1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Constants.h"
15#include "ConstantFold.h"
16#include "LLVMContextImpl.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GetElementPtrTypeIterator.h"
25#include "llvm/IR/GlobalValue.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Module.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40//                              Constant Class
41//===----------------------------------------------------------------------===//
42
43void Constant::anchor() { }
44
45bool Constant::isNegativeZeroValue() const {
46  // Floating point values have an explicit -0.0 value.
47  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48    return CFP->isZero() && CFP->isNegative();
49
50  // Equivalent for a vector of -0.0's.
51  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54        return true;
55
56  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
57    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
58      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
59        return true;
60
61  // We've already handled true FP case; any other FP vectors can't represent -0.0.
62  if (getType()->isFPOrFPVectorTy())
63    return false;
64
65  // Otherwise, just use +0.0.
66  return isNullValue();
67}
68
69// Return true iff this constant is positive zero (floating point), negative
70// zero (floating point), or a null value.
71bool Constant::isZeroValue() const {
72  // Floating point values have an explicit -0.0 value.
73  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
74    return CFP->isZero();
75
76  // Equivalent for a vector of -0.0's.
77  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
78    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
79      if (SplatCFP && SplatCFP->isZero())
80        return true;
81
82  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
83    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
84      if (SplatCFP && SplatCFP->isZero())
85        return true;
86
87  // Otherwise, just use +0.0.
88  return isNullValue();
89}
90
91bool Constant::isNullValue() const {
92  // 0 is null.
93  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94    return CI->isZero();
95
96  // +0.0 is null.
97  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98    return CFP->isZero() && !CFP->isNegative();
99
100  // constant zero is zero for aggregates, cpnull is null for pointers, none for
101  // tokens.
102  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
103         isa<ConstantTokenNone>(this);
104}
105
106bool Constant::isAllOnesValue() const {
107  // Check for -1 integers
108  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
109    return CI->isMinusOne();
110
111  // Check for FP which are bitcasted from -1 integers
112  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
113    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
114
115  // Check for constant vectors which are splats of -1 values.
116  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
117    if (Constant *Splat = CV->getSplatValue())
118      return Splat->isAllOnesValue();
119
120  // Check for constant vectors which are splats of -1 values.
121  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
122    if (Constant *Splat = CV->getSplatValue())
123      return Splat->isAllOnesValue();
124
125  return false;
126}
127
128bool Constant::isOneValue() const {
129  // Check for 1 integers
130  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
131    return CI->isOne();
132
133  // Check for FP which are bitcasted from 1 integers
134  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
135    return CFP->getValueAPF().bitcastToAPInt() == 1;
136
137  // Check for constant vectors which are splats of 1 values.
138  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
139    if (Constant *Splat = CV->getSplatValue())
140      return Splat->isOneValue();
141
142  // Check for constant vectors which are splats of 1 values.
143  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
144    if (Constant *Splat = CV->getSplatValue())
145      return Splat->isOneValue();
146
147  return false;
148}
149
150bool Constant::isMinSignedValue() const {
151  // Check for INT_MIN integers
152  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
153    return CI->isMinValue(/*isSigned=*/true);
154
155  // Check for FP which are bitcasted from INT_MIN integers
156  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
157    return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
158
159  // Check for constant vectors which are splats of INT_MIN values.
160  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
161    if (Constant *Splat = CV->getSplatValue())
162      return Splat->isMinSignedValue();
163
164  // Check for constant vectors which are splats of INT_MIN values.
165  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
166    if (Constant *Splat = CV->getSplatValue())
167      return Splat->isMinSignedValue();
168
169  return false;
170}
171
172bool Constant::isNotMinSignedValue() const {
173  // Check for INT_MIN integers
174  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
175    return !CI->isMinValue(/*isSigned=*/true);
176
177  // Check for FP which are bitcasted from INT_MIN integers
178  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
179    return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
180
181  // Check for constant vectors which are splats of INT_MIN values.
182  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
183    if (Constant *Splat = CV->getSplatValue())
184      return Splat->isNotMinSignedValue();
185
186  // Check for constant vectors which are splats of INT_MIN values.
187  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
188    if (Constant *Splat = CV->getSplatValue())
189      return Splat->isNotMinSignedValue();
190
191  // It *may* contain INT_MIN, we can't tell.
192  return false;
193}
194
195// Constructor to create a '0' constant of arbitrary type...
196Constant *Constant::getNullValue(Type *Ty) {
197  switch (Ty->getTypeID()) {
198  case Type::IntegerTyID:
199    return ConstantInt::get(Ty, 0);
200  case Type::HalfTyID:
201    return ConstantFP::get(Ty->getContext(),
202                           APFloat::getZero(APFloat::IEEEhalf));
203  case Type::FloatTyID:
204    return ConstantFP::get(Ty->getContext(),
205                           APFloat::getZero(APFloat::IEEEsingle));
206  case Type::DoubleTyID:
207    return ConstantFP::get(Ty->getContext(),
208                           APFloat::getZero(APFloat::IEEEdouble));
209  case Type::X86_FP80TyID:
210    return ConstantFP::get(Ty->getContext(),
211                           APFloat::getZero(APFloat::x87DoubleExtended));
212  case Type::FP128TyID:
213    return ConstantFP::get(Ty->getContext(),
214                           APFloat::getZero(APFloat::IEEEquad));
215  case Type::PPC_FP128TyID:
216    return ConstantFP::get(Ty->getContext(),
217                           APFloat(APFloat::PPCDoubleDouble,
218                                   APInt::getNullValue(128)));
219  case Type::PointerTyID:
220    return ConstantPointerNull::get(cast<PointerType>(Ty));
221  case Type::StructTyID:
222  case Type::ArrayTyID:
223  case Type::VectorTyID:
224    return ConstantAggregateZero::get(Ty);
225  case Type::TokenTyID:
226    return ConstantTokenNone::get(Ty->getContext());
227  default:
228    // Function, Label, or Opaque type?
229    llvm_unreachable("Cannot create a null constant of that type!");
230  }
231}
232
233Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
234  Type *ScalarTy = Ty->getScalarType();
235
236  // Create the base integer constant.
237  Constant *C = ConstantInt::get(Ty->getContext(), V);
238
239  // Convert an integer to a pointer, if necessary.
240  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
241    C = ConstantExpr::getIntToPtr(C, PTy);
242
243  // Broadcast a scalar to a vector, if necessary.
244  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
245    C = ConstantVector::getSplat(VTy->getNumElements(), C);
246
247  return C;
248}
249
250Constant *Constant::getAllOnesValue(Type *Ty) {
251  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
252    return ConstantInt::get(Ty->getContext(),
253                            APInt::getAllOnesValue(ITy->getBitWidth()));
254
255  if (Ty->isFloatingPointTy()) {
256    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
257                                          !Ty->isPPC_FP128Ty());
258    return ConstantFP::get(Ty->getContext(), FL);
259  }
260
261  VectorType *VTy = cast<VectorType>(Ty);
262  return ConstantVector::getSplat(VTy->getNumElements(),
263                                  getAllOnesValue(VTy->getElementType()));
264}
265
266/// getAggregateElement - For aggregates (struct/array/vector) return the
267/// constant that corresponds to the specified element if possible, or null if
268/// not.  This can return null if the element index is a ConstantExpr, or if
269/// 'this' is a constant expr.
270Constant *Constant::getAggregateElement(unsigned Elt) const {
271  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
272    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
273
274  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
275    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
276
277  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
278    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
279
280  if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
281    return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
282
283  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
284    return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
285
286  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
287    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
288                                       : nullptr;
289  return nullptr;
290}
291
292Constant *Constant::getAggregateElement(Constant *Elt) const {
293  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
294  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
295    return getAggregateElement(CI->getZExtValue());
296  return nullptr;
297}
298
299void Constant::destroyConstant() {
300  /// First call destroyConstantImpl on the subclass.  This gives the subclass
301  /// a chance to remove the constant from any maps/pools it's contained in.
302  switch (getValueID()) {
303  default:
304    llvm_unreachable("Not a constant!");
305#define HANDLE_CONSTANT(Name)                                                  \
306  case Value::Name##Val:                                                       \
307    cast<Name>(this)->destroyConstantImpl();                                   \
308    break;
309#include "llvm/IR/Value.def"
310  }
311
312  // When a Constant is destroyed, there may be lingering
313  // references to the constant by other constants in the constant pool.  These
314  // constants are implicitly dependent on the module that is being deleted,
315  // but they don't know that.  Because we only find out when the CPV is
316  // deleted, we must now notify all of our users (that should only be
317  // Constants) that they are, in fact, invalid now and should be deleted.
318  //
319  while (!use_empty()) {
320    Value *V = user_back();
321#ifndef NDEBUG // Only in -g mode...
322    if (!isa<Constant>(V)) {
323      dbgs() << "While deleting: " << *this
324             << "\n\nUse still stuck around after Def is destroyed: " << *V
325             << "\n\n";
326    }
327#endif
328    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
329    cast<Constant>(V)->destroyConstant();
330
331    // The constant should remove itself from our use list...
332    assert((use_empty() || user_back() != V) && "Constant not removed!");
333  }
334
335  // Value has no outstanding references it is safe to delete it now...
336  delete this;
337}
338
339static bool canTrapImpl(const Constant *C,
340                        SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
341  assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
342  // The only thing that could possibly trap are constant exprs.
343  const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
344  if (!CE)
345    return false;
346
347  // ConstantExpr traps if any operands can trap.
348  for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
349    if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
350      if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
351        return true;
352    }
353  }
354
355  // Otherwise, only specific operations can trap.
356  switch (CE->getOpcode()) {
357  default:
358    return false;
359  case Instruction::UDiv:
360  case Instruction::SDiv:
361  case Instruction::FDiv:
362  case Instruction::URem:
363  case Instruction::SRem:
364  case Instruction::FRem:
365    // Div and rem can trap if the RHS is not known to be non-zero.
366    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
367      return true;
368    return false;
369  }
370}
371
372/// canTrap - Return true if evaluation of this constant could trap.  This is
373/// true for things like constant expressions that could divide by zero.
374bool Constant::canTrap() const {
375  SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
376  return canTrapImpl(this, NonTrappingOps);
377}
378
379/// Check if C contains a GlobalValue for which Predicate is true.
380static bool
381ConstHasGlobalValuePredicate(const Constant *C,
382                             bool (*Predicate)(const GlobalValue *)) {
383  SmallPtrSet<const Constant *, 8> Visited;
384  SmallVector<const Constant *, 8> WorkList;
385  WorkList.push_back(C);
386  Visited.insert(C);
387
388  while (!WorkList.empty()) {
389    const Constant *WorkItem = WorkList.pop_back_val();
390    if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
391      if (Predicate(GV))
392        return true;
393    for (const Value *Op : WorkItem->operands()) {
394      const Constant *ConstOp = dyn_cast<Constant>(Op);
395      if (!ConstOp)
396        continue;
397      if (Visited.insert(ConstOp).second)
398        WorkList.push_back(ConstOp);
399    }
400  }
401  return false;
402}
403
404/// Return true if the value can vary between threads.
405bool Constant::isThreadDependent() const {
406  auto DLLImportPredicate = [](const GlobalValue *GV) {
407    return GV->isThreadLocal();
408  };
409  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
410}
411
412bool Constant::isDLLImportDependent() const {
413  auto DLLImportPredicate = [](const GlobalValue *GV) {
414    return GV->hasDLLImportStorageClass();
415  };
416  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
417}
418
419/// Return true if the constant has users other than constant exprs and other
420/// dangling things.
