1//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of TargetFrameLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86FrameLowering.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrInfo.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/Analysis/EHPersonalities.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/WinEHFuncInfo.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Function.h"
30#include "llvm/MC/MCAsmInfo.h"
31#include "llvm/MC/MCSymbol.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/Debug.h"
34#include <cstdlib>
35
36using namespace llvm;
37
38X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
39                                   unsigned StackAlignOverride)
40    : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
41                          STI.is64Bit() ? -8 : -4),
42      STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
43  // Cache a bunch of frame-related predicates for this subtarget.
44  SlotSize = TRI->getSlotSize();
45  Is64Bit = STI.is64Bit();
46  IsLP64 = STI.isTarget64BitLP64();
47  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
48  Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
49  StackPtr = TRI->getStackRegister();
50}
51
52bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
53  return !MF.getFrameInfo()->hasVarSizedObjects() &&
54         !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
55}
56
57/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
58/// call frame pseudos can be simplified.  Having a FP, as in the default
59/// implementation, is not sufficient here since we can't always use it.
60/// Use a more nuanced condition.
61bool
62X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
63  return hasReservedCallFrame(MF) ||
64         (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
65         TRI->hasBasePointer(MF);
66}
67
68// needsFrameIndexResolution - Do we need to perform FI resolution for
69// this function. Normally, this is required only when the function
70// has any stack objects. However, FI resolution actually has another job,
71// not apparent from the title - it resolves callframesetup/destroy
72// that were not simplified earlier.
73// So, this is required for x86 functions that have push sequences even
74// when there are no stack objects.
75bool
76X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
77  return MF.getFrameInfo()->hasStackObjects() ||
78         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
79}
80
81/// hasFP - Return true if the specified function should have a dedicated frame
82/// pointer register.  This is true if the function has variable sized allocas
83/// or if frame pointer elimination is disabled.
84bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
85  const MachineFrameInfo *MFI = MF.getFrameInfo();
86  const MachineModuleInfo &MMI = MF.getMMI();
87
88  return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
89          TRI->needsStackRealignment(MF) ||
90          MFI->hasVarSizedObjects() ||
91          MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() ||
92          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
93          MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
94          MFI->hasStackMap() || MFI->hasPatchPoint() ||
95          MFI->hasCopyImplyingStackAdjustment());
96}
97
98static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
99  if (IsLP64) {
100    if (isInt<8>(Imm))
101      return X86::SUB64ri8;
102    return X86::SUB64ri32;
103  } else {
104    if (isInt<8>(Imm))
105      return X86::SUB32ri8;
106    return X86::SUB32ri;
107  }
108}
109
110static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
111  if (IsLP64) {
112    if (isInt<8>(Imm))
113      return X86::ADD64ri8;
114    return X86::ADD64ri32;
115  } else {
116    if (isInt<8>(Imm))
117      return X86::ADD32ri8;
118    return X86::ADD32ri;
119  }
120}
121
122static unsigned getSUBrrOpcode(unsigned isLP64) {
123  return isLP64 ? X86::SUB64rr : X86::SUB32rr;
124}
125
126static unsigned getADDrrOpcode(unsigned isLP64) {
127  return isLP64 ? X86::ADD64rr : X86::ADD32rr;
128}
129
130static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
131  if (IsLP64) {
132    if (isInt<8>(Imm))
133      return X86::AND64ri8;
134    return X86::AND64ri32;
135  }
136  if (isInt<8>(Imm))
137    return X86::AND32ri8;
138  return X86::AND32ri;
139}
140
141static unsigned getLEArOpcode(unsigned IsLP64) {
142  return IsLP64 ? X86::LEA64r : X86::LEA32r;
143}
144
145/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
146/// when it reaches the "return" instruction. We can then pop a stack object
147/// to this register without worry about clobbering it.
148static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
149                                       MachineBasicBlock::iterator &MBBI,
150                                       const X86RegisterInfo *TRI,
151                                       bool Is64Bit) {
152  const MachineFunction *MF = MBB.getParent();
153  const Function *F = MF->getFunction();
154  if (!F || MF->getMMI().callsEHReturn())
155    return 0;
156
157  const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
158
159  unsigned Opc = MBBI->getOpcode();
160  switch (Opc) {
161  default: return 0;
162  case X86::RETL:
163  case X86::RETQ:
164  case X86::RETIL:
165  case X86::RETIQ:
166  case X86::TCRETURNdi:
167  case X86::TCRETURNri:
168  case X86::TCRETURNmi:
169  case X86::TCRETURNdi64:
170  case X86::TCRETURNri64:
171  case X86::TCRETURNmi64:
172  case X86::EH_RETURN:
173  case X86::EH_RETURN64: {
174    SmallSet<uint16_t, 8> Uses;
175    for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
176      MachineOperand &MO = MBBI->getOperand(i);
177      if (!MO.isReg() || MO.isDef())
178        continue;
179      unsigned Reg = MO.getReg();
180      if (!Reg)
181        continue;
182      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
183        Uses.insert(*AI);
184    }
185
186    for (auto CS : AvailableRegs)
187      if (!Uses.count(CS) && CS != X86::RIP)
188        return CS;
189  }
190  }
191
192  return 0;
193}
194
195static bool isEAXLiveIn(MachineBasicBlock &MBB) {
196  for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
197    unsigned Reg = RegMask.PhysReg;
198
199    if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
200        Reg == X86::AH || Reg == X86::AL)
201      return true;
202  }
203
204  return false;
205}
206
207/// Check if the flags need to be preserved before the terminators.
208/// This would be the case, if the eflags is live-in of the region
209/// composed by the terminators or live-out of that region, without
210/// being defined by a terminator.
211static bool
212flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
213  for (const MachineInstr &MI : MBB.terminators()) {
214    bool BreakNext = false;
215    for (const MachineOperand &MO : MI.operands()) {
216      if (!MO.isReg())
217        continue;
218      unsigned Reg = MO.getReg();
219      if (Reg != X86::EFLAGS)
220        continue;
221
222      // This terminator needs an eflags that is not defined
223      // by a previous another terminator:
224      // EFLAGS is live-in of the region composed by the terminators.
225      if (!MO.isDef())
226        return true;
227      // This terminator defines the eflags, i.e., we don't need to preserve it.
228      // However, we still need to check this specific terminator does not
229      // read a live-in value.
230      BreakNext = true;
231    }
232    // We found a definition of the eflags, no need to preserve them.
233    if (BreakNext)
234      return false;
235  }
236
237  // None of the terminators use or define the eflags.
238  // Check if they are live-out, that would imply we need to preserve them.
239  for (const MachineBasicBlock *Succ : MBB.successors())
240    if (Succ->isLiveIn(X86::EFLAGS))
241      return true;
242
243  return false;
244}
245
246/// emitSPUpdate - Emit a series of instructions to increment / decrement the
247/// stack pointer by a constant value.
248void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
249                                    MachineBasicBlock::iterator &MBBI,
250                                    int64_t NumBytes, bool InEpilogue) const {
251  bool isSub = NumBytes < 0;
252  uint64_t Offset = isSub ? -NumBytes : NumBytes;
253
254  uint64_t Chunk = (1LL << 31) - 1;
255  DebugLoc DL = MBB.findDebugLoc(MBBI);
256
257  while (Offset) {
258    if (Offset > Chunk) {
259      // Rather than emit a long series of instructions for large offsets,
260      // load the offset into a register and do one sub/add
261      unsigned Reg = 0;
262
263      if (isSub && !isEAXLiveIn(MBB))
264        Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
265      else
266        Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
267
268      if (Reg) {
269        unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
270        BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
271          .addImm(Offset);
272        Opc = isSub
273          ? getSUBrrOpcode(Is64Bit)
274          : getADDrrOpcode(Is64Bit);
275        MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
276          .addReg(StackPtr)
277          .addReg(Reg);
278        MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
279        Offset = 0;
280        continue;
281      }
282    }
283
284    uint64_t ThisVal = std::min(Offset, Chunk);
285    if (ThisVal == (Is64Bit ? 8 : 4)) {
286      // Use push / pop instead.
287      unsigned Reg = isSub
288        ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
289        : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
290      if (Reg) {
291        unsigned Opc = isSub
292          ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
293          : (Is64Bit ? X86::POP64r  : X86::POP32r);
294        MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
295          .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
296        if (isSub)
297          MI->setFlag(MachineInstr::FrameSetup);
298        else
299          MI->setFlag(MachineInstr::FrameDestroy);
300        Offset -= ThisVal;
301        continue;
302      }
303    }
304
305    MachineInstrBuilder MI = BuildStackAdjustment(
306        MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
307    if (isSub)
308      MI.setMIFlag(MachineInstr::FrameSetup);
309    else
310      MI.setMIFlag(MachineInstr::FrameDestroy);
311
312    Offset -= ThisVal;
313  }
314}
315
316MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
317    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL,
318    int64_t Offset, bool InEpilogue) const {
319  assert(Offset != 0 && "zero offset stack adjustment requested");
320
321  // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
322  // is tricky.
323  bool UseLEA;
324  if (!InEpilogue) {
325    // Check if inserting the prologue at the beginning
326    // of MBB would require to use LEA operations.
327    // We need to use LEA operations if EFLAGS is live in, because
328    // it means an instruction will read it before it gets defined.
329    UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
330  } else {
331    // If we can use LEA for SP but we shouldn't, check that none
332    // of the terminators uses the eflags. Otherwise we will insert
333    // a ADD that will redefine the eflags and break the condition.
334    // Alternatively, we could move the ADD, but this may not be possible
335    // and is an optimization anyway.
336    UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
337    if (UseLEA && !STI.useLeaForSP())
338      UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
339    // If that assert breaks, that means we do not do the right thing
340    // in canUseAsEpilogue.
341    assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
342           "We shouldn't have allowed this insertion point");
343  }
344
345  MachineInstrBuilder MI;
346  if (UseLEA) {
347    MI = addRegOffset(BuildMI(MBB, MBBI, DL,
348                              TII.get(getLEArOpcode(Uses64BitFramePtr)),
349                              StackPtr),
350                      StackPtr, false, Offset);
351  } else {
352    bool IsSub = Offset < 0;
353    uint64_t AbsOffset = IsSub ? -Offset : Offset;
354    unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
355                         : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
356    MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
357             .addReg(StackPtr)
358             .addImm(AbsOffset);
359    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
360  }
361  return MI;
362}
363
364int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
365                                     MachineBasicBlock::iterator &MBBI,
366                                     bool doMergeWithPrevious) const {
367  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
368      (!doMergeWithPrevious && MBBI == MBB.end()))
369    return 0;
370
371  MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
372  MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
373                                                       : std::next(MBBI);
374  unsigned Opc = PI->getOpcode();
375  int Offset = 0;
376
377  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
378       Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
379       Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
380      PI->getOperand(0).getReg() == StackPtr){
381    Offset += PI->getOperand(2).getImm();
382    MBB.erase(PI);
383    if (!doMergeWithPrevious) MBBI = NI;
384  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
385              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
386             PI->getOperand(0).getReg() == StackPtr) {
387    Offset -= PI->getOperand(2).getImm();
388    MBB.erase(PI);
389    if (!doMergeWithPrevious) MBBI = NI;
390  }
391
392  return Offset;
393}
394
395void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
396                                MachineBasicBlock::iterator MBBI, DebugLoc DL,
397                                MCCFIInstruction CFIInst) const {
398  MachineFunction &MF = *MBB.getParent();
399  unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
400  BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
401      .addCFIIndex(CFIIndex);
402}
403
404void
405X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
406                                            MachineBasicBlock::iterator MBBI,
407                                            DebugLoc DL) const {
408  MachineFunction &MF = *MBB.getParent();
409  MachineFrameInfo *MFI = MF.getFrameInfo();
410  MachineModuleInfo &MMI = MF.getMMI();
411  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
412
413  // Add callee saved registers to move list.
