1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/IPO.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/TargetLibraryInfo.h"
26#include "llvm/IR/CallSite.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/IR/GetElementPtrTypeIterator.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/IR/ValueHandle.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Utils/CtorUtils.h"
44#include "llvm/Transforms/Utils/GlobalStatus.h"
45#include "llvm/Transforms/Utils/ModuleUtils.h"
46#include <algorithm>
47#include <deque>
48using namespace llvm;
49
50#define DEBUG_TYPE "globalopt"
51
52STATISTIC(NumMarked    , "Number of globals marked constant");
53STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
54STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
55STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
56STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
57STATISTIC(NumDeleted   , "Number of globals deleted");
58STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
59STATISTIC(NumLocalized , "Number of globals localized");
60STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
61STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
62STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
63STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
64STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
65STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
66STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
67
68namespace {
69  struct GlobalOpt : public ModulePass {
70    void getAnalysisUsage(AnalysisUsage &AU) const override {
71      AU.addRequired<TargetLibraryInfoWrapperPass>();
72      AU.addRequired<DominatorTreeWrapperPass>();
73    }
74    static char ID; // Pass identification, replacement for typeid
75    GlobalOpt() : ModulePass(ID) {
76      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
77    }
78
79    bool runOnModule(Module &M) override;
80
81  private:
82    bool OptimizeFunctions(Module &M);
83    bool OptimizeGlobalVars(Module &M);
84    bool OptimizeGlobalAliases(Module &M);
85    bool deleteIfDead(GlobalValue &GV);
86    bool processGlobal(GlobalValue &GV);
87    bool processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS);
88    bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
89
90    bool isPointerValueDeadOnEntryToFunction(const Function *F,
91                                             GlobalValue *GV);
92
93    TargetLibraryInfo *TLI;
94    SmallSet<const Comdat *, 8> NotDiscardableComdats;
95  };
96}
97
98char GlobalOpt::ID = 0;
99INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
100                "Global Variable Optimizer", false, false)
101INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
102INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
103INITIALIZE_PASS_END(GlobalOpt, "globalopt",
104                "Global Variable Optimizer", false, false)
105
106ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
107
108/// Is this global variable possibly used by a leak checker as a root?  If so,
109/// we might not really want to eliminate the stores to it.
110static bool isLeakCheckerRoot(GlobalVariable *GV) {
111  // A global variable is a root if it is a pointer, or could plausibly contain
112  // a pointer.  There are two challenges; one is that we could have a struct
113  // the has an inner member which is a pointer.  We recurse through the type to
114  // detect these (up to a point).  The other is that we may actually be a union
115  // of a pointer and another type, and so our LLVM type is an integer which
116  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117  // potentially contained here.
118
119  if (GV->hasPrivateLinkage())
120    return false;
121
122  SmallVector<Type *, 4> Types;
123  Types.push_back(cast<PointerType>(GV->getType())->getElementType());
124
125  unsigned Limit = 20;
126  do {
127    Type *Ty = Types.pop_back_val();
128    switch (Ty->getTypeID()) {
129      default: break;
130      case Type::PointerTyID: return true;
131      case Type::ArrayTyID:
132      case Type::VectorTyID: {
133        SequentialType *STy = cast<SequentialType>(Ty);
134        Types.push_back(STy->getElementType());
135        break;
136      }
137      case Type::StructTyID: {
138        StructType *STy = cast<StructType>(Ty);
139        if (STy->isOpaque()) return true;
140        for (StructType::element_iterator I = STy->element_begin(),
141                 E = STy->element_end(); I != E; ++I) {
142          Type *InnerTy = *I;
143          if (isa<PointerType>(InnerTy)) return true;
144          if (isa<CompositeType>(InnerTy))
145            Types.push_back(InnerTy);
146        }
147        break;
148      }
149    }
150    if (--Limit == 0) return true;
151  } while (!Types.empty());
152  return false;
153}
154
155/// Given a value that is stored to a global but never read, determine whether
156/// it's safe to remove the store and the chain of computation that feeds the
157/// store.
158static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
159  do {
160    if (isa<Constant>(V))
161      return true;
162    if (!V->hasOneUse())
163      return false;
164    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
165        isa<GlobalValue>(V))
166      return false;
167    if (isAllocationFn(V, TLI))
168      return true;
169
170    Instruction *I = cast<Instruction>(V);
171    if (I->mayHaveSideEffects())
172      return false;
173    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
174      if (!GEP->hasAllConstantIndices())
175        return false;
176    } else if (I->getNumOperands() != 1) {
177      return false;
178    }
179
180    V = I->getOperand(0);
181  } while (1);
182}
183
184/// This GV is a pointer root.  Loop over all users of the global and clean up
185/// any that obviously don't assign the global a value that isn't dynamically
186/// allocated.
187static bool CleanupPointerRootUsers(GlobalVariable *GV,
188                                    const TargetLibraryInfo *TLI) {
189  // A brief explanation of leak checkers.  The goal is to find bugs where
190  // pointers are forgotten, causing an accumulating growth in memory
191  // usage over time.  The common strategy for leak checkers is to whitelist the
192  // memory pointed to by globals at exit.  This is popular because it also
193  // solves another problem where the main thread of a C++ program may shut down
194  // before other threads that are still expecting to use those globals.  To
195  // handle that case, we expect the program may create a singleton and never
196  // destroy it.
197
198  bool Changed = false;
199
200  // If Dead[n].first is the only use of a malloc result, we can delete its
201  // chain of computation and the store to the global in Dead[n].second.
202  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
203
204  // Constants can't be pointers to dynamically allocated memory.
205  for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
206       UI != E;) {
207    User *U = *UI++;
208    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
209      Value *V = SI->getValueOperand();
210      if (isa<Constant>(V)) {
211        Changed = true;
212        SI->eraseFromParent();
213      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
214        if (I->hasOneUse())
215          Dead.push_back(std::make_pair(I, SI));
216      }
217    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
218      if (isa<Constant>(MSI->getValue())) {
219        Changed = true;
220        MSI->eraseFromParent();
221      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
222        if (I->hasOneUse())
223          Dead.push_back(std::make_pair(I, MSI));
224      }
225    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
226      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
227      if (MemSrc && MemSrc->isConstant()) {
228        Changed = true;
229        MTI->eraseFromParent();
230      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
231        if (I->hasOneUse())
232          Dead.push_back(std::make_pair(I, MTI));
233      }
234    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
235      if (CE->use_empty()) {
236        CE->destroyConstant();
237        Changed = true;
238      }
239    } else if (Constant *C = dyn_cast<Constant>(U)) {
240      if (isSafeToDestroyConstant(C)) {
241        C->destroyConstant();
242        // This could have invalidated UI, start over from scratch.
243        Dead.clear();
244        CleanupPointerRootUsers(GV, TLI);
245        return true;
246      }
247    }
248  }
249
250  for (int i = 0, e = Dead.size(); i != e; ++i) {
251    if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
252      Dead[i].second->eraseFromParent();
253      Instruction *I = Dead[i].first;
254      do {
255        if (isAllocationFn(I, TLI))
256          break;
257        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
258        if (!J)
259          break;
260        I->eraseFromParent();
261        I = J;
262      } while (1);
263      I->eraseFromParent();
264    }
265  }
266
267  return Changed;
268}
269
270/// We just marked GV constant.  Loop over all users of the global, cleaning up
271/// the obvious ones.  This is largely just a quick scan over the use list to
272/// clean up the easy and obvious cruft.  This returns true if it made a change.
273static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
274                                       const DataLayout &DL,
275                                       TargetLibraryInfo *TLI) {
276  bool Changed = false;
277  // Note that we need to use a weak value handle for the worklist items. When
278  // we delete a constant array, we may also be holding pointer to one of its
279  // elements (or an element of one of its elements if we're dealing with an
280  // array of arrays) in the worklist.
281  SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
282  while (!WorkList.empty()) {
283    Value *UV = WorkList.pop_back_val();
284    if (!UV)
285      continue;
286
287    User *U = cast<User>(UV);
288
289    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
290      if (Init) {
291        // Replace the load with the initializer.
292        LI->replaceAllUsesWith(Init);
293        LI->eraseFromParent();
294        Changed = true;
295      }
296    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
297      // Store must be unreachable or storing Init into the global.
298      SI->eraseFromParent();
299      Changed = true;
300    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
301      if (CE->getOpcode() == Instruction::GetElementPtr) {
302        Constant *SubInit = nullptr;
303        if (Init)
304          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
305        Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
306      } else if ((CE->getOpcode() == Instruction::BitCast &&
307                  CE->getType()->isPointerTy()) ||
308                 CE->getOpcode() == Instruction::AddrSpaceCast) {
309        // Pointer cast, delete any stores and memsets to the global.
310        Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
311      }
312
313      if (CE->use_empty()) {
314        CE->destroyConstant();
315        Changed = true;
316      }
317    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
318      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
319      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
320      // and will invalidate our notion of what Init is.
321      Constant *SubInit = nullptr;
322      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
323        ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
324            ConstantFoldInstruction(GEP, DL, TLI));
325        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
326          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
327
328        // If the initializer is an all-null value and we have an inbounds GEP,
329        // we already know what the result of any load from that GEP is.
330        // TODO: Handle splats.
331        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
332          SubInit = Constant::getNullValue(GEP->getType()->getElementType());
333      }
334      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
335
336      if (GEP->use_empty()) {
337        GEP->eraseFromParent();
338        Changed = true;
339      }
340    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
341      if (MI->getRawDest() == V) {
342        MI->eraseFromParent();
343        Changed = true;
344      }
345
346    } else if (Constant *C = dyn_cast<Constant>(U)) {
347      // If we have a chain of dead constantexprs or other things dangling from
348      // us, and if they are all dead, nuke them without remorse.
349      if (isSafeToDestroyConstant(C)) {
350        C->destroyConstant();
351        CleanupConstantGlobalUsers(V, Init, DL, TLI);
352        return true;
353      }
354    }
355  }
356  return Changed;
357}
358
359/// Return true if the specified instruction is a safe user of a derived
360/// expression from a global that we want to SROA.
361static bool isSafeSROAElementUse(Value *V) {
362  // We might have a dead and dangling constant hanging off of here.
363  if (Constant *C = dyn_cast<Constant>(V))
364    return isSafeToDestroyConstant(C);
365
366  Instruction *I = dyn_cast<Instruction>(V);
367  if (!I) return false;
368
369  // Loads are ok.
370  if (isa<LoadInst>(I)) return true;
371
372  // Stores *to* the pointer are ok.
373  if (StoreInst *SI = dyn_cast<StoreInst>(I))
374    return SI->getOperand(0) != V;
375
376  // Otherwise, it must be a GEP.
377  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
378  if (!GEPI) return false;
379
380  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
381      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
382    return false;
383
384  for (User *U : GEPI->users())
385    if (!isSafeSROAElementUse(U))
386      return false;
387  return true;
388}
389
390
391/// U is a direct user of the specified global value.  Look at it and its uses
392/// and decide whether it is safe to SROA this global.
393static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
394  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
395  if (!isa<GetElementPtrInst>(U) &&
396      (!isa<ConstantExpr>(U) ||
397       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
398    return false;
399
400  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
401  // don't like < 3 operand CE's, and we don't like non-constant integer
402  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
403  // value of C.
404  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
405      !cast<Constant>(U->getOperand(1))->isNullValue() ||
406      !isa<ConstantInt>(U->getOperand(2)))
407    return false;
408
409  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
410  ++GEPI;  // Skip over the pointer index.
411
412  // If this is a use of an array allocation, do a bit more checking for sanity.
413  if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
414    uint64_t NumElements = AT->getNumElements();
415    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
416
417    // Check to make sure that index falls within the array.  If not,
418    // something funny is going on, so we won't do the optimization.
419    //
420    if (Idx->getZExtValue() >= NumElements)
421      return false;
422
423    // We cannot scalar repl this level of the array unless any array
424    // sub-indices are in-range constants.  In particular, consider:
425    // A[0][i].  We cannot know that the user isn't doing invalid things like
426    // allowing i to index an out-of-range subscript that accesses A[1].
427    //
428    // Scalar replacing *just* the outer index of the array is probably not
429    // going to be a win anyway, so just give up.
430    for (++GEPI; // Skip array index.
