end up with a shuffle of three inputs.
466        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
467          Value *RHS = EI->getOperand(0);
468          ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
469          assert(LR.second == nullptr || LR.second == RHS);
470
471          if (LR.first->getType() != RHS->getType()) {
472            // Although we are giving up for now, see if we can create extracts
473            // that match the inserts for another round of combining.
474            replaceExtractElements(IEI, EI, IC);
475
476            // We tried our best, but we can't find anything compatible with RHS
477            // further up the chain. Return a trivial shuffle.
478            for (unsigned i = 0; i < NumElts; ++i)
479              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
480            return std::make_pair(V, nullptr);
481          }
482
483          unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
484          Mask[InsertedIdx % NumElts] =
485            ConstantInt::get(Type::getInt32Ty(V->getContext()),
486                             NumLHSElts+ExtractedIdx);
487          return std::make_pair(LR.first, RHS);
488        }
489
490        if (VecOp == PermittedRHS) {
491          // We've gone as far as we can: anything on the other side of the
492          // extractelement will already have been converted into a shuffle.
493          unsigned NumLHSElts =
494              EI->getOperand(0)->getType()->getVectorNumElements();
495          for (unsigned i = 0; i != NumElts; ++i)
496            Mask.push_back(ConstantInt::get(
497                Type::getInt32Ty(V->getContext()),
498                i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
499          return std::make_pair(EI->getOperand(0), PermittedRHS);
500        }
501
502        // If this insertelement is a chain that comes from exactly these two
503        // vectors, return the vector and the effective shuffle.
504        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
505            collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
506                                         Mask))
507          return std::make_pair(EI->getOperand(0), PermittedRHS);
508      }
509    }
510  }
511
512  // Otherwise, we can't do anything fancy. Return an identity vector.
513  for (unsigned i = 0; i != NumElts; ++i)
514    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
515  return std::make_pair(V, nullptr);
516}
517
518/// Try to find redundant insertvalue instructions, like the following ones:
519///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
520///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
521/// Here the second instruction inserts values at the same indices, as the
522/// first one, making the first one redundant.
523/// It should be transformed to:
524///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
525Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
526  bool IsRedundant = false;
527  ArrayRef<unsigned int> FirstIndices = I.getIndices();
528
529  // If there is a chain of insertvalue instructions (each of them except the
530  // last one has only one use and it's another insertvalue insn from this
531  // chain), check if any of the 'children' uses the same indices as the first
532  // instruction. In this case, the first one is redundant.
533  Value *V = &I;
534  unsigned Depth = 0;
535  while (V->hasOneUse() && Depth < 10) {
536    User *U = V->user_back();
537    auto UserInsInst = dyn_cast<InsertValueInst>(U);
538    if (!UserInsInst || U->getOperand(0) != V)
539      break;
540    if (UserInsInst->getIndices() == FirstIndices) {
541      IsRedundant = true;
542      break;
543    }
544    V = UserInsInst;
545    Depth++;
546  }
547
548  if (IsRedundant)
549    return ReplaceInstUsesWith(I, I.getOperand(0));
550  return nullptr;
551}
552
553Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
554  Value *VecOp    = IE.getOperand(0);
555  Value *ScalarOp = IE.getOperand(1);
556  Value *IdxOp    = IE.getOperand(2);
557
558  // Inserting an undef or into an undefined place, remove this.
559  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
560    ReplaceInstUsesWith(IE, VecOp);
561
562  // If the inserted element was extracted from some other vector, and if the
563  // indexes are constant, try to turn this into a shufflevector operation.
564  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
565    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
566      unsigned NumInsertVectorElts = IE.getType()->getNumElements();
567      unsigned NumExtractVectorElts =
568          EI->getOperand(0)->getType()->getVectorNumElements();
569      unsigned ExtractedIdx =
570        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
571      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
572
573      if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
574        return ReplaceInstUsesWith(IE, VecOp);
575
576      if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
577        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
578
579      // If we are extracting a value from a vector, then inserting it right
580      // back into the same place, just use the input vector.