414  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
415  if (CSI.empty()) return;
416
417  // Calculate offsets.
418  for (std::vector<CalleeSavedInfo>::const_iterator
419         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
420    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
421    unsigned Reg = I->getReg();
422
423    unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
424    BuildCFI(MBB, MBBI, DL,
425             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
426  }
427}
428
429MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF,
430                                               MachineBasicBlock &MBB,
431                                               MachineBasicBlock::iterator MBBI,
432                                               DebugLoc DL,
433                                               bool InProlog) const {
434  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
435  if (STI.isTargetWindowsCoreCLR()) {
436    if (InProlog) {
437      return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
438    } else {
439      return emitStackProbeInline(MF, MBB, MBBI, DL, false);
440    }
441  } else {
442    return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
443  }
444}
445
446void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
447                                        MachineBasicBlock &PrologMBB) const {
448  const StringRef ChkStkStubSymbol = "__chkstk_stub";
449  MachineInstr *ChkStkStub = nullptr;
450
451  for (MachineInstr &MI : PrologMBB) {
452    if (MI.isCall() && MI.getOperand(0).isSymbol() &&
453        ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
454      ChkStkStub = &MI;
455      break;
456    }
457  }
458
459  if (ChkStkStub != nullptr) {
460    MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
461    assert(std::prev(MBBI).operator==(ChkStkStub) &&
462      "MBBI expected after __chkstk_stub.");
463    DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
464    emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
465    ChkStkStub->eraseFromParent();
466  }
467}
468
469MachineInstr *X86FrameLowering::emitStackProbeInline(
470  MachineFunction &MF, MachineBasicBlock &MBB,
471  MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
472  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
473  assert(STI.is64Bit() && "different expansion needed for 32 bit");
474  assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
475  const TargetInstrInfo &TII = *STI.getInstrInfo();
476  const BasicBlock *LLVM_BB = MBB.getBasicBlock();
477
478  // RAX contains the number of bytes of desired stack adjustment.
479  // The handling here assumes this value has already been updated so as to
480  // maintain stack alignment.
481  //
482  // We need to exit with RSP modified by this amount and execute suitable
483  // page touches to notify the OS that we're growing the stack responsibly.
484  // All stack probing must be done without modifying RSP.
485  //
486  // MBB:
487  //    SizeReg = RAX;
488  //    ZeroReg = 0
489  //    CopyReg = RSP
490  //    Flags, TestReg = CopyReg - SizeReg
491  //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
492  //    LimitReg = gs magic thread env access
493  //    if FinalReg >= LimitReg goto ContinueMBB
494  // RoundBB:
495  //    RoundReg = page address of FinalReg
496  // LoopMBB:
497  //    LoopReg = PHI(LimitReg,ProbeReg)
498  //    ProbeReg = LoopReg - PageSize
499  //    [ProbeReg] = 0
500  //    if (ProbeReg > RoundReg) goto LoopMBB
501  // ContinueMBB:
502  //    RSP = RSP - RAX
503  //    [rest of original MBB]
504
505  // Set up the new basic blocks
506  MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
507  MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
508  MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
509
510  MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
511  MF.insert(MBBIter, RoundMBB);
512  MF.insert(MBBIter, LoopMBB);
513  MF.insert(MBBIter, ContinueMBB);
514
515  // Split MBB and move the tail portion down to ContinueMBB.
516  MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
517  ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
518  ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
519
520  // Some useful constants
521  const int64_t ThreadEnvironmentStackLimit = 0x10;
522  const int64_t PageSize = 0x1000;
523  const int64_t PageMask = ~(PageSize - 1);
524
525  // Registers we need. For the normal case we use virtual
526  // registers. For the prolog expansion we use RAX, RCX and RDX.
527  MachineRegisterInfo &MRI = MF.getRegInfo();
528  const TargetRegisterClass *RegClass = &X86::GR64RegClass;
529  const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
530                                    : MRI.createVirtualRegister(RegClass),
531                 ZeroReg = InProlog ? (unsigned)X86::RCX
532                                    : MRI.createVirtualRegister(RegClass),
533                 CopyReg = InProlog ? (unsigned)X86::RDX
534                                    : MRI.createVirtualRegister(RegClass),
535                 TestReg = InProlog ? (unsigned)X86::RDX
536                                    : MRI.createVirtualRegister(RegClass),
537                 FinalReg = InProlog ? (unsigned)X86::RDX
538                                     : MRI.createVirtualRegister(RegClass),
539                 RoundedReg = InProlog ? (unsigned)X86::RDX
540                                       : MRI.createVirtualRegister(RegClass),
541                 LimitReg = InProlog ? (unsigned)X86::RCX
542                                     : MRI.createVirtualRegister(RegClass),
543                 JoinReg = InProlog ? (unsigned)X86::RCX
544                                    : MRI.createVirtualRegister(RegClass),
545                 ProbeReg = InProlog ? (unsigned)X86::RCX
546                                     : MRI.createVirtualRegister(RegClass);
547
548  // SP-relative offsets where we can save RCX and RDX.
549  int64_t RCXShadowSlot = 0;
550  int64_t RDXShadowSlot = 0;
551
552  // If inlining in the prolog, save RCX and RDX.
553  // Future optimization: don't save or restore if not live in.
554  if (InProlog) {
555    // Compute the offsets. We need to account for things already
556    // pushed onto the stack at this point: return address, frame
557    // pointer (if used), and callee saves.
558    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
559    const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
560    const bool HasFP = hasFP(MF);
561    RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
562    RDXShadowSlot = RCXShadowSlot + 8;
563    // Emit the saves.
564    addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
565                 RCXShadowSlot)
566        .addReg(X86::RCX);
567    addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
568                 RDXShadowSlot)
569        .addReg(X86::RDX);
570  } else {
571    // Not in the prolog. Copy RAX to a virtual reg.
572    BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
573  }
574
575  // Add code to MBB to check for overflow and set the new target stack pointer
576  // to zero if so.
577  BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
578      .addReg(ZeroReg, RegState::Undef)
579      .addReg(ZeroReg, RegState::Undef);
580  BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
581  BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
582      .addReg(CopyReg)
583      .addReg(SizeReg);
584  BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
585      .addReg(TestReg)
586      .addReg(ZeroReg);
587
588  // FinalReg now holds final stack pointer value, or zero if
589  // allocation would overflow. Compare against the current stack
590  // limit from the thread environment block. Note this limit is the
591  // lowest touched page on the stack, not the point at which the OS
592  // will cause an overflow exception, so this is just an optimization
593  // to avoid unnecessarily touching pages that are below the current
594  // SP but already commited to the stack by the OS.
595  BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
596      .addReg(0)
597      .addImm(1)
598      .addReg(0)
599      .addImm(ThreadEnvironmentStackLimit)
600      .addReg(X86::GS);
601  BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
602  // Jump if the desired stack pointer is at or above the stack limit.
603  BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
604
605  // Add code to roundMBB to round the final stack pointer to a page boundary.
606  BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
607      .addReg(FinalReg)
608      .addImm(PageMask);
609  BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
610
611  // LimitReg now holds the current stack limit, RoundedReg page-rounded
612  // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
613  // and probe until we reach RoundedReg.
614  if (!InProlog) {
615    BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
616        .addReg(LimitReg)
617        .addMBB(RoundMBB)
618        .addReg(ProbeReg)
619        .addMBB(LoopMBB);
620  }
621
622  addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
623               false, -PageSize);
624
625  // Probe by storing a byte onto the stack.
626  BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
627      .addReg(ProbeReg)
628      .addImm(1)
629      .addReg(0)
630      .addImm(0)
631      .addReg(0)
632      .addImm(0);
633  BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
634      .addReg(RoundedReg)
635      .addReg(ProbeReg);
636  BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
637
638  MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
639
640  // If in prolog, restore RDX and RCX.
641  if (InProlog) {
642    addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
643                         X86::RCX),
644                 X86::RSP, false, RCXShadowSlot);
645    addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
646                         X86::RDX),
647                 X86::RSP, false, RDXShadowSlot);
648  }
649
650  // Now that the probing is done, add code to continueMBB to update
651  // the stack pointer for real.
652  BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
653      .addReg(X86::RSP)
654      .addReg(SizeReg);
655
656  // Add the control flow edges we need.
657  MBB.addSuccessor(ContinueMBB);
658  MBB.addSuccessor(RoundMBB);
659  RoundMBB->addSuccessor(LoopMBB);
660  LoopMBB->addSuccessor(ContinueMBB);
661  LoopMBB->addSuccessor(LoopMBB);
662
663  // Mark all the instructions added to the prolog as frame setup.
664  if (InProlog) {
665    for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
666      BeforeMBBI->setFlag(MachineInstr::FrameSetup);
667    }
668    for (MachineInstr &MI : *RoundMBB) {
669      MI.setFlag(MachineInstr::FrameSetup);
670    }
671    for (MachineInstr &MI : *LoopMBB) {
672      MI.setFlag(MachineInstr::FrameSetup);
673    }
674    for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
675         CMBBI != ContinueMBBI; ++CMBBI) {
676      CMBBI->setFlag(MachineInstr::FrameSetup);
677    }
678  }
679
680  // Possible TODO: physreg liveness for InProlog case.
681
682  return ContinueMBBI;
683}
684
685MachineInstr *X86FrameLowering::emitStackProbeCall(
686    MachineFunction &MF, MachineBasicBlock &MBB,
687    MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
688  bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
689
690  unsigned CallOp;
691  if (Is64Bit)
692    CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
693  else
694    CallOp = X86::CALLpcrel32;
695
696  const char *Symbol;
697  if (Is64Bit) {
698    if (STI.isTargetCygMing()) {
699      Symbol = "___chkstk_ms";
700    } else {
701      Symbol = "__chkstk";
702    }
703  } else if (STI.isTargetCygMing())
704    Symbol = "_alloca";
705  else
706    Symbol = "_chkstk";
707
708  MachineInstrBuilder CI;
709  MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
710
711  // All current stack probes take AX and SP as input, clobber flags, and
712  // preserve all registers. x86_64 probes leave RSP unmodified.
713  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
714    // For the large code model, we have to call through a register. Use R11,
715    // as it is scratch in all supported calling conventions.
716    BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
717        .addExternalSymbol(Symbol);
718    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
719  } else {
720    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
721  }
722
723  unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
724  unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
725  CI.addReg(AX, RegState::Implicit)
726      .addReg(SP, RegState::Implicit)
727      .addReg(AX, RegState::Define | RegState::Implicit)
728      .addReg(SP, RegState::Define | RegState::Implicit)
729      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
730
731  if (Is64Bit) {
732    // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
733    // themselves. It also does not clobber %rax so we can reuse it when
734    // adjusting %rsp.
735    BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
736        .addReg(X86::RSP)
737        .addReg(X86::RAX);
738  }
739
740  if (InProlog) {
741    // Apply the frame setup flag to all inserted instrs.