431         GEPI != E;
432         ++GEPI) {
433      uint64_t NumElements;
434      if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
435        NumElements = SubArrayTy->getNumElements();
436      else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
437        NumElements = SubVectorTy->getNumElements();
438      else {
439        assert((*GEPI)->isStructTy() &&
440               "Indexed GEP type is not array, vector, or struct!");
441        continue;
442      }
443
444      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
445      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
446        return false;
447    }
448  }
449
450  for (User *UU : U->users())
451    if (!isSafeSROAElementUse(UU))
452      return false;
453
454  return true;
455}
456
457/// Look at all uses of the global and decide whether it is safe for us to
458/// perform this transformation.
459static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
460  for (User *U : GV->users())
461    if (!IsUserOfGlobalSafeForSRA(U, GV))
462      return false;
463
464  return true;
465}
466
467
468/// Perform scalar replacement of aggregates on the specified global variable.
469/// This opens the door for other optimizations by exposing the behavior of the
470/// program in a more fine-grained way.  We have determined that this
471/// transformation is safe already.  We return the first global variable we
472/// insert so that the caller can reprocess it.
473static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
474  // Make sure this global only has simple uses that we can SRA.
475  if (!GlobalUsersSafeToSRA(GV))
476    return nullptr;
477
478  assert(GV->hasLocalLinkage() && !GV->isConstant());
479  Constant *Init = GV->getInitializer();
480  Type *Ty = Init->getType();
481
482  std::vector<GlobalVariable*> NewGlobals;
483  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
484
485  // Get the alignment of the global, either explicit or target-specific.
486  unsigned StartAlignment = GV->getAlignment();
487  if (StartAlignment == 0)
488    StartAlignment = DL.getABITypeAlignment(GV->getType());
489
490  if (StructType *STy = dyn_cast<StructType>(Ty)) {
491    NewGlobals.reserve(STy->getNumElements());
492    const StructLayout &Layout = *DL.getStructLayout(STy);
493    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
494      Constant *In = Init->getAggregateElement(i);
495      assert(In && "Couldn't get element of initializer?");
496      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
497                                               GlobalVariable::InternalLinkage,
498                                               In, GV->getName()+"."+Twine(i),
499                                               GV->getThreadLocalMode(),
500                                              GV->getType()->getAddressSpace());
501      NGV->setExternallyInitialized(GV->isExternallyInitialized());
502      Globals.push_back(NGV);
503      NewGlobals.push_back(NGV);
504
505      // Calculate the known alignment of the field.  If the original aggregate
506      // had 256 byte alignment for example, something might depend on that:
507      // propagate info to each field.
508      uint64_t FieldOffset = Layout.getElementOffset(i);
509      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
510      if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
511        NGV->setAlignment(NewAlign);
512    }
513  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
514    unsigned NumElements = 0;
515    if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
516      NumElements = ATy->getNumElements();
517    else
518      NumElements = cast<VectorType>(STy)->getNumElements();
519
520    if (NumElements > 16 && GV->hasNUsesOrMore(16))
521      return nullptr; // It's not worth it.
522    NewGlobals.reserve(NumElements);
523
524    uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
525    unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
526    for (unsigned i = 0, e = NumElements; i != e; ++i) {
527      Constant *In = Init->getAggregateElement(i);
528      assert(In && "Couldn't get element of initializer?");
529
530      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
531                                               GlobalVariable::InternalLinkage,
532                                               In, GV->getName()+"."+Twine(i),
533                                               GV->getThreadLocalMode(),
534                                              GV->getType()->getAddressSpace());
535      NGV->setExternallyInitialized(GV->isExternallyInitialized());
536      Globals.push_back(NGV);
537      NewGlobals.push_back(NGV);
538
539      // Calculate the known alignment of the field.  If the original aggregate
540      // had 256 byte alignment for example, something might depend on that:
541      // propagate info to each field.
542      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
543      if (NewAlign > EltAlign)
544        NGV->setAlignment(NewAlign);
545    }
546  }
547
548  if (NewGlobals.empty())
549    return nullptr;
550
551  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
552
553  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
554
555  // Loop over all of the uses of the global, replacing the constantexpr geps,
556  // with smaller constantexpr geps or direct references.
557  while (!GV->use_empty()) {
558    User *GEP = GV->user_back();
559    assert(((isa<ConstantExpr>(GEP) &&
560             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
561            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
562
563    // Ignore the 1th operand, which has to be zero or else the program is quite
564    // broken (undefined).  Get the 2nd operand, which is the structure or array
565    // index.
566    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
567    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
568
569    Value *NewPtr = NewGlobals[Val];
570    Type *NewTy = NewGlobals[Val]->getValueType();
571
572    // Form a shorter GEP if needed.
573    if (GEP->getNumOperands() > 3) {
574      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
575        SmallVector<Constant*, 8> Idxs;
576        Idxs.push_back(NullInt);
577        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
578          Idxs.push_back(CE->getOperand(i));
579        NewPtr =
580            ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
581      } else {
582        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
583        SmallVector<Value*, 8> Idxs;
584        Idxs.push_back(NullInt);
585        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
586          Idxs.push_back(GEPI->getOperand(i));
587        NewPtr = GetElementPtrInst::Create(
588            NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
589      }
590    }
591    GEP->replaceAllUsesWith(NewPtr);
592
593    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
594      GEPI->eraseFromParent();
595    else
596      cast<ConstantExpr>(GEP)->destroyConstant();
597  }
598
599  // Delete the old global, now that it is dead.
600  Globals.erase(GV);
601  ++NumSRA;
602
603  // Loop over the new globals array deleting any globals that are obviously
604  // dead.  This can arise due to scalarization of a structure or an array that
605  // has elements that are dead.
606  unsigned FirstGlobal = 0;
607  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
608    if (NewGlobals[i]->use_empty()) {
609      Globals.erase(NewGlobals[i]);
610      if (FirstGlobal == i) ++FirstGlobal;
611    }
612
613  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
614}
615
616/// Return true if all users of the specified value will trap if the value is
617/// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
618/// reprocessing them.
619static bool AllUsesOfValueWillTrapIfNull(const Value *V,
620                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
621  for (const User *U : V->users())
622    if (isa<LoadInst>(U)) {
623      // Will trap.
624    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
625      if (SI->getOperand(0) == V) {
626        //cerr << "NONTRAPPING USE: " << *U;
627        return false;  // Storing the value.
628      }
629    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
630      if (CI->getCalledValue() != V) {
631        //cerr << "NONTRAPPING USE: " << *U;
632        return false;  // Not calling the ptr
633      }
634    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
635      if (II->getCalledValue() != V) {
636        //cerr << "NONTRAPPING USE: " << *U;
637        return false;  // Not calling the ptr
638      }
639    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
640      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
641    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
642      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
643    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
644      // If we've already seen this phi node, ignore it, it has already been
645      // checked.
646      if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
647        return false;
648    } else if (isa<ICmpInst>(U) &&
649               isa<ConstantPointerNull>(U->getOperand(1))) {
650      // Ignore icmp X, null
651    } else {
652      //cerr << "NONTRAPPING USE: " << *U;
653      return false;
654    }
655
656  return true;
657}
658
659/// Return true if all uses of any loads from GV will trap if the loaded value
660/// is null.  Note that this also permits comparisons of the loaded value
661/// against null, as a special case.
662static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
663  for (const User *U : GV->users())
664    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
665      SmallPtrSet<const PHINode*, 8> PHIs;
666      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
667        return false;
668    } else if (isa<StoreInst>(U)) {
669      // Ignore stores to the global.
670    } else {
671      // We don't know or understand this user, bail out.
672      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
673      return false;
674    }
675  return true;
676}
677
678static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
679  bool Changed = false;
680  for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
681    Instruction *I = cast<Instruction>(*UI++);
682    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
683      LI->setOperand(0, NewV);
684      Changed = true;
685    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
686      if (SI->getOperand(1) == V) {
687        SI->setOperand(1, NewV);
688        Changed = true;
689      }
690    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
691      CallSite CS(I);
692      if (CS.getCalledValue() == V) {
693        // Calling through the pointer!  Turn into a direct call, but be careful
694        // that the pointer is not also being passed as an argument.
695        CS.setCalledFunction(NewV);
696        Changed = true;
697        bool PassedAsArg = false;
698        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
699          if (CS.getArgument(i) == V) {
700            PassedAsArg = true;
701            CS.setArgument(i, NewV);
702          }
703
704        if (PassedAsArg) {
705          // Being passed as an argument also.  Be careful to not invalidate UI!
706          UI = V->user_begin();
707        }
708      }
709    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
710      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
711                                ConstantExpr::getCast(CI->getOpcode(),
712                                                      NewV, CI->getType()));
713      if (CI->use_empty()) {
714        Changed = true;
715        CI->eraseFromParent();
716      }
717    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
718      // Should handle GEP here.
719      SmallVector<Constant*, 8> Idxs;
720      Idxs.reserve(GEPI->getNumOperands()-1);
721      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
722           i != e; ++i)
723        if (Constant *C = dyn_cast<Constant>(*i))
724          Idxs.push_back(C);
725        else
726          break;
727      if (Idxs.size() == GEPI->getNumOperands()-1)
728        Changed |= OptimizeAwayTrappingUsesOfValue(
729            GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
730      if (GEPI->use_empty()) {
731        Changed = true;
732        GEPI->eraseFromParent();
733      }
734    }
735  }
736
737  return Changed;
738}
739
740
741/// The specified global has only one non-null value stored into it.  If there
742/// are uses of the loaded value that would trap if the loaded value is
743/// dynamically null, then we know that they cannot be reachable with a null
744/// optimize away the load.
745static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
746                                            const DataLayout &DL,
747                                            TargetLibraryInfo *TLI) {
748  bool Changed = false;
749
750  // Keep track of whether we are able to remove all the uses of the global
751  // other than the store that defines it.
752  bool AllNonStoreUsesGone = true;
753
754  // Replace all uses of loads with uses of uses of the stored value.
755  for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
756    User *GlobalUser = *GUI++;
757    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
758      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
759      // If we were able to delete all uses of the loads
760      if (LI->use_empty()) {
761        LI->eraseFromParent();
762        Changed = true;
763      } else {
764        AllNonStoreUsesGone = false;
765      }
766    } else if (isa<StoreInst>(GlobalUser)) {
767      // Ignore the store that stores "LV" to the global.
768      assert(GlobalUser->getOperand(1) == GV &&
769             "Must be storing *to* the global");
770    } else {
771      AllNonStoreUsesGone = false;
772
773      // If we get here we could have other crazy uses that are transitively
774      // loaded.
775      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
776              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
777              isa<BitCastInst>(GlobalUser) ||
778              isa<GetElementPtrInst>(GlobalUser)) &&
779             "Only expect load and stores!");
780    }
781  }
782
783  if (Changed) {
784    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
785    ++NumGlobUses;
786  }
787
788  // If we nuked all of the loads, then none of the stores are needed either,
789  // nor is the global.
790  if (AllNonStoreUsesGone) {
791    if (isLeakCheckerRoot(GV)) {
792      Changed |= CleanupPointerRootUsers(GV, TLI);
793    } else {
794      Changed = true;
795      CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
796    }
797    if (GV->use_empty()) {
798      DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
799      Changed = true;
800      GV->eraseFromParent();
801      ++NumDeleted;
802    }
803  }
804  return Changed;
805}
806
807/// Walk the use list of V, constant folding all of the instructions that are
808/// foldable.
809static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
810                                TargetLibraryInfo *TLI) {
811  for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
812    if (Instruction *I = dyn_cast<Instruction>(*UI++))
813      if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
814        I->replaceAllUsesWith(NewC);
815
816        // Advance UI to the next non-I use to avoid invalidating it!
817        // Instructions could multiply use V.
818        while (UI != E && *UI == I)
819          ++UI;
820        I->eraseFromParent();
821      }
822}
823
824/// This function takes the specified global variable, and transforms the
825/// program as if it always contained the result of the specified malloc.
826/// Because it is always the result of the specified malloc, there is no reason
827/// to actually DO the malloc.  Instead, turn the malloc into a global, and any
828/// loads of GV as uses of the new global.
829static GlobalVariable *
830OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
831                              ConstantInt *NElements, const DataLayout &DL,
832                              TargetLibraryInfo *TLI) {
833  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
834
835  Type *GlobalType;
836  if (NElements->getZExtValue() == 1)
837    GlobalType = AllocTy;
838  else
839    // If we have an array allocation, the global variable is of an array.
840    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
841
842  // Create the new global variable.  The contents of the malloc'd memory is
843  // undefined, so initialize with an undef value.
844  GlobalVariable *NewGV = new GlobalVariable(
845      *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
846      UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
847      GV->getThreadLocalMode());
848
849  // If there are bitcast users of the malloc (which is typical, usually we have
850  // a malloc + bitcast) then replace them with uses of the new global.  Update
851  // other users to use the global as well.
