X86TargetMachine.cpp revision 288943
1//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86 specific subclass of TargetMachine.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86TargetMachine.h"
15#include "X86.h"
16#include "X86TargetObjectFile.h"
17#include "X86TargetTransformInfo.h"
18#include "llvm/CodeGen/Passes.h"
19#include "llvm/IR/Function.h"
20#include "llvm/IR/LegacyPassManager.h"
21#include "llvm/Support/CommandLine.h"
22#include "llvm/Support/FormattedStream.h"
23#include "llvm/Support/TargetRegistry.h"
24#include "llvm/Target/TargetOptions.h"
25using namespace llvm;
26
27static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
28                               cl::desc("Enable the machine combiner pass"),
29                               cl::init(true), cl::Hidden);
30
31extern "C" void LLVMInitializeX86Target() {
32  // Register the target.
33  RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
34  RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
35}
36
37static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
38  if (TT.isOSBinFormatMachO()) {
39    if (TT.getArch() == Triple::x86_64)
40      return make_unique<X86_64MachoTargetObjectFile>();
41    return make_unique<TargetLoweringObjectFileMachO>();
42  }
43
44  if (TT.isOSLinux() || TT.isOSNaCl())
45    return make_unique<X86LinuxNaClTargetObjectFile>();
46  if (TT.isOSBinFormatELF())
47    return make_unique<X86ELFTargetObjectFile>();
48  if (TT.isKnownWindowsMSVCEnvironment())
49    return make_unique<X86WindowsTargetObjectFile>();
50  if (TT.isOSBinFormatCOFF())
51    return make_unique<TargetLoweringObjectFileCOFF>();
52  llvm_unreachable("unknown subtarget type");
53}
54
55static std::string computeDataLayout(const Triple &TT) {
56  // X86 is little endian
57  std::string Ret = "e";
58
59  Ret += DataLayout::getManglingComponent(TT);
60  // X86 and x32 have 32 bit pointers.
61  if ((TT.isArch64Bit() &&
62       (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
63      !TT.isArch64Bit())
64    Ret += "-p:32:32";
65
66  // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
67  if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
68    Ret += "-i64:64";
69  else
70    Ret += "-f64:32:64";
71
72  // Some ABIs align long double to 128 bits, others to 32.
73  if (TT.isOSNaCl())
74    ; // No f80
75  else if (TT.isArch64Bit() || TT.isOSDarwin())
76    Ret += "-f80:128";
77  else
78    Ret += "-f80:32";
79
80  // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
81  if (TT.isArch64Bit())
82    Ret += "-n8:16:32:64";
83  else
84    Ret += "-n8:16:32";
85
86  // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
87  if (!TT.isArch64Bit() && TT.isOSWindows())
88    Ret += "-a:0:32-S32";
89  else
90    Ret += "-S128";
91
92  return Ret;
93}
94
95/// X86TargetMachine ctor - Create an X86 target.
96///
97X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
98                                   StringRef CPU, StringRef FS,
99                                   const TargetOptions &Options,
100                                   Reloc::Model RM, CodeModel::Model CM,
101                                   CodeGenOpt::Level OL)
102    : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, RM, CM,
103                        OL),
104      TLOF(createTLOF(getTargetTriple())),
105      Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
106  // Windows stack unwinder gets confused when execution flow "falls through"
107  // after a call to 'noreturn' function.
108  // To prevent that, we emit a trap for 'unreachable' IR instructions.
109  // (which on X86, happens to be the 'ud2' instruction)
110  if (Subtarget.isTargetWin64())
111    this->Options.TrapUnreachable = true;
112
113  // By default (and when -ffast-math is on), enable estimate codegen for
114  // everything except scalar division. By default, use 1 refinement step for
115  // all operations. Defaults may be overridden by using command-line options.
116  // Scalar division estimates are disabled because they break too much
117  // real-world code. These defaults match GCC behavior.
118  this->Options.Reciprocals.setDefaults("sqrtf", true, 1);
119  this->Options.Reciprocals.setDefaults("divf", false, 1);
120  this->Options.Reciprocals.setDefaults("vec-sqrtf", true, 1);
121  this->Options.Reciprocals.setDefaults("vec-divf", true, 1);
122
123  initAsmInfo();
124}
125
126X86TargetMachine::~X86TargetMachine() {}
127
128const X86Subtarget *
129X86TargetMachine::getSubtargetImpl(const Function &F) const {
130  Attribute CPUAttr = F.getFnAttribute("target-cpu");
131  Attribute FSAttr = F.getFnAttribute("target-features");
132
133  std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
134                        ? CPUAttr.getValueAsString().str()
135                        : TargetCPU;
136  std::string FS = !FSAttr.hasAttribute(Attribute::None)
137                       ? FSAttr.getValueAsString().str()
138                       : TargetFS;
139
140  // FIXME: This is related to the code below to reset the target options,
141  // we need to know whether or not the soft float flag is set on the
142  // function before we can generate a subtarget. We also need to use
143  // it as a key for the subtarget since that can be the only difference
144  // between two functions.