742    for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
743      ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
744  }
745
746  return MBBI;
747}
748
749MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
750    MachineFunction &MF, MachineBasicBlock &MBB,
751    MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
752
753  assert(InProlog && "ChkStkStub called outside prolog!");
754
755  BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
756      .addExternalSymbol("__chkstk_stub");
757
758  return MBBI;
759}
760
761static unsigned calculateSetFPREG(uint64_t SPAdjust) {
762  // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
763  // and might require smaller successive adjustments.
764  const uint64_t Win64MaxSEHOffset = 128;
765  uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
766  // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
767  return SEHFrameOffset & -16;
768}
769
770// If we're forcing a stack realignment we can't rely on just the frame
771// info, we need to know the ABI stack alignment as well in case we
772// have a call out.  Otherwise just make sure we have some alignment - we'll
773// go with the minimum SlotSize.
774uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
775  const MachineFrameInfo *MFI = MF.getFrameInfo();
776  uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
777  unsigned StackAlign = getStackAlignment();
778  if (MF.getFunction()->hasFnAttribute("stackrealign")) {
779    if (MFI->hasCalls())
780      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
781    else if (MaxAlign < SlotSize)
782      MaxAlign = SlotSize;
783  }
784  return MaxAlign;
785}
786
787void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
788                                          MachineBasicBlock::iterator MBBI,
789                                          DebugLoc DL, unsigned Reg,
790                                          uint64_t MaxAlign) const {
791  uint64_t Val = -MaxAlign;
792  unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
793  MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
794                         .addReg(Reg)
795                         .addImm(Val)
796                         .setMIFlag(MachineInstr::FrameSetup);
797
798  // The EFLAGS implicit def is dead.
799  MI->getOperand(3).setIsDead();
800}
801
802/// emitPrologue - Push callee-saved registers onto the stack, which
803/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
804/// space for local variables. Also emit labels used by the exception handler to
805/// generate the exception handling frames.
806
807/*
808  Here's a gist of what gets emitted:
809
810  ; Establish frame pointer, if needed
811  [if needs FP]
812      push  %rbp
813      .cfi_def_cfa_offset 16
814      .cfi_offset %rbp, -16
815      .seh_pushreg %rpb
816      mov  %rsp, %rbp
817      .cfi_def_cfa_register %rbp
818
819  ; Spill general-purpose registers
820  [for all callee-saved GPRs]
821      pushq %<reg>
822      [if not needs FP]
823         .cfi_def_cfa_offset (offset from RETADDR)
824      .seh_pushreg %<reg>
825
826  ; If the required stack alignment > default stack alignment
827  ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
828  ; of unknown size in the stack frame.
829  [if stack needs re-alignment]
830      and  $MASK, %rsp
831
832  ; Allocate space for locals
833  [if target is Windows and allocated space > 4096 bytes]
834      ; Windows needs special care for allocations larger
835      ; than one page.
836      mov $NNN, %rax
837      call ___chkstk_ms/___chkstk
838      sub  %rax, %rsp
839  [else]
840      sub  $NNN, %rsp
841
842  [if needs FP]
843      .seh_stackalloc (size of XMM spill slots)
844      .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
845  [else]
846      .seh_stackalloc NNN
847
848  ; Spill XMMs
849  ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
850  ; they may get spilled on any platform, if the current function
851  ; calls @llvm.eh.unwind.init
852  [if needs FP]
853      [for all callee-saved XMM registers]
854          movaps  %<xmm reg>, -MMM(%rbp)
855      [for all callee-saved XMM registers]
856          .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
857              ; i.e. the offset relative to (%rbp - SEHFrameOffset)
858  [else]
859      [for all callee-saved XMM registers]
860          movaps  %<xmm reg>, KKK(%rsp)
861      [for all callee-saved XMM registers]
862          .seh_savexmm %<xmm reg>, KKK
863
864  .seh_endprologue
865
866  [if needs base pointer]
867      mov  %rsp, %rbx
868      [if needs to restore base pointer]
869          mov %rsp, -MMM(%rbp)
870
871  ; Emit CFI info
872  [if needs FP]
873      [for all callee-saved registers]
874          .cfi_offset %<reg>, (offset from %rbp)
875  [else]
876       .cfi_def_cfa_offset (offset from RETADDR)
877      [for all callee-saved registers]
878          .cfi_offset %<reg>, (offset from %rsp)
879
880  Notes:
881  - .seh directives are emitted only for Windows 64 ABI
882  - .cfi directives are emitted for all other ABIs
883  - for 32-bit code, substitute %e?? registers for %r??
884*/
885
886void X86FrameLowering::emitPrologue(MachineFunction &MF,
887                                    MachineBasicBlock &MBB) const {
888  assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
889         "MF used frame lowering for wrong subtarget");
890  MachineBasicBlock::iterator MBBI = MBB.begin();
891  MachineFrameInfo *MFI = MF.getFrameInfo();
892  const Function *Fn = MF.getFunction();
893  MachineModuleInfo &MMI = MF.getMMI();
894  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
895  uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
896  uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
897  bool IsFunclet = MBB.isEHFuncletEntry();
898  EHPersonality Personality = EHPersonality::Unknown;
899  if (Fn->hasPersonalityFn())
900    Personality = classifyEHPersonality(Fn->getPersonalityFn());
901  bool FnHasClrFunclet =
902      MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
903  bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
904  bool HasFP = hasFP(MF);
905  bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
906  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
907  bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
908  bool NeedsDwarfCFI =
909      !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
910  unsigned FramePtr = TRI->getFrameRegister(MF);
911  const unsigned MachineFramePtr =
912      STI.isTarget64BitILP32()
913          ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
914  unsigned BasePtr = TRI->getBaseRegister();
915
916  // Debug location must be unknown since the first debug location is used
917  // to determine the end of the prologue.
918  DebugLoc DL;
919
920  // Add RETADDR move area to callee saved frame size.
921  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
922  if (TailCallReturnAddrDelta && IsWin64Prologue)
923    report_fatal_error("Can't handle guaranteed tail call under win64 yet");
924
925  if (TailCallReturnAddrDelta < 0)
926    X86FI->setCalleeSavedFrameSize(
927      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
928
929  bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
930
931  // The default stack probe size is 4096 if the function has no stackprobesize
932  // attribute.
933  unsigned StackProbeSize = 4096;
934  if (Fn->hasFnAttribute("stack-probe-size"))
935    Fn->getFnAttribute("stack-probe-size")
936        .getValueAsString()
937        .getAsInteger(0, StackProbeSize);
938
939  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
940  // function, and use up to 128 bytes of stack space, don't have a frame
941  // pointer, calls, or dynamic alloca then we do not need to adjust the
942  // stack pointer (we fit in the Red Zone). We also check that we don't
943  // push and pop from the stack.
944  if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
945      !TRI->needsStackRealignment(MF) &&
946      !MFI->hasVarSizedObjects() &&             // No dynamic alloca.
947      !MFI->adjustsStack() &&                   // No calls.
948      !IsWin64CC &&                             // Win64 has no Red Zone
949      !MFI->hasCopyImplyingStackAdjustment() && // Don't push and pop.
950      !MF.shouldSplitStack()) {                 // Regular stack
951    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
952    if (HasFP) MinSize += SlotSize;
953    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
954    MFI->setStackSize(StackSize);
955  }
956
957  // Insert stack pointer adjustment for later moving of return addr.  Only
958  // applies to tail call optimized functions where the callee argument stack
959  // size is bigger than the callers.
960  if (TailCallReturnAddrDelta < 0) {
961    BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
962                         /*InEpilogue=*/false)
963        .setMIFlag(MachineInstr::FrameSetup);
964  }
965
966  // Mapping for machine moves:
967  //
968  //   DST: VirtualFP AND
969  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
970  //        ELSE                        => DW_CFA_def_cfa
971  //
972  //   SRC: VirtualFP AND
973  //        DST: Register               => DW_CFA_def_cfa_register
974  //
975  //   ELSE
976  //        OFFSET < 0                  => DW_CFA_offset_extended_sf
977  //        REG < 64                    => DW_CFA_offset + Reg
978  //        ELSE                        => DW_CFA_offset_extended
979
980  uint64_t NumBytes = 0;
981  int stackGrowth = -SlotSize;
982
983  // Find the funclet establisher parameter
984  unsigned Establisher = X86::NoRegister;
985  if (IsClrFunclet)
986    Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
987  else if (IsFunclet)
988    Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
989
990  if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
991    // Immediately spill establisher into the home slot.
992    // The runtime cares about this.
993    // MOV64mr %rdx, 16(%rsp)
994    unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
995    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
996        .addReg(Establisher)
997        .setMIFlag(MachineInstr::FrameSetup);
998    MBB.addLiveIn(Establisher);
999  }
1000
1001  if (HasFP) {
1002    // Calculate required stack adjustment.
1003    uint64_t FrameSize = StackSize - SlotSize;
1004    // If required, include space for extra hidden slot for stashing base pointer.
1005    if (X86FI->getRestoreBasePointer())
1006      FrameSize += SlotSize;
1007
1008    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1009
1010    // Callee-saved registers are pushed on stack before the stack is realigned.
1011    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1012      NumBytes = RoundUpToAlignment(NumBytes, MaxAlign);
1013
1014    // Get the offset of the stack slot for the EBP register, which is
1015    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1016    // Update the frame offset adjustment.
1017    if (!IsFunclet)
1018      MFI->setOffsetAdjustment(-NumBytes);
1019    else
1020      assert(MFI->getOffsetAdjustment() == -(int)NumBytes &&
1021             "should calculate same local variable offset for funclets");
1022
1023    // Save EBP/RBP into the appropriate stack slot.
1024    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1025      .addReg(MachineFramePtr, RegState::Kill)
1026      .setMIFlag(MachineInstr::FrameSetup);
1027
1028    if (NeedsDwarfCFI) {
1029      // Mark the place where EBP/RBP was saved.
1030      // Define the current CFA rule to use the provided offset.
1031      assert(StackSize);
1032      BuildCFI(MBB, MBBI, DL,
1033               MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1034
1035      // Change the rule for the FramePtr to be an "offset" rule.
1036      unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1037      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1038                                  nullptr, DwarfFramePtr, 2 * stackGrowth));
1039    }
1040
1041    if (NeedsWinCFI) {
1042      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1043          .addImm(FramePtr)
1044          .setMIFlag(MachineInstr::FrameSetup);
1045    }
1046
1047    if (!IsWin64Prologue && !IsFunclet) {
1048      // Update EBP with the new base value.
1049      BuildMI(MBB, MBBI, DL,
1050              TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1051              FramePtr)
1052          .addReg(StackPtr)
1053          .setMIFlag(MachineInstr::FrameSetup);
1054
1055      if (NeedsDwarfCFI) {
1056        // Mark effective beginning of when frame pointer becomes valid.
1057        // Define the current CFA to use the EBP/RBP register.
1058        unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1059        BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1060                                    nullptr, DwarfFramePtr));
1061      }
1062    }
1063
1064    // Mark the FramePtr as live-in in every block. Don't do this again for
1065    // funclet prologues.
1066    if (!IsFunclet) {
1067      for (MachineBasicBlock &EveryMBB : MF)
1068        EveryMBB.addLiveIn(MachineFramePtr);
1069    }
1070  } else {
1071    assert(!IsFunclet && "funclets without FPs not yet implemented");
1072    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1073  }
1074
1075  // For EH funclets, only allocate enough space for outgoing calls. Save the
1076  // NumBytes value that we would've used for the parent frame.
1077  unsigned ParentFrameNumBytes = NumBytes;
1078  if (IsFunclet)
1079    NumBytes = getWinEHFuncletFrameSize(MF);
1080
1081  // Skip the callee-saved push instructions.
