1//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions
12//===----------------------------------------------------------------------===//
13
14class ImmediateAsmOperand<string name>
15  : AsmOperandClass {
16  let Name = name;
17  let RenderMethod = "addImmOperands";
18}
19class ImmediateTLSAsmOperand<string name>
20  : AsmOperandClass {
21  let Name = name;
22  let RenderMethod = "addImmTLSOperands";
23}
24
25// Constructs both a DAG pattern and instruction operand for an immediate
26// of type VT.  PRED returns true if a node is acceptable and XFORM returns
27// the operand value associated with the node.  ASMOP is the name of the
28// associated asm operand, and also forms the basis of the asm print method.
29class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
30  : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
31  let PrintMethod = "print"##asmop##"Operand";
32  let DecoderMethod = "decode"##asmop##"Operand";
33  let ParserMatchClass = !cast<AsmOperandClass>(asmop);
34}
35
36// Constructs an asm operand for a PC-relative address.  SIZE says how
37// many bits there are.
38class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
39  let PredicateMethod = "isImm";
40  let ParserMethod = "parsePCRel"##size;
41}
42class PCRelTLSAsmOperand<string size>
43  : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
44  let PredicateMethod = "isImmTLS";
45  let ParserMethod = "parsePCRelTLS"##size;
46}
47
48// Constructs an operand for a PC-relative address with address type VT.
49// ASMOP is the associated asm operand.
50class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
51  let PrintMethod = "printPCRelOperand";
52  let ParserMatchClass = asmop;
53}
54class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
55  let PrintMethod = "printPCRelTLSOperand";
56  let ParserMatchClass = asmop;
57}
58
59// Constructs both a DAG pattern and instruction operand for a PC-relative
60// address with address size VT.  SELF is the name of the operand and
61// ASMOP is the associated asm operand.
62class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
63  : ComplexPattern<vt, 1, "selectPCRelAddress",
64                   [z_pcrel_wrapper, z_pcrel_offset]>,
65    PCRelOperand<vt, asmop> {
66  let MIOperandInfo = (ops !cast<Operand>(self));
67}
68
69// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
70// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
71// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
72// is "".
73class AddressAsmOperand<string format, string bitsize, string dispsize,
74                        string length = "">
75  : AsmOperandClass {
76  let Name = format##bitsize##"Disp"##dispsize##length;
77  let ParserMethod = "parse"##format##bitsize;
78  let RenderMethod = "add"##format##"Operands";
79}
80
81// Constructs an instruction operand for an addressing mode.  FORMAT,
82// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
83// AddressAsmOperand.  OPERANDS is a list of individual operands
84// (base register, displacement, etc.).
85class AddressOperand<string bitsize, string dispsize, string length,
86                     string format, dag operands>
87  : Operand<!cast<ValueType>("i"##bitsize)> {
88  let PrintMethod = "print"##format##"Operand";
89  let EncoderMethod = "get"##format##dispsize##length##"Encoding";
90  let DecoderMethod =
91    "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
92  let MIOperandInfo = operands;
93  let ParserMatchClass =
94    !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
95}
96
97// Constructs both a DAG pattern and instruction operand for an addressing mode.
98// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
99// AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
100// (base register, displacement, etc.).  SELTYPE is the type of the memory
101// operand for selection purposes; sometimes we want different selection
102// choices for the same underlying addressing mode.  SUFFIX is similarly
103// a suffix appended to the displacement for selection purposes;
104// e.g. we want to reject small 20-bit displacements if a 12-bit form
105// also exists, but we want to accept them otherwise.
106class AddressingMode<string seltype, string bitsize, string dispsize,
107                     string suffix, string length, int numops, string format,
108                     dag operands>
109  : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
110                   "select"##seltype##dispsize##suffix##length,
111                   [add, sub, or, frameindex, z_adjdynalloc]>,
112    AddressOperand<bitsize, dispsize, length, format, operands>;
113
114// An addressing mode with a base and displacement but no index.