852  BitCastInst *TheBC = nullptr;
853  while (!CI->use_empty()) {
854    Instruction *User = cast<Instruction>(CI->user_back());
855    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
856      if (BCI->getType() == NewGV->getType()) {
857        BCI->replaceAllUsesWith(NewGV);
858        BCI->eraseFromParent();
859      } else {
860        BCI->setOperand(0, NewGV);
861      }
862    } else {
863      if (!TheBC)
864        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
865      User->replaceUsesOfWith(CI, TheBC);
866    }
867  }
868
869  Constant *RepValue = NewGV;
870  if (NewGV->getType() != GV->getType()->getElementType())
871    RepValue = ConstantExpr::getBitCast(RepValue,
872                                        GV->getType()->getElementType());
873
874  // If there is a comparison against null, we will insert a global bool to
875  // keep track of whether the global was initialized yet or not.
876  GlobalVariable *InitBool =
877    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
878                       GlobalValue::InternalLinkage,
879                       ConstantInt::getFalse(GV->getContext()),
880                       GV->getName()+".init", GV->getThreadLocalMode());
881  bool InitBoolUsed = false;
882
883  // Loop over all uses of GV, processing them in turn.
884  while (!GV->use_empty()) {
885    if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
886      // The global is initialized when the store to it occurs.
887      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
888                    SI->getOrdering(), SI->getSynchScope(), SI);
889      SI->eraseFromParent();
890      continue;
891    }
892
893    LoadInst *LI = cast<LoadInst>(GV->user_back());
894    while (!LI->use_empty()) {
895      Use &LoadUse = *LI->use_begin();
896      ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
897      if (!ICI) {
898        LoadUse = RepValue;
899        continue;
900      }
901
902      // Replace the cmp X, 0 with a use of the bool value.
903      // Sink the load to where the compare was, if atomic rules allow us to.
904      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
905                               LI->getOrdering(), LI->getSynchScope(),
906                               LI->isUnordered() ? (Instruction*)ICI : LI);
907      InitBoolUsed = true;
908      switch (ICI->getPredicate()) {
909      default: llvm_unreachable("Unknown ICmp Predicate!");
910      case ICmpInst::ICMP_ULT:
911      case ICmpInst::ICMP_SLT:   // X < null -> always false
912        LV = ConstantInt::getFalse(GV->getContext());
913        break;
914      case ICmpInst::ICMP_ULE:
915      case ICmpInst::ICMP_SLE:
916      case ICmpInst::ICMP_EQ:
917        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
918        break;
919      case ICmpInst::ICMP_NE:
920      case ICmpInst::ICMP_UGE:
921      case ICmpInst::ICMP_SGE:
922      case ICmpInst::ICMP_UGT:
923      case ICmpInst::ICMP_SGT:
924        break;  // no change.
925      }
926      ICI->replaceAllUsesWith(LV);
927      ICI->eraseFromParent();
928    }
929    LI->eraseFromParent();
930  }
931
932  // If the initialization boolean was used, insert it, otherwise delete it.
933  if (!InitBoolUsed) {
934    while (!InitBool->use_empty())  // Delete initializations
935      cast<StoreInst>(InitBool->user_back())->eraseFromParent();
936    delete InitBool;
937  } else
938    GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
939
940  // Now the GV is dead, nuke it and the malloc..
941  GV->eraseFromParent();
942  CI->eraseFromParent();
943
944  // To further other optimizations, loop over all users of NewGV and try to
945  // constant prop them.  This will promote GEP instructions with constant
946  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
947  ConstantPropUsersOf(NewGV, DL, TLI);
948  if (RepValue != NewGV)
949    ConstantPropUsersOf(RepValue, DL, TLI);
950
951  return NewGV;
952}
953
954/// Scan the use-list of V checking to make sure that there are no complex uses
955/// of V.  We permit simple things like dereferencing the pointer, but not
956/// storing through the address, unless it is to the specified global.
957static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
958                                                      const GlobalVariable *GV,
959                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
960  for (const User *U : V->users()) {
961    const Instruction *Inst = cast<Instruction>(U);
962
963    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
964      continue; // Fine, ignore.
965    }
966
967    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
968      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
969        return false;  // Storing the pointer itself... bad.
970      continue; // Otherwise, storing through it, or storing into GV... fine.
971    }
972
973    // Must index into the array and into the struct.
974    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
975      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
976        return false;
977      continue;
978    }
979
980    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
981      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
982      // cycles.
983      if (PHIs.insert(PN).second)
984        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
985          return false;
986      continue;
987    }
988
989    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
990      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
991        return false;
992      continue;
993    }
994
995    return false;
996  }
997  return true;
998}
999
1000/// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1001/// allocation into loads from the global and uses of the resultant pointer.
1002/// Further, delete the store into GV.  This assumes that these value pass the
1003/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1004static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1005                                          GlobalVariable *GV) {
1006  while (!Alloc->use_empty()) {
1007    Instruction *U = cast<Instruction>(*Alloc->user_begin());
1008    Instruction *InsertPt = U;
1009    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1010      // If this is the store of the allocation into the global, remove it.
1011      if (SI->getOperand(1) == GV) {
1012        SI->eraseFromParent();
1013        continue;
1014      }
1015    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1016      // Insert the load in the corresponding predecessor, not right before the
1017      // PHI.
1018      InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1019    } else if (isa<BitCastInst>(U)) {
1020      // Must be bitcast between the malloc and store to initialize the global.
1021      ReplaceUsesOfMallocWithGlobal(U, GV);
1022      U->eraseFromParent();
1023      continue;
1024    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1025      // If this is a "GEP bitcast" and the user is a store to the global, then
1026      // just process it as a bitcast.
1027      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1028        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1029          if (SI->getOperand(1) == GV) {
1030            // Must be bitcast GEP between the malloc and store to initialize
1031            // the global.
1032            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1033            GEPI->eraseFromParent();
1034            continue;
1035          }
1036    }
1037
1038    // Insert a load from the global, and use it instead of the malloc.
1039    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1040    U->replaceUsesOfWith(Alloc, NL);
1041  }
1042}
1043
1044/// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1045/// perform heap SRA on.  This permits GEP's that index through the array and
1046/// struct field, icmps of null, and PHIs.
1047static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1048                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1049                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1050  // We permit two users of the load: setcc comparing against the null
1051  // pointer, and a getelementptr of a specific form.
1052  for (const User *U : V->users()) {
1053    const Instruction *UI = cast<Instruction>(U);
1054
1055    // Comparison against null is ok.
1056    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1057      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1058        return false;
1059      continue;
1060    }
1061
1062    // getelementptr is also ok, but only a simple form.
1063    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1064      // Must index into the array and into the struct.
1065      if (GEPI->getNumOperands() < 3)
1066        return false;
1067
1068      // Otherwise the GEP is ok.
1069      continue;
1070    }
1071
1072    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1073      if (!LoadUsingPHIsPerLoad.insert(PN).second)
1074        // This means some phi nodes are dependent on each other.
1075        // Avoid infinite looping!
1076        return false;
1077      if (!LoadUsingPHIs.insert(PN).second)
1078        // If we have already analyzed this PHI, then it is safe.
1079        continue;
1080
1081      // Make sure all uses of the PHI are simple enough to transform.
1082      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1083                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1084        return false;
1085
1086      continue;
1087    }
1088
1089    // Otherwise we don't know what this is, not ok.
1090    return false;
1091  }
1092
1093  return true;
1094}
1095
1096
1097/// If all users of values loaded from GV are simple enough to perform HeapSRA,
1098/// return true.
1099static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1100                                                    Instruction *StoredVal) {
1101  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1102  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1103  for (const User *U : GV->users())
1104    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1105      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1106                                          LoadUsingPHIsPerLoad))
1107        return false;
1108      LoadUsingPHIsPerLoad.clear();
1109    }
1110
1111  // If we reach here, we know that all uses of the loads and transitive uses
1112  // (through PHI nodes) are simple enough to transform.  However, we don't know
1113  // that all inputs the to the PHI nodes are in the same equivalence sets.
1114  // Check to verify that all operands of the PHIs are either PHIS that can be
1115  // transformed, loads from GV, or MI itself.
1116  for (const PHINode *PN : LoadUsingPHIs) {
1117    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1118      Value *InVal = PN->getIncomingValue(op);
1119
1120      // PHI of the stored value itself is ok.
1121      if (InVal == StoredVal) continue;
1122
1123      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1124        // One of the PHIs in our set is (optimistically) ok.
1125        if (LoadUsingPHIs.count(InPN))
1126          continue;
1127        return false;
1128      }
1129
1130      // Load from GV is ok.
1131      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1132        if (LI->getOperand(0) == GV)
1133          continue;
1134
1135      // UNDEF? NULL?
1136
1137      // Anything else is rejected.
1138      return false;
1139    }
1140  }
1141
1142  return true;
1143}
1144
1145static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1146               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1147                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1148  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1149
1150  if (FieldNo >= FieldVals.size())
1151    FieldVals.resize(FieldNo+1);
1152
1153  // If we already have this value, just reuse the previously scalarized
1154  // version.
1155  if (Value *FieldVal = FieldVals[FieldNo])
1156    return FieldVal;
1157
1158  // Depending on what instruction this is, we have several cases.
1159  Value *Result;
1160  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1161    // This is a scalarized version of the load from the global.  Just create
1162    // a new Load of the scalarized global.
1163    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1164                                           InsertedScalarizedValues,
1165                                           PHIsToRewrite),
1166                          LI->getName()+".f"+Twine(FieldNo), LI);
1167  } else {
1168    PHINode *PN = cast<PHINode>(V);
1169    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1170    // field.
1171
1172    PointerType *PTy = cast<PointerType>(PN->getType());
1173    StructType *ST = cast<StructType>(PTy->getElementType());
1174
1175    unsigned AS = PTy->getAddressSpace();
1176    PHINode *NewPN =
1177      PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1178                     PN->getNumIncomingValues(),
1179                     PN->getName()+".f"+Twine(FieldNo), PN);
1180    Result = NewPN;
1181    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1182  }
1183
1184  return FieldVals[FieldNo] = Result;
1185}
1186
1187/// Given a load instruction and a value derived from the load, rewrite the
1188/// derived value to use the HeapSRoA'd load.
1189static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1190             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1191                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1192  // If this is a comparison against null, handle it.
1193  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1194    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1195    // If we have a setcc of the loaded pointer, we can use a setcc of any
1196    // field.
1197    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1198                                   InsertedScalarizedValues, PHIsToRewrite);
1199
1200    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1201                              Constant::getNullValue(NPtr->getType()),
1202                              SCI->getName());
1203    SCI->replaceAllUsesWith(New);
1204    SCI->eraseFromParent();
1205    return;
1206  }
1207
1208  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1209  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1210    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1211           && "Unexpected GEPI!");
1212
1213    // Load the pointer for this field.
1214    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1215    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1216                                     InsertedScalarizedValues, PHIsToRewrite);
1217
1218    // Create the new GEP idx vector.
1219    SmallVector<Value*, 8> GEPIdx;
1220    GEPIdx.push_back(GEPI->getOperand(1));
1221    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1222
1223    Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1224                                             GEPI->getName(), GEPI);
1225    GEPI->replaceAllUsesWith(NGEPI);
1226    GEPI->eraseFromParent();
1227    return;
1228  }
1229
1230  // Recursively transform the users of PHI nodes.  This will lazily create the
1231  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1232  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1233  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1234  // already been seen first by another load, so its uses have already been
1235  // processed.
1236  PHINode *PN = cast<PHINode>(LoadUser);
1237  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1238                                              std::vector<Value*>())).second)
1239    return;
1240
1241  // If this is the first time we've seen this PHI, recursively process all
1242  // users.
1243  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1244    Instruction *User = cast<Instruction>(*UI++);
1245    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1246  }
1247}
1248
1249/// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1250/// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1251/// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1252static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1253               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1254                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1255  for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1256    Instruction *User = cast<Instruction>(*UI++);
1257    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1258  }
1259
1260  if (Load->use_empty()) {
1261    Load->eraseFromParent();
1262    InsertedScalarizedValues.erase(Load);
1263  }
1264}
1265
1266/// CI is an allocation of an array of structures.  Break it up into multiple
1267/// allocations of arrays of the fields.