1082  bool PushedRegs = false;
1083  int StackOffset = 2 * stackGrowth;
1084
1085  while (MBBI != MBB.end() &&
1086         MBBI->getFlag(MachineInstr::FrameSetup) &&
1087         (MBBI->getOpcode() == X86::PUSH32r ||
1088          MBBI->getOpcode() == X86::PUSH64r)) {
1089    PushedRegs = true;
1090    unsigned Reg = MBBI->getOperand(0).getReg();
1091    ++MBBI;
1092
1093    if (!HasFP && NeedsDwarfCFI) {
1094      // Mark callee-saved push instruction.
1095      // Define the current CFA rule to use the provided offset.
1096      assert(StackSize);
1097      BuildCFI(MBB, MBBI, DL,
1098               MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1099      StackOffset += stackGrowth;
1100    }
1101
1102    if (NeedsWinCFI) {
1103      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
1104          MachineInstr::FrameSetup);
1105    }
1106  }
1107
1108  // Realign stack after we pushed callee-saved registers (so that we'll be
1109  // able to calculate their offsets from the frame pointer).
1110  // Don't do this for Win64, it needs to realign the stack after the prologue.
1111  if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1112    assert(HasFP && "There should be a frame pointer if stack is realigned.");
1113    BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1114  }
1115
1116  // If there is an SUB32ri of ESP immediately before this instruction, merge
1117  // the two. This can be the case when tail call elimination is enabled and
1118  // the callee has more arguments then the caller.
1119  NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1120
1121  // Adjust stack pointer: ESP -= numbytes.
1122
1123  // Windows and cygwin/mingw require a prologue helper routine when allocating
1124  // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1125  // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1126  // stack and adjust the stack pointer in one go.  The 64-bit version of
1127  // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1128  // responsible for adjusting the stack pointer.  Touching the stack at 4K
1129  // increments is necessary to ensure that the guard pages used by the OS
1130  // virtual memory manager are allocated in correct sequence.
1131  uint64_t AlignedNumBytes = NumBytes;
1132  if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1133    AlignedNumBytes = RoundUpToAlignment(AlignedNumBytes, MaxAlign);
1134  if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1135    // Check whether EAX is livein for this block.
1136    bool isEAXAlive = isEAXLiveIn(MBB);
1137
1138    if (isEAXAlive) {
1139      // Sanity check that EAX is not livein for this function.
1140      // It should not be, so throw an assert.
1141      assert(!Is64Bit && "EAX is livein in x64 case!");
1142
1143      // Save EAX
1144      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1145        .addReg(X86::EAX, RegState::Kill)
1146        .setMIFlag(MachineInstr::FrameSetup);
1147    }
1148
1149    if (Is64Bit) {
1150      // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1151      // Function prologue is responsible for adjusting the stack pointer.
1152      if (isUInt<32>(NumBytes)) {
1153        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1154            .addImm(NumBytes)
1155            .setMIFlag(MachineInstr::FrameSetup);
1156      } else if (isInt<32>(NumBytes)) {
1157        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1158            .addImm(NumBytes)
1159            .setMIFlag(MachineInstr::FrameSetup);
1160      } else {
1161        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1162            .addImm(NumBytes)
1163            .setMIFlag(MachineInstr::FrameSetup);
1164      }
1165    } else {
1166      // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1167      // We'll also use 4 already allocated bytes for EAX.
1168      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1169          .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1170          .setMIFlag(MachineInstr::FrameSetup);
1171    }
1172
1173    // Call __chkstk, __chkstk_ms, or __alloca.
1174    emitStackProbe(MF, MBB, MBBI, DL, true);
1175
1176    if (isEAXAlive) {
1177      // Restore EAX
1178      MachineInstr *MI =
1179          addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1180                       StackPtr, false, NumBytes - 4);
1181      MI->setFlag(MachineInstr::FrameSetup);
1182      MBB.insert(MBBI, MI);
1183    }
1184  } else if (NumBytes) {
1185    emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
1186  }
1187
1188  if (NeedsWinCFI && NumBytes)
1189    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1190        .addImm(NumBytes)
1191        .setMIFlag(MachineInstr::FrameSetup);
1192
1193  int SEHFrameOffset = 0;
1194  unsigned SPOrEstablisher;
1195  if (IsFunclet) {
1196    if (IsClrFunclet) {
1197      // The establisher parameter passed to a CLR funclet is actually a pointer
1198      // to the (mostly empty) frame of its nearest enclosing funclet; we have
1199      // to find the root function establisher frame by loading the PSPSym from
1200      // the intermediate frame.
1201      unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1202      MachinePointerInfo NoInfo;
1203      MBB.addLiveIn(Establisher);
1204      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1205                   Establisher, false, PSPSlotOffset)
1206          .addMemOperand(MF.getMachineMemOperand(
1207              NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1208      ;
1209      // Save the root establisher back into the current funclet's (mostly
1210      // empty) frame, in case a sub-funclet or the GC needs it.
1211      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1212                   false, PSPSlotOffset)
1213          .addReg(Establisher)
1214          .addMemOperand(
1215              MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1216                                                  MachineMemOperand::MOVolatile,
1217                                      SlotSize, SlotSize));
1218    }
1219    SPOrEstablisher = Establisher;
1220  } else {
1221    SPOrEstablisher = StackPtr;
1222  }
1223
1224  if (IsWin64Prologue && HasFP) {
1225    // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1226    // this calculation on the incoming establisher, which holds the value of
1227    // RSP from the parent frame at the end of the prologue.
1228    SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1229    if (SEHFrameOffset)
1230      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1231                   SPOrEstablisher, false, SEHFrameOffset);
1232    else
1233      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1234          .addReg(SPOrEstablisher);
1235
1236    // If this is not a funclet, emit the CFI describing our frame pointer.
1237    if (NeedsWinCFI && !IsFunclet) {
1238      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1239          .addImm(FramePtr)
1240          .addImm(SEHFrameOffset)
1241          .setMIFlag(MachineInstr::FrameSetup);
1242      if (isAsynchronousEHPersonality(Personality))
1243        MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1244    }
1245  } else if (IsFunclet && STI.is32Bit()) {
1246    // Reset EBP / ESI to something good for funclets.
1247    MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1248    // If we're a catch funclet, we can be returned to via catchret. Save ESP
1249    // into the registration node so that the runtime will restore it for us.
1250    if (!MBB.isCleanupFuncletEntry()) {
1251      assert(Personality == EHPersonality::MSVC_CXX);
1252      unsigned FrameReg;
1253      int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1254      int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1255      // ESP is the first field, so no extra displacement is needed.
1256      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1257                   false, EHRegOffset)
1258          .addReg(X86::ESP);
1259    }
1260  }
1261
1262  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1263    const MachineInstr *FrameInstr = &*MBBI;
1264    ++MBBI;
1265
1266    if (NeedsWinCFI) {
1267      int FI;
1268      if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1269        if (X86::FR64RegClass.contains(Reg)) {
1270          unsigned IgnoredFrameReg;
1271          int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1272          Offset += SEHFrameOffset;
1273
1274          BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1275              .addImm(Reg)
1276              .addImm(Offset)
1277              .setMIFlag(MachineInstr::FrameSetup);
1278        }
1279      }
1280    }
1281  }
1282
1283  if (NeedsWinCFI)
1284    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1285        .setMIFlag(MachineInstr::FrameSetup);
1286
1287  if (FnHasClrFunclet && !IsFunclet) {
1288    // Save the so-called Initial-SP (i.e. the value of the stack pointer
1289    // immediately after the prolog)  into the PSPSlot so that funclets
1290    // and the GC can recover it.
1291    unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1292    auto PSPInfo = MachinePointerInfo::getFixedStack(
1293        MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1294    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1295                 PSPSlotOffset)
1296        .addReg(StackPtr)
1297        .addMemOperand(MF.getMachineMemOperand(
1298            PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1299            SlotSize, SlotSize));
1300  }
1301
1302  // Realign stack after we spilled callee-saved registers (so that we'll be
1303  // able to calculate their offsets from the frame pointer).
1304  // Win64 requires aligning the stack after the prologue.
1305  if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1306    assert(HasFP && "There should be a frame pointer if stack is realigned.");
1307    BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1308  }
1309
1310  // We already dealt with stack realignment and funclets above.
1311  if (IsFunclet && STI.is32Bit())
1312    return;
1313
1314  // If we need a base pointer, set it up here. It's whatever the value
1315  // of the stack pointer is at this point. Any variable size objects
1316  // will be allocated after this, so we can still use the base pointer
1317  // to reference locals.
1318  if (TRI->hasBasePointer(MF)) {
1319    // Update the base pointer with the current stack pointer.
1320    unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1321    BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1322      .addReg(SPOrEstablisher)
1323      .setMIFlag(MachineInstr::FrameSetup);
1324    if (X86FI->getRestoreBasePointer()) {
1325      // Stash value of base pointer.  Saving RSP instead of EBP shortens
1326      // dependence chain. Used by SjLj EH.
1327      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1328      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1329                   FramePtr, true, X86FI->getRestoreBasePointerOffset())
1330        .addReg(SPOrEstablisher)
1331        .setMIFlag(MachineInstr::FrameSetup);
1332    }
1333
1334    if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1335      // Stash the value of the frame pointer relative to the base pointer for
1336      // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1337      // it recovers the frame pointer from the base pointer rather than the
1338      // other way around.
1339      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1340      unsigned UsedReg;
1341      int Offset =
1342          getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1343      assert(UsedReg == BasePtr);
1344      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1345          .addReg(FramePtr)
1346          .setMIFlag(MachineInstr::FrameSetup);
1347    }
1348  }
1349
1350  if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1351    // Mark end of stack pointer adjustment.
1352    if (!HasFP && NumBytes) {
1353      // Define the current CFA rule to use the provided offset.
1354      assert(StackSize);
1355      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1356                                  nullptr, -StackSize + stackGrowth));
1357    }
1358
1359    // Emit DWARF info specifying the offsets of the callee-saved registers.
1360    if (PushedRegs)
1361      emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1362  }
1363}
1364
1365bool X86FrameLowering::canUseLEAForSPInEpilogue(
1366    const MachineFunction &MF) const {
1367  // We can't use LEA instructions for adjusting the stack pointer if this is a
1368  // leaf function in the Win64 ABI.  Only ADD instructions may be used to
1369  // deallocate the stack.
1370  // This means that we can use LEA for SP in two situations:
1371  // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1372  // 2. We *have* a frame pointer which means we are permitted to use LEA.
1373  return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1374}
1375
1376static bool isFuncletReturnInstr(MachineInstr *MI) {
1377  switch (MI->getOpcode()) {
1378  case X86::CATCHRET:
1379  case X86::CLEANUPRET:
1380    return true;
1381  default:
1382    return false;
1383  }
1384  llvm_unreachable("impossible");
1385}
1386
1387// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1388// stack. It holds a pointer to the bottom of the root function frame.  The
1389// establisher frame pointer passed to a nested funclet may point to the
1390// (mostly empty) frame of its parent funclet, but it will need to find
1391// the frame of the root function to access locals.  To facilitate this,
1392// every funclet copies the pointer to the bottom of the root function
1393// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1394// same offset for the PSPSym in the root function frame that's used in the
1395// funclets' frames allows each funclet to dynamically accept any ancestor
1396// frame as its establisher argument (the runtime doesn't guarantee the
1397// immediate parent for some reason lost to history), and also allows the GC,
1398// which uses the PSPSym for some bookkeeping, to find it in any funclet's
1399// frame with only a single offset reported for the entire method.
