1//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of ELF support for the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#include "RuntimeDyldELF.h"
15#include "RuntimeDyldCheckerImpl.h"
16#include "llvm/ADT/IntervalMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/MC/MCStreamer.h"
21#include "llvm/Object/ELFObjectFile.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/ELF.h"
24#include "llvm/Support/Endian.h"
25#include "llvm/Support/MemoryBuffer.h"
26#include "llvm/Support/TargetRegistry.h"
27
28using namespace llvm;
29using namespace llvm::object;
30
31#define DEBUG_TYPE "dyld"
32
33static inline std::error_code check(std::error_code Err) {
34  if (Err) {
35    report_fatal_error(Err.message());
36  }
37  return Err;
38}
39
40namespace {
41
42template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
43  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
44
45  typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
46  typedef Elf_Sym_Impl<ELFT> Elf_Sym;
47  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
48  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
49
50  typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
51
52  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
53
54public:
55  DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
56
57  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
58
59  void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
60
61  // Methods for type inquiry through isa, cast and dyn_cast
62  static inline bool classof(const Binary *v) {
63    return (isa<ELFObjectFile<ELFT>>(v) &&
64            classof(cast<ELFObjectFile<ELFT>>(v)));
65  }
66  static inline bool classof(const ELFObjectFile<ELFT> *v) {
67    return v->isDyldType();
68  }
69};
70
71
72
73// The MemoryBuffer passed into this constructor is just a wrapper around the
74// actual memory.  Ultimately, the Binary parent class will take ownership of
75// this MemoryBuffer object but not the underlying memory.
76template <class ELFT>
77DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
78    : ELFObjectFile<ELFT>(Wrapper, EC) {
79  this->isDyldELFObject = true;
80}
81
82template <class ELFT>
83void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
84                                               uint64_t Addr) {
85  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
86  Elf_Shdr *shdr =
87      const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
88
89  // This assumes the address passed in matches the target address bitness
90  // The template-based type cast handles everything else.
91  shdr->sh_addr = static_cast<addr_type>(Addr);
92}
93
94template <class ELFT>
95void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
96                                              uint64_t Addr) {
97
98  Elf_Sym *sym = const_cast<Elf_Sym *>(
99      ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
100
101  // This assumes the address passed in matches the target address bitness
102  // The template-based type cast handles everything else.
103  sym->st_value = static_cast<addr_type>(Addr);
104}
105
106class LoadedELFObjectInfo final
107    : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
108public:
109  LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
110      : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
111
112  OwningBinary<ObjectFile>
113  getObjectForDebug(const ObjectFile &Obj) const override;
114};
115
116template <typename ELFT>
117std::unique_ptr<DyldELFObject<ELFT>>
118createRTDyldELFObject(MemoryBufferRef Buffer,
119                      const ObjectFile &SourceObject,
120                      const LoadedELFObjectInfo &L,
121                      std::error_code &ec) {
122  typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
123  typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
124
125  std::unique_ptr<DyldELFObject<ELFT>> Obj =
126    llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
127
128  // Iterate over all sections in the object.
129  auto SI = SourceObject.section_begin();
130  for (const auto &Sec : Obj->sections()) {
131    StringRef SectionName;
132    Sec.getName(SectionName);
133    if (SectionName != "") {
134      DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
135      Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
136          reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
137
138      if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
139        // This assumes that the address passed in matches the target address
140        // bitness. The template-based type cast handles everything else.