1268static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1269                                            Value *NElems, const DataLayout &DL,
1270                                            const TargetLibraryInfo *TLI) {
1271  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1272  Type *MAT = getMallocAllocatedType(CI, TLI);
1273  StructType *STy = cast<StructType>(MAT);
1274
1275  // There is guaranteed to be at least one use of the malloc (storing
1276  // it into GV).  If there are other uses, change them to be uses of
1277  // the global to simplify later code.  This also deletes the store
1278  // into GV.
1279  ReplaceUsesOfMallocWithGlobal(CI, GV);
1280
1281  // Okay, at this point, there are no users of the malloc.  Insert N
1282  // new mallocs at the same place as CI, and N globals.
1283  std::vector<Value*> FieldGlobals;
1284  std::vector<Value*> FieldMallocs;
1285
1286  unsigned AS = GV->getType()->getPointerAddressSpace();
1287  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1288    Type *FieldTy = STy->getElementType(FieldNo);
1289    PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1290
1291    GlobalVariable *NGV = new GlobalVariable(
1292        *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1293        Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1294        nullptr, GV->getThreadLocalMode());
1295    FieldGlobals.push_back(NGV);
1296
1297    unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1298    if (StructType *ST = dyn_cast<StructType>(FieldTy))
1299      TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1300    Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1301    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1302                                        ConstantInt::get(IntPtrTy, TypeSize),
1303                                        NElems, nullptr,
1304                                        CI->getName() + ".f" + Twine(FieldNo));
1305    FieldMallocs.push_back(NMI);
1306    new StoreInst(NMI, NGV, CI);
1307  }
1308
1309  // The tricky aspect of this transformation is handling the case when malloc
1310  // fails.  In the original code, malloc failing would set the result pointer
1311  // of malloc to null.  In this case, some mallocs could succeed and others
1312  // could fail.  As such, we emit code that looks like this:
1313  //    F0 = malloc(field0)
1314  //    F1 = malloc(field1)
1315  //    F2 = malloc(field2)
1316  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1317  //      if (F0) { free(F0); F0 = 0; }
1318  //      if (F1) { free(F1); F1 = 0; }
1319  //      if (F2) { free(F2); F2 = 0; }
1320  //    }
1321  // The malloc can also fail if its argument is too large.
1322  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1323  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1324                                  ConstantZero, "isneg");
1325  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1326    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1327                             Constant::getNullValue(FieldMallocs[i]->getType()),
1328                               "isnull");
1329    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1330  }
1331
1332  // Split the basic block at the old malloc.
1333  BasicBlock *OrigBB = CI->getParent();
1334  BasicBlock *ContBB =
1335      OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1336
1337  // Create the block to check the first condition.  Put all these blocks at the
1338  // end of the function as they are unlikely to be executed.
1339  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1340                                                "malloc_ret_null",
1341                                                OrigBB->getParent());
1342
1343  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1344  // branch on RunningOr.
1345  OrigBB->getTerminator()->eraseFromParent();
1346  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1347
1348  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1349  // pointer, because some may be null while others are not.
1350  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1351    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1352    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1353                              Constant::getNullValue(GVVal->getType()));
1354    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1355                                               OrigBB->getParent());
1356    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1357                                               OrigBB->getParent());
1358    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1359                                         Cmp, NullPtrBlock);
1360
1361    // Fill in FreeBlock.
1362    CallInst::CreateFree(GVVal, BI);
1363    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1364                  FreeBlock);
1365    BranchInst::Create(NextBlock, FreeBlock);
1366
1367    NullPtrBlock = NextBlock;
1368  }
1369
1370  BranchInst::Create(ContBB, NullPtrBlock);
1371
1372  // CI is no longer needed, remove it.
1373  CI->eraseFromParent();
1374
1375  /// As we process loads, if we can't immediately update all uses of the load,
1376  /// keep track of what scalarized loads are inserted for a given load.
1377  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1378  InsertedScalarizedValues[GV] = FieldGlobals;
1379
1380  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1381
1382  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1383  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1384  // of the per-field globals instead.
1385  for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1386    Instruction *User = cast<Instruction>(*UI++);
1387
1388    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1389      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1390      continue;
1391    }
1392
1393    // Must be a store of null.
1394    StoreInst *SI = cast<StoreInst>(User);
1395    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1396           "Unexpected heap-sra user!");
1397
1398    // Insert a store of null into each global.
1399    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1400      PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1401      Constant *Null = Constant::getNullValue(PT->getElementType());
1402      new StoreInst(Null, FieldGlobals[i], SI);
1403    }
1404    // Erase the original store.
1405    SI->eraseFromParent();
1406  }
1407
1408  // While we have PHIs that are interesting to rewrite, do it.
1409  while (!PHIsToRewrite.empty()) {
1410    PHINode *PN = PHIsToRewrite.back().first;
1411    unsigned FieldNo = PHIsToRewrite.back().second;
1412    PHIsToRewrite.pop_back();
1413    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1414    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1415
1416    // Add all the incoming values.  This can materialize more phis.
1417    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1418      Value *InVal = PN->getIncomingValue(i);
1419      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1420                               PHIsToRewrite);
1421      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1422    }
1423  }
1424
1425  // Drop all inter-phi links and any loads that made it this far.
1426  for (DenseMap<Value*, std::vector<Value*> >::iterator
1427       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1428       I != E; ++I) {
1429    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1430      PN->dropAllReferences();
1431    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1432      LI->dropAllReferences();
1433  }
1434
1435  // Delete all the phis and loads now that inter-references are dead.
1436  for (DenseMap<Value*, std::vector<Value*> >::iterator
1437       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1438       I != E; ++I) {
1439    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1440      PN->eraseFromParent();
1441    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1442      LI->eraseFromParent();
1443  }
1444
1445  // The old global is now dead, remove it.
1446  GV->eraseFromParent();
1447
1448  ++NumHeapSRA;
1449  return cast<GlobalVariable>(FieldGlobals[0]);
1450}
1451
1452/// This function is called when we see a pointer global variable with a single
1453/// value stored it that is a malloc or cast of malloc.
1454static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1455                                               Type *AllocTy,
1456                                               AtomicOrdering Ordering,
1457                                               const DataLayout &DL,
1458                                               TargetLibraryInfo *TLI) {
1459  // If this is a malloc of an abstract type, don't touch it.
1460  if (!AllocTy->isSized())
1461    return false;
1462
1463  // We can't optimize this global unless all uses of it are *known* to be
1464  // of the malloc value, not of the null initializer value (consider a use
1465  // that compares the global's value against zero to see if the malloc has
1466  // been reached).  To do this, we check to see if all uses of the global
1467  // would trap if the global were null: this proves that they must all
1468  // happen after the malloc.
1469  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1470    return false;
1471
1472  // We can't optimize this if the malloc itself is used in a complex way,
1473  // for example, being stored into multiple globals.  This allows the
1474  // malloc to be stored into the specified global, loaded icmp'd, and
1475  // GEP'd.  These are all things we could transform to using the global
1476  // for.
1477  SmallPtrSet<const PHINode*, 8> PHIs;
1478  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1479    return false;
1480
1481  // If we have a global that is only initialized with a fixed size malloc,
1482  // transform the program to use global memory instead of malloc'd memory.
1483  // This eliminates dynamic allocation, avoids an indirection accessing the
1484  // data, and exposes the resultant global to further GlobalOpt.
1485  // We cannot optimize the malloc if we cannot determine malloc array size.
1486  Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1487  if (!NElems)
1488    return false;
1489
1490  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1491    // Restrict this transformation to only working on small allocations
1492    // (2048 bytes currently), as we don't want to introduce a 16M global or
1493    // something.
1494    if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1495      OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1496      return true;
1497    }
1498
1499  // If the allocation is an array of structures, consider transforming this
1500  // into multiple malloc'd arrays, one for each field.  This is basically
1501  // SRoA for malloc'd memory.
1502
1503  if (Ordering != NotAtomic)
1504    return false;
1505
1506  // If this is an allocation of a fixed size array of structs, analyze as a
1507  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1508  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1509    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1510      AllocTy = AT->getElementType();
1511
1512  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1513  if (!AllocSTy)
1514    return false;
1515
1516  // This the structure has an unreasonable number of fields, leave it
1517  // alone.
1518  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1519      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1520
1521    // If this is a fixed size array, transform the Malloc to be an alloc of
1522    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1523    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1524      Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1525      unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1526      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1527      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1528      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1529                                                   AllocSize, NumElements,
1530                                                   nullptr, CI->getName());
1531      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1532      CI->replaceAllUsesWith(Cast);
1533      CI->eraseFromParent();
1534      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1535        CI = cast<CallInst>(BCI->getOperand(0));
1536      else
1537        CI = cast<CallInst>(Malloc);
1538    }
1539
1540    PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1541                         TLI);
1542    return true;
1543  }
1544
1545  return false;
1546}
1547
1548// Try to optimize globals based on the knowledge that only one value (besides
1549// its initializer) is ever stored to the global.
1550static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1551                                     AtomicOrdering Ordering,
1552                                     const DataLayout &DL,
1553                                     TargetLibraryInfo *TLI) {
1554  // Ignore no-op GEPs and bitcasts.
1555  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1556
1557  // If we are dealing with a pointer global that is initialized to null and
1558  // only has one (non-null) value stored into it, then we can optimize any
1559  // users of the loaded value (often calls and loads) that would trap if the
1560  // value was null.
1561  if (GV->getInitializer()->getType()->isPointerTy() &&
1562      GV->getInitializer()->isNullValue()) {
1563    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1564      if (GV->getInitializer()->getType() != SOVC->getType())
1565        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1566
1567      // Optimize away any trapping uses of the loaded value.
1568      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1569        return true;
1570    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1571      Type *MallocType = getMallocAllocatedType(CI, TLI);
1572      if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1573                                                           Ordering, DL, TLI))
1574        return true;
1575    }
1576  }
1577
1578  return false;
1579}
1580
1581/// At this point, we have learned that the only two values ever stored into GV
1582/// are its initializer and OtherVal.  See if we can shrink the global into a
1583/// boolean and select between the two values whenever it is used.  This exposes
1584/// the values to other scalar optimizations.
1585static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1586  Type *GVElType = GV->getType()->getElementType();
1587
1588  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1589  // an FP value, pointer or vector, don't do this optimization because a select
1590  // between them is very expensive and unlikely to lead to later
1591  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1592  // where v1 and v2 both require constant pool loads, a big loss.
1593  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1594      GVElType->isFloatingPointTy() ||
1595      GVElType->isPointerTy() || GVElType->isVectorTy())
1596    return false;
1597
1598  // Walk the use list of the global seeing if all the uses are load or store.
1599  // If there is anything else, bail out.
1600  for (User *U : GV->users())
1601    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1602      return false;
1603
1604  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1605
1606  // Create the new global, initializing it to false.
1607  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1608                                             false,
1609                                             GlobalValue::InternalLinkage,
1610                                        ConstantInt::getFalse(GV->getContext()),
1611                                             GV->getName()+".b",
1612                                             GV->getThreadLocalMode(),
1613                                             GV->getType()->getAddressSpace());
1614  GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1615
1616  Constant *InitVal = GV->getInitializer();
1617  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1618         "No reason to shrink to bool!");
1619
1620  // If initialized to zero and storing one into the global, we can use a cast
1621  // instead of a select to synthesize the desired value.
1622  bool IsOneZero = false;
1623  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1624    IsOneZero = InitVal->isNullValue() && CI->isOne();
1625
1626  while (!GV->use_empty()) {
1627    Instruction *UI = cast<Instruction>(GV->user_back());
1628    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1629      // Change the store into a boolean store.
1630      bool StoringOther = SI->getOperand(0) == OtherVal;
1631      // Only do this if we weren't storing a loaded value.
1632      Value *StoreVal;
1633      if (StoringOther || SI->getOperand(0) == InitVal) {
1634        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1635                                    StoringOther);
1636      } else {
1637        // Otherwise, we are storing a previously loaded copy.  To do this,
1638        // change the copy from copying the original value to just copying the
1639        // bool.
1640        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1641
1642        // If we've already replaced the input, StoredVal will be a cast or
1643        // select instruction.  If not, it will be a load of the original
1644        // global.
1645        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1646          assert(LI->getOperand(0) == GV && "Not a copy!");
1647          // Insert a new load, to preserve the saved value.
1648          StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1649                                  LI->getOrdering(), LI->getSynchScope(), LI);
1650        } else {
1651          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1652                 "This is not a form that we understand!");
1653          StoreVal = StoredVal->getOperand(0);
1654          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1655        }
1656      }
1657      new StoreInst(StoreVal, NewGV, false, 0,
1658                    SI->getOrdering(), SI->getSynchScope(), SI);
1659    } else {
1660      // Change the load into a load of bool then a select.