1400unsigned
1401X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1402  const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1403  // getFrameIndexReferenceFromSP has an out ref parameter for the stack
1404  // pointer register; pass a dummy that we ignore
1405  unsigned SPReg;
1406  int Offset = getFrameIndexReferenceFromSP(MF, Info.PSPSymFrameIdx, SPReg);
1407  assert(Offset >= 0);
1408  return static_cast<unsigned>(Offset);
1409}
1410
1411unsigned
1412X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1413  // This is the size of the pushed CSRs.
1414  unsigned CSSize =
1415      MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1416  // This is the amount of stack a funclet needs to allocate.
1417  unsigned UsedSize;
1418  EHPersonality Personality =
1419      classifyEHPersonality(MF.getFunction()->getPersonalityFn());
1420  if (Personality == EHPersonality::CoreCLR) {
1421    // CLR funclets need to hold enough space to include the PSPSym, at the
1422    // same offset from the stack pointer (immediately after the prolog) as it
1423    // resides at in the main function.
1424    UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1425  } else {
1426    // Other funclets just need enough stack for outgoing call arguments.
1427    UsedSize = MF.getFrameInfo()->getMaxCallFrameSize();
1428  }
1429  // RBP is not included in the callee saved register block. After pushing RBP,
1430  // everything is 16 byte aligned. Everything we allocate before an outgoing
1431  // call must also be 16 byte aligned.
1432  unsigned FrameSizeMinusRBP =
1433      RoundUpToAlignment(CSSize + UsedSize, getStackAlignment());
1434  // Subtract out the size of the callee saved registers. This is how much stack
1435  // each funclet will allocate.
1436  return FrameSizeMinusRBP - CSSize;
1437}
1438
1439void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1440                                    MachineBasicBlock &MBB) const {
1441  const MachineFrameInfo *MFI = MF.getFrameInfo();
1442  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1443  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1444  DebugLoc DL;
1445  if (MBBI != MBB.end())
1446    DL = MBBI->getDebugLoc();
1447  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1448  const bool Is64BitILP32 = STI.isTarget64BitILP32();
1449  unsigned FramePtr = TRI->getFrameRegister(MF);
1450  unsigned MachineFramePtr =
1451      Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1452
1453  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1454  bool NeedsWinCFI =
1455      IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
1456  bool IsFunclet = isFuncletReturnInstr(MBBI);
1457  MachineBasicBlock *TargetMBB = nullptr;
1458
1459  // Get the number of bytes to allocate from the FrameInfo.
1460  uint64_t StackSize = MFI->getStackSize();
1461  uint64_t MaxAlign = calculateMaxStackAlign(MF);
1462  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1463  uint64_t NumBytes = 0;
1464
1465  if (MBBI->getOpcode() == X86::CATCHRET) {
1466    // SEH shouldn't use catchret.
1467    assert(!isAsynchronousEHPersonality(
1468               classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
1469           "SEH should not use CATCHRET");
1470
1471    NumBytes = getWinEHFuncletFrameSize(MF);
1472    assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1473    TargetMBB = MBBI->getOperand(0).getMBB();
1474
1475    // Pop EBP.
1476    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1477            MachineFramePtr)
1478        .setMIFlag(MachineInstr::FrameDestroy);
1479  } else if (MBBI->getOpcode() == X86::CLEANUPRET) {
1480    NumBytes = getWinEHFuncletFrameSize(MF);
1481    assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1482    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1483            MachineFramePtr)
1484        .setMIFlag(MachineInstr::FrameDestroy);
1485  } else if (hasFP(MF)) {
1486    // Calculate required stack adjustment.
1487    uint64_t FrameSize = StackSize - SlotSize;
1488    NumBytes = FrameSize - CSSize;
1489
1490    // Callee-saved registers were pushed on stack before the stack was
1491    // realigned.
1492    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1493      NumBytes = RoundUpToAlignment(FrameSize, MaxAlign);
1494
1495    // Pop EBP.
1496    BuildMI(MBB, MBBI, DL,
1497            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
1498        .setMIFlag(MachineInstr::FrameDestroy);
1499  } else {
1500    NumBytes = StackSize - CSSize;
1501  }
1502  uint64_t SEHStackAllocAmt = NumBytes;
1503
1504  // Skip the callee-saved pop instructions.
1505  while (MBBI != MBB.begin()) {
1506    MachineBasicBlock::iterator PI = std::prev(MBBI);
1507    unsigned Opc = PI->getOpcode();
1508
1509    if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1510        (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1511        Opc != X86::DBG_VALUE && !PI->isTerminator())
1512      break;
1513
1514    --MBBI;
1515  }
1516  MachineBasicBlock::iterator FirstCSPop = MBBI;
1517
1518  if (TargetMBB) {
1519    // Fill EAX/RAX with the address of the target block.
1520    unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
1521    if (STI.is64Bit()) {
1522      // LEA64r TargetMBB(%rip), %rax
1523      BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
1524          .addReg(X86::RIP)
1525          .addImm(0)
1526          .addReg(0)
1527          .addMBB(TargetMBB)
1528          .addReg(0);
1529    } else {
1530      // MOV32ri $TargetMBB, %eax
1531      BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
1532          .addMBB(TargetMBB);
1533    }
1534    // Record that we've taken the address of TargetMBB and no longer just
1535    // reference it in a terminator.
1536    TargetMBB->setHasAddressTaken();
1537  }
1538
1539  if (MBBI != MBB.end())
1540    DL = MBBI->getDebugLoc();
1541
1542  // If there is an ADD32ri or SUB32ri of ESP immediately before this
1543  // instruction, merge the two instructions.
1544  if (NumBytes || MFI->hasVarSizedObjects())
1545    NumBytes += mergeSPUpdates(MBB, MBBI, true);
1546
1547  // If dynamic alloca is used, then reset esp to point to the last callee-saved
1548  // slot before popping them off! Same applies for the case, when stack was
1549  // realigned. Don't do this if this was a funclet epilogue, since the funclets
1550  // will not do realignment or dynamic stack allocation.
1551  if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) &&
1552      !IsFunclet) {
1553    if (TRI->needsStackRealignment(MF))
1554      MBBI = FirstCSPop;
1555    unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1556    uint64_t LEAAmount =
1557        IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1558
1559    // There are only two legal forms of epilogue:
1560    // - add SEHAllocationSize, %rsp
1561    // - lea SEHAllocationSize(%FramePtr), %rsp
1562    //
1563    // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1564    // However, we may use this sequence if we have a frame pointer because the
1565    // effects of the prologue can safely be undone.
1566    if (LEAAmount != 0) {
1567      unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1568      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1569                   FramePtr, false, LEAAmount);
1570      --MBBI;
1571    } else {
1572      unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1573      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1574        .addReg(FramePtr);
1575      --MBBI;
1576    }
1577  } else if (NumBytes) {
1578    // Adjust stack pointer back: ESP += numbytes.
1579    emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
1580    --MBBI;
1581  }
1582
1583  // Windows unwinder will not invoke function's exception handler if IP is
1584  // either in prologue or in epilogue.  This behavior causes a problem when a
1585  // call immediately precedes an epilogue, because the return address points
1586  // into the epilogue.  To cope with that, we insert an epilogue marker here,
1587  // then replace it with a 'nop' if it ends up immediately after a CALL in the
1588  // final emitted code.
1589  if (NeedsWinCFI)
1590    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1591
1592  // Add the return addr area delta back since we are not tail calling.
1593  int Offset = -1 * X86FI->getTCReturnAddrDelta();
1594  assert(Offset >= 0 && "TCDelta should never be positive");
1595  if (Offset) {
1596    MBBI = MBB.getFirstTerminator();
1597
1598    // Check for possible merge with preceding ADD instruction.
1599    Offset += mergeSPUpdates(MBB, MBBI, true);
1600    emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
1601  }
1602}
1603
1604// NOTE: this only has a subset of the full frame index logic. In
1605// particular, the FI < 0 and AfterFPPop logic is handled in
1606// X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
1607// (probably?) it should be moved into here.
1608int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1609                                             unsigned &FrameReg) const {
1610  const MachineFrameInfo *MFI = MF.getFrameInfo();
1611
1612  // We can't calculate offset from frame pointer if the stack is realigned,
1613  // so enforce usage of stack/base pointer.  The base pointer is used when we
1614  // have dynamic allocas in addition to dynamic realignment.
1615  if (TRI->hasBasePointer(MF))
1616    FrameReg = TRI->getBaseRegister();
1617  else if (TRI->needsStackRealignment(MF))
1618    FrameReg = TRI->getStackRegister();
1619  else
1620    FrameReg = TRI->getFrameRegister(MF);
1621
1622  // Offset will hold the offset from the stack pointer at function entry to the
1623  // object.
1624  // We need to factor in additional offsets applied during the prologue to the
1625  // frame, base, and stack pointer depending on which is used.
1626  int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1627  const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1628  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1629  uint64_t StackSize = MFI->getStackSize();
1630  bool HasFP = hasFP(MF);
1631  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1632  int64_t FPDelta = 0;
1633
1634  if (IsWin64Prologue) {
1635    assert(!MFI->hasCalls() || (StackSize % 16) == 8);
1636
1637    // Calculate required stack adjustment.
1638    uint64_t FrameSize = StackSize - SlotSize;
1639    // If required, include space for extra hidden slot for stashing base pointer.
1640    if (X86FI->getRestoreBasePointer())
1641      FrameSize += SlotSize;
1642    uint64_t NumBytes = FrameSize - CSSize;
1643
1644    uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1645    if (FI && FI == X86FI->getFAIndex())
1646      return -SEHFrameOffset;
1647
1648    // FPDelta is the offset from the "traditional" FP location of the old base
1649    // pointer followed by return address and the location required by the
1650    // restricted Win64 prologue.
1651    // Add FPDelta to all offsets below that go through the frame pointer.
1652    FPDelta = FrameSize - SEHFrameOffset;
1653    assert((!MFI->hasCalls() || (FPDelta % 16) == 0) &&
1654           "FPDelta isn't aligned per the Win64 ABI!");
1655  }
1656
1657
1658  if (TRI->hasBasePointer(MF)) {
1659    assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1660    if (FI < 0) {
1661      // Skip the saved EBP.
1662      return Offset + SlotSize + FPDelta;
1663    } else {
1664      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1665      return Offset + StackSize;
1666    }
1667  } else if (TRI->needsStackRealignment(MF)) {
1668    if (FI < 0) {
1669      // Skip the saved EBP.
1670      return Offset + SlotSize + FPDelta;
1671    } else {
1672      assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1673      return Offset + StackSize;
1674    }
1675    // FIXME: Support tail calls
1676  } else {
1677    if (!HasFP)
1678      return Offset + StackSize;
1679
1680    // Skip the saved EBP.
1681    Offset += SlotSize;
1682
1683    // Skip the RETADDR move area
1684    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1685    if (TailCallReturnAddrDelta < 0)
1686      Offset -= TailCallReturnAddrDelta;
1687  }
1688
1689  return Offset + FPDelta;
1690}
1691
1692// Simplified from getFrameIndexReference keeping only StackPointer cases
1693int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF,
1694                                                   int FI,
1695                                                   unsigned &FrameReg) const {
1696  const MachineFrameInfo *MFI = MF.getFrameInfo();
1697  // Does not include any dynamic realign.