581      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
582        return ReplaceInstUsesWith(IE, VecOp);
583
584      // If this insertelement isn't used by some other insertelement, turn it
585      // (and any insertelements it points to), into one big shuffle.
586      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
587        SmallVector<Constant*, 16> Mask;
588        ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
589
590        // The proposed shuffle may be trivial, in which case we shouldn't
591        // perform the combine.
592        if (LR.first != &IE && LR.second != &IE) {
593          // We now have a shuffle of LHS, RHS, Mask.
594          if (LR.second == nullptr)
595            LR.second = UndefValue::get(LR.first->getType());
596          return new ShuffleVectorInst(LR.first, LR.second,
597                                       ConstantVector::get(Mask));
598        }
599      }
600    }
601  }
602
603  unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
604  APInt UndefElts(VWidth, 0);
605  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
606  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
607    if (V != &IE)
608      return ReplaceInstUsesWith(IE, V);
609    return &IE;
610  }
611
612  return nullptr;
613}
614
615/// Return true if we can evaluate the specified expression tree if the vector
616/// elements were shuffled in a different order.
617static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
618                                unsigned Depth = 5) {
619  // We can always reorder the elements of a constant.
620  if (isa<Constant>(V))
621    return true;
622
623  // We won't reorder vector arguments. No IPO here.
624  Instruction *I = dyn_cast<Instruction>(V);
625  if (!I) return false;
626
627  // Two users may expect different orders of the elements. Don't try it.
628  if (!I->hasOneUse())
629    return false;
630
631  if (Depth == 0) return false;
632
633  switch (I->getOpcode()) {
634    case Instruction::Add:
635    case Instruction::FAdd:
636    case Instruction::Sub:
637    case Instruction::FSub:
638    case Instruction::Mul:
639    case Instruction::FMul:
640    case Instruction::UDiv:
641    case Instruction::SDiv:
642    case Instruction::FDiv:
643    case Instruction::URem:
644    case Instruction::SRem:
645    case Instruction::FRem:
646    case Instruction::Shl:
647    case Instruction::LShr:
648    case Instruction::AShr:
649    case Instruction::And:
650    case Instruction::Or:
651    case Instruction::Xor:
652    case Instruction::ICmp:
653    case Instruction::FCmp:
654    case Instruction::Trunc:
655    case Instruction::ZExt:
656    case Instruction::SExt:
657    case Instruction::FPToUI:
658    case Instruction::FPToSI:
659    case Instruction::UIToFP:
660    case Instruction::SIToFP:
661    case Instruction::FPTrunc:
662    case Instruction::FPExt:
663    case Instruction::GetElementPtr: {
664      for (Value *Operand : I->operands()) {
665        if (!CanEvaluateShuffled(Operand, Mask, Depth-1))
666          return false;
667      }
668      return true;
669    }
670    case Instruction::InsertElement: {
671      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
672      if (!CI) return false;
673      int ElementNumber = CI->getLimitedValue();
674
675      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
676      // can't put an element into multiple indices.
677      bool SeenOnce = false;
678      for (int i = 0, e = Mask.size(); i != e; ++i) {
679        if (Mask[i] == ElementNumber) {
680          if (SeenOnce)
681            return false;
682          SeenOnce = true;
683        }
684      }
685      return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
686    }
687  }
688  return false;
689}
690
691/// Rebuild a new instruction just like 'I' but with the new operands given.
692/// In the event of type mismatch, the type of the operands is correct.
693static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
694  // We don't want to use the IRBuilder here because we want the replacement
695  // instructions to appear next to 'I', not the builder's insertion point.