115class BDMode<string type, string bitsize, string dispsize, string suffix>
116  : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
117                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
118                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
119
120// An addressing mode with a base, displacement and index.
121class BDXMode<string type, string bitsize, string dispsize, string suffix>
122  : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
123                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
124                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
125                        !cast<RegisterOperand>("ADDR"##bitsize))>;
126
127// A BDMode paired with an immediate length operand of LENSIZE bits.
128class BDLMode<string type, string bitsize, string dispsize, string suffix,
129              string lensize>
130  : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
131                   "BDLAddr",
132                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
133                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
134                        !cast<Immediate>("imm"##bitsize))>;
135
136// An addressing mode with a base, displacement and a vector index.
137class BDVMode<string bitsize, string dispsize>
138  : AddressOperand<bitsize, dispsize, "", "BDVAddr",
139                   (ops !cast<RegisterOperand>("ADDR"##bitsize),
140                        !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
141                        !cast<RegisterOperand>("VR128"))>;
142
143//===----------------------------------------------------------------------===//
144// Extracting immediate operands from nodes
145// These all create MVT::i64 nodes to ensure the value is not sign-extended
146// when converted from an SDNode to a MachineOperand later on.
147//===----------------------------------------------------------------------===//
148
149// Bits 0-15 (counting from the lsb).
150def LL16 : SDNodeXForm<imm, [{
151  uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
152  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
153}]>;
154
155// Bits 16-31 (counting from the lsb).
156def LH16 : SDNodeXForm<imm, [{
157  uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
158  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
159}]>;
160
161// Bits 32-47 (counting from the lsb).
162def HL16 : SDNodeXForm<imm, [{
163  uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
164  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
165}]>;
166
167// Bits 48-63 (counting from the lsb).
168def HH16 : SDNodeXForm<imm, [{
169  uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
170  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
171}]>;
172
173// Low 32 bits.
174def LF32 : SDNodeXForm<imm, [{
175  uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
176  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
177}]>;
178
179// High 32 bits.
180def HF32 : SDNodeXForm<imm, [{
181  uint64_t Value = N->getZExtValue() >> 32;
182  return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
183}]>;
184
185// Truncate an immediate to a 8-bit signed quantity.
186def SIMM8 : SDNodeXForm<imm, [{
187  return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
188                                   MVT::i64);
189}]>;
190
191// Truncate an immediate to a 8-bit unsigned quantity.
192def UIMM8 : SDNodeXForm<imm, [{
193  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
194                                   MVT::i64);
195}]>;
196
197// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
198def UIMM8EVEN : SDNodeXForm<imm, [{
199  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
200                                   MVT::i64);
201}]>;
202
203// Truncate an immediate to a 12-bit unsigned quantity.
204def UIMM12 : SDNodeXForm<imm, [{
205  return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
206                                   MVT::i64);
207}]>;
208
209// Truncate an immediate to a 16-bit signed quantity.
210def SIMM16 : SDNodeXForm<imm, [{
211  return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
212                                   MVT::i64);
213}]>;
214
215// Truncate an immediate to a 16-bit unsigned quantity.
216def UIMM16 : SDNodeXForm<imm, [{
217  return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
218                                   MVT::i64);
219}]>;
220
221// Truncate an immediate to a 32-bit signed quantity.
222def SIMM32 : SDNodeXForm<imm, [{
223  return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
224                                   MVT::i64);
225}]>;
226
227// Truncate an immediate to a 32-bit unsigned quantity.
228def UIMM32 : SDNodeXForm<imm, [{
229  return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
230                                   MVT::i64);
231}]>;
232
233// Negate and then truncate an immediate to a 32-bit unsigned quantity.
234def NEGIMM32 : SDNodeXForm<imm, [{
235  return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
236                                   MVT::i64);
237}]>;
238
239//===----------------------------------------------------------------------===//
240// Immediate asm operands.