141        shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
142      }
143    }
144    ++SI;
145  }
146
147  return Obj;
148}
149
150OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
151                                              const LoadedELFObjectInfo &L) {
152  assert(Obj.isELF() && "Not an ELF object file.");
153
154  std::unique_ptr<MemoryBuffer> Buffer =
155    MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
156
157  std::error_code ec;
158
159  std::unique_ptr<ObjectFile> DebugObj;
160  if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
161    typedef ELFType<support::little, false> ELF32LE;
162    DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L,
163                                              ec);
164  } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
165    typedef ELFType<support::big, false> ELF32BE;
166    DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L,
167                                              ec);
168  } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
169    typedef ELFType<support::big, true> ELF64BE;
170    DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L,
171                                              ec);
172  } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
173    typedef ELFType<support::little, true> ELF64LE;
174    DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L,
175                                              ec);
176  } else
177    llvm_unreachable("Unexpected ELF format");
178
179  assert(!ec && "Could not construct copy ELF object file");
180
181  return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
182}
183
184OwningBinary<ObjectFile>
185LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
186  return createELFDebugObject(Obj, *this);
187}
188
189} // anonymous namespace
190
191namespace llvm {
192
193RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
194                               RuntimeDyld::SymbolResolver &Resolver)
195    : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
196RuntimeDyldELF::~RuntimeDyldELF() {}
197
198void RuntimeDyldELF::registerEHFrames() {
199  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
200    SID EHFrameSID = UnregisteredEHFrameSections[i];
201    uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
202    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
203    size_t EHFrameSize = Sections[EHFrameSID].getSize();
204    MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
205    RegisteredEHFrameSections.push_back(EHFrameSID);
206  }
207  UnregisteredEHFrameSections.clear();
208}
209
210void RuntimeDyldELF::deregisterEHFrames() {
211  for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
212    SID EHFrameSID = RegisteredEHFrameSections[i];
213    uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
214    uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
215    size_t EHFrameSize = Sections[EHFrameSID].getSize();
216    MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
217  }
218  RegisteredEHFrameSections.clear();
219}
220
221std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
222RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
223  return llvm::make_unique<LoadedELFObjectInfo>(*this, loadObjectImpl(O));
224}
225
226void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
227                                             uint64_t Offset, uint64_t Value,
228                                             uint32_t Type, int64_t Addend,
229                                             uint64_t SymOffset) {
230  switch (Type) {
231  default:
232    llvm_unreachable("Relocation type not implemented yet!");
233    break;
234  case ELF::R_X86_64_64: {
235    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
236        Value + Addend;
237    DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
238                 << format("%p\n", Section.getAddressWithOffset(Offset)));
239    break;
240  }
241  case ELF::R_X86_64_32:
242  case ELF::R_X86_64_32S: {
243    Value += Addend;
244    assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
245           (Type == ELF::R_X86_64_32S &&
246            ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
247    uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
248    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
249        TruncatedAddr;
250    DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
251                 << format("%p\n", Section.getAddressWithOffset(Offset)));
252    break;
253  }
254  case ELF::R_X86_64_PC8: {
255    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
256    int64_t RealOffset = Value + Addend - FinalAddress;
257    assert(isInt<8>(RealOffset));
258    int8_t TruncOffset = (RealOffset & 0xFF);
259    Section.getAddress()[Offset] = TruncOffset;
260    break;
261  }
262  case ELF::R_X86_64_PC32: {
263    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
264    int64_t RealOffset = Value + Addend - FinalAddress;
265    assert(isInt<32>(RealOffset));
266    int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
267    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
268        TruncOffset;
269    break;
270  }
271  case ELF::R_X86_64_PC64: {
272    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
273    int64_t RealOffset = Value + Addend - FinalAddress;
274    support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
275        RealOffset;
276    break;
277  }
278  }
279}
280
281void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
282                                          uint64_t Offset, uint32_t Value,
283                                          uint32_t Type, int32_t Addend) {
284  switch (Type) {
285  case ELF::R_386_32: {
286    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
287        Value + Addend;
288    break;
289  }
290  case ELF::R_386_PC32: {
291    uint32_t FinalAddress =
292        Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
293    uint32_t RealOffset = Value + Addend - FinalAddress;
294    support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
295        RealOffset;
296    break;
297  }
298  default:
299    // There are other relocation types, but it appears these are the
300    // only ones currently used by the LLVM ELF object writer
301    llvm_unreachable("Relocation type not implemented yet!");
302    break;
303  }
304}
305
306void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
307                                              uint64_t Offset, uint64_t Value,
308                                              uint32_t Type, int64_t Addend) {
309  uint32_t *TargetPtr =
310      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
311  uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
312
313  DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
314               << format("%llx", Section.getAddressWithOffset(Offset))
315               << " FinalAddress: 0x" << format("%llx", FinalAddress)
316               << " Value: 0x" << format("%llx", Value) << " Type: 0x"
317               << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
318               << "\n");
319
320  switch (Type) {
321  default:
322    llvm_unreachable("Relocation type not implemented yet!");
323    break;
324  case ELF::R_AARCH64_ABS64: {
325    uint64_t *TargetPtr =
326        reinterpret_cast<uint64_t *>(Section.getAddressWithOffset(Offset));
327    *TargetPtr = Value + Addend;
328    break;
329  }
330  case ELF::R_AARCH64_PREL32: {
331    uint64_t Result = Value + Addend - FinalAddress;
332    assert(static_cast<int64_t>(Result) >= INT32_MIN &&
333           static_cast<int64_t>(Result) <= UINT32_MAX);
334    *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
335    break;
336  }
337  case ELF::R_AARCH64_CALL26: // fallthrough
338  case ELF::R_AARCH64_JUMP26: {
339    // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
340    // calculation.