696  switch (I->getOpcode()) {
697    case Instruction::Add:
698    case Instruction::FAdd:
699    case Instruction::Sub:
700    case Instruction::FSub:
701    case Instruction::Mul:
702    case Instruction::FMul:
703    case Instruction::UDiv:
704    case Instruction::SDiv:
705    case Instruction::FDiv:
706    case Instruction::URem:
707    case Instruction::SRem:
708    case Instruction::FRem:
709    case Instruction::Shl:
710    case Instruction::LShr:
711    case Instruction::AShr:
712    case Instruction::And:
713    case Instruction::Or:
714    case Instruction::Xor: {
715      BinaryOperator *BO = cast<BinaryOperator>(I);
716      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
717      BinaryOperator *New =
718          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
719                                 NewOps[0], NewOps[1], "", BO);
720      if (isa<OverflowingBinaryOperator>(BO)) {
721        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
722        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
723      }
724      if (isa<PossiblyExactOperator>(BO)) {
725        New->setIsExact(BO->isExact());
726      }
727      if (isa<FPMathOperator>(BO))
728        New->copyFastMathFlags(I);
729      return New;
730    }
731    case Instruction::ICmp:
732      assert(NewOps.size() == 2 && "icmp with #ops != 2");
733      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
734                          NewOps[0], NewOps[1]);
735    case Instruction::FCmp:
736      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
737      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
738                          NewOps[0], NewOps[1]);
739    case Instruction::Trunc:
740    case Instruction::ZExt:
741    case Instruction::SExt:
742    case Instruction::FPToUI:
743    case Instruction::FPToSI:
744    case Instruction::UIToFP:
745    case Instruction::SIToFP:
746    case Instruction::FPTrunc:
747    case Instruction::FPExt: {
748      // It's possible that the mask has a different number of elements from
749      // the original cast. We recompute the destination type to match the mask.
750      Type *DestTy =
751          VectorType::get(I->getType()->getScalarType(),
752                          NewOps[0]->getType()->getVectorNumElements());
753      assert(NewOps.size() == 1 && "cast with #ops != 1");
754      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
755                              "", I);
756    }
757    case Instruction::GetElementPtr: {
758      Value *Ptr = NewOps[0];
759      ArrayRef<Value*> Idx = NewOps.slice(1);
760      GetElementPtrInst *GEP = GetElementPtrInst::Create(
761          cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
762      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
763      return GEP;
764    }
765  }
766  llvm_unreachable("failed to rebuild vector instructions");
767}
768
769Value *
770InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
771  // Mask.size() does not need to be equal to the number of vector elements.
772
773  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
774  if (isa<UndefValue>(V)) {
775    return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
776                                           Mask.size()));
777  }
778  if (isa<ConstantAggregateZero>(V)) {
779    return ConstantAggregateZero::get(
780               VectorType::get(V->getType()->getScalarType(),
781                               Mask.size()));
782  }
783  if (Constant *C = dyn_cast<Constant>(V)) {
784    SmallVector<Constant *, 16> MaskValues;
785    for (int i = 0, e = Mask.size(); i != e; ++i) {
786      if (Mask[i] == -1)
787        MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
788      else
789        MaskValues.push_back(Builder->getInt32(Mask[i]));
790    }
791    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
792                                          ConstantVector::get(MaskValues));
793  }
794
795  Instruction *I = cast<Instruction>(V);
796  switch (I->getOpcode()) {
797    case Instruction::Add:
798    case Instruction::FAdd:
799    case Instruction::Sub:
800    case Instruction::FSub:
801    case Instruction::Mul:
802    case Instruction::FMul:
803    case Instruction::UDiv:
804    case Instruction::SDiv:
805    case Instruction::FDiv:
806    case Instruction::URem:
807    case Instruction::SRem:
808    case Instruction::FRem:
809    case Instruction::Shl:
810    case Instruction::LShr:
811    case Instruction::AShr:
812    case Instruction::And:
813    case Instruction::Or:
814    case Instruction::Xor:
815    case Instruction::ICmp:
816    case Instruction::FCmp:
817    case Instruction::Trunc:
818    case Instruction::ZExt:
819    case Instruction::SExt:
820    case Instruction::FPToUI:
821    case Instruction::FPToSI:
822    case Instruction::UIToFP:
823    case Instruction::SIToFP:
824    case Instruction::FPTrunc:
825    case Instruction::FPExt:
826    case Instruction::Select:
827    case Instruction::GetElementPtr: {
828      SmallVector<Value*, 8> NewOps;
829      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
830      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
831        Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
832        NewOps.push_back(V);
833        NeedsRebuild |= (V != I->getOperand(i));
834      }
835      if (NeedsRebuild) {
836        return buildNew(I, NewOps);
837      }
838      return I;
839    }
840    case Instruction::InsertElement: {
841      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
842
843      // The insertelement was inserting at Element. Figure out which element
844      // that becomes after shuffling. The answer is guaranteed to be unique
845      // by CanEvaluateShuffled.