241//===----------------------------------------------------------------------===//
242
243def U1Imm  : ImmediateAsmOperand<"U1Imm">;
244def U2Imm  : ImmediateAsmOperand<"U2Imm">;
245def U3Imm  : ImmediateAsmOperand<"U3Imm">;
246def U4Imm  : ImmediateAsmOperand<"U4Imm">;
247def U6Imm  : ImmediateAsmOperand<"U6Imm">;
248def S8Imm  : ImmediateAsmOperand<"S8Imm">;
249def U8Imm  : ImmediateAsmOperand<"U8Imm">;
250def U12Imm : ImmediateAsmOperand<"U12Imm">;
251def S16Imm : ImmediateAsmOperand<"S16Imm">;
252def U16Imm : ImmediateAsmOperand<"U16Imm">;
253def S32Imm : ImmediateAsmOperand<"S32Imm">;
254def U32Imm : ImmediateAsmOperand<"U32Imm">;
255
256//===----------------------------------------------------------------------===//
257// i32 immediates
258//===----------------------------------------------------------------------===//
259
260// Immediates for the lower and upper 16 bits of an i32, with the other
261// bits of the i32 being zero.
262def imm32ll16 : Immediate<i32, [{
263  return SystemZ::isImmLL(N->getZExtValue());
264}], LL16, "U16Imm">;
265
266def imm32lh16 : Immediate<i32, [{
267  return SystemZ::isImmLH(N->getZExtValue());
268}], LH16, "U16Imm">;
269
270// Immediates for the lower and upper 16 bits of an i32, with the other
271// bits of the i32 being one.
272def imm32ll16c : Immediate<i32, [{
273  return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
274}], LL16, "U16Imm">;
275
276def imm32lh16c : Immediate<i32, [{
277  return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
278}], LH16, "U16Imm">;
279
280// Short immediates
281def imm32zx1 : Immediate<i32, [{
282  return isUInt<1>(N->getZExtValue());
283}], NOOP_SDNodeXForm, "U1Imm">;
284
285def imm32zx2 : Immediate<i32, [{
286  return isUInt<2>(N->getZExtValue());
287}], NOOP_SDNodeXForm, "U2Imm">;
288
289def imm32zx3 : Immediate<i32, [{
290  return isUInt<3>(N->getZExtValue());
291}], NOOP_SDNodeXForm, "U3Imm">;
292
293def imm32zx4 : Immediate<i32, [{
294  return isUInt<4>(N->getZExtValue());
295}], NOOP_SDNodeXForm, "U4Imm">;
296
297// Note: this enforces an even value during code generation only.
298// When used from the assembler, any 4-bit value is allowed.
299def imm32zx4even : Immediate<i32, [{
300  return isUInt<4>(N->getZExtValue());
301}], UIMM8EVEN, "U4Imm">;
302
303def imm32zx6 : Immediate<i32, [{
304  return isUInt<6>(N->getZExtValue());
305}], NOOP_SDNodeXForm, "U6Imm">;
306
307def imm32sx8 : Immediate<i32, [{
308  return isInt<8>(N->getSExtValue());
309}], SIMM8, "S8Imm">;
310
311def imm32zx8 : Immediate<i32, [{
312  return isUInt<8>(N->getZExtValue());
313}], UIMM8, "U8Imm">;
314
315def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
316
317def imm32zx12 : Immediate<i32, [{
318  return isUInt<12>(N->getZExtValue());
319}], UIMM12, "U12Imm">;
320
321def imm32sx16 : Immediate<i32, [{
322  return isInt<16>(N->getSExtValue());
323}], SIMM16, "S16Imm">;
324
325def imm32zx16 : Immediate<i32, [{
326  return isUInt<16>(N->getZExtValue());
327}], UIMM16, "U16Imm">;
328
329def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
330
331// Full 32-bit immediates.  we need both signed and unsigned versions
332// because the assembler is picky.  E.g. AFI requires signed operands
333// while NILF requires unsigned ones.