1661      LoadInst *LI = cast<LoadInst>(UI);
1662      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1663                                   LI->getOrdering(), LI->getSynchScope(), LI);
1664      Value *NSI;
1665      if (IsOneZero)
1666        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1667      else
1668        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1669      NSI->takeName(LI);
1670      LI->replaceAllUsesWith(NSI);
1671    }
1672    UI->eraseFromParent();
1673  }
1674
1675  // Retain the name of the old global variable. People who are debugging their
1676  // programs may expect these variables to be named the same.
1677  NewGV->takeName(GV);
1678  GV->eraseFromParent();
1679  return true;
1680}
1681
1682bool GlobalOpt::deleteIfDead(GlobalValue &GV) {
1683  GV.removeDeadConstantUsers();
1684
1685  if (!GV.isDiscardableIfUnused())
1686    return false;
1687
1688  if (const Comdat *C = GV.getComdat())
1689    if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1690      return false;
1691
1692  bool Dead;
1693  if (auto *F = dyn_cast<Function>(&GV))
1694    Dead = F->isDefTriviallyDead();
1695  else
1696    Dead = GV.use_empty();
1697  if (!Dead)
1698    return false;
1699
1700  DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1701  GV.eraseFromParent();
1702  ++NumDeleted;
1703  return true;
1704}
1705
1706/// Analyze the specified global variable and optimize it if possible.  If we
1707/// make a change, return true.
1708bool GlobalOpt::processGlobal(GlobalValue &GV) {
1709  // Do more involved optimizations if the global is internal.
1710  if (!GV.hasLocalLinkage())
1711    return false;
1712
1713  GlobalStatus GS;
1714
1715  if (GlobalStatus::analyzeGlobal(&GV, GS))
1716    return false;
1717
1718  bool Changed = false;
1719  if (!GS.IsCompared && !GV.hasUnnamedAddr()) {
1720    GV.setUnnamedAddr(true);
1721    NumUnnamed++;
1722    Changed = true;
1723  }
1724
1725  auto *GVar = dyn_cast<GlobalVariable>(&GV);
1726  if (!GVar)
1727    return Changed;
1728
1729  if (GVar->isConstant() || !GVar->hasInitializer())
1730    return Changed;
1731
1732  return processInternalGlobal(GVar, GS) || Changed;
1733}
1734
1735bool GlobalOpt::isPointerValueDeadOnEntryToFunction(const Function *F, GlobalValue *GV) {
1736  // Find all uses of GV. We expect them all to be in F, and if we can't
1737  // identify any of the uses we bail out.
1738  //
1739  // On each of these uses, identify if the memory that GV points to is
1740  // used/required/live at the start of the function. If it is not, for example
1741  // if the first thing the function does is store to the GV, the GV can
1742  // possibly be demoted.
1743  //
1744  // We don't do an exhaustive search for memory operations - simply look
1745  // through bitcasts as they're quite common and benign.
1746  const DataLayout &DL = GV->getParent()->getDataLayout();
1747  SmallVector<LoadInst *, 4> Loads;
1748  SmallVector<StoreInst *, 4> Stores;
1749  for (auto *U : GV->users()) {
1750    if (Operator::getOpcode(U) == Instruction::BitCast) {
1751      for (auto *UU : U->users()) {
1752        if (auto *LI = dyn_cast<LoadInst>(UU))
1753          Loads.push_back(LI);
1754        else if (auto *SI = dyn_cast<StoreInst>(UU))
1755          Stores.push_back(SI);
1756        else
1757          return false;
1758      }
1759      continue;
1760    }
1761
1762    Instruction *I = dyn_cast<Instruction>(U);
1763    if (!I)
1764      return false;
1765    assert(I->getParent()->getParent() == F);
1766
1767    if (auto *LI = dyn_cast<LoadInst>(I))
1768      Loads.push_back(LI);
1769    else if (auto *SI = dyn_cast<StoreInst>(I))
1770      Stores.push_back(SI);
1771    else
1772      return false;
1773  }
1774
1775  // We have identified all uses of GV into loads and stores. Now check if all
1776  // of them are known not to depend on the value of the global at the function
1777  // entry point. We do this by ensuring that every load is dominated by at
1778  // least one store.
1779  auto &DT = getAnalysis<DominatorTreeWrapperPass>(*const_cast<Function *>(F))
1780                 .getDomTree();
1781
1782  // The below check is quadratic. Check we're not going to do too many tests.
1783  // FIXME: Even though this will always have worst-case quadratic time, we
1784  // could put effort into minimizing the average time by putting stores that
1785  // have been shown to dominate at least one load at the beginning of the
1786  // Stores array, making subsequent dominance checks more likely to succeed
1787  // early.
1788  //
1789  // The threshold here is fairly large because global->local demotion is a
1790  // very powerful optimization should it fire.
1791  const unsigned Threshold = 100;
1792  if (Loads.size() * Stores.size() > Threshold)
1793    return false;
1794
1795  for (auto *L : Loads) {
1796    auto *LTy = L->getType();
1797    if (!std::any_of(Stores.begin(), Stores.end(), [&](StoreInst *S) {
1798          auto *STy = S->getValueOperand()->getType();
1799          // The load is only dominated by the store if DomTree says so
1800          // and the number of bits loaded in L is less than or equal to
1801          // the number of bits stored in S.
1802          return DT.dominates(S, L) &&
1803                 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1804        }))
1805      return false;
1806  }
1807  // All loads have known dependences inside F, so the global can be localized.
1808  return true;
1809}
1810
1811/// C may have non-instruction users. Can all of those users be turned into
1812/// instructions?
1813static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1814  // We don't do this exhaustively. The most common pattern that we really need
1815  // to care about is a constant GEP or constant bitcast - so just looking
1816  // through one single ConstantExpr.
1817  //
1818  // The set of constants that this function returns true for must be able to be
1819  // handled by makeAllConstantUsesInstructions.
1820  for (auto *U : C->users()) {
1821    if (isa<Instruction>(U))
1822      continue;
1823    if (!isa<ConstantExpr>(U))
1824      // Non instruction, non-constantexpr user; cannot convert this.
1825      return false;
1826    for (auto *UU : U->users())
1827      if (!isa<Instruction>(UU))
1828        // A constantexpr used by another constant. We don't try and recurse any
1829        // further but just bail out at this point.
1830        return false;
1831  }
1832
1833  return true;
1834}
1835
1836/// C may have non-instruction users, and
1837/// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1838/// non-instruction users to instructions.
1839static void makeAllConstantUsesInstructions(Constant *C) {
1840  SmallVector<ConstantExpr*,4> Users;
1841  for (auto *U : C->users()) {
1842    if (isa<ConstantExpr>(U))
1843      Users.push_back(cast<ConstantExpr>(U));
1844    else
1845      // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1846      // should not have returned true for C.
1847      assert(
1848          isa<Instruction>(U) &&
1849          "Can't transform non-constantexpr non-instruction to instruction!");
1850  }
1851
1852  SmallVector<Value*,4> UUsers;
1853  for (auto *U : Users) {
1854    UUsers.clear();
1855    for (auto *UU : U->users())
1856      UUsers.push_back(UU);
1857    for (auto *UU : UUsers) {
1858      Instruction *UI = cast<Instruction>(UU);
1859      Instruction *NewU = U->getAsInstruction();
1860      NewU->insertBefore(UI);
1861      UI->replaceUsesOfWith(U, NewU);
1862    }
1863    U->dropAllReferences();
1864  }
1865}
1866
1867/// Analyze the specified global variable and optimize
1868/// it if possible.  If we make a change, return true.
1869bool GlobalOpt::processInternalGlobal(GlobalVariable *GV,
1870                                      const GlobalStatus &GS) {
1871  auto &DL = GV->getParent()->getDataLayout();
1872  // If this is a first class global and has only one accessing function and
1873  // this function is non-recursive, we replace the global with a local alloca
1874  // in this function.
1875  //
1876  // NOTE: It doesn't make sense to promote non-single-value types since we
1877  // are just replacing static memory to stack memory.
1878  //
1879  // If the global is in different address space, don't bring it to stack.
1880  if (!GS.HasMultipleAccessingFunctions &&
1881      GS.AccessingFunction &&
1882      GV->getType()->getElementType()->isSingleValueType() &&
1883      GV->getType()->getAddressSpace() == 0 &&
1884      !GV->isExternallyInitialized() &&
1885      allNonInstructionUsersCanBeMadeInstructions(GV) &&
1886      GS.AccessingFunction->doesNotRecurse() &&
1887      isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV) ) {
1888    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1889    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1890                                                   ->getEntryBlock().begin());
1891    Type *ElemTy = GV->getType()->getElementType();
1892    // FIXME: Pass Global's alignment when globals have alignment
1893    AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
1894                                        GV->getName(), &FirstI);
1895    if (!isa<UndefValue>(GV->getInitializer()))
1896      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1897
1898    makeAllConstantUsesInstructions(GV);
1899
1900    GV->replaceAllUsesWith(Alloca);
1901    GV->eraseFromParent();
1902    ++NumLocalized;
1903    return true;
1904  }
1905
1906  // If the global is never loaded (but may be stored to), it is dead.
1907  // Delete it now.
1908  if (!GS.IsLoaded) {
1909    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1910
1911    bool Changed;
1912    if (isLeakCheckerRoot(GV)) {
1913      // Delete any constant stores to the global.
1914      Changed = CleanupPointerRootUsers(GV, TLI);
1915    } else {
1916      // Delete any stores we can find to the global.  We may not be able to
1917      // make it completely dead though.
1918      Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1919    }
1920
1921    // If the global is dead now, delete it.
1922    if (GV->use_empty()) {
1923      GV->eraseFromParent();
1924      ++NumDeleted;
1925      Changed = true;
1926    }
1927    return Changed;
1928
1929  } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
1930    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1931    GV->setConstant(true);
1932
1933    // Clean up any obviously simplifiable users now.
1934    CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1935
1936    // If the global is dead now, just nuke it.
1937    if (GV->use_empty()) {
1938      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1939            << "all users and delete global!\n");
1940      GV->eraseFromParent();
1941      ++NumDeleted;
1942    }
1943
1944    ++NumMarked;
1945    return true;
1946  } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1947    const DataLayout &DL = GV->getParent()->getDataLayout();
1948    if (SRAGlobal(GV, DL))
1949      return true;
1950  } else if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1951    // If the initial value for the global was an undef value, and if only
1952    // one other value was stored into it, we can just change the
1953    // initializer to be the stored value, then delete all stores to the
1954    // global.  This allows us to mark it constant.
1955    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1956      if (isa<UndefValue>(GV->getInitializer())) {
1957        // Change the initial value here.
1958        GV->setInitializer(SOVConstant);
1959
1960        // Clean up any obviously simplifiable users now.
1961        CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1962
1963        if (GV->use_empty()) {
1964          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1965                       << "simplify all users and delete global!\n");
1966          GV->eraseFromParent();
1967          ++NumDeleted;
1968        }
1969        ++NumSubstitute;
1970        return true;
1971      }
1972
1973    // Try to optimize globals based on the knowledge that only one value
1974    // (besides its initializer) is ever stored to the global.
1975    if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
1976      return true;
1977
1978    // Otherwise, if the global was not a boolean, we can shrink it to be a
1979    // boolean.
1980    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1981      if (GS.Ordering == NotAtomic) {
1982        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1983          ++NumShrunkToBool;
1984          return true;
1985        }
1986      }
1987    }
1988  }
1989
1990  return false;
1991}
1992
1993/// Walk all of the direct calls of the specified function, changing them to
1994/// FastCC.
1995static void ChangeCalleesToFastCall(Function *F) {
1996  for (User *U : F->users()) {
1997    if (isa<BlockAddress>(U))
1998      continue;
1999    CallSite CS(cast<Instruction>(U));
2000    CS.setCallingConv(CallingConv::Fast);
2001  }
2002}
2003
2004static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
2005  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
2006    unsigned Index = Attrs.getSlotIndex(i);
2007    if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
2008      continue;
2009
2010    // There can be only one.
2011    return Attrs.removeAttribute(C, Index, Attribute::Nest);
2012  }
2013
2014  return Attrs;
2015}
2016
2017static void RemoveNestAttribute(Function *F) {
2018  F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2019  for (User *U : F->users()) {
2020    if (isa<BlockAddress>(U))
2021      continue;
2022    CallSite CS(cast<Instruction>(U));
2023    CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2024  }
2025}
2026
2027/// Return true if this is a calling convention that we'd like to change.  The
2028/// idea here is that we don't want to mess with the convention if the user
2029/// explicitly requested something with performance implications like coldcc,
2030/// GHC, or anyregcc.