421bool Constant::isConstantUsed() const {
422  for (const User *U : users()) {
423    const Constant *UC = dyn_cast<Constant>(U);
424    if (!UC || isa<GlobalValue>(UC))
425      return true;
426
427    if (UC->isConstantUsed())
428      return true;
429  }
430  return false;
431}
432
433bool Constant::needsRelocation() const {
434  if (isa<GlobalValue>(this))
435    return true; // Global reference.
436
437  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
438    return BA->getFunction()->needsRelocation();
439
440  // While raw uses of blockaddress need to be relocated, differences between
441  // two of them don't when they are for labels in the same function.  This is a
442  // common idiom when creating a table for the indirect goto extension, so we
443  // handle it efficiently here.
444  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
445    if (CE->getOpcode() == Instruction::Sub) {
446      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
447      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
448      if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
449          RHS->getOpcode() == Instruction::PtrToInt &&
450          isa<BlockAddress>(LHS->getOperand(0)) &&
451          isa<BlockAddress>(RHS->getOperand(0)) &&
452          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
453              cast<BlockAddress>(RHS->getOperand(0))->getFunction())
454        return false;
455    }
456
457  bool Result = false;
458  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
459    Result |= cast<Constant>(getOperand(i))->needsRelocation();
460
461  return Result;
462}
463
464/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
465/// it.  This involves recursively eliminating any dead users of the
466/// constantexpr.
467static bool removeDeadUsersOfConstant(const Constant *C) {
468  if (isa<GlobalValue>(C)) return false; // Cannot remove this
469
470  while (!C->use_empty()) {
471    const Constant *User = dyn_cast<Constant>(C->user_back());
472    if (!User) return false; // Non-constant usage;
473    if (!removeDeadUsersOfConstant(User))
474      return false; // Constant wasn't dead
475  }
476
477  const_cast<Constant*>(C)->destroyConstant();
478  return true;
479}
480
481
482/// removeDeadConstantUsers - If there are any dead constant users dangling
483/// off of this constant, remove them.  This method is useful for clients
484/// that want to check to see if a global is unused, but don't want to deal
485/// with potentially dead constants hanging off of the globals.
486void Constant::removeDeadConstantUsers() const {
487  Value::const_user_iterator I = user_begin(), E = user_end();
488  Value::const_user_iterator LastNonDeadUser = E;
489  while (I != E) {
490    const Constant *User = dyn_cast<Constant>(*I);
491    if (!User) {
492      LastNonDeadUser = I;
493      ++I;
494      continue;
495    }
496
497    if (!removeDeadUsersOfConstant(User)) {
498      // If the constant wasn't dead, remember that this was the last live use
499      // and move on to the next constant.
500      LastNonDeadUser = I;
501      ++I;
502      continue;
503    }
504
505    // If the constant was dead, then the iterator is invalidated.
506    if (LastNonDeadUser == E) {
507      I = user_begin();
508      if (I == E) break;
509    } else {
510      I = LastNonDeadUser;
511      ++I;
512    }
513  }
514}
515
516
517
518//===----------------------------------------------------------------------===//
519//                                ConstantInt
520//===----------------------------------------------------------------------===//
521
522void ConstantInt::anchor() { }
523
524ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
525  : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
526  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
527}
528
529ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
530  LLVMContextImpl *pImpl = Context.pImpl;
531  if (!pImpl->TheTrueVal)
532    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
533  return pImpl->TheTrueVal;
534}
535
536ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
537  LLVMContextImpl *pImpl = Context.pImpl;
538  if (!pImpl->TheFalseVal)
539    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
540  return pImpl->TheFalseVal;
541}
542
543Constant *ConstantInt::getTrue(Type *Ty) {
544  VectorType *VTy = dyn_cast<VectorType>(Ty);
545  if (!VTy) {
546    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
547    return ConstantInt::getTrue(Ty->getContext());
548  }
549  assert(VTy->getElementType()->isIntegerTy(1) &&
550         "True must be vector of i1 or i1.");
551  return ConstantVector::getSplat(VTy->getNumElements(),
552                                  ConstantInt::getTrue(Ty->getContext()));
553}
554
555Constant *ConstantInt::getFalse(Type *Ty) {
556  VectorType *VTy = dyn_cast<VectorType>(Ty);
557  if (!VTy) {
558    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
559    return ConstantInt::getFalse(Ty->getContext());
560  }
561  assert(VTy->getElementType()->isIntegerTy(1) &&
562         "False must be vector of i1 or i1.");
563  return ConstantVector::getSplat(VTy->getNumElements(),
564                                  ConstantInt::getFalse(Ty->getContext()));
565}
566
567// Get a ConstantInt from an APInt.
568ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
569  // get an existing value or the insertion position
570  LLVMContextImpl *pImpl = Context.pImpl;
571  ConstantInt *&Slot = pImpl->IntConstants[V];
572  if (!Slot) {
573    // Get the corresponding integer type for the bit width of the value.
574    IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
575    Slot = new ConstantInt(ITy, V);
576  }
577  assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
578  return Slot;
579}
580
581Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
582  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
583
584  // For vectors, broadcast the value.
585  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
586    return ConstantVector::getSplat(VTy->getNumElements(), C);
587
588  return C;
589}
590
591ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
592                              bool isSigned) {
593  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
594}
595
596ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
597  return get(Ty, V, true);
598}
599
600Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
601  return get(Ty, V, true);
602}
603
604Constant *ConstantInt::get(Type *Ty, const APInt& V) {
605  ConstantInt *C = get(Ty->getContext(), V);
606  assert(C->getType() == Ty->getScalarType() &&
607         "ConstantInt type doesn't match the type implied by its value!");
608
609  // For vectors, broadcast the value.
610  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
611    return ConstantVector::getSplat(VTy->getNumElements(), C);
612
613  return C;
614}
615
616ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
617                              uint8_t radix) {
618  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
619}
620
621/// Remove the constant from the constant table.
622void ConstantInt::destroyConstantImpl() {
623  llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
624}
625
626//===----------------------------------------------------------------------===//
627//                                ConstantFP
628//===----------------------------------------------------------------------===//
629
630static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
631  if (Ty->isHalfTy())
632    return &APFloat::IEEEhalf;
633  if (Ty->isFloatTy())
634    return &APFloat::IEEEsingle;
635  if (Ty->isDoubleTy())
636    return &APFloat::IEEEdouble;
637  if (Ty->isX86_FP80Ty())
638    return &APFloat::x87DoubleExtended;
639  else if (Ty->isFP128Ty())
640    return &APFloat::IEEEquad;
641
642  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
643  return &APFloat::PPCDoubleDouble;
644}
645
646void ConstantFP::anchor() { }
647
648/// get() - This returns a constant fp for the specified value in the
649/// specified type.  This should only be used for simple constant values like
650/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
651Constant *ConstantFP::get(Type *Ty, double V) {
652  LLVMContext &Context = Ty->getContext();
653
654  APFloat FV(V);
655  bool ignored;
656  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
657             APFloat::rmNearestTiesToEven, &ignored);
658  Constant *C = get(Context, FV);
659
660  // For vectors, broadcast the value.
661  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
662    return ConstantVector::getSplat(VTy->getNumElements(), C);
663
664  return C;
665}
666
667
668Constant *ConstantFP::get(Type *Ty, StringRef Str) {
669  LLVMContext &Context = Ty->getContext();
670
671  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
672  Constant *C = get(Context, FV);
673
674  // For vectors, broadcast the value.
675  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
676    return ConstantVector::getSplat(VTy->getNumElements(), C);
677
678  return C;
679}
680
681Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
682  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
683  APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
684  Constant *C = get(Ty->getContext(), NaN);
685
686  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
687    return ConstantVector::getSplat(VTy->getNumElements(), C);
688
689  return C;
690}
691
692Constant *ConstantFP::getNegativeZero(Type *Ty) {
693  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
694  APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
695  Constant *C = get(Ty->getContext(), NegZero);
696
697  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
698    return ConstantVector::getSplat(VTy->getNumElements(), C);
699
700  return C;
701}
702
703
704Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
705  if (Ty->isFPOrFPVectorTy())
706    return getNegativeZero(Ty);
707
708  return Constant::getNullValue(Ty);
709}
710
711
712// ConstantFP accessors.
713ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
714  LLVMContextImpl* pImpl = Context.pImpl;
715
716  ConstantFP *&Slot = pImpl->FPConstants[V];
717
718  if (!Slot) {
719    Type *Ty;
720    if (&V.getSemantics() == &APFloat::IEEEhalf)
721      Ty = Type::getHalfTy(Context);
722    else if (&V.getSemantics() == &APFloat::IEEEsingle)
723      Ty = Type::getFloatTy(Context);
724    else if (&V.getSemantics() == &APFloat::IEEEdouble)
725      Ty = Type::getDoubleTy(Context);
726    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
727      Ty = Type::getX86_FP80Ty(Context);
728    else if (&V.getSemantics() == &APFloat::IEEEquad)
729      Ty = Type::getFP128Ty(Context);
730    else {
731      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
732             "Unknown FP format");
733      Ty = Type::getPPC_FP128Ty(Context);
734    }
735    Slot = new ConstantFP(Ty, V);
736  }
737
738  return Slot;
739}
740
741Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
742  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
743  Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
744
745  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
746    return ConstantVector::getSplat(VTy->getNumElements(), C);
747
748  return C;
749}
750
751ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
752  : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
753  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
754         "FP type Mismatch");
755}
756
757bool ConstantFP::isExactlyValue(const APFloat &V) const {
758  return Val.bitwiseIsEqual(V);
759}
760
761/// Remove the constant from the constant table.
762void ConstantFP::destroyConstantImpl() {
763  llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
764}
765
766//===----------------------------------------------------------------------===//
767//                   ConstantAggregateZero Implementation
768//===----------------------------------------------------------------------===//
769
770/// getSequentialElement - If this CAZ has array or vector type, return a zero
771/// with the right element type.
772Constant *ConstantAggregateZero::getSequentialElement() const {
773  return Constant::getNullValue(getType()->getSequentialElementType());
774}
775
776/// getStructElement - If this CAZ has struct type, return a zero with the
777/// right element type for the specified element.
778Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
779  return Constant::getNullValue(getType()->getStructElementType(Elt));
780}
781
782/// getElementValue - Return a zero of the right value for the specified GEP
783/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
784Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
785  if (isa<SequentialType>(getType()))
786    return getSequentialElement();
787  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
788}
789
790/// getElementValue - Return a zero of the right value for the specified GEP
791/// index.
792Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
793  if (isa<SequentialType>(getType()))
794    return getSequentialElement();
795  return getStructElement(Idx);
796}
797
798unsigned ConstantAggregateZero::getNumElements() const {
799  Type *Ty = getType();
800  if (auto *AT = dyn_cast<ArrayType>(Ty))
801    return AT->getNumElements();
802  if (auto *VT = dyn_cast<VectorType>(Ty))
803    return VT->getNumElements();
804  return Ty->getStructNumElements();
805}
806
807//===----------------------------------------------------------------------===//
808//                         UndefValue Implementation
809//===----------------------------------------------------------------------===//
810
811/// getSequentialElement - If this undef has array or vector type, return an
812/// undef with the right element type.