334def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
335def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
336
337def imm32 : ImmLeaf<i32, [{}]>;
338
339//===----------------------------------------------------------------------===//
340// 64-bit immediates
341//===----------------------------------------------------------------------===//
342
343// Immediates for 16-bit chunks of an i64, with the other bits of the
344// i32 being zero.
345def imm64ll16 : Immediate<i64, [{
346  return SystemZ::isImmLL(N->getZExtValue());
347}], LL16, "U16Imm">;
348
349def imm64lh16 : Immediate<i64, [{
350  return SystemZ::isImmLH(N->getZExtValue());
351}], LH16, "U16Imm">;
352
353def imm64hl16 : Immediate<i64, [{
354  return SystemZ::isImmHL(N->getZExtValue());
355}], HL16, "U16Imm">;
356
357def imm64hh16 : Immediate<i64, [{
358  return SystemZ::isImmHH(N->getZExtValue());
359}], HH16, "U16Imm">;
360
361// Immediates for 16-bit chunks of an i64, with the other bits of the
362// i32 being one.
363def imm64ll16c : Immediate<i64, [{
364  return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
365}], LL16, "U16Imm">;
366
367def imm64lh16c : Immediate<i64, [{
368  return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
369}], LH16, "U16Imm">;
370
371def imm64hl16c : Immediate<i64, [{
372  return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
373}], HL16, "U16Imm">;
374
375def imm64hh16c : Immediate<i64, [{
376  return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
377}], HH16, "U16Imm">;
378
379// Immediates for the lower and upper 32 bits of an i64, with the other
380// bits of the i32 being zero.
381def imm64lf32 : Immediate<i64, [{
382  return SystemZ::isImmLF(N->getZExtValue());
383}], LF32, "U32Imm">;
384
385def imm64hf32 : Immediate<i64, [{
386  return SystemZ::isImmHF(N->getZExtValue());
387}], HF32, "U32Imm">;
388
389// Immediates for the lower and upper 32 bits of an i64, with the other
390// bits of the i32 being one.
391def imm64lf32c : Immediate<i64, [{
392  return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
393}], LF32, "U32Imm">;
394
395def imm64hf32c : Immediate<i64, [{
396  return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
397}], HF32, "U32Imm">;
398
399// Short immediates.
400def imm64sx8 : Immediate<i64, [{
401  return isInt<8>(N->getSExtValue());
402}], SIMM8, "S8Imm">;
403
404def imm64zx8 : Immediate<i64, [{
405  return isUInt<8>(N->getSExtValue());
406}], UIMM8, "U8Imm">;
407
408def imm64sx16 : Immediate<i64, [{
409  return isInt<16>(N->getSExtValue());
410}], SIMM16, "S16Imm">;
411
412def imm64zx16 : Immediate<i64, [{
413  return isUInt<16>(N->getZExtValue());
414}], UIMM16, "U16Imm">;
415
416def imm64sx32 : Immediate<i64, [{
417  return isInt<32>(N->getSExtValue());
418}], SIMM32, "S32Imm">;
419
420def imm64zx32 : Immediate<i64, [{
421  return isUInt<32>(N->getZExtValue());
422}], UIMM32, "U32Imm">;
423
424def imm64zx32n : Immediate<i64, [{
425  return isUInt<32>(-N->getSExtValue());
426}], NEGIMM32, "U32Imm">;
427
428def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
429
430//===----------------------------------------------------------------------===//
431// Floating-point immediates
432//===----------------------------------------------------------------------===//
433
434// Floating-point zero.
435def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
436
437// Floating point negative zero.
438def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
439
440//===----------------------------------------------------------------------===//
441// Symbolic address operands
442//===----------------------------------------------------------------------===//
443
444// PC-relative asm operands.