846      bool Found = false;
847      int Index = 0;
848      for (int e = Mask.size(); Index != e; ++Index) {
849        if (Mask[Index] == Element) {
850          Found = true;
851          break;
852        }
853      }
854
855      // If element is not in Mask, no need to handle the operand 1 (element to
856      // be inserted). Just evaluate values in operand 0 according to Mask.
857      if (!Found)
858        return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
859
860      Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
861      return InsertElementInst::Create(V, I->getOperand(1),
862                                       Builder->getInt32(Index), "", I);
863    }
864  }
865  llvm_unreachable("failed to reorder elements of vector instruction!");
866}
867
868static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
869                                  bool &isLHSID, bool &isRHSID) {
870  isLHSID = isRHSID = true;
871
872  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
873    if (Mask[i] < 0) continue;  // Ignore undef values.
874    // Is this an identity shuffle of the LHS value?
875    isLHSID &= (Mask[i] == (int)i);
876
877    // Is this an identity shuffle of the RHS value?
878    isRHSID &= (Mask[i]-e == i);
879  }
880}
881
882// Returns true if the shuffle is extracting a contiguous range of values from
883// LHS, for example:
884//                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
885//   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
886//   Shuffles to:  |EE|FF|GG|HH|
887//                 +--+--+--+--+
888static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
889                                       SmallVector<int, 16> &Mask) {
890  unsigned LHSElems =
891      cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements();
892  unsigned MaskElems = Mask.size();
893  unsigned BegIdx = Mask.front();
894  unsigned EndIdx = Mask.back();
895  if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
896    return false;
897  for (unsigned I = 0; I != MaskElems; ++I)
898    if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
899      return false;
900  return true;
901}
902
903Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
904  Value *LHS = SVI.getOperand(0);
905  Value *RHS = SVI.getOperand(1);
906  SmallVector<int, 16> Mask = SVI.getShuffleMask();
907  Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
908
909  bool MadeChange = false;
910
911  // Undefined shuffle mask -> undefined value.
912  if (isa<UndefValue>(SVI.getOperand(2)))
913    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
914
915  unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
916
917  APInt UndefElts(VWidth, 0);
918  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
919  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
920    if (V != &SVI)
921      return ReplaceInstUsesWith(SVI, V);
922    LHS = SVI.getOperand(0);
923    RHS = SVI.getOperand(1);
924    MadeChange = true;
925  }
926
927  unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
928
929  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
930  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
931  if (LHS == RHS || isa<UndefValue>(LHS)) {
932    if (isa<UndefValue>(LHS) && LHS == RHS) {
933      // shuffle(undef,undef,mask) -> undef.
934      Value *Result = (VWidth == LHSWidth)
935                      ? LHS : UndefValue::get(SVI.getType());
936      return ReplaceInstUsesWith(SVI, Result);
937    }
938
939    // Remap any references to RHS to use LHS.