1698  const uint64_t StackSize = MFI->getStackSize();
1699  {
1700#ifndef NDEBUG
1701    // LLVM arranges the stack as follows:
1702    //   ...
1703    //   ARG2
1704    //   ARG1
1705    //   RETADDR
1706    //   PUSH RBP   <-- RBP points here
1707    //   PUSH CSRs
1708    //   ~~~~~~~    <-- possible stack realignment (non-win64)
1709    //   ...
1710    //   STACK OBJECTS
1711    //   ...        <-- RSP after prologue points here
1712    //   ~~~~~~~    <-- possible stack realignment (win64)
1713    //
1714    // if (hasVarSizedObjects()):
1715    //   ...        <-- "base pointer" (ESI/RBX) points here
1716    //   DYNAMIC ALLOCAS
1717    //   ...        <-- RSP points here
1718    //
1719    // Case 1: In the simple case of no stack realignment and no dynamic
1720    // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1721    // with fixed offsets from RSP.
1722    //
1723    // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1724    // stack objects are addressed with RBP and regular stack objects with RSP.
1725    //
1726    // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1727    // to address stack arguments for outgoing calls and nothing else. The "base
1728    // pointer" points to local variables, and RBP points to fixed objects.
1729    //
1730    // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1731    // answer we give is relative to the SP after the prologue, and not the
1732    // SP in the middle of the function.
1733
1734    assert((!MFI->isFixedObjectIndex(FI) || !TRI->needsStackRealignment(MF) ||
1735            STI.isTargetWin64()) &&
1736           "offset from fixed object to SP is not static");
1737
1738    // We don't handle tail calls, and shouldn't be seeing them either.
1739    int TailCallReturnAddrDelta =
1740        MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta();
1741    assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!");
1742#endif
1743  }
1744
1745  // Fill in FrameReg output argument.
1746  FrameReg = TRI->getStackRegister();
1747
1748  // This is how the math works out:
1749  //
1750  //  %rsp grows (i.e. gets lower) left to right. Each box below is
1751  //  one word (eight bytes).  Obj0 is the stack slot we're trying to
1752  //  get to.
1753  //
1754  //    ----------------------------------
1755  //    | BP | Obj0 | Obj1 | ... | ObjN |
1756  //    ----------------------------------
1757  //    ^    ^      ^                   ^
1758  //    A    B      C                   E
1759  //
1760  // A is the incoming stack pointer.
1761  // (B - A) is the local area offset (-8 for x86-64) [1]
1762  // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
1763  //
1764  // |(E - B)| is the StackSize (absolute value, positive).  For a
1765  // stack that grown down, this works out to be (B - E). [3]
1766  //
1767  // E is also the value of %rsp after stack has been set up, and we
1768  // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
1769  // (C - E) == (C - A) - (B - A) + (B - E)
1770  //            { Using [1], [2] and [3] above }
1771  //         == getObjectOffset - LocalAreaOffset + StackSize
1772  //
1773
1774  // Get the Offset from the StackPointer
1775  int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1776
1777  return Offset + StackSize;
1778}
1779
1780bool X86FrameLowering::assignCalleeSavedSpillSlots(
1781    MachineFunction &MF, const TargetRegisterInfo *TRI,
1782    std::vector<CalleeSavedInfo> &CSI) const {
1783  MachineFrameInfo *MFI = MF.getFrameInfo();
1784  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1785
1786  unsigned CalleeSavedFrameSize = 0;
1787  int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1788
1789  if (hasFP(MF)) {
1790    // emitPrologue always spills frame register the first thing.
1791    SpillSlotOffset -= SlotSize;
1792    MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1793
1794    // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1795    // the frame register, we can delete it from CSI list and not have to worry
1796    // about avoiding it later.
1797    unsigned FPReg = TRI->getFrameRegister(MF);
1798    for (unsigned i = 0; i < CSI.size(); ++i) {
1799      if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1800        CSI.erase(CSI.begin() + i);
1801        break;
1802      }
1803    }
1804  }
1805
1806  // Assign slots for GPRs. It increases frame size.
1807  for (unsigned i = CSI.size(); i != 0; --i) {
1808    unsigned Reg = CSI[i - 1].getReg();
1809
1810    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1811      continue;
1812
1813    SpillSlotOffset -= SlotSize;
1814    CalleeSavedFrameSize += SlotSize;
1815
1816    int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1817    CSI[i - 1].setFrameIdx(SlotIndex);
1818  }
1819
1820  X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1821
1822  // Assign slots for XMMs.
1823  for (unsigned i = CSI.size(); i != 0; --i) {
1824    unsigned Reg = CSI[i - 1].getReg();
1825    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1826      continue;
1827
1828    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1829    // ensure alignment
1830    SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
1831    // spill into slot
1832    SpillSlotOffset -= RC->getSize();
1833    int SlotIndex =
1834        MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
1835    CSI[i - 1].setFrameIdx(SlotIndex);
1836    MFI->ensureMaxAlignment(RC->getAlignment());
1837  }
1838
1839  return true;
1840}
1841
1842bool X86FrameLowering::spillCalleeSavedRegisters(
1843    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1844    const std::vector<CalleeSavedInfo> &CSI,
1845    const TargetRegisterInfo *TRI) const {
1846  DebugLoc DL = MBB.findDebugLoc(MI);
1847
1848  // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
1849  // for us, and there are no XMM CSRs on Win32.
1850  if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
1851    return true;
1852
1853  // Push GPRs. It increases frame size.
1854  unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1855  for (unsigned i = CSI.size(); i != 0; --i) {
1856    unsigned Reg = CSI[i - 1].getReg();
1857
1858    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1859      continue;
1860    // Add the callee-saved register as live-in. It's killed at the spill.
1861    MBB.addLiveIn(Reg);
1862
1863    BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
1864      .setMIFlag(MachineInstr::FrameSetup);
1865  }
1866
1867  // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1868  // It can be done by spilling XMMs to stack frame.
1869  for (unsigned i = CSI.size(); i != 0; --i) {
1870    unsigned Reg = CSI[i-1].getReg();
1871    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1872      continue;
1873    // Add the callee-saved register as live-in. It's killed at the spill.
1874    MBB.addLiveIn(Reg);
1875    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1876
1877    TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
1878                            TRI);
1879    --MI;
1880    MI->setFlag(MachineInstr::FrameSetup);
1881    ++MI;
1882  }
1883
1884  return true;
1885}
1886
1887bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1888                                               MachineBasicBlock::iterator MI,
1889                                        const std::vector<CalleeSavedInfo> &CSI,
1890                                          const TargetRegisterInfo *TRI) const {
1891  if (CSI.empty())
1892    return false;
1893
1894  if (isFuncletReturnInstr(MI) && STI.isOSWindows()) {
1895    // Don't restore CSRs in 32-bit EH funclets. Matches
1896    // spillCalleeSavedRegisters.
1897    if (STI.is32Bit())
1898      return true;
1899    // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
1900    // funclets. emitEpilogue transforms these to normal jumps.
1901    if (MI->getOpcode() == X86::CATCHRET) {
1902      const Function *Func = MBB.getParent()->getFunction();
1903      bool IsSEH = isAsynchronousEHPersonality(
1904          classifyEHPersonality(Func->getPersonalityFn()));
1905      if (IsSEH)
1906        return true;
1907    }
1908  }
1909
1910  DebugLoc DL = MBB.findDebugLoc(MI);
1911
1912  // Reload XMMs from stack frame.
1913  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1914    unsigned Reg = CSI[i].getReg();
1915    if (X86::GR64RegClass.contains(Reg) ||
1916        X86::GR32RegClass.contains(Reg))
1917      continue;
1918
1919    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1920    TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
1921  }
1922
1923  // POP GPRs.
1924  unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1925  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1926    unsigned Reg = CSI[i].getReg();
1927    if (!X86::GR64RegClass.contains(Reg) &&
1928        !X86::GR32RegClass.contains(Reg))
1929      continue;
1930
1931    BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
1932        .setMIFlag(MachineInstr::FrameDestroy);
1933  }
1934  return true;
1935}
1936
1937void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
1938                                            BitVector &SavedRegs,
1939                                            RegScavenger *RS) const {
1940  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1941
1942  MachineFrameInfo *MFI = MF.getFrameInfo();
1943
1944  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1945  int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1946
1947  if (TailCallReturnAddrDelta < 0) {
1948    // create RETURNADDR area
1949    //   arg
1950    //   arg
1951    //   RETADDR
1952    //   { ...
1953    //     RETADDR area
1954    //     ...
1955    //   }
1956    //   [EBP]
1957    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
1958                           TailCallReturnAddrDelta - SlotSize, true);
1959  }
1960
1961  // Spill the BasePtr if it's used.
1962  if (TRI->hasBasePointer(MF)) {
1963    SavedRegs.set(TRI->getBaseRegister());
1964
1965    // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1966    if (MF.getMMI().hasEHFunclets()) {
1967      int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize);
1968      X86FI->setHasSEHFramePtrSave(true);
1969      X86FI->setSEHFramePtrSaveIndex(FI);
1970    }
1971  }
1972}
1973
1974static bool
1975HasNestArgument(const MachineFunction *MF) {
1976  const Function *F = MF->getFunction();
1977  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1978       I != E; I++) {
1979    if (I->hasNestAttr())
1980      return true;
1981  }
1982  return false;
1983}
1984
1985/// GetScratchRegister - Get a temp register for performing work in the
1986/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
1987/// and the properties of the function either one or two registers will be
1988/// needed. Set primary to true for the first register, false for the second.
1989static unsigned
1990GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
1991  CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
1992
1993  // Erlang stuff.
1994  if (CallingConvention == CallingConv::HiPE) {
1995    if (Is64Bit)
1996      return Primary ? X86::R14 : X86::R13;
1997    else
1998      return Primary ? X86::EBX : X86::EDI;
1999  }
2000
2001  if (Is64Bit) {
2002    if (IsLP64)
2003      return Primary ? X86::R11 : X86::R12;
2004    else
2005      return Primary ? X86::R11D : X86::R12D;
2006  }
2007
2008  bool IsNested = HasNestArgument(&MF);
2009
2010  if (CallingConvention == CallingConv::X86_FastCall ||
2011      CallingConvention == CallingConv::Fast) {
2012    if (IsNested)
2013      report_fatal_error("Segmented stacks does not support fastcall with "
2014                         "nested function.");
2015    return Primary ? X86::EAX : X86::ECX;
2016  }
2017  if (IsNested)
2018    return Primary ? X86::EDX : X86::EAX;
2019  return Primary ? X86::ECX : X86::EAX;
2020}
2021
2022// The stack limit in the TCB is set to this many bytes above the actual stack
2023// limit.
2024static const uint64_t kSplitStackAvailable = 256;
2025
2026void X86FrameLowering::adjustForSegmentedStacks(
2027    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2028  MachineFrameInfo *MFI = MF.getFrameInfo();
2029  uint64_t StackSize;
2030  unsigned TlsReg, TlsOffset;
2031  DebugLoc DL;
2032
2033  // To support shrink-wrapping we would need to insert the new blocks
2034  // at the right place and update the branches to PrologueMBB.
2035  assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2036
2037  unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2038  assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2039         "Scratch register is live-in");
2040
2041  if (MF.getFunction()->isVarArg())
2042    report_fatal_error("Segmented stacks do not support vararg functions.");
2043  if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2044      !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2045      !STI.isTargetDragonFly())
2046    report_fatal_error("Segmented stacks not supported on this platform.");
2047
2048  // Eventually StackSize will be calculated by a link-time pass; which will
2049  // also decide whether checking code needs to be injected into this particular
2050  // prologue.