341    uint64_t BranchImm = Value + Addend - FinalAddress;
342
343    // "Check that -2^27 <= result < 2^27".
344    assert(isInt<28>(BranchImm));
345
346    // AArch64 code is emitted with .rela relocations. The data already in any
347    // bits affected by the relocation on entry is garbage.
348    *TargetPtr &= 0xfc000000U;
349    // Immediate goes in bits 25:0 of B and BL.
350    *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
351    break;
352  }
353  case ELF::R_AARCH64_MOVW_UABS_G3: {
354    uint64_t Result = Value + Addend;
355
356    // AArch64 code is emitted with .rela relocations. The data already in any
357    // bits affected by the relocation on entry is garbage.
358    *TargetPtr &= 0xffe0001fU;
359    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
360    *TargetPtr |= Result >> (48 - 5);
361    // Shift must be "lsl #48", in bits 22:21
362    assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
363    break;
364  }
365  case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
366    uint64_t Result = Value + Addend;
367
368    // AArch64 code is emitted with .rela relocations. The data already in any
369    // bits affected by the relocation on entry is garbage.
370    *TargetPtr &= 0xffe0001fU;
371    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
372    *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
373    // Shift must be "lsl #32", in bits 22:21
374    assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
375    break;
376  }
377  case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
378    uint64_t Result = Value + Addend;
379
380    // AArch64 code is emitted with .rela relocations. The data already in any
381    // bits affected by the relocation on entry is garbage.
382    *TargetPtr &= 0xffe0001fU;
383    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
384    *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
385    // Shift must be "lsl #16", in bits 22:2
386    assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
387    break;
388  }
389  case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
390    uint64_t Result = Value + Addend;
391
392    // AArch64 code is emitted with .rela relocations. The data already in any
393    // bits affected by the relocation on entry is garbage.
394    *TargetPtr &= 0xffe0001fU;
395    // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
396    *TargetPtr |= ((Result & 0xffffU) << 5);
397    // Shift must be "lsl #0", in bits 22:21.
398    assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
399    break;
400  }
401  case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
402    // Operation: Page(S+A) - Page(P)
403    uint64_t Result =
404        ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
405
406    // Check that -2^32 <= X < 2^32
407    assert(isInt<33>(Result) && "overflow check failed for relocation");
408
409    // AArch64 code is emitted with .rela relocations. The data already in any
410    // bits affected by the relocation on entry is garbage.
411    *TargetPtr &= 0x9f00001fU;
412    // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
413    // from bits 32:12 of X.
414    *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
415    *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
416    break;
417  }
418  case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
419    // Operation: S + A
420    uint64_t Result = Value + Addend;
421
422    // AArch64 code is emitted with .rela relocations. The data already in any
423    // bits affected by the relocation on entry is garbage.