445def PCRel16 : PCRelAsmOperand<"16">;
446def PCRel32 : PCRelAsmOperand<"32">;
447def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
448def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
449
450// PC-relative offsets of a basic block.  The offset is sign-extended
451// and multiplied by 2.
452def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
453  let EncoderMethod = "getPC16DBLEncoding";
454  let DecoderMethod = "decodePC16DBLOperand";
455}
456def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
457  let EncoderMethod = "getPC32DBLEncoding";
458  let DecoderMethod = "decodePC32DBLOperand";
459}
460
461// Variants of brtarget16/32 with an optional additional TLS symbol.
462// These are used to annotate calls to __tls_get_offset.
463def tlssym : Operand<i64> { }
464def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
465  let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
466  let EncoderMethod = "getPC16DBLTLSEncoding";
467  let DecoderMethod = "decodePC16DBLOperand";
468}
469def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
470  let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
471  let EncoderMethod = "getPC32DBLTLSEncoding";
472  let DecoderMethod = "decodePC32DBLOperand";
473}
474
475// A PC-relative offset of a global value.  The offset is sign-extended
476// and multiplied by 2.
477def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
478  let EncoderMethod = "getPC32DBLEncoding";
479  let DecoderMethod = "decodePC32DBLOperand";
480}
481
482//===----------------------------------------------------------------------===//
483// Addressing modes
484//===----------------------------------------------------------------------===//
485
486// 12-bit displacement operands.
487def disp12imm32 : Operand<i32>;
488def disp12imm64 : Operand<i64>;
489
490// 20-bit displacement operands.
491def disp20imm32 : Operand<i32>;
492def disp20imm64 : Operand<i64>;
493
494def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
495def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
496def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
497def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
498def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
499def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
500def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
501def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">;
502
503// DAG patterns and operands for addressing modes.  Each mode has
504// the form <type><range><group>[<len>] where:
505//
506// <type> is one of:
507//   shift    : base + displacement (32-bit)
508//   bdaddr   : base + displacement
509//   mviaddr  : like bdaddr, but reject cases with a natural index
510//   bdxaddr  : base + displacement + index
511//   laaddr   : like bdxaddr, but used for Load Address operations
512//   dynalloc : base + displacement + index + ADJDYNALLOC
513//   bdladdr  : base + displacement with a length field
514//   bdvaddr  : base + displacement with a vector index
515//
516// <range> is one of:
517//   12       : the displacement is an unsigned 12-bit value
518//   20       : the displacement is a signed 20-bit value
519//
520// <group> is one of:
521//   pair     : used when there is an equivalent instruction with the opposite
522//              range value (12 or 20)
523//   only     : used when there is no equivalent instruction with the opposite
524//              range value
525//
526// <len> is one of:
527//
528//   <empty>  : there is no length field
529//   len8     : the length field is 8 bits, with a range of [1, 0x100].
530def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
531def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
532def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
533def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
534def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
535def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
536def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
537def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
538def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
539def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
540def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
541def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
542def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
543def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
544def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
545def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
546def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
547def bdvaddr12only     : BDVMode<            "64", "12">;
548
549//===----------------------------------------------------------------------===//
550// Miscellaneous
551//===----------------------------------------------------------------------===//
552
553// Access registers.  At present we just use them for accessing the thread
554// pointer, so we don't expose them as register to LLVM.
555def AccessReg : AsmOperandClass {
556  let Name = "AccessReg";
557  let ParserMethod = "parseAccessReg";
558}
559def access_reg : Immediate<i32, [{ return N->getZExtValue() < 16; }],
560                           NOOP_SDNodeXForm, "AccessReg"> {
561  let ParserMatchClass = AccessReg;
562}
563
564// A 4-bit condition-code mask.
565def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
566            Operand<i32> {
567  let PrintMethod = "printCond4Operand";
568}
569