2051  StackSize = MFI->getStackSize();
2052
2053  // Do not generate a prologue for functions with a stack of size zero
2054  if (StackSize == 0)
2055    return;
2056
2057  MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2058  MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2059  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2060  bool IsNested = false;
2061
2062  // We need to know if the function has a nest argument only in 64 bit mode.
2063  if (Is64Bit)
2064    IsNested = HasNestArgument(&MF);
2065
2066  // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2067  // allocMBB needs to be last (terminating) instruction.
2068
2069  for (const auto &LI : PrologueMBB.liveins()) {
2070    allocMBB->addLiveIn(LI);
2071    checkMBB->addLiveIn(LI);
2072  }
2073
2074  if (IsNested)
2075    allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2076
2077  MF.push_front(allocMBB);
2078  MF.push_front(checkMBB);
2079
2080  // When the frame size is less than 256 we just compare the stack
2081  // boundary directly to the value of the stack pointer, per gcc.
2082  bool CompareStackPointer = StackSize < kSplitStackAvailable;
2083
2084  // Read the limit off the current stacklet off the stack_guard location.
2085  if (Is64Bit) {
2086    if (STI.isTargetLinux()) {
2087      TlsReg = X86::FS;
2088      TlsOffset = IsLP64 ? 0x70 : 0x40;
2089    } else if (STI.isTargetDarwin()) {
2090      TlsReg = X86::GS;
2091      TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2092    } else if (STI.isTargetWin64()) {
2093      TlsReg = X86::GS;
2094      TlsOffset = 0x28; // pvArbitrary, reserved for application use
2095    } else if (STI.isTargetFreeBSD()) {
2096      TlsReg = X86::FS;
2097      TlsOffset = 0x18;
2098    } else if (STI.isTargetDragonFly()) {
2099      TlsReg = X86::FS;
2100      TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2101    } else {
2102      report_fatal_error("Segmented stacks not supported on this platform.");
2103    }
2104
2105    if (CompareStackPointer)
2106      ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2107    else
2108      BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2109        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2110
2111    BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2112      .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2113  } else {
2114    if (STI.isTargetLinux()) {
2115      TlsReg = X86::GS;
2116      TlsOffset = 0x30;
2117    } else if (STI.isTargetDarwin()) {
2118      TlsReg = X86::GS;
2119      TlsOffset = 0x48 + 90*4;
2120    } else if (STI.isTargetWin32()) {
2121      TlsReg = X86::FS;
2122      TlsOffset = 0x14; // pvArbitrary, reserved for application use
2123    } else if (STI.isTargetDragonFly()) {
2124      TlsReg = X86::FS;
2125      TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2126    } else if (STI.isTargetFreeBSD()) {
2127      report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2128    } else {
2129      report_fatal_error("Segmented stacks not supported on this platform.");
2130    }
2131
2132    if (CompareStackPointer)
2133      ScratchReg = X86::ESP;
2134    else
2135      BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2136        .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2137
2138    if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2139        STI.isTargetDragonFly()) {
2140      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2141        .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2142    } else if (STI.isTargetDarwin()) {
2143
2144      // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2145      unsigned ScratchReg2;
2146      bool SaveScratch2;
2147      if (CompareStackPointer) {
2148        // The primary scratch register is available for holding the TLS offset.
2149        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2150        SaveScratch2 = false;
2151      } else {
2152        // Need to use a second register to hold the TLS offset
2153        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2154
2155        // Unfortunately, with fastcc the second scratch register may hold an
2156        // argument.
2157        SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2158      }
2159
2160      // If Scratch2 is live-in then it needs to be saved.
2161      assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2162             "Scratch register is live-in and not saved");
2163
2164      if (SaveScratch2)
2165        BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2166          .addReg(ScratchReg2, RegState::Kill);
2167
2168      BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2169        .addImm(TlsOffset);
2170      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2171        .addReg(ScratchReg)
2172        .addReg(ScratchReg2).addImm(1).addReg(0)
2173        .addImm(0)
2174        .addReg(TlsReg);
2175
2176      if (SaveScratch2)
2177        BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2178    }
2179  }
2180
2181  // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2182  // It jumps to normal execution of the function body.
2183  BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
2184
2185  // On 32 bit we first push the arguments size and then the frame size. On 64
2186  // bit, we pass the stack frame size in r10 and the argument size in r11.
2187  if (Is64Bit) {
2188    // Functions with nested arguments use R10, so it needs to be saved across
2189    // the call to _morestack
2190
2191    const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2192    const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2193    const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2194    const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2195    const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2196
2197    if (IsNested)
2198      BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2199
2200    BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2201      .addImm(StackSize);
2202    BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2203      .addImm(X86FI->getArgumentStackSize());
2204  } else {
2205    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2206      .addImm(X86FI->getArgumentStackSize());
2207    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2208      .addImm(StackSize);
2209  }
2210
2211  // __morestack is in libgcc
2212  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2213    // Under the large code model, we cannot assume that __morestack lives
2214    // within 2^31 bytes of the call site, so we cannot use pc-relative
2215    // addressing. We cannot perform the call via a temporary register,
2216    // as the rax register may be used to store the static chain, and all
2217    // other suitable registers may be either callee-save or used for
2218    // parameter passing. We cannot use the stack at this point either
2219    // because __morestack manipulates the stack directly.
2220    //
2221    // To avoid these issues, perform an indirect call via a read-only memory
2222    // location containing the address.
2223    //
2224    // This solution is not perfect, as it assumes that the .rodata section
2225    // is laid out within 2^31 bytes of each function body, but this seems
2226    // to be sufficient for JIT.
2227    BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2228        .addReg(X86::RIP)
2229        .addImm(0)
2230        .addReg(0)
2231        .addExternalSymbol("__morestack_addr")
2232        .addReg(0);
2233    MF.getMMI().setUsesMorestackAddr(true);
2234  } else {
2235    if (Is64Bit)
2236      BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2237        .addExternalSymbol("__morestack");
2238    else
2239      BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2240        .addExternalSymbol("__morestack");
2241  }
2242
2243  if (IsNested)
2244    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2245  else
2246    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2247
2248  allocMBB->addSuccessor(&PrologueMBB);
2249
2250  checkMBB->addSuccessor(allocMBB);
2251  checkMBB->addSuccessor(&PrologueMBB);
2252
2253#ifdef XDEBUG
2254  MF.verify();
2255#endif
2256}
2257
2258/// Erlang programs may need a special prologue to handle the stack size they
2259/// might need at runtime. That is because Erlang/OTP does not implement a C
2260/// stack but uses a custom implementation of hybrid stack/heap architecture.
2261/// (for more information see Eric Stenman's Ph.D. thesis:
2262/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2263///
2264/// CheckStack:
2265///       temp0 = sp - MaxStack
2266///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2267/// OldStart:
2268///       ...
2269/// IncStack:
2270///       call inc_stack   # doubles the stack space
2271///       temp0 = sp - MaxStack
2272///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2273void X86FrameLowering::adjustForHiPEPrologue(
2274    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2275  MachineFrameInfo *MFI = MF.getFrameInfo();
2276  DebugLoc DL;
2277
2278  // To support shrink-wrapping we would need to insert the new blocks
2279  // at the right place and update the branches to PrologueMBB.
2280  assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2281
2282  // HiPE-specific values
2283  const unsigned HipeLeafWords = 24;
2284  const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2285  const unsigned Guaranteed = HipeLeafWords * SlotSize;
2286  unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
2287                            MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
2288  unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
2289
2290  assert(STI.isTargetLinux() &&
2291         "HiPE prologue is only supported on Linux operating systems.");
2292
2293  // Compute the largest caller's frame that is needed to fit the callees'
2294  // frames. This 'MaxStack' is computed from:
2295  //
2296  // a) the fixed frame size, which is the space needed for all spilled temps,
2297  // b) outgoing on-stack parameter areas, and
2298  // c) the minimum stack space this function needs to make available for the
2299  //    functions it calls (a tunable ABI property).
2300  if (MFI->hasCalls()) {
2301    unsigned MoreStackForCalls = 0;
2302
2303    for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
2304         MBBI != MBBE; ++MBBI)
2305      for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
2306           MI != ME; ++MI) {
2307        if (!MI->isCall())
2308          continue;
2309
2310        // Get callee operand.
2311        const MachineOperand &MO = MI->getOperand(0);
2312
2313        // Only take account of global function calls (no closures etc.).
2314        if (!MO.isGlobal())
2315          continue;
2316
2317        const Function *F = dyn_cast<Function>(MO.getGlobal());
2318        if (!F)
2319          continue;
2320
2321        // Do not update 'MaxStack' for primitive and built-in functions
2322        // (encoded with names either starting with "erlang."/"bif_" or not
2323        // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2324        // "_", such as the BIF "suspend_0") as they are executed on another
2325        // stack.
2326        if (F->getName().find("erlang.") != StringRef::npos ||
2327            F->getName().find("bif_") != StringRef::npos ||
2328            F->getName().find_first_of("._") == StringRef::npos)
2329          continue;
2330
2331        unsigned CalleeStkArity =
2332          F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2333        if (HipeLeafWords - 1 > CalleeStkArity)
2334          MoreStackForCalls = std::max(MoreStackForCalls,
2335                               (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2336      }
2337    MaxStack += MoreStackForCalls;
2338  }
2339
2340  // If the stack frame needed is larger than the guaranteed then runtime checks
2341  // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2342  if (MaxStack > Guaranteed) {
2343    MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2344    MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2345
2346    for (const auto &LI : PrologueMBB.liveins()) {
2347      stackCheckMBB->addLiveIn(LI);
2348      incStackMBB->addLiveIn(LI);
2349    }
2350
2351    MF.push_front(incStackMBB);
2352    MF.push_front(stackCheckMBB);
2353
2354    unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2355    unsigned LEAop, CMPop, CALLop;
2356    if (Is64Bit) {
2357      SPReg = X86::RSP;
2358      PReg  = X86::RBP;
2359      LEAop = X86::LEA64r;
2360      CMPop = X86::CMP64rm;
2361      CALLop = X86::CALL64pcrel32;
2362      SPLimitOffset = 0x90;
2363    } else {
2364      SPReg = X86::ESP;
2365      PReg  = X86::EBP;
2366      LEAop = X86::LEA32r;
2367      CMPop = X86::CMP32rm;
2368      CALLop = X86::CALLpcrel32;
2369      SPLimitOffset = 0x4c;
2370    }
2371
2372    ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2373    assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2374           "HiPE prologue scratch register is live-in");
2375
2376    // Create new MBB for StackCheck:
2377    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2378                 SPReg, false, -MaxStack);
2379    // SPLimitOffset is in a fixed heap location (pointed by BP).
2380    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2381                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2382    BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
2383
2384    // Create new MBB for IncStack:
2385    BuildMI(incStackMBB, DL, TII.get(CALLop)).
2386      addExternalSymbol("inc_stack_0");
2387    addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2388                 SPReg, false, -MaxStack);
2389    addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2390                 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2391    BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
2392
2393    stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2394    stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2395    incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2396    incStackMBB->addSuccessor(incStackMBB, {1, 100});
2397  }
2398#ifdef XDEBUG
2399  MF.verify();
2400#endif
2401}
2402
2403bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2404    MachineBasicBlock::iterator MBBI, DebugLoc DL, int Offset) const {
2405
2406  if (Offset <= 0)
2407    return false;
2408
2409  if (Offset % SlotSize)
2410    return false;
2411
2412  int NumPops = Offset / SlotSize;
2413  // This is only worth it if we have at most 2 pops.