424    *TargetPtr &= 0xffc003ffU;
425    // Immediate goes in bits 21:10 of LD/ST instruction, taken
426    // from bits 11:2 of X
427    *TargetPtr |= ((Result & 0xffc) << (10 - 2));
428    break;
429  }
430  case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
431    // Operation: S + A
432    uint64_t Result = Value + Addend;
433
434    // AArch64 code is emitted with .rela relocations. The data already in any
435    // bits affected by the relocation on entry is garbage.
436    *TargetPtr &= 0xffc003ffU;
437    // Immediate goes in bits 21:10 of LD/ST instruction, taken
438    // from bits 11:3 of X
439    *TargetPtr |= ((Result & 0xff8) << (10 - 3));
440    break;
441  }
442  }
443}
444
445void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
446                                          uint64_t Offset, uint32_t Value,
447                                          uint32_t Type, int32_t Addend) {
448  // TODO: Add Thumb relocations.
449  uint32_t *TargetPtr =
450      reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
451  uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
452  Value += Addend;
453
454  DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
455               << Section.getAddressWithOffset(Offset)
456               << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
457               << format("%x", Value) << " Type: " << format("%x", Type)
458               << " Addend: " << format("%x", Addend) << "\n");
459
460  switch (Type) {
461  default:
462    llvm_unreachable("Not implemented relocation type!");
463
464  case ELF::R_ARM_NONE:
465    break;
466  case ELF::R_ARM_PREL31:
467  case ELF::R_ARM_TARGET1:
468  case ELF::R_ARM_ABS32:
469    *TargetPtr = Value;
470    break;
471    // Write first 16 bit of 32 bit value to the mov instruction.
472    // Last 4 bit should be shifted.
473  case ELF::R_ARM_MOVW_ABS_NC:
474  case ELF::R_ARM_MOVT_ABS:
475    if (Type == ELF::R_ARM_MOVW_ABS_NC)
476      Value = Value & 0xFFFF;
477    else if (Type == ELF::R_ARM_MOVT_ABS)
478      Value = (Value >> 16) & 0xFFFF;
479    *TargetPtr &= ~0x000F0FFF;
480    *TargetPtr |= Value & 0xFFF;
481    *TargetPtr |= ((Value >> 12) & 0xF) << 16;
482    break;
483    // Write 24 bit relative value to the branch instruction.
484  case ELF::R_ARM_PC24: // Fall through.
485  case ELF::R_ARM_CALL: // Fall through.
486  case ELF::R_ARM_JUMP24:
487    int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
488    RelValue = (RelValue & 0x03FFFFFC) >> 2;
489    assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
490    *TargetPtr &= 0xFF000000;
491    *TargetPtr |= RelValue;
492    break;
493  }
494}
495
496void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
497                                           uint64_t Offset, uint32_t Value,
498                                           uint32_t Type, int32_t Addend) {
499  uint8_t *TargetPtr = Section.getAddressWithOffset(Offset);
500  Value += Addend;
501
502  DEBUG(dbgs() << "resolveMIPSRelocation, LocalAddress: "
503               << Section.getAddressWithOffset(Offset) << " FinalAddress: "
504               << format("%p", Section.getLoadAddressWithOffset(Offset))
505               << " Value: " << format("%x", Value)
506               << " Type: " << format("%x", Type)
507               << " Addend: " << format("%x", Addend) << "\n");
508
509  uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
510
511  switch (Type) {
512  default:
513    llvm_unreachable("Not implemented relocation type!");
514    break;
515  case ELF::R_MIPS_32:
516    writeBytesUnaligned(Value, TargetPtr, 4);
517    break;
518  case ELF::R_MIPS_26:
519    Insn &= 0xfc000000;
520    Insn |= (Value & 0x0fffffff) >> 2;
521    writeBytesUnaligned(Insn, TargetPtr, 4);
522    break;
523  case ELF::R_MIPS_HI16:
524    // Get the higher 16-bits. Also add 1 if bit 15 is 1.