813UndefValue *UndefValue::getSequentialElement() const {
814  return UndefValue::get(getType()->getSequentialElementType());
815}
816
817/// getStructElement - If this undef has struct type, return a zero with the
818/// right element type for the specified element.
819UndefValue *UndefValue::getStructElement(unsigned Elt) const {
820  return UndefValue::get(getType()->getStructElementType(Elt));
821}
822
823/// getElementValue - Return an undef of the right value for the specified GEP
824/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
825UndefValue *UndefValue::getElementValue(Constant *C) const {
826  if (isa<SequentialType>(getType()))
827    return getSequentialElement();
828  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
829}
830
831/// getElementValue - Return an undef of the right value for the specified GEP
832/// index.
833UndefValue *UndefValue::getElementValue(unsigned Idx) const {
834  if (isa<SequentialType>(getType()))
835    return getSequentialElement();
836  return getStructElement(Idx);
837}
838
839unsigned UndefValue::getNumElements() const {
840  Type *Ty = getType();
841  if (auto *AT = dyn_cast<ArrayType>(Ty))
842    return AT->getNumElements();
843  if (auto *VT = dyn_cast<VectorType>(Ty))
844    return VT->getNumElements();
845  return Ty->getStructNumElements();
846}
847
848//===----------------------------------------------------------------------===//
849//                            ConstantXXX Classes
850//===----------------------------------------------------------------------===//
851
852template <typename ItTy, typename EltTy>
853static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
854  for (; Start != End; ++Start)
855    if (*Start != Elt)
856      return false;
857  return true;
858}
859
860template <typename SequentialTy, typename ElementTy>
861static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
862  assert(!V.empty() && "Cannot get empty int sequence.");
863
864  SmallVector<ElementTy, 16> Elts;
865  for (Constant *C : V)
866    if (auto *CI = dyn_cast<ConstantInt>(C))
867      Elts.push_back(CI->getZExtValue());
868    else
869      return nullptr;
870  return SequentialTy::get(V[0]->getContext(), Elts);
871}
872
873template <typename SequentialTy, typename ElementTy>
874static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
875  assert(!V.empty() && "Cannot get empty FP sequence.");
876
877  SmallVector<ElementTy, 16> Elts;
878  for (Constant *C : V)
879    if (auto *CFP = dyn_cast<ConstantFP>(C))
880      Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
881    else
882      return nullptr;
883  return SequentialTy::getFP(V[0]->getContext(), Elts);
884}
885
886template <typename SequenceTy>
887static Constant *getSequenceIfElementsMatch(Constant *C,
888                                            ArrayRef<Constant *> V) {
889  // We speculatively build the elements here even if it turns out that there is
890  // a constantexpr or something else weird, since it is so uncommon for that to
891  // happen.
892  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
893    if (CI->getType()->isIntegerTy(8))
894      return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
895    else if (CI->getType()->isIntegerTy(16))
896      return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
897    else if (CI->getType()->isIntegerTy(32))
898      return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
899    else if (CI->getType()->isIntegerTy(64))
900      return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
901  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
902    if (CFP->getType()->isHalfTy())
903      return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
904    else if (CFP->getType()->isFloatTy())
905      return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
906    else if (CFP->getType()->isDoubleTy())
907      return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
908  }
909
910  return nullptr;
911}
912
913ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
914  : Constant(T, ConstantArrayVal,
915             OperandTraits<ConstantArray>::op_end(this) - V.size(),
916             V.size()) {
917  assert(V.size() == T->getNumElements() &&
918         "Invalid initializer vector for constant array");
919  for (unsigned i = 0, e = V.size(); i != e; ++i)
920    assert(V[i]->getType() == T->getElementType() &&
921           "Initializer for array element doesn't match array element type!");
922  std::copy(V.begin(), V.end(), op_begin());
923}
924
925Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
926  if (Constant *C = getImpl(Ty, V))
927    return C;
928  return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
929}
930
931Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
932  // Empty arrays are canonicalized to ConstantAggregateZero.
933  if (V.empty())
934    return ConstantAggregateZero::get(Ty);
935
936  for (unsigned i = 0, e = V.size(); i != e; ++i) {
937    assert(V[i]->getType() == Ty->getElementType() &&
938           "Wrong type in array element initializer");
939  }
940
941  // If this is an all-zero array, return a ConstantAggregateZero object.  If
942  // all undef, return an UndefValue, if "all simple", then return a
943  // ConstantDataArray.
944  Constant *C = V[0];
945  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
946    return UndefValue::get(Ty);
947
948  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
949    return ConstantAggregateZero::get(Ty);
950
951  // Check to see if all of the elements are ConstantFP or ConstantInt and if
952  // the element type is compatible with ConstantDataVector.  If so, use it.
953  if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
954    return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
955
956  // Otherwise, we really do want to create a ConstantArray.
957  return nullptr;
958}
959
960/// getTypeForElements - Return an anonymous struct type to use for a constant
961/// with the specified set of elements.  The list must not be empty.
962StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
963                                               ArrayRef<Constant*> V,
964                                               bool Packed) {
965  unsigned VecSize = V.size();
966  SmallVector<Type*, 16> EltTypes(VecSize);
967  for (unsigned i = 0; i != VecSize; ++i)
968    EltTypes[i] = V[i]->getType();
969
970  return StructType::get(Context, EltTypes, Packed);
971}
972
973
974StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
975                                               bool Packed) {
976  assert(!V.empty() &&
977         "ConstantStruct::getTypeForElements cannot be called on empty list");
978  return getTypeForElements(V[0]->getContext(), V, Packed);
979}
980
981
982ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
983  : Constant(T, ConstantStructVal,
984             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
985             V.size()) {
986  assert(V.size() == T->getNumElements() &&
987         "Invalid initializer vector for constant structure");
988  for (unsigned i = 0, e = V.size(); i != e; ++i)
989    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
990           "Initializer for struct element doesn't match struct element type!");
991  std::copy(V.begin(), V.end(), op_begin());
992}
993
994// ConstantStruct accessors.
995Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
996  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
997         "Incorrect # elements specified to ConstantStruct::get");
998
999  // Create a ConstantAggregateZero value if all elements are zeros.
1000  bool isZero = true;
1001  bool isUndef = false;
1002
1003  if (!V.empty()) {
1004    isUndef = isa<UndefValue>(V[0]);
1005    isZero = V[0]->isNullValue();
1006    if (isUndef || isZero) {
1007      for (unsigned i = 0, e = V.size(); i != e; ++i) {
1008        if (!V[i]->isNullValue())
1009          isZero = false;
1010        if (!isa<UndefValue>(V[i]))
1011          isUndef = false;
1012      }
1013    }
1014  }
1015  if (isZero)
1016    return ConstantAggregateZero::get(ST);
1017  if (isUndef)
1018    return UndefValue::get(ST);
1019
1020  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1021}
1022
1023Constant *ConstantStruct::get(StructType *T, ...) {
1024  va_list ap;
1025  SmallVector<Constant*, 8> Values;
1026  va_start(ap, T);
1027  while (Constant *Val = va_arg(ap, llvm::Constant*))
1028    Values.push_back(Val);
1029  va_end(ap);
1030  return get(T, Values);
1031}
1032
1033ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1034  : Constant(T, ConstantVectorVal,
1035             OperandTraits<ConstantVector>::op_end(this) - V.size(),
1036             V.size()) {
1037  for (size_t i = 0, e = V.size(); i != e; i++)
1038    assert(V[i]->getType() == T->getElementType() &&
1039           "Initializer for vector element doesn't match vector element type!");
1040  std::copy(V.begin(), V.end(), op_begin());
1041}
1042
1043// ConstantVector accessors.
1044Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1045  if (Constant *C = getImpl(V))
1046    return C;
1047  VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1048  return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1049}
1050
1051Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1052  assert(!V.empty() && "Vectors can't be empty");
1053  VectorType *T = VectorType::get(V.front()->getType(), V.size());
1054
1055  // If this is an all-undef or all-zero vector, return a
1056  // ConstantAggregateZero or UndefValue.
1057  Constant *C = V[0];
1058  bool isZero = C->isNullValue();
1059  bool isUndef = isa<UndefValue>(C);
1060
1061  if (isZero || isUndef) {
1062    for (unsigned i = 1, e = V.size(); i != e; ++i)
1063      if (V[i] != C) {
1064        isZero = isUndef = false;
1065        break;
1066      }
1067  }
1068
1069  if (isZero)
1070    return ConstantAggregateZero::get(T);
1071  if (isUndef)
1072    return UndefValue::get(T);
1073
1074  // Check to see if all of the elements are ConstantFP or ConstantInt and if
1075  // the element type is compatible with ConstantDataVector.  If so, use it.
1076  if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1077    return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1078
1079  // Otherwise, the element type isn't compatible with ConstantDataVector, or
1080  // the operand list constants a ConstantExpr or something else strange.
1081  return nullptr;
1082}
1083
1084Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1085  // If this splat is compatible with ConstantDataVector, use it instead of
1086  // ConstantVector.
1087  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1088      ConstantDataSequential::isElementTypeCompatible(V->getType()))
1089    return ConstantDataVector::getSplat(NumElts, V);
1090
1091  SmallVector<Constant*, 32> Elts(NumElts, V);
1092  return get(Elts);
1093}
1094
1095ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1096  LLVMContextImpl *pImpl = Context.pImpl;
1097  if (!pImpl->TheNoneToken)
1098    pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1099  return pImpl->TheNoneToken.get();
1100}
1101
1102/// Remove the constant from the constant table.
1103void ConstantTokenNone::destroyConstantImpl() {
1104  llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1105}
1106
1107// Utility function for determining if a ConstantExpr is a CastOp or not. This
1108// can't be inline because we don't want to #include Instruction.h into
1109// Constant.h
1110bool ConstantExpr::isCast() const {
1111  return Instruction::isCast(getOpcode());
1112}
1113
1114bool ConstantExpr::isCompare() const {
1115  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1116}
1117
1118bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1119  if (getOpcode() != Instruction::GetElementPtr) return false;
1120
1121  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1122  User::const_op_iterator OI = std::next(this->op_begin());
1123
1124  // Skip the first index, as it has no static limit.
1125  ++GEPI;
1126  ++OI;
1127
1128  // The remaining indices must be compile-time known integers within the
1129  // bounds of the corresponding notional static array types.
1130  for (; GEPI != E; ++GEPI, ++OI) {
1131    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1132    if (!CI) return false;
1133    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1134      if (CI->getValue().getActiveBits() > 64 ||
1135          CI->getZExtValue() >= ATy->getNumElements())
1136        return false;
1137  }
1138
1139  // All the indices checked out.
1140  return true;
1141}
1142
1143bool ConstantExpr::hasIndices() const {
1144  return getOpcode() == Instruction::ExtractValue ||
1145         getOpcode() == Instruction::InsertValue;
1146}
1147
1148ArrayRef<unsigned> ConstantExpr::getIndices() const {
1149  if (const ExtractValueConstantExpr *EVCE =
1150        dyn_cast<ExtractValueConstantExpr>(this))
1151    return EVCE->Indices;
1152
1153  return cast<InsertValueConstantExpr>(this)->Indices;
1154}
1155
1156unsigned ConstantExpr::getPredicate() const {
1157  return cast<CompareConstantExpr>(this)->predicate;
1158}
1159
1160/// getWithOperandReplaced - Return a constant expression identical to this
1161/// one, but with the specified operand set to the specified value.