2031static bool isProfitableToMakeFastCC(Function *F) {
2032  CallingConv::ID CC = F->getCallingConv();
2033  // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2034  return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
2035}
2036
2037bool GlobalOpt::OptimizeFunctions(Module &M) {
2038  bool Changed = false;
2039  // Optimize functions.
2040  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2041    Function *F = &*FI++;
2042    // Functions without names cannot be referenced outside this module.
2043    if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2044      F->setLinkage(GlobalValue::InternalLinkage);
2045
2046    if (deleteIfDead(*F)) {
2047      Changed = true;
2048      continue;
2049    }
2050
2051    Changed |= processGlobal(*F);
2052
2053    if (!F->hasLocalLinkage())
2054      continue;
2055    if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
2056        !F->hasAddressTaken()) {
2057      // If this function has a calling convention worth changing, is not a
2058      // varargs function, and is only called directly, promote it to use the
2059      // Fast calling convention.
2060      F->setCallingConv(CallingConv::Fast);
2061      ChangeCalleesToFastCall(F);
2062      ++NumFastCallFns;
2063      Changed = true;
2064    }
2065
2066    if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2067        !F->hasAddressTaken()) {
2068      // The function is not used by a trampoline intrinsic, so it is safe
2069      // to remove the 'nest' attribute.
2070      RemoveNestAttribute(F);
2071      ++NumNestRemoved;
2072      Changed = true;
2073    }
2074  }
2075  return Changed;
2076}
2077
2078bool GlobalOpt::OptimizeGlobalVars(Module &M) {
2079  bool Changed = false;
2080
2081  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2082       GVI != E; ) {
2083    GlobalVariable *GV = &*GVI++;
2084    // Global variables without names cannot be referenced outside this module.
2085    if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2086      GV->setLinkage(GlobalValue::InternalLinkage);
2087    // Simplify the initializer.
2088    if (GV->hasInitializer())
2089      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
2090        auto &DL = M.getDataLayout();
2091        Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
2092        if (New && New != CE)
2093          GV->setInitializer(New);
2094      }
2095
2096    if (deleteIfDead(*GV)) {
2097      Changed = true;
2098      continue;
2099    }
2100
2101    Changed |= processGlobal(*GV);
2102  }
2103  return Changed;
2104}
2105
2106static inline bool
2107isSimpleEnoughValueToCommit(Constant *C,
2108                            SmallPtrSetImpl<Constant *> &SimpleConstants,
2109                            const DataLayout &DL);
2110
2111/// Return true if the specified constant can be handled by the code generator.
2112/// We don't want to generate something like:
2113///   void *X = &X/42;
2114/// because the code generator doesn't have a relocation that can handle that.
2115///
2116/// This function should be called if C was not found (but just got inserted)
2117/// in SimpleConstants to avoid having to rescan the same constants all the
2118/// time.
2119static bool
2120isSimpleEnoughValueToCommitHelper(Constant *C,
2121                                  SmallPtrSetImpl<Constant *> &SimpleConstants,
2122                                  const DataLayout &DL) {
2123  // Simple global addresses are supported, do not allow dllimport or
2124  // thread-local globals.
2125  if (auto *GV = dyn_cast<GlobalValue>(C))
2126    return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
2127
2128  // Simple integer, undef, constant aggregate zero, etc are all supported.
2129  if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
2130    return true;
2131
2132  // Aggregate values are safe if all their elements are.
2133  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2134      isa<ConstantVector>(C)) {
2135    for (Value *Op : C->operands())
2136      if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
2137        return false;
2138    return true;
2139  }
2140
2141  // We don't know exactly what relocations are allowed in constant expressions,
2142  // so we allow &global+constantoffset, which is safe and uniformly supported
2143  // across targets.
2144  ConstantExpr *CE = cast<ConstantExpr>(C);
2145  switch (CE->getOpcode()) {
2146  case Instruction::BitCast:
2147    // Bitcast is fine if the casted value is fine.
2148    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2149
2150  case Instruction::IntToPtr:
2151  case Instruction::PtrToInt:
2152    // int <=> ptr is fine if the int type is the same size as the
2153    // pointer type.
2154    if (DL.getTypeSizeInBits(CE->getType()) !=
2155        DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
2156      return false;
2157    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2158
2159  // GEP is fine if it is simple + constant offset.
2160  case Instruction::GetElementPtr:
2161    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2162      if (!isa<ConstantInt>(CE->getOperand(i)))
2163        return false;
2164    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2165
2166  case Instruction::Add:
2167    // We allow simple+cst.
2168    if (!isa<ConstantInt>(CE->getOperand(1)))
2169      return false;
2170    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2171  }
2172  return false;
2173}
2174
2175static inline bool
2176isSimpleEnoughValueToCommit(Constant *C,
2177                            SmallPtrSetImpl<Constant *> &SimpleConstants,
2178                            const DataLayout &DL) {
2179  // If we already checked this constant, we win.
2180  if (!SimpleConstants.insert(C).second)
2181    return true;
2182  // Check the constant.
2183  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
2184}
2185
2186
2187/// Return true if this constant is simple enough for us to understand.  In
2188/// particular, if it is a cast to anything other than from one pointer type to
2189/// another pointer type, we punt.  We basically just support direct accesses to
2190/// globals and GEP's of globals.  This should be kept up to date with
2191/// CommitValueTo.
2192static bool isSimpleEnoughPointerToCommit(Constant *C) {
2193  // Conservatively, avoid aggregate types. This is because we don't
2194  // want to worry about them partially overlapping other stores.
2195  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2196    return false;
2197
2198  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2199    // Do not allow weak/*_odr/linkonce linkage or external globals.
2200    return GV->hasUniqueInitializer();
2201
2202  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2203    // Handle a constantexpr gep.
2204    if (CE->getOpcode() == Instruction::GetElementPtr &&
2205        isa<GlobalVariable>(CE->getOperand(0)) &&
2206        cast<GEPOperator>(CE)->isInBounds()) {
2207      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2208      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2209      // external globals.
2210      if (!GV->hasUniqueInitializer())
2211        return false;
2212
2213      // The first index must be zero.
2214      ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
2215      if (!CI || !CI->isZero()) return false;
2216
2217      // The remaining indices must be compile-time known integers within the
2218      // notional bounds of the corresponding static array types.
2219      if (!CE->isGEPWithNoNotionalOverIndexing())
2220        return false;
2221
2222      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2223
2224    // A constantexpr bitcast from a pointer to another pointer is a no-op,
2225    // and we know how to evaluate it by moving the bitcast from the pointer
2226    // operand to the value operand.
2227    } else if (CE->getOpcode() == Instruction::BitCast &&
2228               isa<GlobalVariable>(CE->getOperand(0))) {
2229      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2230      // external globals.
2231      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2232    }
2233  }
2234
2235  return false;
2236}
2237
2238/// Evaluate a piece of a constantexpr store into a global initializer.  This
2239/// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2240/// GEP operands of Addr [0, OpNo) have been stepped into.
2241static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2242                                   ConstantExpr *Addr, unsigned OpNo) {
2243  // Base case of the recursion.
2244  if (OpNo == Addr->getNumOperands()) {
2245    assert(Val->getType() == Init->getType() && "Type mismatch!");
2246    return Val;
2247  }
2248
2249  SmallVector<Constant*, 32> Elts;
2250  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2251    // Break up the constant into its elements.
2252    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2253      Elts.push_back(Init->getAggregateElement(i));
2254
2255    // Replace the element that we are supposed to.
2256    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2257    unsigned Idx = CU->getZExtValue();
2258    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2259    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2260
2261    // Return the modified struct.
2262    return ConstantStruct::get(STy, Elts);
2263  }
2264
2265  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2266  SequentialType *InitTy = cast<SequentialType>(Init->getType());
2267
2268  uint64_t NumElts;
2269  if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2270    NumElts = ATy->getNumElements();
2271  else
2272    NumElts = InitTy->getVectorNumElements();
2273
2274  // Break up the array into elements.
2275  for (uint64_t i = 0, e = NumElts; i != e; ++i)
2276    Elts.push_back(Init->getAggregateElement(i));
2277
2278  assert(CI->getZExtValue() < NumElts);
2279  Elts[CI->getZExtValue()] =
2280    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2281
2282  if (Init->getType()->isArrayTy())
2283    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2284  return ConstantVector::get(Elts);
2285}
2286
2287/// We have decided that Addr (which satisfies the predicate
2288/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2289static void CommitValueTo(Constant *Val, Constant *Addr) {
2290  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2291    assert(GV->hasInitializer());
2292    GV->setInitializer(Val);
2293    return;
2294  }
2295
2296  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2297  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2298  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2299}
2300
2301namespace {
2302
2303/// This class evaluates LLVM IR, producing the Constant representing each SSA
2304/// instruction.  Changes to global variables are stored in a mapping that can
2305/// be iterated over after the evaluation is complete.  Once an evaluation call
2306/// fails, the evaluation object should not be reused.
2307class Evaluator {
2308public:
2309  Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
2310      : DL(DL), TLI(TLI) {
2311    ValueStack.emplace_back();
2312  }
2313
2314  ~Evaluator() {
2315    for (auto &Tmp : AllocaTmps)
2316      // If there are still users of the alloca, the program is doing something
2317      // silly, e.g. storing the address of the alloca somewhere and using it
2318      // later.  Since this is undefined, we'll just make it be null.
2319      if (!Tmp->use_empty())
2320        Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2321  }
2322
2323  /// Evaluate a call to function F, returning true if successful, false if we
2324  /// can't evaluate it.  ActualArgs contains the formal arguments for the
2325  /// function.
2326  bool EvaluateFunction(Function *F, Constant *&RetVal,
2327                        const SmallVectorImpl<Constant*> &ActualArgs);
2328
2329  /// Evaluate all instructions in block BB, returning true if successful, false
2330  /// if we can't evaluate it.  NewBB returns the next BB that control flows
2331  /// into, or null upon return.
2332  bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2333
2334  Constant *getVal(Value *V) {
2335    if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2336    Constant *R = ValueStack.back().lookup(V);
2337    assert(R && "Reference to an uncomputed value!");
2338    return R;
2339  }
2340
2341  void setVal(Value *V, Constant *C) {
2342    ValueStack.back()[V] = C;
2343  }
2344
2345  const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2346    return MutatedMemory;
2347  }
2348
2349  const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
2350    return Invariants;
2351  }
2352
2353private:
2354  Constant *ComputeLoadResult(Constant *P);
2355
2356  /// As we compute SSA register values, we store their contents here. The back
2357  /// of the deque contains the current function and the stack contains the
2358  /// values in the calling frames.
2359  std::deque<DenseMap<Value*, Constant*>> ValueStack;
2360
2361  /// This is used to detect recursion.  In pathological situations we could hit
2362  /// exponential behavior, but at least there is nothing unbounded.
2363  SmallVector<Function*, 4> CallStack;
2364
2365  /// For each store we execute, we update this map.  Loads check this to get
2366  /// the most up-to-date value.  If evaluation is successful, this state is
2367  /// committed to the process.
2368  DenseMap<Constant*, Constant*> MutatedMemory;
2369
2370  /// To 'execute' an alloca, we create a temporary global variable to represent
2371  /// its body.  This vector is needed so we can delete the temporary globals
2372  /// when we are done.
2373  SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
2374
2375  /// These global variables have been marked invariant by the static
2376  /// constructor.
2377  SmallPtrSet<GlobalVariable*, 8> Invariants;
2378
2379  /// These are constants we have checked and know to be simple enough to live
2380  /// in a static initializer of a global.
2381  SmallPtrSet<Constant*, 8> SimpleConstants;
2382
2383  const DataLayout &DL;
2384  const TargetLibraryInfo *TLI;
2385};
2386
2387}  // anonymous namespace
2388
2389/// Return the value that would be computed by a load from P after the stores
2390/// reflected by 'memory' have been performed.  If we can't decide, return null.
2391Constant *Evaluator::ComputeLoadResult(Constant *P) {
2392  // If this memory location has been recently stored, use the stored value: it
2393  // is the most up-to-date.
2394  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2395  if (I != MutatedMemory.end()) return I->second;
2396
2397  // Access it.
2398  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2399    if (GV->hasDefinitiveInitializer())
2400      return GV->getInitializer();
2401    return nullptr;
2402  }
2403
2404  // Handle a constantexpr getelementptr.