145  bool SoftFloat =
146      F.hasFnAttribute("use-soft-float") &&
147      F.getFnAttribute("use-soft-float").getValueAsString() == "true";
148  // If the soft float attribute is set on the function turn on the soft float
149  // subtarget feature.
150  if (SoftFloat)
151    FS += FS.empty() ? "+soft-float" : ",+soft-float";
152
153  auto &I = SubtargetMap[CPU + FS];
154  if (!I) {
155    // This needs to be done before we create a new subtarget since any
156    // creation will depend on the TM and the code generation flags on the
157    // function that reside in TargetOptions.
158    resetTargetOptions(F);
159    I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
160                                        Options.StackAlignmentOverride);
161  }
162  return I.get();
163}
164
165//===----------------------------------------------------------------------===//
166// Command line options for x86
167//===----------------------------------------------------------------------===//
168static cl::opt<bool>
169UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
170  cl::desc("Minimize AVX to SSE transition penalty"),
171  cl::init(true));
172
173//===----------------------------------------------------------------------===//
174// X86 TTI query.
175//===----------------------------------------------------------------------===//
176
177TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() {
178  return TargetIRAnalysis(
179      [this](Function &F) { return TargetTransformInfo(X86TTIImpl(this, F)); });
180}
181
182
183//===----------------------------------------------------------------------===//
184// Pass Pipeline Configuration
185//===----------------------------------------------------------------------===//
186
187namespace {
188/// X86 Code Generator Pass Configuration Options.
189class X86PassConfig : public TargetPassConfig {
190public:
191  X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
192    : TargetPassConfig(TM, PM) {}
193
194  X86TargetMachine &getX86TargetMachine() const {
195    return getTM<X86TargetMachine>();
196  }
197
198  void addIRPasses() override;
199  bool addInstSelector() override;
200  bool addILPOpts() override;
201  bool addPreISel() override;
202  void addPreRegAlloc() override;
203  void addPostRegAlloc() override;
204  void addPreEmitPass() override;
205  void addPreSched2() override;
206};
207} // namespace
208
209TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
210  return new X86PassConfig(this, PM);
211}
212
213void X86PassConfig::addIRPasses() {
214  addPass(createAtomicExpandPass(&getX86TargetMachine()));
215
216  TargetPassConfig::addIRPasses();
217}
218
219bool X86PassConfig::addInstSelector() {
220  // Install an instruction selector.
221  addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
222
223  // For ELF, cleanup any local-dynamic TLS accesses.
224  if (TM->getTargetTriple().isOSBinFormatELF() &&
225      getOptLevel() != CodeGenOpt::None)
226    addPass(createCleanupLocalDynamicTLSPass());
227
228  addPass(createX86GlobalBaseRegPass());
229
230  return false;
231}
232
233bool X86PassConfig::addILPOpts() {
234  addPass(&EarlyIfConverterID);
235  if (EnableMachineCombinerPass)
236    addPass(&MachineCombinerID);
237  return true;
238}
239
240bool X86PassConfig::addPreISel() {
241  // Only add this pass for 32-bit x86 Windows.
242  const Triple &TT = TM->getTargetTriple();
243  if (TT.isOSWindows() && TT.getArch() == Triple::x86)
244    addPass(createX86WinEHStatePass());
245  return true;
246}
247
248void X86PassConfig::addPreRegAlloc() {
249  addPass(createX86CallFrameOptimization());
250}
251
252void X86PassConfig::addPostRegAlloc() {
253  addPass(createX86FloatingPointStackifierPass());
254}
255
256void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
257
258void X86PassConfig::addPreEmitPass() {
259  if (getOptLevel() != CodeGenOpt::None)
260    addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
261
262  if (UseVZeroUpper)
263    addPass(createX86IssueVZeroUpperPass());
264
265  if (getOptLevel() != CodeGenOpt::None) {
266    addPass(createX86PadShortFunctions());
267    addPass(createX86FixupLEAs());
268  }
269}
270