1162Constant *
1163ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1164  assert(Op->getType() == getOperand(OpNo)->getType() &&
1165         "Replacing operand with value of different type!");
1166  if (getOperand(OpNo) == Op)
1167    return const_cast<ConstantExpr*>(this);
1168
1169  SmallVector<Constant*, 8> NewOps;
1170  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1171    NewOps.push_back(i == OpNo ? Op : getOperand(i));
1172
1173  return getWithOperands(NewOps);
1174}
1175
1176/// getWithOperands - This returns the current constant expression with the
1177/// operands replaced with the specified values.  The specified array must
1178/// have the same number of operands as our current one.
1179Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1180                                        bool OnlyIfReduced, Type *SrcTy) const {
1181  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1182
1183  // If no operands changed return self.
1184  if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1185    return const_cast<ConstantExpr*>(this);
1186
1187  Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1188  switch (getOpcode()) {
1189  case Instruction::Trunc:
1190  case Instruction::ZExt:
1191  case Instruction::SExt:
1192  case Instruction::FPTrunc:
1193  case Instruction::FPExt:
1194  case Instruction::UIToFP:
1195  case Instruction::SIToFP:
1196  case Instruction::FPToUI:
1197  case Instruction::FPToSI:
1198  case Instruction::PtrToInt:
1199  case Instruction::IntToPtr:
1200  case Instruction::BitCast:
1201  case Instruction::AddrSpaceCast:
1202    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1203  case Instruction::Select:
1204    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1205  case Instruction::InsertElement:
1206    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1207                                          OnlyIfReducedTy);
1208  case Instruction::ExtractElement:
1209    return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1210  case Instruction::InsertValue:
1211    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1212                                        OnlyIfReducedTy);
1213  case Instruction::ExtractValue:
1214    return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1215  case Instruction::ShuffleVector:
1216    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1217                                          OnlyIfReducedTy);
1218  case Instruction::GetElementPtr: {
1219    auto *GEPO = cast<GEPOperator>(this);
1220    assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1221    return ConstantExpr::getGetElementPtr(
1222        SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1223        GEPO->isInBounds(), OnlyIfReducedTy);
1224  }
1225  case Instruction::ICmp:
1226  case Instruction::FCmp:
1227    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1228                                    OnlyIfReducedTy);
1229  default:
1230    assert(getNumOperands() == 2 && "Must be binary operator?");
1231    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1232                             OnlyIfReducedTy);
1233  }
1234}
1235
1236
1237//===----------------------------------------------------------------------===//
1238//                      isValueValidForType implementations
1239
1240bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1241  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1242  if (Ty->isIntegerTy(1))
1243    return Val == 0 || Val == 1;
1244  if (NumBits >= 64)
1245    return true; // always true, has to fit in largest type
1246  uint64_t Max = (1ll << NumBits) - 1;
1247  return Val <= Max;
1248}
1249
1250bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1251  unsigned NumBits = Ty->getIntegerBitWidth();
1252  if (Ty->isIntegerTy(1))
1253    return Val == 0 || Val == 1 || Val == -1;
1254  if (NumBits >= 64)
1255    return true; // always true, has to fit in largest type
1256  int64_t Min = -(1ll << (NumBits-1));
1257  int64_t Max = (1ll << (NumBits-1)) - 1;
1258  return (Val >= Min && Val <= Max);
1259}
1260
1261bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1262  // convert modifies in place, so make a copy.
1263  APFloat Val2 = APFloat(Val);
1264  bool losesInfo;
1265  switch (Ty->getTypeID()) {
1266  default:
1267    return false;         // These can't be represented as floating point!
1268
1269  // FIXME rounding mode needs to be more flexible
1270  case Type::HalfTyID: {
1271    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1272      return true;
1273    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1274    return !losesInfo;
1275  }
1276  case Type::FloatTyID: {
1277    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1278      return true;
1279    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1280    return !losesInfo;
1281  }
1282  case Type::DoubleTyID: {
1283    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1284        &Val2.getSemantics() == &APFloat::IEEEsingle ||
1285        &Val2.getSemantics() == &APFloat::IEEEdouble)
1286      return true;
1287    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1288    return !losesInfo;
1289  }
1290  case Type::X86_FP80TyID:
1291    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1292           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1293           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1294           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1295  case Type::FP128TyID:
1296    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1297           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1298           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1299           &Val2.getSemantics() == &APFloat::IEEEquad;
1300  case Type::PPC_FP128TyID:
1301    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1302           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1303           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1304           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1305  }
1306}
1307
1308
1309//===----------------------------------------------------------------------===//
1310//                      Factory Function Implementation
1311
1312ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1313  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1314         "Cannot create an aggregate zero of non-aggregate type!");
1315
1316  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1317  if (!Entry)
1318    Entry = new ConstantAggregateZero(Ty);
1319
1320  return Entry;
1321}
1322
1323/// destroyConstant - Remove the constant from the constant table.
1324///
1325void ConstantAggregateZero::destroyConstantImpl() {
1326  getContext().pImpl->CAZConstants.erase(getType());
1327}
1328
1329/// destroyConstant - Remove the constant from the constant table...
1330///
1331void ConstantArray::destroyConstantImpl() {
1332  getType()->getContext().pImpl->ArrayConstants.remove(this);
1333}
1334
1335
1336//---- ConstantStruct::get() implementation...
1337//
1338
1339// destroyConstant - Remove the constant from the constant table...
1340//
1341void ConstantStruct::destroyConstantImpl() {
1342  getType()->getContext().pImpl->StructConstants.remove(this);
1343}
1344
1345// destroyConstant - Remove the constant from the constant table...
1346//
1347void ConstantVector::destroyConstantImpl() {
1348  getType()->getContext().pImpl->VectorConstants.remove(this);
1349}
1350
1351/// getSplatValue - If this is a splat vector constant, meaning that all of
1352/// the elements have the same value, return that value. Otherwise return 0.
1353Constant *Constant::getSplatValue() const {
1354  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1355  if (isa<ConstantAggregateZero>(this))
1356    return getNullValue(this->getType()->getVectorElementType());
1357  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1358    return CV->getSplatValue();
1359  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1360    return CV->getSplatValue();
1361  return nullptr;
1362}
1363
1364/// getSplatValue - If this is a splat constant, where all of the
1365/// elements have the same value, return that value. Otherwise return null.
1366Constant *ConstantVector::getSplatValue() const {
1367  // Check out first element.
1368  Constant *Elt = getOperand(0);
1369  // Then make sure all remaining elements point to the same value.
1370  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1371    if (getOperand(I) != Elt)
1372      return nullptr;
1373  return Elt;
1374}
1375
1376/// If C is a constant integer then return its value, otherwise C must be a
1377/// vector of constant integers, all equal, and the common value is returned.
1378const APInt &Constant::getUniqueInteger() const {
1379  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1380    return CI->getValue();
1381  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1382  const Constant *C = this->getAggregateElement(0U);
1383  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1384  return cast<ConstantInt>(C)->getValue();
1385}
1386
1387//---- ConstantPointerNull::get() implementation.
1388//
1389
1390ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1391  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1392  if (!Entry)
1393    Entry = new ConstantPointerNull(Ty);
1394
1395  return Entry;
1396}
1397
1398// destroyConstant - Remove the constant from the constant table...
1399//
1400void ConstantPointerNull::destroyConstantImpl() {
1401  getContext().pImpl->CPNConstants.erase(getType());
1402}
1403
1404
1405//---- UndefValue::get() implementation.
1406//
1407
1408UndefValue *UndefValue::get(Type *Ty) {
1409  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1410  if (!Entry)
1411    Entry = new UndefValue(Ty);
1412
1413  return Entry;
1414}
1415
1416// destroyConstant - Remove the constant from the constant table.
1417//
1418void UndefValue::destroyConstantImpl() {
1419  // Free the constant and any dangling references to it.
1420  getContext().pImpl->UVConstants.erase(getType());
1421}
1422
1423//---- BlockAddress::get() implementation.
1424//
1425
1426BlockAddress *BlockAddress::get(BasicBlock *BB) {
1427  assert(BB->getParent() && "Block must have a parent");
1428  return get(BB->getParent(), BB);
1429}
1430
1431BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1432  BlockAddress *&BA =
1433    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1434  if (!BA)
1435    BA = new BlockAddress(F, BB);
1436
1437  assert(BA->getFunction() == F && "Basic block moved between functions");
1438  return BA;
1439}
1440
1441BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1442: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1443           &Op<0>(), 2) {
1444  setOperand(0, F);
1445  setOperand(1, BB);
1446  BB->AdjustBlockAddressRefCount(1);
1447}
1448
1449BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1450  if (!BB->hasAddressTaken())
1451    return nullptr;
1452
1453  const Function *F = BB->getParent();
1454  assert(F && "Block must have a parent");
1455  BlockAddress *BA =
1456      F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1457  assert(BA && "Refcount and block address map disagree!");
1458  return BA;
1459}
1460
1461// destroyConstant - Remove the constant from the constant table.
1462//
1463void BlockAddress::destroyConstantImpl() {
1464  getFunction()->getType()->getContext().pImpl
1465    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1466  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1467}
1468
1469Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
1470  // This could be replacing either the Basic Block or the Function.  In either
1471  // case, we have to remove the map entry.
1472  Function *NewF = getFunction();
1473  BasicBlock *NewBB = getBasicBlock();
1474
1475  if (U == &Op<0>())
1476    NewF = cast<Function>(To->stripPointerCasts());
1477  else
1478    NewBB = cast<BasicBlock>(To);
1479
1480  // See if the 'new' entry already exists, if not, just update this in place
1481  // and return early.
1482  BlockAddress *&NewBA =
1483    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1484  if (NewBA)
1485    return NewBA;
1486
1487  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1488
1489  // Remove the old entry, this can't cause the map to rehash (just a
1490  // tombstone will get added).
1491  getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1492                                                          getBasicBlock()));
1493  NewBA = this;
1494  setOperand(0, NewF);
1495  setOperand(1, NewBB);
1496  getBasicBlock()->AdjustBlockAddressRefCount(1);
1497
1498  // If we just want to keep the existing value, then return null.
1499  // Callers know that this means we shouldn't delete this value.
1500  return nullptr;
1501}
1502
1503//---- ConstantExpr::get() implementations.
1504//
1505
1506/// This is a utility function to handle folding of casts and lookup of the
1507/// cast in the ExprConstants map. It is used by the various get* methods below.
1508static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1509                               bool OnlyIfReduced = false) {
1510  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1511  // Fold a few common cases
1512  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1513    return FC;
1514
1515  if (OnlyIfReduced)
1516    return nullptr;
1517
1518  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1519
1520  // Look up the constant in the table first to ensure uniqueness.