525    Insn &= 0xffff0000;
526    Insn |= ((Value + 0x8000) >> 16) & 0xffff;
527    writeBytesUnaligned(Insn, TargetPtr, 4);
528    break;
529  case ELF::R_MIPS_LO16:
530    Insn &= 0xffff0000;
531    Insn |= Value & 0xffff;
532    writeBytesUnaligned(Insn, TargetPtr, 4);
533    break;
534  case ELF::R_MIPS_PC32: {
535    uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
536    writeBytesUnaligned(Value - FinalAddress, (uint8_t *)TargetPtr, 4);
537    break;
538  }
539  case ELF::R_MIPS_PC16: {
540    uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
541    Insn &= 0xffff0000;
542    Insn |= ((Value - FinalAddress) >> 2) & 0xffff;
543    writeBytesUnaligned(Insn, TargetPtr, 4);
544    break;
545  }
546  case ELF::R_MIPS_PC19_S2: {
547    uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
548    Insn &= 0xfff80000;
549    Insn |= ((Value - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
550    writeBytesUnaligned(Insn, TargetPtr, 4);
551    break;
552  }
553  case ELF::R_MIPS_PC21_S2: {
554    uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
555    Insn &= 0xffe00000;
556    Insn |= ((Value - FinalAddress) >> 2) & 0x1fffff;
557    writeBytesUnaligned(Insn, TargetPtr, 4);
558    break;
559  }
560  case ELF::R_MIPS_PC26_S2: {
561    uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
562    Insn &= 0xfc000000;
563    Insn |= ((Value - FinalAddress) >> 2) & 0x3ffffff;
564    writeBytesUnaligned(Insn, TargetPtr, 4);
565    break;
566  }
567  case ELF::R_MIPS_PCHI16: {
568    uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
569    Insn &= 0xffff0000;
570    Insn |= ((Value - FinalAddress + 0x8000) >> 16) & 0xffff;
571    writeBytesUnaligned(Insn, TargetPtr, 4);
572    break;
573  }
574  case ELF::R_MIPS_PCLO16: {
575    uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
576    Insn &= 0xffff0000;
577    Insn |= (Value - FinalAddress) & 0xffff;
578    writeBytesUnaligned(Insn, TargetPtr, 4);
579    break;
580  }
581  }
582}
583
584void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
585  if (Arch == Triple::UnknownArch ||
586      !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
587    IsMipsO32ABI = false;
588    IsMipsN64ABI = false;
589    return;
590  }
591  unsigned AbiVariant;
592  Obj.getPlatformFlags(AbiVariant);
593  IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
594  IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
595  if (AbiVariant & ELF::EF_MIPS_ABI2)
596    llvm_unreachable("Mips N32 ABI is not supported yet");
597}
598
599void RuntimeDyldELF::resolveMIPS64Relocation(const SectionEntry &Section,
600                                             uint64_t Offset, uint64_t Value,
601                                             uint32_t Type, int64_t Addend,
602                                             uint64_t SymOffset,
603                                             SID SectionID) {
604  uint32_t r_type = Type & 0xff;
605  uint32_t r_type2 = (Type >> 8) & 0xff;
606  uint32_t r_type3 = (Type >> 16) & 0xff;
607
608  // RelType is used to keep information for which relocation type we are
609  // applying relocation.