940    SmallVector<Constant*, 16> Elts;
941    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
942      if (Mask[i] < 0) {
943        Elts.push_back(UndefValue::get(Int32Ty));
944        continue;
945      }
946
947      if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
948          (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
949        Mask[i] = -1;     // Turn into undef.
950        Elts.push_back(UndefValue::get(Int32Ty));
951      } else {
952        Mask[i] = Mask[i] % e;  // Force to LHS.
953        Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
954      }
955    }
956    SVI.setOperand(0, SVI.getOperand(1));
957    SVI.setOperand(1, UndefValue::get(RHS->getType()));
958    SVI.setOperand(2, ConstantVector::get(Elts));
959    LHS = SVI.getOperand(0);
960    RHS = SVI.getOperand(1);
961    MadeChange = true;
962  }
963
964  if (VWidth == LHSWidth) {
965    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
966    bool isLHSID, isRHSID;
967    recognizeIdentityMask(Mask, isLHSID, isRHSID);
968
969    // Eliminate identity shuffles.
970    if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
971    if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
972  }
973
974  if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
975    Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
976    return ReplaceInstUsesWith(SVI, V);
977  }
978
979  // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
980  // a non-vector type. We can instead bitcast the original vector followed by
981  // an extract of the desired element:
982  //
983  //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
984  //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
985  //   %1 = bitcast <4 x i8> %sroa to i32
986  // Becomes:
987  //   %bc = bitcast <16 x i8> %in to <4 x i32>
988  //   %ext = extractelement <4 x i32> %bc, i32 0
989  //
990  // If the shuffle is extracting a contiguous range of values from the input
991  // vector then each use which is a bitcast of the extracted size can be
992  // replaced. This will work if the vector types are compatible, and the begin
993  // index is aligned to a value in the casted vector type. If the begin index
994  // isn't aligned then we can shuffle the original vector (keeping the same
995  // vector type) before extracting.
996  //
997  // This code will bail out if the target type is fundamentally incompatible
998  // with vectors of the source type.
999  //
1000  // Example of <16 x i8>, target type i32:
1001  // Index range [4,8):         v-----------v Will work.
1002  //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1003  //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1004  //     <4 x i32>: |           |           |           |           |
1005  //                +-----------+-----------+-----------+-----------+
1006  // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1007  // Target type i40:           ^--------------^ Won't work, bail.
1008  if (isShuffleExtractingFromLHS(SVI, Mask)) {
1009    Value *V = LHS;
1010    unsigned MaskElems = Mask.size();
1011    unsigned BegIdx = Mask.front();
1012    VectorType *SrcTy = cast<VectorType>(V->getType());
1013    unsigned VecBitWidth = SrcTy->getBitWidth();
1014    unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1015    assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1016    unsigned SrcNumElems = SrcTy->getNumElements();
1017    SmallVector<BitCastInst *, 8> BCs;
1018    DenseMap<Type *, Value *> NewBCs;
1019    for (User *U : SVI.users())
1020      if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1021        if (!BC->use_empty())
1022          // Only visit bitcasts that weren't previously handled.
1023          BCs.push_back(BC);
1024    for (BitCastInst *BC : BCs) {
1025      Type *TgtTy = BC->getDestTy();
1026      unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1027      if (!TgtElemBitWidth)
1028        continue;
1029      unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1030      bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1031      bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1032      if (!VecBitWidthsEqual)
1033        continue;
1034      if (!VectorType::isValidElementType(TgtTy))
1035        continue;
1036      VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1037      if (!BegIsAligned) {
1038        // Shuffle the input so [0,NumElements) contains the output, and
1039        // [NumElems,SrcNumElems) is undef.
1040        SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1041                                                UndefValue::get(Int32Ty));
1042        for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1043          ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1044        V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()),
1045                                         ConstantVector::get(ShuffleMask),
1046                                         SVI.getName() + ".extract");
1047        BegIdx = 0;
1048      }
1049      unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1050      assert(SrcElemsPerTgtElem);
1051      BegIdx /= SrcElemsPerTgtElem;
1052      bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1053      auto *NewBC =
1054          BCAlreadyExists
1055              ? NewBCs[CastSrcTy]
1056              : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1057      if (!BCAlreadyExists)
1058        NewBCs[CastSrcTy] = NewBC;
1059      auto *Ext = Builder->CreateExtractElement(
1060          NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1061      // The shufflevector isn't being replaced: the bitcast that used it
1062      // is. InstCombine will visit the newly-created instructions.