2414  if (NumPops != 1 && NumPops != 2)
2415    return false;
2416
2417  // Handle only the trivial case where the adjustment directly follows
2418  // a call. This is the most common one, anyway.
2419  if (MBBI == MBB.begin())
2420    return false;
2421  MachineBasicBlock::iterator Prev = std::prev(MBBI);
2422  if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2423    return false;
2424
2425  unsigned Regs[2];
2426  unsigned FoundRegs = 0;
2427
2428  auto RegMask = Prev->getOperand(1);
2429
2430  auto &RegClass =
2431      Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2432  // Try to find up to NumPops free registers.
2433  for (auto Candidate : RegClass) {
2434
2435    // Poor man's liveness:
2436    // Since we're immediately after a call, any register that is clobbered
2437    // by the call and not defined by it can be considered dead.
2438    if (!RegMask.clobbersPhysReg(Candidate))
2439      continue;
2440
2441    bool IsDef = false;
2442    for (const MachineOperand &MO : Prev->implicit_operands()) {
2443      if (MO.isReg() && MO.isDef() && MO.getReg() == Candidate) {
2444        IsDef = true;
2445        break;
2446      }
2447    }
2448
2449    if (IsDef)
2450      continue;
2451
2452    Regs[FoundRegs++] = Candidate;
2453    if (FoundRegs == (unsigned)NumPops)
2454      break;
2455  }
2456
2457  if (FoundRegs == 0)
2458    return false;
2459
2460  // If we found only one free register, but need two, reuse the same one twice.
2461  while (FoundRegs < (unsigned)NumPops)
2462    Regs[FoundRegs++] = Regs[0];
2463
2464  for (int i = 0; i < NumPops; ++i)
2465    BuildMI(MBB, MBBI, DL,
2466            TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2467
2468  return true;
2469}
2470
2471void X86FrameLowering::
2472eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2473                              MachineBasicBlock::iterator I) const {
2474  bool reserveCallFrame = hasReservedCallFrame(MF);
2475  unsigned Opcode = I->getOpcode();
2476  bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2477  DebugLoc DL = I->getDebugLoc();
2478  uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
2479  uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
2480  I = MBB.erase(I);
2481
2482  if (!reserveCallFrame) {
2483    // If the stack pointer can be changed after prologue, turn the
2484    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2485    // adjcallstackdown instruction into 'add ESP, <amt>'
2486
2487    // We need to keep the stack aligned properly.  To do this, we round the
2488    // amount of space needed for the outgoing arguments up to the next
2489    // alignment boundary.
2490    unsigned StackAlign = getStackAlignment();
2491    Amount = RoundUpToAlignment(Amount, StackAlign);
2492
2493    MachineModuleInfo &MMI = MF.getMMI();
2494    const Function *Fn = MF.getFunction();
2495    bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2496    bool DwarfCFI = !WindowsCFI &&
2497                    (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
2498
2499    // If we have any exception handlers in this function, and we adjust
2500    // the SP before calls, we may need to indicate this to the unwinder
2501    // using GNU_ARGS_SIZE. Note that this may be necessary even when
2502    // Amount == 0, because the preceding function may have set a non-0
2503    // GNU_ARGS_SIZE.
2504    // TODO: We don't need to reset this between subsequent functions,
2505    // if it didn't change.
2506    bool HasDwarfEHHandlers = !WindowsCFI &&
2507                              !MF.getMMI().getLandingPads().empty();
2508
2509    if (HasDwarfEHHandlers && !isDestroy &&
2510        MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2511      BuildCFI(MBB, I, DL,
2512               MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2513
2514    if (Amount == 0)
2515      return;
2516
2517    // Factor out the amount that gets handled inside the sequence
2518    // (Pushes of argument for frame setup, callee pops for frame destroy)
2519    Amount -= InternalAmt;
2520
2521    // TODO: This is needed only if we require precise CFA.
2522    // If this is a callee-pop calling convention, emit a CFA adjust for
2523    // the amount the callee popped.
2524    if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2525      BuildCFI(MBB, I, DL,
2526               MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2527
2528    if (Amount) {
2529      // Add Amount to SP to destroy a frame, and subtract to setup.
2530      int Offset = isDestroy ? Amount : -Amount;
2531
2532      if (!(Fn->optForMinSize() &&
2533            adjustStackWithPops(MBB, I, DL, Offset)))
2534        BuildStackAdjustment(MBB, I, DL, Offset, /*InEpilogue=*/false);
2535    }
2536
2537    if (DwarfCFI && !hasFP(MF)) {
2538      // If we don't have FP, but need to generate unwind information,
2539      // we need to set the correct CFA offset after the stack adjustment.
2540      // How much we adjust the CFA offset depends on whether we're emitting
2541      // CFI only for EH purposes or for debugging. EH only requires the CFA
2542      // offset to be correct at each call site, while for debugging we want
2543      // it to be more precise.
2544      int CFAOffset = Amount;
2545      // TODO: When not using precise CFA, we also need to adjust for the
2546      // InternalAmt here.
2547
2548      if (CFAOffset) {
2549        CFAOffset = isDestroy ? -CFAOffset : CFAOffset;
2550        BuildCFI(MBB, I, DL,
2551                 MCCFIInstruction::createAdjustCfaOffset(nullptr, CFAOffset));
2552      }
2553    }
2554
2555    return;
2556  }
2557
2558  if (isDestroy && InternalAmt) {
2559    // If we are performing frame pointer elimination and if the callee pops
2560    // something off the stack pointer, add it back.  We do this until we have
2561    // more advanced stack pointer tracking ability.
2562    // We are not tracking the stack pointer adjustment by the callee, so make
2563    // sure we restore the stack pointer immediately after the call, there may
2564    // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2565    MachineBasicBlock::iterator B = MBB.begin();
2566    while (I != B && !std::prev(I)->isCall())
2567      --I;
2568    BuildStackAdjustment(MBB, I, DL, -InternalAmt, /*InEpilogue=*/false);
2569  }
2570}
2571
2572bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2573  assert(MBB.getParent() && "Block is not attached to a function!");
2574
2575  // Win64 has strict requirements in terms of epilogue and we are
2576  // not taking a chance at messing with them.
2577  // I.e., unless this block is already an exit block, we can't use
2578  // it as an epilogue.
2579  if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2580    return false;
2581
2582  if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2583    return true;
2584
2585  // If we cannot use LEA to adjust SP, we may need to use ADD, which
2586  // clobbers the EFLAGS. Check that we do not need to preserve it,
2587  // otherwise, conservatively assume this is not
2588  // safe to insert the epilogue here.
2589  return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2590}
2591
2592bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2593  // If we may need to emit frameless compact unwind information, give
2594  // up as this is currently broken: PR25614.
2595  return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2596         // The lowering of segmented stack and HiPE only support entry blocks
2597         // as prologue blocks: PR26107.
2598         // This limitation may be lifted if we fix:
2599         // - adjustForSegmentedStacks
2600         // - adjustForHiPEPrologue
2601         MF.getFunction()->getCallingConv() != CallingConv::HiPE &&
2602         !MF.shouldSplitStack();
2603}
2604
2605MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2606    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2607    DebugLoc DL, bool RestoreSP) const {
2608  assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2609  assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2610  assert(STI.is32Bit() && !Uses64BitFramePtr &&
2611         "restoring EBP/ESI on non-32-bit target");
2612
2613  MachineFunction &MF = *MBB.getParent();
2614  unsigned FramePtr = TRI->getFrameRegister(MF);
2615  unsigned BasePtr = TRI->getBaseRegister();
2616  WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2617  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2618  MachineFrameInfo *MFI = MF.getFrameInfo();
2619
2620  // FIXME: Don't set FrameSetup flag in catchret case.
2621
2622  int FI = FuncInfo.EHRegNodeFrameIndex;
2623  int EHRegSize = MFI->getObjectSize(FI);
2624
2625  if (RestoreSP) {
2626    // MOV32rm -EHRegSize(%ebp), %esp
2627    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2628                 X86::EBP, true, -EHRegSize)
2629        .setMIFlag(MachineInstr::FrameSetup);
2630  }
2631
2632  unsigned UsedReg;
2633  int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2634  int EndOffset = -EHRegOffset - EHRegSize;
2635  FuncInfo.EHRegNodeEndOffset = EndOffset;
2636
2637  if (UsedReg == FramePtr) {
2638    // ADD $offset, %ebp
2639    unsigned ADDri = getADDriOpcode(false, EndOffset);
2640    BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2641        .addReg(FramePtr)
2642        .addImm(EndOffset)
2643        .setMIFlag(MachineInstr::FrameSetup)
2644        ->getOperand(3)
2645        .setIsDead();
2646    assert(EndOffset >= 0 &&
2647           "end of registration object above normal EBP position!");
2648  } else if (UsedReg == BasePtr) {
2649    // LEA offset(%ebp), %esi
2650    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2651                 FramePtr, false, EndOffset)
2652        .setMIFlag(MachineInstr::FrameSetup);
2653    // MOV32rm SavedEBPOffset(%esi), %ebp
2654    assert(X86FI->getHasSEHFramePtrSave());
2655    int Offset =
2656        getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2657    assert(UsedReg == BasePtr);
2658    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2659                 UsedReg, true, Offset)
2660        .setMIFlag(MachineInstr::FrameSetup);
2661  } else {
2662    llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2663  }
2664  return MBBI;
2665}
2666
2667unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
2668  // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
2669  unsigned Offset = 16;
2670  // RBP is immediately pushed.
2671  Offset += SlotSize;
2672  // All callee-saved registers are then pushed.
2673  Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
2674  // Every funclet allocates enough stack space for the largest outgoing call.
2675  Offset += getWinEHFuncletFrameSize(MF);
2676  return Offset;
2677}
2678
2679void X86FrameLowering::processFunctionBeforeFrameFinalized(
2680    MachineFunction &MF, RegScavenger *RS) const {
2681  // If this function isn't doing Win64-style C++ EH, we don't need to do
2682  // anything.
2683  const Function *Fn = MF.getFunction();
2684  if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
2685      classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
2686    return;
2687
2688  // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
2689  // relative to RSP after the prologue.  Find the offset of the last fixed
2690  // object, so that we can allocate a slot immediately following it. If there
2691  // were no fixed objects, use offset -SlotSize, which is immediately after the
2692  // return address. Fixed objects have negative frame indices.
2693  MachineFrameInfo *MFI = MF.getFrameInfo();
2694  int64_t MinFixedObjOffset = -SlotSize;
2695  for (int I = MFI->getObjectIndexBegin(); I < 0; ++I)
2696    MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I));
2697
2698  int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
2699  int UnwindHelpFI =
2700      MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
2701  MF.getWinEHFuncInfo()->UnwindHelpFrameIdx = UnwindHelpFI;
2702
2703  // Store -2 into UnwindHelp on function entry. We have to scan forwards past
2704  // other frame setup instructions.
2705  MachineBasicBlock &MBB = MF.front();
2706  auto MBBI = MBB.begin();
2707  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2708    ++MBBI;
2709
2710  DebugLoc DL = MBB.findDebugLoc(MBBI);
2711  addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
2712                    UnwindHelpFI)
2713      .addImm(-2);
2714}
2715