2405  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2406    if (CE->getOpcode() == Instruction::GetElementPtr &&
2407        isa<GlobalVariable>(CE->getOperand(0))) {
2408      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2409      if (GV->hasDefinitiveInitializer())
2410        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2411    }
2412
2413  return nullptr;  // don't know how to evaluate.
2414}
2415
2416/// Evaluate all instructions in block BB, returning true if successful, false
2417/// if we can't evaluate it.  NewBB returns the next BB that control flows into,
2418/// or null upon return.
2419bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2420                              BasicBlock *&NextBB) {
2421  // This is the main evaluation loop.
2422  while (1) {
2423    Constant *InstResult = nullptr;
2424
2425    DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
2426
2427    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2428      if (!SI->isSimple()) {
2429        DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2430        return false;  // no volatile/atomic accesses.
2431      }
2432      Constant *Ptr = getVal(SI->getOperand(1));
2433      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2434        DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
2435        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2436        DEBUG(dbgs() << "; To: " << *Ptr << "\n");
2437      }
2438      if (!isSimpleEnoughPointerToCommit(Ptr)) {
2439        // If this is too complex for us to commit, reject it.
2440        DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
2441        return false;
2442      }
2443
2444      Constant *Val = getVal(SI->getOperand(0));
2445
2446      // If this might be too difficult for the backend to handle (e.g. the addr
2447      // of one global variable divided by another) then we can't commit it.
2448      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
2449        DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2450              << "\n");
2451        return false;
2452      }
2453
2454      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2455        if (CE->getOpcode() == Instruction::BitCast) {
2456          DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
2457          // If we're evaluating a store through a bitcast, then we need
2458          // to pull the bitcast off the pointer type and push it onto the
2459          // stored value.
2460          Ptr = CE->getOperand(0);
2461
2462          Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2463
2464          // In order to push the bitcast onto the stored value, a bitcast
2465          // from NewTy to Val's type must be legal.  If it's not, we can try
2466          // introspecting NewTy to find a legal conversion.
2467          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2468            // If NewTy is a struct, we can convert the pointer to the struct
2469            // into a pointer to its first member.
2470            // FIXME: This could be extended to support arrays as well.
2471            if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2472              NewTy = STy->getTypeAtIndex(0U);
2473
2474              IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2475              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2476              Constant * const IdxList[] = {IdxZero, IdxZero};
2477
2478              Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
2479              if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2480                Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2481
2482            // If we can't improve the situation by introspecting NewTy,
2483            // we have to give up.
2484            } else {
2485              DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2486                    "evaluate.\n");
2487              return false;
2488            }
2489          }
2490
2491          // If we found compatible types, go ahead and push the bitcast
2492          // onto the stored value.
2493          Val = ConstantExpr::getBitCast(Val, NewTy);
2494
2495          DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
2496        }
2497      }
2498
2499      MutatedMemory[Ptr] = Val;
2500    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2501      InstResult = ConstantExpr::get(BO->getOpcode(),
2502                                     getVal(BO->getOperand(0)),
2503                                     getVal(BO->getOperand(1)));
2504      DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2505            << "\n");
2506    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2507      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2508                                            getVal(CI->getOperand(0)),
2509                                            getVal(CI->getOperand(1)));
2510      DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2511            << "\n");
2512    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2513      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2514                                         getVal(CI->getOperand(0)),
2515                                         CI->getType());
2516      DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2517            << "\n");
2518    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2519      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2520                                           getVal(SI->getOperand(1)),
2521                                           getVal(SI->getOperand(2)));
2522      DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2523            << "\n");
2524    } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
2525      InstResult = ConstantExpr::getExtractValue(
2526          getVal(EVI->getAggregateOperand()), EVI->getIndices());
2527      DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
2528                   << "\n");
2529    } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
2530      InstResult = ConstantExpr::getInsertValue(
2531          getVal(IVI->getAggregateOperand()),
2532          getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
2533      DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
2534                   << "\n");
2535    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2536      Constant *P = getVal(GEP->getOperand(0));
2537      SmallVector<Constant*, 8> GEPOps;
2538      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2539           i != e; ++i)
2540        GEPOps.push_back(getVal(*i));
2541      InstResult =
2542          ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
2543                                         cast<GEPOperator>(GEP)->isInBounds());
2544      DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2545            << "\n");
2546    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2547
2548      if (!LI->isSimple()) {
2549        DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2550        return false;  // no volatile/atomic accesses.
2551      }
2552
2553      Constant *Ptr = getVal(LI->getOperand(0));
2554      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2555        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2556        DEBUG(dbgs() << "Found a constant pointer expression, constant "
2557              "folding: " << *Ptr << "\n");
2558      }
2559      InstResult = ComputeLoadResult(Ptr);
2560      if (!InstResult) {
2561        DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2562              "\n");
2563        return false; // Could not evaluate load.
2564      }
2565
2566      DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
2567    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2568      if (AI->isArrayAllocation()) {
2569        DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2570        return false;  // Cannot handle array allocs.
2571      }
2572      Type *Ty = AI->getType()->getElementType();
2573      AllocaTmps.push_back(
2574          make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
2575                                      UndefValue::get(Ty), AI->getName()));
2576      InstResult = AllocaTmps.back().get();
2577      DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
2578    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2579      CallSite CS(&*CurInst);
2580
2581      // Debug info can safely be ignored here.
2582      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2583        DEBUG(dbgs() << "Ignoring debug info.\n");
2584        ++CurInst;
2585        continue;
2586      }
2587
2588      // Cannot handle inline asm.
2589      if (isa<InlineAsm>(CS.getCalledValue())) {
2590        DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2591        return false;
2592      }
2593
2594      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2595        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2596          if (MSI->isVolatile()) {
2597            DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2598                  "intrinsic.\n");
2599            return false;
2600          }
2601          Constant *Ptr = getVal(MSI->getDest());
2602          Constant *Val = getVal(MSI->getValue());
2603          Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2604          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2605            // This memset is a no-op.
2606            DEBUG(dbgs() << "Ignoring no-op memset.\n");
2607            ++CurInst;
2608            continue;
2609          }
2610        }
2611
2612        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2613            II->getIntrinsicID() == Intrinsic::lifetime_end) {
2614          DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
2615          ++CurInst;
2616          continue;
2617        }
2618
2619        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2620          // We don't insert an entry into Values, as it doesn't have a
2621          // meaningful return value.
2622          if (!II->use_empty()) {
2623            DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
2624            return false;
2625          }
2626          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2627          Value *PtrArg = getVal(II->getArgOperand(1));
2628          Value *Ptr = PtrArg->stripPointerCasts();
2629          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2630            Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2631            if (!Size->isAllOnesValue() &&
2632                Size->getValue().getLimitedValue() >=
2633                    DL.getTypeStoreSize(ElemTy)) {
2634              Invariants.insert(GV);
2635              DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2636                    << "\n");
2637            } else {
2638              DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2639                    "invariant.\n");
2640            }
2641          }
2642          // Continue even if we do nothing.
2643          ++CurInst;
2644          continue;
2645        } else if (II->getIntrinsicID() == Intrinsic::assume) {
2646          DEBUG(dbgs() << "Skipping assume intrinsic.\n");
2647          ++CurInst;
2648          continue;
2649        }
2650
2651        DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
2652        return false;
2653      }
2654
2655      // Resolve function pointers.
2656      Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2657      if (!Callee || Callee->mayBeOverridden()) {
2658        DEBUG(dbgs() << "Can not resolve function pointer.\n");
2659        return false;  // Cannot resolve.
2660      }
2661
2662      SmallVector<Constant*, 8> Formals;
2663      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2664        Formals.push_back(getVal(*i));
2665
2666      if (Callee->isDeclaration()) {
2667        // If this is a function we can constant fold, do it.
2668        if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2669          InstResult = C;
2670          DEBUG(dbgs() << "Constant folded function call. Result: " <<
2671                *InstResult << "\n");
2672        } else {
2673          DEBUG(dbgs() << "Can not constant fold function call.\n");
2674          return false;
2675        }
2676      } else {
2677        if (Callee->getFunctionType()->isVarArg()) {
2678          DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
2679          return false;
2680        }
2681
2682        Constant *RetVal = nullptr;
2683        // Execute the call, if successful, use the return value.
2684        ValueStack.emplace_back();
2685        if (!EvaluateFunction(Callee, RetVal, Formals)) {
2686          DEBUG(dbgs() << "Failed to evaluate function.\n");
2687          return false;
2688        }
2689        ValueStack.pop_back();
2690        InstResult = RetVal;
2691
2692        if (InstResult) {
2693          DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2694                InstResult << "\n\n");
2695        } else {
2696          DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2697        }
2698      }
2699    } else if (isa<TerminatorInst>(CurInst)) {
2700      DEBUG(dbgs() << "Found a terminator instruction.\n");
2701
2702      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2703        if (BI->isUnconditional()) {
2704          NextBB = BI->getSuccessor(0);
2705        } else {
2706          ConstantInt *Cond =
2707            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2708          if (!Cond) return false;  // Cannot determine.
2709
2710          NextBB = BI->getSuccessor(!Cond->getZExtValue());
2711        }
2712      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2713        ConstantInt *Val =
2714          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2715        if (!Val) return false;  // Cannot determine.
2716        NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2717      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2718        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2719        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2720          NextBB = BA->getBasicBlock();
2721        else
2722          return false;  // Cannot determine.
2723      } else if (isa<ReturnInst>(CurInst)) {
2724        NextBB = nullptr;
2725      } else {
2726        // invoke, unwind, resume, unreachable.
2727        DEBUG(dbgs() << "Can not handle terminator.");
2728        return false;  // Cannot handle this terminator.
2729      }
2730
2731      // We succeeded at evaluating this block!
2732      DEBUG(dbgs() << "Successfully evaluated block.\n");
2733      return true;
2734    } else {
2735      // Did not know how to evaluate this!
2736      DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2737            "\n");
2738      return false;
2739    }
2740
2741    if (!CurInst->use_empty()) {
2742      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2743        InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
2744
2745      setVal(&*CurInst, InstResult);
2746    }
2747
2748    // If we just processed an invoke, we finished evaluating the block.
2749    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2750      NextBB = II->getNormalDest();
2751      DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
2752      return true;
2753    }
2754
2755    // Advance program counter.
2756    ++CurInst;
2757  }
2758}
2759
2760/// Evaluate a call to function F, returning true if successful, false if we
2761/// can't evaluate it.  ActualArgs contains the formal arguments for the
2762/// function.
2763bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2764                                 const SmallVectorImpl<Constant*> &ActualArgs) {
2765  // Check to see if this function is already executing (recursion).  If so,
2766  // bail out.  TODO: we might want to accept limited recursion.
2767  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2768    return false;
2769
2770  CallStack.push_back(F);
2771
2772  // Initialize arguments to the incoming values specified.
2773  unsigned ArgNo = 0;
2774  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2775       ++AI, ++ArgNo)
2776    setVal(&*AI, ActualArgs[ArgNo]);
2777
2778  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2779  // we can only evaluate any one basic block at most once.  This set keeps
2780  // track of what we have executed so we can detect recursive cases etc.
2781  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2782
2783  // CurBB - The current basic block we're evaluating.
2784  BasicBlock *CurBB = &F->front();
2785
2786  BasicBlock::iterator CurInst = CurBB->begin();
2787
2788  while (1) {
2789    BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
2790    DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
2791
2792    if (!EvaluateBlock(CurInst, NextBB))
2793      return false;
2794
2795    if (!NextBB) {
2796      // Successfully running until there's no next block means that we found
2797      // the return.  Fill it the return value and pop the call stack.
2798      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2799      if (RI->getNumOperands())
2800        RetVal = getVal(RI->getOperand(0));
2801      CallStack.pop_back();
2802      return true;
2803    }
2804
2805    // Okay, we succeeded in evaluating this control flow.  See if we have
2806    // executed the new block before.  If so, we have a looping function,
2807    // which we cannot evaluate in reasonable time.
2808    if (!ExecutedBlocks.insert(NextBB).second)
2809      return false;  // looped!
2810
2811    // Okay, we have never been in this block before.  Check to see if there
2812    // are any PHI nodes.  If so, evaluate them with information about where
2813    // we came from.
2814    PHINode *PN = nullptr;
2815    for (CurInst = NextBB->begin();
2816         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2817      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2818
2819    // Advance to the next block.
2820    CurBB = NextBB;
2821  }
2822}
2823
2824/// Evaluate static constructors in the function, if we can.  Return true if we
2825/// can, false otherwise.
2826static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2827                                      const TargetLibraryInfo *TLI) {
2828  // Call the function.