610  uint32_t RelType = r_type;
611  int64_t CalculatedValue = evaluateMIPS64Relocation(Section, Offset, Value,
612                                                     RelType, Addend,
613                                                     SymOffset, SectionID);
614  if (r_type2 != ELF::R_MIPS_NONE) {
615    RelType = r_type2;
616    CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
617                                               CalculatedValue, SymOffset,
618                                               SectionID);
619  }
620  if (r_type3 != ELF::R_MIPS_NONE) {
621    RelType = r_type3;
622    CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
623                                               CalculatedValue, SymOffset,
624                                               SectionID);
625  }
626  applyMIPS64Relocation(Section.getAddressWithOffset(Offset), CalculatedValue,
627                        RelType);
628}
629
630int64_t
631RuntimeDyldELF::evaluateMIPS64Relocation(const SectionEntry &Section,
632                                         uint64_t Offset, uint64_t Value,
633                                         uint32_t Type, int64_t Addend,
634                                         uint64_t SymOffset, SID SectionID) {
635
636  DEBUG(dbgs() << "evaluateMIPS64Relocation, LocalAddress: 0x"
637               << format("%llx", Section.getAddressWithOffset(Offset))
638               << " FinalAddress: 0x"
639               << format("%llx", Section.getLoadAddressWithOffset(Offset))
640               << " Value: 0x" << format("%llx", Value) << " Type: 0x"
641               << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
642               << " SymOffset: " << format("%x", SymOffset) << "\n");
643
644  switch (Type) {
645  default:
646    llvm_unreachable("Not implemented relocation type!");
647    break;
648  case ELF::R_MIPS_JALR:
649  case ELF::R_MIPS_NONE:
650    break;
651  case ELF::R_MIPS_32:
652  case ELF::R_MIPS_64:
653    return Value + Addend;
654  case ELF::R_MIPS_26:
655    return ((Value + Addend) >> 2) & 0x3ffffff;
656  case ELF::R_MIPS_GPREL16: {
657    uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
658    return Value + Addend - (GOTAddr + 0x7ff0);
659  }
660  case ELF::R_MIPS_SUB:
661    return Value - Addend;
662  case ELF::R_MIPS_HI16:
663    // Get the higher 16-bits. Also add 1 if bit 15 is 1.
664    return ((Value + Addend + 0x8000) >> 16) & 0xffff;
665  case ELF::R_MIPS_LO16:
666    return (Value + Addend) & 0xffff;
667  case ELF::R_MIPS_CALL16:
668  case ELF::R_MIPS_GOT_DISP:
669  case ELF::R_MIPS_GOT_PAGE: {
670    uint8_t *LocalGOTAddr =
671        getSectionAddress(SectionToGOTMap[SectionID]) + SymOffset;
672    uint64_t GOTEntry = readBytesUnaligned(LocalGOTAddr, 8);
673
674    Value += Addend;
675    if (Type == ELF::R_MIPS_GOT_PAGE)
676      Value = (Value + 0x8000) & ~0xffff;
677
678    if (GOTEntry)
679      assert(GOTEntry == Value &&
680                   "GOT entry has two different addresses.");
681    else
682      writeBytesUnaligned(Value, LocalGOTAddr, 8);
683
684    return (SymOffset - 0x7ff0) & 0xffff;
685  }
686  case ELF::R_MIPS_GOT_OFST: {
687    int64_t page = (Value + Addend + 0x8000) & ~0xffff;
688    return (Value + Addend - page) & 0xffff;
689  }
690  case ELF::R_MIPS_GPREL32: {
691    uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
692    return Value + Addend - (GOTAddr + 0x7ff0);
693  }
694  case ELF::R_MIPS_PC16: {
695    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
696    return ((Value + Addend - FinalAddress) >> 2) & 0xffff;
697  }
698  case ELF::R_MIPS_PC32: {
699    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
700    return Value + Addend - FinalAddress;
701  }
702  case ELF::R_MIPS_PC18_S3: {
703    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
704    return ((Value + Addend - (FinalAddress & ~0x7)) >> 3) & 0x3ffff;
705  }
706  case ELF::R_MIPS_PC19_S2: {
707    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
708    return ((Value + Addend - (FinalAddress & ~0x3)) >> 2) & 0x7ffff;
709  }
710  case ELF::R_MIPS_PC21_S2: {
711    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
712    return ((Value + Addend - FinalAddress) >> 2) & 0x1fffff;
713  }
714  case ELF::R_MIPS_PC26_S2: {
715    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