1063      ReplaceInstUsesWith(*BC, Ext);
1064      MadeChange = true;
1065    }
1066  }
1067
1068  // If the LHS is a shufflevector itself, see if we can combine it with this
1069  // one without producing an unusual shuffle.
1070  // Cases that might be simplified:
1071  // 1.
1072  // x1=shuffle(v1,v2,mask1)
1073  //  x=shuffle(x1,undef,mask)
1074  //        ==>
1075  //  x=shuffle(v1,undef,newMask)
1076  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1077  // 2.
1078  // x1=shuffle(v1,undef,mask1)
1079  //  x=shuffle(x1,x2,mask)
1080  // where v1.size() == mask1.size()
1081  //        ==>
1082  //  x=shuffle(v1,x2,newMask)
1083  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1084  // 3.
1085  // x2=shuffle(v2,undef,mask2)
1086  //  x=shuffle(x1,x2,mask)
1087  // where v2.size() == mask2.size()
1088  //        ==>
1089  //  x=shuffle(x1,v2,newMask)
1090  // newMask[i] = (mask[i] < x1.size())
1091  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1092  // 4.
1093  // x1=shuffle(v1,undef,mask1)
1094  // x2=shuffle(v2,undef,mask2)
1095  //  x=shuffle(x1,x2,mask)
1096  // where v1.size() == v2.size()
1097  //        ==>
1098  //  x=shuffle(v1,v2,newMask)
1099  // newMask[i] = (mask[i] < x1.size())
1100  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1101  //
1102  // Here we are really conservative:
1103  // we are absolutely afraid of producing a shuffle mask not in the input
1104  // program, because the code gen may not be smart enough to turn a merged
1105  // shuffle into two specific shuffles: it may produce worse code.  As such,
1106  // we only merge two shuffles if the result is either a splat or one of the
1107  // input shuffle masks.  In this case, merging the shuffles just removes
1108  // one instruction, which we know is safe.  This is good for things like
1109  // turning: (splat(splat)) -> splat, or
1110  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1111  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1112  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1113  if (LHSShuffle)
1114    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1115      LHSShuffle = nullptr;
1116  if (RHSShuffle)
1117    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1118      RHSShuffle = nullptr;
1119  if (!LHSShuffle && !RHSShuffle)
1120    return MadeChange ? &SVI : nullptr;
1121
1122  Value* LHSOp0 = nullptr;
1123  Value* LHSOp1 = nullptr;
1124  Value* RHSOp0 = nullptr;
1125  unsigned LHSOp0Width = 0;
1126  unsigned RHSOp0Width = 0;
1127  if (LHSShuffle) {
1128    LHSOp0 = LHSShuffle->getOperand(0);
1129    LHSOp1 = LHSShuffle->getOperand(1);
1130    LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
1131  }
1132  if (RHSShuffle) {
1133    RHSOp0 = RHSShuffle->getOperand(0);
1134    RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
1135  }
1136  Value* newLHS = LHS;
1137  Value* newRHS = RHS;
1138  if (LHSShuffle) {
1139    // case 1
1140    if (isa<UndefValue>(RHS)) {
1141      newLHS = LHSOp0;
1142      newRHS = LHSOp1;
1143    }
1144    // case 2 or 4
1145    else if (LHSOp0Width == LHSWidth) {
1146      newLHS = LHSOp0;
1147    }
1148  }
1149  // case 3 or 4
1150  if (RHSShuffle && RHSOp0Width == LHSWidth) {
1151    newRHS = RHSOp0;
1152  }
1153  // case 4
1154  if (LHSOp0 == RHSOp0) {
1155    newLHS = LHSOp0;
1156    newRHS = nullptr;
1157  }
1158
1159  if (newLHS == LHS && newRHS == RHS)
1160    return MadeChange ? &SVI : nullptr;
1161
1162  SmallVector<int, 16> LHSMask;
1163  SmallVector<int, 16> RHSMask;
1164  if (newLHS != LHS)
1165    LHSMask = LHSShuffle->getShuffleMask();
1166  if (RHSShuffle && newRHS != RHS)
1167    RHSMask = RHSShuffle->getShuffleMask();
1168
1169  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1170  SmallVector<int, 16> newMask;
1171  bool isSplat = true;
1172  int SplatElt = -1;
1173  // Create a new mask for the new ShuffleVectorInst so that the new
1174  // ShuffleVectorInst is equivalent to the original one.