2829  Evaluator Eval(DL, TLI);
2830  Constant *RetValDummy;
2831  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2832                                           SmallVector<Constant*, 0>());
2833
2834  if (EvalSuccess) {
2835    ++NumCtorsEvaluated;
2836
2837    // We succeeded at evaluation: commit the result.
2838    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2839          << F->getName() << "' to " << Eval.getMutatedMemory().size()
2840          << " stores.\n");
2841    for (DenseMap<Constant*, Constant*>::const_iterator I =
2842           Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2843         I != E; ++I)
2844      CommitValueTo(I->second, I->first);
2845    for (GlobalVariable *GV : Eval.getInvariants())
2846      GV->setConstant(true);
2847  }
2848
2849  return EvalSuccess;
2850}
2851
2852static int compareNames(Constant *const *A, Constant *const *B) {
2853  return (*A)->stripPointerCasts()->getName().compare(
2854      (*B)->stripPointerCasts()->getName());
2855}
2856
2857static void setUsedInitializer(GlobalVariable &V,
2858                               const SmallPtrSet<GlobalValue *, 8> &Init) {
2859  if (Init.empty()) {
2860    V.eraseFromParent();
2861    return;
2862  }
2863
2864  // Type of pointer to the array of pointers.
2865  PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2866
2867  SmallVector<llvm::Constant *, 8> UsedArray;
2868  for (GlobalValue *GV : Init) {
2869    Constant *Cast
2870      = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2871    UsedArray.push_back(Cast);
2872  }
2873  // Sort to get deterministic order.
2874  array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2875  ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2876
2877  Module *M = V.getParent();
2878  V.removeFromParent();
2879  GlobalVariable *NV =
2880      new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2881                         llvm::ConstantArray::get(ATy, UsedArray), "");
2882  NV->takeName(&V);
2883  NV->setSection("llvm.metadata");
2884  delete &V;
2885}
2886
2887namespace {
2888/// An easy to access representation of llvm.used and llvm.compiler.used.
2889class LLVMUsed {
2890  SmallPtrSet<GlobalValue *, 8> Used;
2891  SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2892  GlobalVariable *UsedV;
2893  GlobalVariable *CompilerUsedV;
2894
2895public:
2896  LLVMUsed(Module &M) {
2897    UsedV = collectUsedGlobalVariables(M, Used, false);
2898    CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2899  }
2900  typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2901  typedef iterator_range<iterator> used_iterator_range;
2902  iterator usedBegin() { return Used.begin(); }
2903  iterator usedEnd() { return Used.end(); }
2904  used_iterator_range used() {
2905    return used_iterator_range(usedBegin(), usedEnd());
2906  }
2907  iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2908  iterator compilerUsedEnd() { return CompilerUsed.end(); }
2909  used_iterator_range compilerUsed() {
2910    return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2911  }
2912  bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2913  bool compilerUsedCount(GlobalValue *GV) const {
2914    return CompilerUsed.count(GV);
2915  }
2916  bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2917  bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2918  bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2919  bool compilerUsedInsert(GlobalValue *GV) {
2920    return CompilerUsed.insert(GV).second;
2921  }
2922
2923  void syncVariablesAndSets() {
2924    if (UsedV)
2925      setUsedInitializer(*UsedV, Used);
2926    if (CompilerUsedV)
2927      setUsedInitializer(*CompilerUsedV, CompilerUsed);
2928  }
2929};
2930}
2931
2932static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2933  if (GA.use_empty()) // No use at all.
2934    return false;
2935
2936  assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2937         "We should have removed the duplicated "
2938         "element from llvm.compiler.used");
2939  if (!GA.hasOneUse())
2940    // Strictly more than one use. So at least one is not in llvm.used and
2941    // llvm.compiler.used.
2942    return true;
2943
2944  // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2945  return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2946}
2947
2948static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2949                                               const LLVMUsed &U) {
2950  unsigned N = 2;
2951  assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2952         "We should have removed the duplicated "
2953         "element from llvm.compiler.used");
2954  if (U.usedCount(&V) || U.compilerUsedCount(&V))
2955    ++N;
2956  return V.hasNUsesOrMore(N);
2957}
2958
2959static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2960  if (!GA.hasLocalLinkage())
2961    return true;
2962
2963  return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2964}
2965
2966static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2967                             bool &RenameTarget) {
2968  RenameTarget = false;
2969  bool Ret = false;
2970  if (hasUseOtherThanLLVMUsed(GA, U))
2971    Ret = true;
2972
2973  // If the alias is externally visible, we may still be able to simplify it.
2974  if (!mayHaveOtherReferences(GA, U))
2975    return Ret;
2976
2977  // If the aliasee has internal linkage, give it the name and linkage
2978  // of the alias, and delete the alias.  This turns:
2979  //   define internal ... @f(...)
2980  //   @a = alias ... @f
2981  // into:
2982  //   define ... @a(...)
2983  Constant *Aliasee = GA.getAliasee();
2984  GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2985  if (!Target->hasLocalLinkage())
2986    return Ret;
2987
2988  // Do not perform the transform if multiple aliases potentially target the
2989  // aliasee. This check also ensures that it is safe to replace the section
2990  // and other attributes of the aliasee with those of the alias.
2991  if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2992    return Ret;
2993
2994  RenameTarget = true;
2995  return true;
2996}
2997
2998bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2999  bool Changed = false;
3000  LLVMUsed Used(M);
3001
3002  for (GlobalValue *GV : Used.used())
3003    Used.compilerUsedErase(GV);
3004
3005  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
3006       I != E;) {
3007    GlobalAlias *J = &*I++;
3008
3009    // Aliases without names cannot be referenced outside this module.
3010    if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
3011      J->setLinkage(GlobalValue::InternalLinkage);
3012
3013    if (deleteIfDead(*J)) {
3014      Changed = true;
3015      continue;
3016    }
3017
3018    // If the aliasee may change at link time, nothing can be done - bail out.
3019    if (J->mayBeOverridden())
3020      continue;
3021
3022    Constant *Aliasee = J->getAliasee();
3023    GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
3024    // We can't trivially replace the alias with the aliasee if the aliasee is
3025    // non-trivial in some way.
3026    // TODO: Try to handle non-zero GEPs of local aliasees.
3027    if (!Target)
3028      continue;
3029    Target->removeDeadConstantUsers();
3030
3031    // Make all users of the alias use the aliasee instead.
3032    bool RenameTarget;
3033    if (!hasUsesToReplace(*J, Used, RenameTarget))
3034      continue;
3035
3036    J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
3037    ++NumAliasesResolved;
3038    Changed = true;
3039
3040    if (RenameTarget) {
3041      // Give the aliasee the name, linkage and other attributes of the alias.
3042      Target->takeName(&*J);
3043      Target->setLinkage(J->getLinkage());
3044      Target->setVisibility(J->getVisibility());
3045      Target->setDLLStorageClass(J->getDLLStorageClass());
3046
3047      if (Used.usedErase(&*J))
3048        Used.usedInsert(Target);
3049
3050      if (Used.compilerUsedErase(&*J))
3051        Used.compilerUsedInsert(Target);
3052    } else if (mayHaveOtherReferences(*J, Used))
3053      continue;
3054
3055    // Delete the alias.
3056    M.getAliasList().erase(J);
3057    ++NumAliasesRemoved;
3058    Changed = true;
3059  }
3060
3061  Used.syncVariablesAndSets();
3062
3063  return Changed;
3064}
3065
3066static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
3067  if (!TLI->has(LibFunc::cxa_atexit))
3068    return nullptr;
3069
3070  Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
3071
3072  if (!Fn)
3073    return nullptr;
3074
3075  FunctionType *FTy = Fn->getFunctionType();
3076
3077  // Checking that the function has the right return type, the right number of
3078  // parameters and that they all have pointer types should be enough.
3079  if (!FTy->getReturnType()->isIntegerTy() ||
3080      FTy->getNumParams() != 3 ||
3081      !FTy->getParamType(0)->isPointerTy() ||
3082      !FTy->getParamType(1)->isPointerTy() ||
3083      !FTy->getParamType(2)->isPointerTy())
3084    return nullptr;
3085
3086  return Fn;
3087}
3088
3089/// Returns whether the given function is an empty C++ destructor and can
3090/// therefore be eliminated.
3091/// Note that we assume that other optimization passes have already simplified
3092/// the code so we only look for a function with a single basic block, where
3093/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
3094/// other side-effect free instructions.
3095static bool cxxDtorIsEmpty(const Function &Fn,
3096                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
3097  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3098  // nounwind, but that doesn't seem worth doing.
3099  if (Fn.isDeclaration())
3100    return false;
3101
3102  if (++Fn.begin() != Fn.end())
3103    return false;
3104
3105  const BasicBlock &EntryBlock = Fn.getEntryBlock();
3106  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
3107       I != E; ++I) {
3108    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
3109      // Ignore debug intrinsics.
3110      if (isa<DbgInfoIntrinsic>(CI))
3111        continue;
3112
3113      const Function *CalledFn = CI->getCalledFunction();
3114
3115      if (!CalledFn)
3116        return false;
3117
3118      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
3119
3120      // Don't treat recursive functions as empty.
3121      if (!NewCalledFunctions.insert(CalledFn).second)
3122        return false;
3123
3124      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
3125        return false;
3126    } else if (isa<ReturnInst>(*I))
3127      return true; // We're done.
3128    else if (I->mayHaveSideEffects())
3129      return false; // Destructor with side effects, bail.
3130  }
3131
3132  return false;
3133}
3134
3135bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3136  /// Itanium C++ ABI p3.3.5:
3137  ///
3138  ///   After constructing a global (or local static) object, that will require
3139  ///   destruction on exit, a termination function is registered as follows:
3140  ///
3141  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3142  ///
3143  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3144  ///   call f(p) when DSO d is unloaded, before all such termination calls
3145  ///   registered before this one. It returns zero if registration is
3146  ///   successful, nonzero on failure.
3147
3148  // This pass will look for calls to __cxa_atexit where the function is trivial
3149  // and remove them.
3150  bool Changed = false;
3151
3152  for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
3153       I != E;) {
3154    // We're only interested in calls. Theoretically, we could handle invoke
3155    // instructions as well, but neither llvm-gcc nor clang generate invokes
3156    // to __cxa_atexit.
3157    CallInst *CI = dyn_cast<CallInst>(*I++);
3158    if (!CI)
3159      continue;
3160
3161    Function *DtorFn =
3162      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3163    if (!DtorFn)
3164      continue;
3165
3166    SmallPtrSet<const Function *, 8> CalledFunctions;
3167    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3168      continue;
3169
3170    // Just remove the call.
3171    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3172    CI->eraseFromParent();
3173
3174    ++NumCXXDtorsRemoved;
3175
3176    Changed |= true;
3177  }
3178
3179  return Changed;
3180}
3181
3182bool GlobalOpt::runOnModule(Module &M) {
3183  bool Changed = false;
3184
3185  auto &DL = M.getDataLayout();
3186  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3187
3188  bool LocalChange = true;
3189  while (LocalChange) {
3190    LocalChange = false;
3191
3192    NotDiscardableComdats.clear();
3193    for (const GlobalVariable &GV : M.globals())
3194      if (const Comdat *C = GV.getComdat())
3195        if (!GV.isDiscardableIfUnused() || !GV.use_empty())
3196          NotDiscardableComdats.insert(C);
3197    for (Function &F : M)
3198      if (const Comdat *C = F.getComdat())
3199        if (!F.isDefTriviallyDead())
3200          NotDiscardableComdats.insert(C);
3201    for (GlobalAlias &GA : M.aliases())
3202      if (const Comdat *C = GA.getComdat())
3203        if (!GA.isDiscardableIfUnused() || !GA.use_empty())
3204          NotDiscardableComdats.insert(C);
3205
3206    // Delete functions that are trivially dead, ccc -> fastcc
3207    LocalChange |= OptimizeFunctions(M);
3208
3209    // Optimize global_ctors list.
3210    LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
3211      return EvaluateStaticConstructor(F, DL, TLI);
3212    });
3213
3214    // Optimize non-address-taken globals.
3215    LocalChange |= OptimizeGlobalVars(M);
3216
3217    // Resolve aliases, when possible.
3218    LocalChange |= OptimizeGlobalAliases(M);
3219
3220    // Try to remove trivial global destructors if they are not removed
3221    // already.
3222    Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3223    if (CXAAtExitFn)
3224      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3225
3226    Changed |= LocalChange;
3227  }
3228
3229  // TODO: Move all global ctors functions to the end of the module for code
3230  // layout.
3231
3232  return Changed;
3233}
3234
3235