1521  ConstantExprKeyType Key(opc, C);
1522
1523  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1524}
1525
1526Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1527                                bool OnlyIfReduced) {
1528  Instruction::CastOps opc = Instruction::CastOps(oc);
1529  assert(Instruction::isCast(opc) && "opcode out of range");
1530  assert(C && Ty && "Null arguments to getCast");
1531  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1532
1533  switch (opc) {
1534  default:
1535    llvm_unreachable("Invalid cast opcode");
1536  case Instruction::Trunc:
1537    return getTrunc(C, Ty, OnlyIfReduced);
1538  case Instruction::ZExt:
1539    return getZExt(C, Ty, OnlyIfReduced);
1540  case Instruction::SExt:
1541    return getSExt(C, Ty, OnlyIfReduced);
1542  case Instruction::FPTrunc:
1543    return getFPTrunc(C, Ty, OnlyIfReduced);
1544  case Instruction::FPExt:
1545    return getFPExtend(C, Ty, OnlyIfReduced);
1546  case Instruction::UIToFP:
1547    return getUIToFP(C, Ty, OnlyIfReduced);
1548  case Instruction::SIToFP:
1549    return getSIToFP(C, Ty, OnlyIfReduced);
1550  case Instruction::FPToUI:
1551    return getFPToUI(C, Ty, OnlyIfReduced);
1552  case Instruction::FPToSI:
1553    return getFPToSI(C, Ty, OnlyIfReduced);
1554  case Instruction::PtrToInt:
1555    return getPtrToInt(C, Ty, OnlyIfReduced);
1556  case Instruction::IntToPtr:
1557    return getIntToPtr(C, Ty, OnlyIfReduced);
1558  case Instruction::BitCast:
1559    return getBitCast(C, Ty, OnlyIfReduced);
1560  case Instruction::AddrSpaceCast:
1561    return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1562  }
1563}
1564
1565Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1566  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1567    return getBitCast(C, Ty);
1568  return getZExt(C, Ty);
1569}
1570
1571Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1572  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1573    return getBitCast(C, Ty);
1574  return getSExt(C, Ty);
1575}
1576
1577Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1578  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1579    return getBitCast(C, Ty);
1580  return getTrunc(C, Ty);
1581}
1582
1583Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1584  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1585  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1586          "Invalid cast");
1587
1588  if (Ty->isIntOrIntVectorTy())
1589    return getPtrToInt(S, Ty);
1590
1591  unsigned SrcAS = S->getType()->getPointerAddressSpace();
1592  if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1593    return getAddrSpaceCast(S, Ty);
1594
1595  return getBitCast(S, Ty);
1596}
1597
1598Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1599                                                         Type *Ty) {
1600  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1601  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1602
1603  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1604    return getAddrSpaceCast(S, Ty);
1605
1606  return getBitCast(S, Ty);
1607}
1608
1609Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1610                                       bool isSigned) {
1611  assert(C->getType()->isIntOrIntVectorTy() &&
1612         Ty->isIntOrIntVectorTy() && "Invalid cast");
1613  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1614  unsigned DstBits = Ty->getScalarSizeInBits();
1615  Instruction::CastOps opcode =
1616    (SrcBits == DstBits ? Instruction::BitCast :
1617     (SrcBits > DstBits ? Instruction::Trunc :
1618      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1619  return getCast(opcode, C, Ty);
1620}
1621
1622Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1623  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1624         "Invalid cast");
1625  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1626  unsigned DstBits = Ty->getScalarSizeInBits();
1627  if (SrcBits == DstBits)
1628    return C; // Avoid a useless cast
1629  Instruction::CastOps opcode =
1630    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1631  return getCast(opcode, C, Ty);
1632}
1633
1634Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1635#ifndef NDEBUG
1636  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1637  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1638#endif
1639  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1640  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1641  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1642  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1643         "SrcTy must be larger than DestTy for Trunc!");
1644
1645  return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1646}
1647
1648Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1649#ifndef NDEBUG
1650  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1651  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1652#endif
1653  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1654  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1655  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1656  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1657         "SrcTy must be smaller than DestTy for SExt!");
1658
1659  return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1660}
1661
1662Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1663#ifndef NDEBUG
1664  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1665  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1666#endif
1667  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1668  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1669  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1670  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1671         "SrcTy must be smaller than DestTy for ZExt!");
1672
1673  return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1674}
1675
1676Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1677#ifndef NDEBUG
1678  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1679  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1680#endif
1681  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1682  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1683         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1684         "This is an illegal floating point truncation!");
1685  return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1686}
1687
1688Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1689#ifndef NDEBUG
1690  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1691  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1692#endif
1693  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1694  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1695         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1696         "This is an illegal floating point extension!");
1697  return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1698}
1699
1700Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1701#ifndef NDEBUG
1702  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1703  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1704#endif
1705  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1706  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1707         "This is an illegal uint to floating point cast!");
1708  return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1709}
1710
1711Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1712#ifndef NDEBUG
1713  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1714  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1715#endif
1716  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1717  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1718         "This is an illegal sint to floating point cast!");
1719  return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1720}
1721
1722Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1723#ifndef NDEBUG
1724  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1725  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1726#endif
1727  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1728  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1729         "This is an illegal floating point to uint cast!");
1730  return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1731}
1732
1733Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1734#ifndef NDEBUG
1735  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1736  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1737#endif
1738  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1739  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1740         "This is an illegal floating point to sint cast!");
1741  return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1742}
1743
1744Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1745                                    bool OnlyIfReduced) {
1746  assert(C->getType()->getScalarType()->isPointerTy() &&
1747         "PtrToInt source must be pointer or pointer vector");
1748  assert(DstTy->getScalarType()->isIntegerTy() &&
1749         "PtrToInt destination must be integer or integer vector");
1750  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1751  if (isa<VectorType>(C->getType()))
1752    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1753           "Invalid cast between a different number of vector elements");
1754  return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1755}
1756
1757Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1758                                    bool OnlyIfReduced) {
1759  assert(C->getType()->getScalarType()->isIntegerTy() &&
1760         "IntToPtr source must be integer or integer vector");
1761  assert(DstTy->getScalarType()->isPointerTy() &&
1762         "IntToPtr destination must be a pointer or pointer vector");
1763  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1764  if (isa<VectorType>(C->getType()))
1765    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1766           "Invalid cast between a different number of vector elements");
1767  return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1768}
1769
1770Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1771                                   bool OnlyIfReduced) {
1772  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1773         "Invalid constantexpr bitcast!");
1774
1775  // It is common to ask for a bitcast of a value to its own type, handle this
1776  // speedily.
1777  if (C->getType() == DstTy) return C;
1778
1779  return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1780}
1781
1782Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1783                                         bool OnlyIfReduced) {
1784  assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1785         "Invalid constantexpr addrspacecast!");
1786
1787  // Canonicalize addrspacecasts between different pointer types by first
1788  // bitcasting the pointer type and then converting the address space.
1789  PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1790  PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1791  Type *DstElemTy = DstScalarTy->getElementType();
1792  if (SrcScalarTy->getElementType() != DstElemTy) {
1793    Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1794    if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1795      // Handle vectors of pointers.
1796      MidTy = VectorType::get(MidTy, VT->getNumElements());
1797    }
1798    C = getBitCast(C, MidTy);
1799  }
1800  return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1801}
1802
1803Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1804                            unsigned Flags, Type *OnlyIfReducedTy) {
1805  // Check the operands for consistency first.
1806  assert(Opcode >= Instruction::BinaryOpsBegin &&
1807         Opcode <  Instruction::BinaryOpsEnd   &&
1808         "Invalid opcode in binary constant expression");
1809  assert(C1->getType() == C2->getType() &&
1810         "Operand types in binary constant expression should match");
1811
1812#ifndef NDEBUG
1813  switch (Opcode) {
1814  case Instruction::Add:
1815  case Instruction::Sub:
1816  case Instruction::Mul:
1817    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1818    assert(C1->getType()->isIntOrIntVectorTy() &&
1819           "Tried to create an integer operation on a non-integer type!");
1820    break;
1821  case Instruction::FAdd:
1822  case Instruction::FSub:
1823  case Instruction::FMul:
1824    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1825    assert(C1->getType()->isFPOrFPVectorTy() &&
1826           "Tried to create a floating-point operation on a "
1827           "non-floating-point type!");
1828    break;
1829  case Instruction::UDiv:
1830  case Instruction::SDiv:
1831    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1832    assert(C1->getType()->isIntOrIntVectorTy() &&
1833           "Tried to create an arithmetic operation on a non-arithmetic type!");
1834    break;
1835  case Instruction::FDiv:
1836    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1837    assert(C1->getType()->isFPOrFPVectorTy() &&
1838           "Tried to create an arithmetic operation on a non-arithmetic type!");
1839    break;
1840  case Instruction::URem:
1841  case Instruction::SRem:
1842    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1843    assert(C1->getType()->isIntOrIntVectorTy() &&
1844           "Tried to create an arithmetic operation on a non-arithmetic type!");
1845    break;
1846  case Instruction::FRem:
1847    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1848    assert(C1->getType()->isFPOrFPVectorTy() &&
1849           "Tried to create an arithmetic operation on a non-arithmetic type!");
1850    break;
1851  case Instruction::And:
1852  case Instruction::Or:
1853  case Instruction::Xor:
1854    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1855    assert(C1->getType()->isIntOrIntVectorTy() &&
1856           "Tried to create a logical operation on a non-integral type!");
1857    break;
1858  case Instruction::Shl:
1859  case Instruction::LShr:
1860  case Instruction::AShr:
1861    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1862    assert(C1->getType()->isIntOrIntVectorTy() &&
1863           "Tried to create a shift operation on a non-integer type!");
1864    break;
1865  default:
1866    break;
1867  }
1868#endif
1869
1870  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1871    return FC;          // Fold a few common cases.
1872
1873  if (OnlyIfReducedTy == C1->getType())
1874    return nullptr;
1875
1876  Constant *ArgVec[] = { C1, C2 };
1877  ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1878
1879  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1880  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1881}
1882
1883Constant *ConstantExpr::getSizeOf(Type* Ty) {
1884  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1885  // Note that a non-inbounds gep is used, as null isn't within any object.
1886  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1887  Constant *GEP = getGetElementPtr(
1888      Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1889  return getPtrToInt(GEP,
1890                     Type::getInt64Ty(Ty->getContext()));
1891}
1892
1893Constant *ConstantExpr::getAlignOf(Type* Ty) {
1894  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1895  // Note that a non-inbounds gep is used, as null isn't within any object.
1896  Type *AligningTy =
1897    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1898  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1899  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1900  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1901  Constant *Indices[2] = { Zero, One };
1902  Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1903  return getPtrToInt(GEP,
1904                     Type::getInt64Ty(Ty->getContext()));
1905}
1906
1907Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1908  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1909                                           FieldNo));
1910}
1911
1912Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1913  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1914  // Note that a non-inbounds gep is used, as null isn't within any object.
1915  Constant *GEPIdx[] = {
1916    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1917    FieldNo
1918  };
1919  Constant *GEP = getGetElementPtr(
1920      Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1921  return getPtrToInt(GEP,
1922                     Type::getInt64Ty(Ty->getContext()));
1923}
1924
1925Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1926                                   Constant *C2, bool OnlyIfReduced) {
1927  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1928
1929  switch (Predicate) {
1930  default: llvm_unreachable("Invalid CmpInst predicate");
1931  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1932  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1933  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1934  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1935  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1936  case CmpInst::FCMP_TRUE:
1937    return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1938
1939  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1940  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1941  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1942  case CmpInst::ICMP_SLE:
1943    return getICmp(Predicate, C1, C2, OnlyIfReduced);
1944  }
1945}
1946
1947Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1948                                  Type *OnlyIfReducedTy) {
1949  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1950
1951  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1952    return SC;        // Fold common cases
1953
1954  if (OnlyIfReducedTy == V1->getType())
1955    return nullptr;
1956
1957  Constant *ArgVec[] = { C, V1, V2 };
1958  ConstantExprKeyType Key(Instruction::Select, ArgVec);
1959
1960  LLVMContextImpl *pImpl = C->getContext().pImpl;
1961  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1962}
1963
1964Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
1965                                         ArrayRef<Value *> Idxs, bool InBounds,
1966                                         Type *OnlyIfReducedTy) {
1967  if (!Ty)
1968    Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
1969  else
1970    assert(
1971        Ty ==
1972        cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
1973
1974  if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs))
1975    return FC;          // Fold a few common cases.