1175  for (unsigned i = 0; i < VWidth; ++i) {
1176    int eltMask;
1177    if (Mask[i] < 0) {
1178      // This element is an undef value.
1179      eltMask = -1;
1180    } else if (Mask[i] < (int)LHSWidth) {
1181      // This element is from left hand side vector operand.
1182      //
1183      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1184      // new mask value for the element.
1185      if (newLHS != LHS) {
1186        eltMask = LHSMask[Mask[i]];
1187        // If the value selected is an undef value, explicitly specify it
1188        // with a -1 mask value.
1189        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1190          eltMask = -1;
1191      } else
1192        eltMask = Mask[i];
1193    } else {
1194      // This element is from right hand side vector operand
1195      //
1196      // If the value selected is an undef value, explicitly specify it
1197      // with a -1 mask value. (case 1)
1198      if (isa<UndefValue>(RHS))
1199        eltMask = -1;
1200      // If RHS is going to be replaced (case 3 or 4), calculate the
1201      // new mask value for the element.
1202      else if (newRHS != RHS) {
1203        eltMask = RHSMask[Mask[i]-LHSWidth];
1204        // If the value selected is an undef value, explicitly specify it
1205        // with a -1 mask value.
1206        if (eltMask >= (int)RHSOp0Width) {
1207          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1208                 && "should have been check above");
1209          eltMask = -1;
1210        }
1211      } else
1212        eltMask = Mask[i]-LHSWidth;
1213
1214      // If LHS's width is changed, shift the mask value accordingly.
1215      // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
1216      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1217      // If newRHS == newLHS, we want to remap any references from newRHS to
1218      // newLHS so that we can properly identify splats that may occur due to
1219      // obfuscation across the two vectors.
1220      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1221        eltMask += newLHSWidth;
1222    }
1223
1224    // Check if this could still be a splat.
1225    if (eltMask >= 0) {
1226      if (SplatElt >= 0 && SplatElt != eltMask)
1227        isSplat = false;
1228      SplatElt = eltMask;
1229    }
1230
1231    newMask.push_back(eltMask);
1232  }
1233
1234  // If the result mask is equal to one of the original shuffle masks,
1235  // or is a splat, do the replacement.
1236  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1237    SmallVector<Constant*, 16> Elts;
1238    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1239      if (newMask[i] < 0) {
1240        Elts.push_back(UndefValue::get(Int32Ty));
1241      } else {
1242        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1243      }
1244    }
1245    if (!newRHS)
1246      newRHS = UndefValue::get(newLHS->getType());
1247    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1248  }
1249
1250  // If the result mask is an identity, replace uses of this instruction with
1251  // corresponding argument.
1252  bool isLHSID, isRHSID;
1253  recognizeIdentityMask(newMask, isLHSID, isRHSID);
1254  if (isLHSID && VWidth == LHSOp0Width) return ReplaceInstUsesWith(SVI, newLHS);
1255  if (isRHSID && VWidth == RHSOp0Width) return ReplaceInstUsesWith(SVI, newRHS);
1256
1257  return MadeChange ? &SVI : nullptr;
1258}
1259