1976
1977  // Get the result type of the getelementptr!
1978  Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
1979  assert(DestTy && "GEP indices invalid!");
1980  unsigned AS = C->getType()->getPointerAddressSpace();
1981  Type *ReqTy = DestTy->getPointerTo(AS);
1982  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1983    ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1984
1985  if (OnlyIfReducedTy == ReqTy)
1986    return nullptr;
1987
1988  // Look up the constant in the table first to ensure uniqueness
1989  std::vector<Constant*> ArgVec;
1990  ArgVec.reserve(1 + Idxs.size());
1991  ArgVec.push_back(C);
1992  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1993    assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1994           "getelementptr index type missmatch");
1995    assert((!Idxs[i]->getType()->isVectorTy() ||
1996            ReqTy->getVectorNumElements() ==
1997            Idxs[i]->getType()->getVectorNumElements()) &&
1998           "getelementptr index type missmatch");
1999    ArgVec.push_back(cast<Constant>(Idxs[i]));
2000  }
2001  const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2002                                InBounds ? GEPOperator::IsInBounds : 0, None,
2003                                Ty);
2004
2005  LLVMContextImpl *pImpl = C->getContext().pImpl;
2006  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2007}
2008
2009Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2010                                Constant *RHS, bool OnlyIfReduced) {
2011  assert(LHS->getType() == RHS->getType());
2012  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
2013         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2014
2015  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2016    return FC;          // Fold a few common cases...
2017
2018  if (OnlyIfReduced)
2019    return nullptr;
2020
2021  // Look up the constant in the table first to ensure uniqueness
2022  Constant *ArgVec[] = { LHS, RHS };
2023  // Get the key type with both the opcode and predicate
2024  const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2025
2026  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2027  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2028    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2029
2030  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2031  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2032}
2033
2034Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2035                                Constant *RHS, bool OnlyIfReduced) {
2036  assert(LHS->getType() == RHS->getType());
2037  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2038
2039  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2040    return FC;          // Fold a few common cases...
2041
2042  if (OnlyIfReduced)
2043    return nullptr;
2044
2045  // Look up the constant in the table first to ensure uniqueness
2046  Constant *ArgVec[] = { LHS, RHS };
2047  // Get the key type with both the opcode and predicate
2048  const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2049
2050  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2051  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2052    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2053
2054  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2055  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2056}
2057
2058Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2059                                          Type *OnlyIfReducedTy) {
2060  assert(Val->getType()->isVectorTy() &&
2061         "Tried to create extractelement operation on non-vector type!");
2062  assert(Idx->getType()->isIntegerTy() &&
2063         "Extractelement index must be an integer type!");
2064
2065  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2066    return FC;          // Fold a few common cases.
2067
2068  Type *ReqTy = Val->getType()->getVectorElementType();
2069  if (OnlyIfReducedTy == ReqTy)
2070    return nullptr;
2071
2072  // Look up the constant in the table first to ensure uniqueness
2073  Constant *ArgVec[] = { Val, Idx };
2074  const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2075
2076  LLVMContextImpl *pImpl = Val->getContext().pImpl;
2077  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2078}
2079
2080Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2081                                         Constant *Idx, Type *OnlyIfReducedTy) {
2082  assert(Val->getType()->isVectorTy() &&
2083         "Tried to create insertelement operation on non-vector type!");
2084  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2085         "Insertelement types must match!");
2086  assert(Idx->getType()->isIntegerTy() &&
2087         "Insertelement index must be i32 type!");
2088
2089  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2090    return FC;          // Fold a few common cases.
2091
2092  if (OnlyIfReducedTy == Val->getType())
2093    return nullptr;
2094
2095  // Look up the constant in the table first to ensure uniqueness
2096  Constant *ArgVec[] = { Val, Elt, Idx };
2097  const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2098
2099  LLVMContextImpl *pImpl = Val->getContext().pImpl;
2100  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2101}
2102
2103Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2104                                         Constant *Mask, Type *OnlyIfReducedTy) {
2105  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2106         "Invalid shuffle vector constant expr operands!");
2107
2108  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2109    return FC;          // Fold a few common cases.
2110
2111  unsigned NElts = Mask->getType()->getVectorNumElements();
2112  Type *EltTy = V1->getType()->getVectorElementType();
2113  Type *ShufTy = VectorType::get(EltTy, NElts);
2114
2115  if (OnlyIfReducedTy == ShufTy)
2116    return nullptr;
2117
2118  // Look up the constant in the table first to ensure uniqueness
2119  Constant *ArgVec[] = { V1, V2, Mask };
2120  const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2121
2122  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2123  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2124}
2125
2126Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2127                                       ArrayRef<unsigned> Idxs,
2128                                       Type *OnlyIfReducedTy) {
2129  assert(Agg->getType()->isFirstClassType() &&
2130         "Non-first-class type for constant insertvalue expression");
2131
2132  assert(ExtractValueInst::getIndexedType(Agg->getType(),
2133                                          Idxs) == Val->getType() &&
2134         "insertvalue indices invalid!");
2135  Type *ReqTy = Val->getType();
2136
2137  if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2138    return FC;
2139
2140  if (OnlyIfReducedTy == ReqTy)
2141    return nullptr;
2142
2143  Constant *ArgVec[] = { Agg, Val };
2144  const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2145
2146  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2147  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2148}
2149
2150Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2151                                        Type *OnlyIfReducedTy) {
2152  assert(Agg->getType()->isFirstClassType() &&
2153         "Tried to create extractelement operation on non-first-class type!");
2154
2155  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2156  (void)ReqTy;
2157  assert(ReqTy && "extractvalue indices invalid!");
2158
2159  assert(Agg->getType()->isFirstClassType() &&
2160         "Non-first-class type for constant extractvalue expression");
2161  if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2162    return FC;
2163
2164  if (OnlyIfReducedTy == ReqTy)
2165    return nullptr;
2166
2167  Constant *ArgVec[] = { Agg };
2168  const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2169
2170  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2171  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2172}
2173
2174Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2175  assert(C->getType()->isIntOrIntVectorTy() &&
2176         "Cannot NEG a nonintegral value!");
2177  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2178                C, HasNUW, HasNSW);
2179}
2180
2181Constant *ConstantExpr::getFNeg(Constant *C) {
2182  assert(C->getType()->isFPOrFPVectorTy() &&
2183         "Cannot FNEG a non-floating-point value!");
2184  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2185}
2186
2187Constant *ConstantExpr::getNot(Constant *C) {
2188  assert(C->getType()->isIntOrIntVectorTy() &&
2189         "Cannot NOT a nonintegral value!");
2190  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2191}
2192
2193Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2194                               bool HasNUW, bool HasNSW) {
2195  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2196                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2197  return get(Instruction::Add, C1, C2, Flags);
2198}
2199
2200Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2201  return get(Instruction::FAdd, C1, C2);
2202}
2203
2204Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2205                               bool HasNUW, bool HasNSW) {
2206  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2207                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2208  return get(Instruction::Sub, C1, C2, Flags);
2209}
2210
2211Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2212  return get(Instruction::FSub, C1, C2);
2213}
2214
2215Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2216                               bool HasNUW, bool HasNSW) {
2217  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2218                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2219  return get(Instruction::Mul, C1, C2, Flags);
2220}
2221
2222Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2223  return get(Instruction::FMul, C1, C2);
2224}
2225
2226Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2227  return get(Instruction::UDiv, C1, C2,
2228             isExact ? PossiblyExactOperator::IsExact : 0);
2229}
2230
2231Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2232  return get(Instruction::SDiv, C1, C2,
2233             isExact ? PossiblyExactOperator::IsExact : 0);
2234}
2235
2236Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2237  return get(Instruction::FDiv, C1, C2);
2238}
2239
2240Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2241  return get(Instruction::URem, C1, C2);
2242}
2243
2244Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2245  return get(Instruction::SRem, C1, C2);
2246}
2247
2248Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2249  return get(Instruction::FRem, C1, C2);
2250}
2251
2252Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2253  return get(Instruction::And, C1, C2);
2254}
2255
2256Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2257  return get(Instruction::Or, C1, C2);
2258}
2259
2260Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2261  return get(Instruction::Xor, C1, C2);
2262}
2263
2264Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2265                               bool HasNUW, bool HasNSW) {
2266  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2267                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2268  return get(Instruction::Shl, C1, C2, Flags);
2269}
2270
2271Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2272  return get(Instruction::LShr, C1, C2,
2273             isExact ? PossiblyExactOperator::IsExact : 0);
2274}
2275
2276Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2277  return get(Instruction::AShr, C1, C2,
2278             isExact ? PossiblyExactOperator::IsExact : 0);
2279}
2280
2281/// getBinOpIdentity - Return the identity for the given binary operation,
2282/// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2283/// returns null if the operator doesn't have an identity.
2284Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2285  switch (Opcode) {
2286  default:
2287    // Doesn't have an identity.
2288    return nullptr;
2289
2290  case Instruction::Add:
2291  case Instruction::Or:
2292  case Instruction::Xor:
2293    return Constant::getNullValue(Ty);
2294
2295  case Instruction::Mul:
2296    return ConstantInt::get(Ty, 1);
2297
2298  case Instruction::And:
2299    return Constant::getAllOnesValue(Ty);
2300  }
2301}
2302
2303/// getBinOpAbsorber - Return the absorbing element for the given binary
2304/// operation, i.e. a constant C such that X op C = C and C op X = C for
2305/// every X.  For example, this returns zero for integer multiplication.
2306/// It returns null if the operator doesn't have an absorbing element.
2307Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2308  switch (Opcode) {
2309  default:
2310    // Doesn't have an absorber.
2311    return nullptr;
2312
2313  case Instruction::Or:
2314    return Constant::getAllOnesValue(Ty);
2315
2316  case Instruction::And:
2317  case Instruction::Mul:
2318    return Constant::getNullValue(Ty);
2319  }
2320}
2321
2322// destroyConstant - Remove the constant from the constant table...
2323//
2324void ConstantExpr::destroyConstantImpl() {
2325  getType()->getContext().pImpl->ExprConstants.remove(this);
2326}
2327
2328const char *ConstantExpr::getOpcodeName() const {
2329  return Instruction::getOpcodeName(getOpcode());
2330}
2331
2332GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2333    Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2334    : ConstantExpr(DestTy, Instruction::GetElementPtr,
2335                   OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2336                       (IdxList.size() + 1),
2337                   IdxList.size() + 1),
2338      SrcElementTy(SrcElementTy) {
2339  Op<0>() = C;
2340  Use *OperandList = getOperandList();
2341  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2342    OperandList[i+1] = IdxList[i];
2343}
2344
2345Type *GetElementPtrConstantExpr::getSourceElementType() const {
2346  return SrcElementTy;
2347}
2348
2349//===----------------------------------------------------------------------===//
2350//                       ConstantData* implementations
2351
2352void ConstantDataArray::anchor() {}
2353void ConstantDataVector::anchor() {}
2354
2355/// getElementType - Return the element type of the array/vector.
2356Type *ConstantDataSequential::getElementType() const {
2357  return getType()->getElementType();
2358}
2359
2360StringRef ConstantDataSequential::getRawDataValues() const {
2361  return StringRef(DataElements, getNumElements()*getElementByteSize());
2362}
2363
2364/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2365/// formed with a vector or array of the specified element type.
2366/// ConstantDataArray only works with normal float and int types that are
2367/// stored densely in memory, not with things like i42 or x86_f80.
2368bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2369  if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2370  if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2371    switch (IT->getBitWidth()) {
2372    case 8:
2373    case 16:
2374    case 32:
2375    case 64:
2376      return true;
2377    default: break;
2378    }
2379  }
2380  return false;
2381}
2382
2383/// getNumElements - Return the number of elements in the array or vector.
2384unsigned ConstantDataSequential::getNumElements() const {
2385  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2386    return AT->getNumElements();
2387  return getType()->getVectorNumElements();
2388}
2389
2390
2391/// getElementByteSize - Return the size in bytes of the elements in the data.
2392uint64_t ConstantDataSequential::getElementByteSize() const {
2393  return getElementType()->getPrimitiveSizeInBits()/8;
2394}
2395
2396/// getElementPointer - Return the start of the specified element.
2397const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2398  assert(Elt < getNumElements() && "Invalid Elt");
2399  return DataElements+Elt*getElementByteSize();
2400}
2401
2402
2403/// isAllZeros - return true if the array is empty or all zeros.
2404static bool isAllZeros(StringRef Arr) {
2405  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2406    if (*I != 0)
2407      return false;
2408  return true;
2409}
2410
2411/// getImpl - This is the underlying implementation of all of the
2412/// ConstantDataSequential::get methods.  They all thunk down to here, providing
2413/// the correct element type.  We take the bytes in as a StringRef because
2414/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2415Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2416  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2417  // If the elements are all zero or there are no elements, return a CAZ, which
2418  // is more dense and canonical.
2419  if (isAllZeros(Elements))
2420    return ConstantAggregateZero::get(Ty);
2421
2422  // Do a lookup to see if we have already formed one of these.
2423  auto &Slot =
2424      *Ty->getContext()
2425           .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2426           .first;
2427
2428  // The bucket can point to a linked list of different CDS's that have the same
2429  // body but different types.  For example, 0,0,0,1 could be a 4 element array
2430  // of i8, or a 1-element array of i32.  They'll both end up in the same
2431  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2432  ConstantDataSequential **Entry = &Slot.second;
2433  for (ConstantDataSequential *Node = *Entry; Node;
2434       Entry = &Node->Next, Node = *Entry)
2435    if (Node->getType() == Ty)
2436      return Node;
2437
2438  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2439  // and return it.
2440  if (isa<ArrayType>(Ty))
2441    return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2442
2443  assert(isa<VectorType>(Ty));
2444  return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2445}
2446
2447void ConstantDataSequential::destroyConstantImpl() {
2448  // Remove the constant from the StringMap.
2449  StringMap<ConstantDataSequential*> &CDSConstants =
2450    getType()->getContext().pImpl->CDSConstants;
2451
2452  StringMap<ConstantDataSequential*>::iterator Slot =
2453    CDSConstants.find(getRawDataValues());
2454
2455  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2456
2457  ConstantDataSequential **Entry = &Slot->getValue();
2458
2459  // Remove the entry from the hash table.
2460  if (!(*Entry)->Next) {
2461    // If there is only one value in the bucket (common case) it must be this
2462    // entry, and removing the entry should remove the bucket completely.
2463    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2464    getContext().pImpl->CDSConstants.erase(Slot);
2465  } else {
2466    // Otherwise, there are multiple entries linked off the bucket, unlink the
2467    // node we care about but keep the bucket around.
2468    for (ConstantDataSequential *Node = *Entry; ;
2469         Entry = &Node->Next, Node = *Entry) {
2470      assert(Node && "Didn't find entry in its uniquing hash table!");
2471      // If we found our entry, unlink it from the list and we're done.
2472      if (Node == this) {
2473        *Entry = Node->Next;
2474        break;
2475      }
2476    }
2477  }
2478
2479  // If we were part of a list, make sure that we don't delete the list that is
2480  // still owned by the uniquing map.
2481  Next = nullptr;
2482}
2483
2484/// get() constructors - Return a constant with array type with an element
2485/// count and element type matching the ArrayRef passed in.  Note that this
2486/// can return a ConstantAggregateZero object.
2487Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2488  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2489  const char *Data = reinterpret_cast<const char *>(Elts.data());
2490  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2491}
2492Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2493  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2494  const char *Data = reinterpret_cast<const char *>(Elts.data());
2495  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2496}
2497Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2498  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2499  const char *Data = reinterpret_cast<const char *>(Elts.data());
2500  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2501}
2502Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2503  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2504  const char *Data = reinterpret_cast<const char *>(Elts.data());
2505  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2506}
2507Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2508  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2509  const char *Data = reinterpret_cast<const char *>(Elts.data());
2510  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2511}
2512Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2513  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2514  const char *Data = reinterpret_cast<const char *>(Elts.data());
2515  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2516}
2517
2518/// getFP() constructors - Return a constant with array type with an element
2519/// count and element type of float with precision matching the number of
2520/// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2521/// double for 64bits) Note that this can return a ConstantAggregateZero
2522/// object.
2523Constant *ConstantDataArray::getFP(LLVMContext &Context,
2524                                   ArrayRef<uint16_t> Elts) {
2525  Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2526  const char *Data = reinterpret_cast<const char *>(Elts.data());
2527  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2528}
2529Constant *ConstantDataArray::getFP(LLVMContext &Context,
2530                                   ArrayRef<uint32_t> Elts) {
2531  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2532  const char *Data = reinterpret_cast<const char *>(Elts.data());
2533  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2534}
2535Constant *ConstantDataArray::getFP(LLVMContext &Context,
2536                                   ArrayRef<uint64_t> Elts) {
2537  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2538  const char *Data = reinterpret_cast<const char *>(Elts.data());
2539  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2540}
2541
2542/// getString - This method constructs a CDS and initializes it with a text
2543/// string. The default behavior (AddNull==true) causes a null terminator to
2544/// be placed at the end of the array (increasing the length of the string by
2545/// one more than the StringRef would normally indicate.  Pass AddNull=false
2546/// to disable this behavior.
2547Constant *ConstantDataArray::getString(LLVMContext &Context,
2548                                       StringRef Str, bool AddNull) {
2549  if (!AddNull) {
2550    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2551    return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2552               Str.size()));
2553  }
2554
2555  SmallVector<uint8_t, 64> ElementVals;
2556  ElementVals.append(Str.begin(), Str.end());
2557  ElementVals.push_back(0);
2558  return get(Context, ElementVals);
2559}
2560
2561/// get() constructors - Return a constant with vector type with an element
2562/// count and element type matching the ArrayRef passed in.  Note that this
2563/// can return a ConstantAggregateZero object.
2564Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2565  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2566  const char *Data = reinterpret_cast<const char *>(Elts.data());
2567  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2568}
2569Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2570  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2571  const char *Data = reinterpret_cast<const char *>(Elts.data());
2572  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2573}
2574Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2575  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2576  const char *Data = reinterpret_cast<const char *>(Elts.data());
2577  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2578}
2579Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2580  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2581  const char *Data = reinterpret_cast<const char *>(Elts.data());
2582  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2583}
2584Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2585  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2586  const char *Data = reinterpret_cast<const char *>(Elts.data());
2587  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2588}
2589Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2590  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2591  const char *Data = reinterpret_cast<const char *>(Elts.data());
2592  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2593}
2594
2595/// getFP() constructors - Return a constant with vector type with an element
2596/// count and element type of float with the precision matching the number of
2597/// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
2598/// double for 64bits) Note that this can return a ConstantAggregateZero
2599/// object.
2600Constant *ConstantDataVector::getFP(LLVMContext &Context,
2601                                    ArrayRef<uint16_t> Elts) {
2602  Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2603  const char *Data = reinterpret_cast<const char *>(Elts.data());
2604  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2605}
2606Constant *ConstantDataVector::getFP(LLVMContext &Context,
2607                                    ArrayRef<uint32_t> Elts) {
2608  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2609  const char *Data = reinterpret_cast<const char *>(Elts.data());
2610  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2611}
2612Constant *ConstantDataVector::getFP(LLVMContext &Context,
2613                                    ArrayRef<uint64_t> Elts) {
2614  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2615  const char *Data = reinterpret_cast<const char *>(Elts.data());
2616  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2617}
2618
2619Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2620  assert(isElementTypeCompatible(V->getType()) &&
2621         "Element type not compatible with ConstantData");
2622  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2623    if (CI->getType()->isIntegerTy(8)) {
2624      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2625      return get(V->getContext(), Elts);
2626    }
2627    if (CI->getType()->isIntegerTy(16)) {
2628      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2629      return get(V->getContext(), Elts);
2630    }
2631    if (CI->getType()->isIntegerTy(32)) {
2632      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2633      return get(V->getContext(), Elts);
2634    }
2635    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2636    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2637    return get(V->getContext(), Elts);
2638  }
2639
2640  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2641    if (CFP->getType()->isHalfTy()) {
2642      SmallVector<uint16_t, 16> Elts(
2643          NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2644      return getFP(V->getContext(), Elts);
2645    }
2646    if (CFP->getType()->isFloatTy()) {
2647      SmallVector<uint32_t, 16> Elts(
2648          NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2649      return getFP(V->getContext(), Elts);
2650    }
2651    if (CFP->getType()->isDoubleTy()) {
2652      SmallVector<uint64_t, 16> Elts(
2653          NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2654      return getFP(V->getContext(), Elts);
2655    }
2656  }
2657  return ConstantVector::getSplat(NumElts, V);
2658}
2659
2660
2661/// getElementAsInteger - If this is a sequential container of integers (of
2662/// any size), return the specified element in the low bits of a uint64_t.
2663uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2664  assert(isa<IntegerType>(getElementType()) &&
2665         "Accessor can only be used when element is an integer");
2666  const char *EltPtr = getElementPointer(Elt);
2667
2668  // The data is stored in host byte order, make sure to cast back to the right
2669  // type to load with the right endianness.
2670  switch (getElementType()->getIntegerBitWidth()) {
2671  default: llvm_unreachable("Invalid bitwidth for CDS");
2672  case 8:
2673    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2674  case 16:
2675    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2676  case 32:
2677    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2678  case 64:
2679    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2680  }
2681}
2682
2683/// getElementAsAPFloat - If this is a sequential container of floating point
2684/// type, return the specified element as an APFloat.
2685APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2686  const char *EltPtr = getElementPointer(Elt);
2687
2688  switch (getElementType()->getTypeID()) {
2689  default:
2690    llvm_unreachable("Accessor can only be used when element is float/double!");
2691  case Type::HalfTyID: {
2692    auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2693    return APFloat(APFloat::IEEEhalf, APInt(16, EltVal));
2694  }
2695  case Type::FloatTyID: {
2696    auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2697    return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2698  }
2699  case Type::DoubleTyID: {
2700    auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2701    return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2702  }
2703  }
2704}
2705
2706/// getElementAsFloat - If this is an sequential container of floats, return
2707/// the specified element as a float.
2708float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2709  assert(getElementType()->isFloatTy() &&
2710         "Accessor can only be used when element is a 'float'");
2711  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2712  return *const_cast<float *>(EltPtr);
2713}
2714
2715/// getElementAsDouble - If this is an sequential container of doubles, return
2716/// the specified element as a float.
2717double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2718  assert(getElementType()->isDoubleTy() &&
2719         "Accessor can only be used when element is a 'float'");
2720  const double *EltPtr =
2721      reinterpret_cast<const double *>(getElementPointer(Elt));
2722  return *const_cast<double *>(EltPtr);
2723}
2724
2725/// getElementAsConstant - Return a Constant for a specified index's element.
2726/// Note that this has to compute a new constant to return, so it isn't as
2727/// efficient as getElementAsInteger/Float/Double.
2728Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2729  if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2730      getElementType()->isDoubleTy())
2731    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2732
2733  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2734}
2735
2736/// isString - This method returns true if this is an array of i8.
2737bool ConstantDataSequential::isString() const {
2738  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2739}
2740
2741/// isCString - This method returns true if the array "isString", ends with a
2742/// nul byte, and does not contains any other nul bytes.
2743bool ConstantDataSequential::isCString() const {
2744  if (!isString())
2745    return false;
2746
2747  StringRef Str = getAsString();
2748
2749  // The last value must be nul.
2750  if (Str.back() != 0) return false;
2751
2752  // Other elements must be non-nul.
2753  return Str.drop_back().find(0) == StringRef::npos;
2754}
2755
2756/// getSplatValue - If this is a splat constant, meaning that all of the
2757/// elements have the same value, return that value. Otherwise return nullptr.
2758Constant *ConstantDataVector::getSplatValue() const {
2759  const char *Base = getRawDataValues().data();
2760
2761  // Compare elements 1+ to the 0'th element.
2762  unsigned EltSize = getElementByteSize();
2763  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2764    if (memcmp(Base, Base+i*EltSize, EltSize))
2765      return nullptr;
2766
2767  // If they're all the same, return the 0th one as a representative.
2768  return getElementAsConstant(0);
2769}
2770
2771//===----------------------------------------------------------------------===//
2772//                handleOperandChange implementations
2773
2774/// Update this constant array to change uses of
2775/// 'From' to be uses of 'To'.  This must update the uniquing data structures
2776/// etc.
2777///
2778/// Note that we intentionally replace all uses of From with To here.  Consider
2779/// a large array that uses 'From' 1000 times.  By handling this case all here,
2780/// ConstantArray::handleOperandChange is only invoked once, and that
2781/// single invocation handles all 1000 uses.  Handling them one at a time would
2782/// work, but would be really slow because it would have to unique each updated
2783/// array instance.
2784///
2785void Constant::handleOperandChange(Value *From, Value *To, Use *U) {
2786  Value *Replacement = nullptr;
2787  switch (getValueID()) {
2788  default:
2789    llvm_unreachable("Not a constant!");
2790#define HANDLE_CONSTANT(Name)                                                  \
2791  case Value::Name##Val:                                                       \
2792    Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To, U);      \
2793    break;
2794#include "llvm/IR/Value.def"
2795  }
2796
2797  // If handleOperandChangeImpl returned nullptr, then it handled
2798  // replacing itself and we don't want to delete or replace anything else here.
2799  if (!Replacement)
2800    return;
2801
2802  // I do need to replace this with an existing value.
2803  assert(Replacement != this && "I didn't contain From!");
2804
2805  // Everyone using this now uses the replacement.
2806  replaceAllUsesWith(Replacement);
2807
2808  // Delete the old constant!
2809  destroyConstant();
2810}
2811
2812Value *ConstantInt::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2813  llvm_unreachable("Unsupported class for handleOperandChange()!");
2814}
2815
2816Value *ConstantFP::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2817  llvm_unreachable("Unsupported class for handleOperandChange()!");
2818}
2819
2820Value *ConstantTokenNone::handleOperandChangeImpl(Value *From, Value *To,
2821                                                  Use *U) {
2822  llvm_unreachable("Unsupported class for handleOperandChange()!");
2823}
2824
2825Value *UndefValue::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2826  llvm_unreachable("Unsupported class for handleOperandChange()!");
2827}
2828
2829Value *ConstantPointerNull::handleOperandChangeImpl(Value *From, Value *To,
2830                                                    Use *U) {
2831  llvm_unreachable("Unsupported class for handleOperandChange()!");
2832}
2833
2834Value *ConstantAggregateZero::handleOperandChangeImpl(Value *From, Value *To,
2835                                                      Use *U) {
2836  llvm_unreachable("Unsupported class for handleOperandChange()!");
2837}
2838
2839Value *ConstantDataSequential::handleOperandChangeImpl(Value *From, Value *To,
2840                                                       Use *U) {
2841  llvm_unreachable("Unsupported class for handleOperandChange()!");
2842}
2843
2844Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2845  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2846  Constant *ToC = cast<Constant>(To);
2847
2848  SmallVector<Constant*, 8> Values;
2849  Values.reserve(getNumOperands());  // Build replacement array.
2850
2851  // Fill values with the modified operands of the constant array.  Also,
2852  // compute whether this turns into an all-zeros array.
2853  unsigned NumUpdated = 0;
2854
2855  // Keep track of whether all the values in the array are "ToC".
2856  bool AllSame = true;
2857  Use *OperandList = getOperandList();
2858  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2859    Constant *Val = cast<Constant>(O->get());
2860    if (Val == From) {
2861      Val = ToC;
2862      ++NumUpdated;
2863    }
2864    Values.push_back(Val);
2865    AllSame &= Val == ToC;
2866  }
2867
2868  if (AllSame && ToC->isNullValue())
2869    return ConstantAggregateZero::get(getType());
2870
2871  if (AllSame && isa<UndefValue>(ToC))
2872    return UndefValue::get(getType());
2873
2874  // Check for any other type of constant-folding.
2875  if (Constant *C = getImpl(getType(), Values))
2876    return C;
2877
2878  // Update to the new value.
2879  return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2880      Values, this, From, ToC, NumUpdated, U - OperandList);
2881}
2882
2883Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2884  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2885  Constant *ToC = cast<Constant>(To);
2886
2887  Use *OperandList = getOperandList();
2888  unsigned OperandToUpdate = U-OperandList;
2889  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2890
2891  SmallVector<Constant*, 8> Values;
2892  Values.reserve(getNumOperands());  // Build replacement struct.
2893
2894  // Fill values with the modified operands of the constant struct.  Also,
2895  // compute whether this turns into an all-zeros struct.
2896  bool isAllZeros = false;
2897  bool isAllUndef = false;
2898  if (ToC->isNullValue()) {
2899    isAllZeros = true;
2900    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2901      Constant *Val = cast<Constant>(O->get());
2902      Values.push_back(Val);
2903      if (isAllZeros) isAllZeros = Val->isNullValue();
2904    }
2905  } else if (isa<UndefValue>(ToC)) {
2906    isAllUndef = true;
2907    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2908      Constant *Val = cast<Constant>(O->get());
2909      Values.push_back(Val);
2910      if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2911    }
2912  } else {
2913    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2914      Values.push_back(cast<Constant>(O->get()));
2915  }
2916  Values[OperandToUpdate] = ToC;
2917
2918  if (isAllZeros)
2919    return ConstantAggregateZero::get(getType());
2920
2921  if (isAllUndef)
2922    return UndefValue::get(getType());
2923
2924  // Update to the new value.
2925  return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2926      Values, this, From, ToC);
2927}
2928
2929Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To, Use *U) {
2930  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2931  Constant *ToC = cast<Constant>(To);
2932
2933  SmallVector<Constant*, 8> Values;
2934  Values.reserve(getNumOperands());  // Build replacement array...
2935  unsigned NumUpdated = 0;
2936  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2937    Constant *Val = getOperand(i);
2938    if (Val == From) {
2939      ++NumUpdated;
2940      Val = ToC;
2941    }
2942    Values.push_back(Val);
2943  }
2944
2945  if (Constant *C = getImpl(Values))
2946    return C;
2947
2948  // Update to the new value.
2949  Use *OperandList = getOperandList();
2950  return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2951      Values, this, From, ToC, NumUpdated, U - OperandList);
2952}
2953
2954Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV, Use *U) {
2955  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2956  Constant *To = cast<Constant>(ToV);
2957
2958  SmallVector<Constant*, 8> NewOps;
2959  unsigned NumUpdated = 0;
2960  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2961    Constant *Op = getOperand(i);
2962    if (Op == From) {
2963      ++NumUpdated;
2964      Op = To;
2965    }
2966    NewOps.push_back(Op);
2967  }
2968  assert(NumUpdated && "I didn't contain From!");
2969
2970  if (Constant *C = getWithOperands(NewOps, getType(), true))
2971    return C;
2972
2973  // Update to the new value.
2974  Use *OperandList = getOperandList();
2975  return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2976      NewOps, this, From, To, NumUpdated, U - OperandList);
2977}
2978
2979Instruction *ConstantExpr::getAsInstruction() {
2980  SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2981  ArrayRef<Value*> Ops(ValueOperands);
2982
2983  switch (getOpcode()) {
2984  case Instruction::Trunc:
2985  case Instruction::ZExt:
2986  case Instruction::SExt:
2987  case Instruction::FPTrunc:
2988  case Instruction::FPExt:
2989  case Instruction::UIToFP:
2990  case Instruction::SIToFP:
2991  case Instruction::FPToUI:
2992  case Instruction::FPToSI:
2993  case Instruction::PtrToInt:
2994  case Instruction::IntToPtr:
2995  case Instruction::BitCast:
2996  case Instruction::AddrSpaceCast:
2997    return CastInst::Create((Instruction::CastOps)getOpcode(),
2998                            Ops[0], getType());
2999  case Instruction::Select:
3000    return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3001  case Instruction::InsertElement:
3002    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3003  case Instruction::ExtractElement:
3004    return ExtractElementInst::Create(Ops[0], Ops[1]);
3005  case Instruction::InsertValue:
3006    return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3007  case Instruction::ExtractValue:
3008    return ExtractValueInst::Create(Ops[0], getIndices());
3009  case Instruction::ShuffleVector:
3010    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3011
3012  case Instruction::GetElementPtr: {
3013    const auto *GO = cast<GEPOperator>(this);
3014    if (GO->isInBounds())
3015      return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3016                                               Ops[0], Ops.slice(1));
3017    return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3018                                     Ops.slice(1));
3019  }
3020  case Instruction::ICmp:
3021  case Instruction::FCmp:
3022    return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3023                           (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3024
3025  default:
3026    assert(getNumOperands() == 2 && "Must be binary operator?");
3027    BinaryOperator *BO =
3028      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3029                             Ops[0], Ops[1]);
3030    if (isa<OverflowingBinaryOperator>(BO)) {
3031      BO->setHasNoUnsignedWrap(SubclassOptionalData &
3032                               OverflowingBinaryOperator::NoUnsignedWrap);
3033      BO->setHasNoSignedWrap(SubclassOptionalData &
3034                             OverflowingBinaryOperator::NoSignedWrap);
3035    }
3036    if (isa<PossiblyExactOperator>(BO))
3037      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3038    return BO;
3039  }
3040}
3041