716    return ((Value + Addend - FinalAddress) >> 2) & 0x3ffffff;
717  }
718  case ELF::R_MIPS_PCHI16: {
719    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
720    return ((Value + Addend - FinalAddress + 0x8000) >> 16) & 0xffff;
721  }
722  case ELF::R_MIPS_PCLO16: {
723    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
724    return (Value + Addend - FinalAddress) & 0xffff;
725  }
726  }
727  return 0;
728}
729
730void RuntimeDyldELF::applyMIPS64Relocation(uint8_t *TargetPtr,
731                                           int64_t CalculatedValue,
732                                           uint32_t Type) {
733  uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
734
735  switch (Type) {
736    default:
737      break;
738    case ELF::R_MIPS_32:
739    case ELF::R_MIPS_GPREL32:
740    case ELF::R_MIPS_PC32:
741      writeBytesUnaligned(CalculatedValue & 0xffffffff, TargetPtr, 4);
742      break;
743    case ELF::R_MIPS_64:
744    case ELF::R_MIPS_SUB:
745      writeBytesUnaligned(CalculatedValue, TargetPtr, 8);
746      break;
747    case ELF::R_MIPS_26:
748    case ELF::R_MIPS_PC26_S2:
749      Insn = (Insn & 0xfc000000) | CalculatedValue;
750      writeBytesUnaligned(Insn, TargetPtr, 4);
751      break;
752    case ELF::R_MIPS_GPREL16:
753      Insn = (Insn & 0xffff0000) | (CalculatedValue & 0xffff);
754      writeBytesUnaligned(Insn, TargetPtr, 4);
755      break;
756    case ELF::R_MIPS_HI16:
757    case ELF::R_MIPS_LO16:
758    case ELF::R_MIPS_PCHI16:
759    case ELF::R_MIPS_PCLO16:
760    case ELF::R_MIPS_PC16:
761    case ELF::R_MIPS_CALL16:
762    case ELF::R_MIPS_GOT_DISP:
763    case ELF::R_MIPS_GOT_PAGE:
764    case ELF::R_MIPS_GOT_OFST:
765      Insn = (Insn & 0xffff0000) | CalculatedValue;
766      writeBytesUnaligned(Insn, TargetPtr, 4);
767      break;
768    case ELF::R_MIPS_PC18_S3:
769      Insn = (Insn & 0xfffc0000) | CalculatedValue;
770      writeBytesUnaligned(Insn, TargetPtr, 4);
771      break;
772    case ELF::R_MIPS_PC19_S2:
773      Insn = (Insn & 0xfff80000) | CalculatedValue;
774      writeBytesUnaligned(Insn, TargetPtr, 4);
775      break;
776    case ELF::R_MIPS_PC21_S2:
777      Insn = (Insn & 0xffe00000) | CalculatedValue;
778      writeBytesUnaligned(Insn, TargetPtr, 4);
779      break;
780    }
781}
782
783// Return the .TOC. section and offset.
784void RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
785                                         ObjSectionToIDMap &LocalSections,
786                                         RelocationValueRef &Rel) {
787  // Set a default SectionID in case we do not find a TOC section below.
788  // This may happen for references to TOC base base (sym@toc, .odp
789  // relocation) without a .toc directive.  In this case just use the
790  // first section (which is usually the .odp) since the code won't
791  // reference the .toc base directly.
792  Rel.SymbolName = nullptr;
793  Rel.SectionID = 0;
794
795  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
796  // order. The TOC starts where the first of these sections starts.
797  for (auto &Section: Obj.sections()) {
798    StringRef SectionName;
799    check(Section.getName(SectionName));
800
801    if (SectionName == ".got"
802        || SectionName == ".toc"
803        || SectionName == ".tocbss"
804        || SectionName == ".plt") {
805      Rel.SectionID = findOrEmitSection(Obj, Section, false, LocalSections);
806      break;
807    }
808  }
809
810  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
811  // thus permitting a full 64 Kbytes segment.
812  Rel.Addend = 0x8000;
813}
814
815// Returns the sections and offset associated with the ODP entry referenced
816// by Symbol.
817void RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
818                                         ObjSectionToIDMap &LocalSections,
819                                         RelocationValueRef &Rel) {
820  // Get the ELF symbol value (st_value) to compare with Relocation offset in
821  // .opd entries
822  for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
823       si != se; ++si) {
824    section_iterator RelSecI = si->getRelocatedSection();
825    if (RelSecI == Obj.section_end())
826      continue;
827
828    StringRef RelSectionName;
829    check(RelSecI->getName(RelSectionName));
830    if (RelSectionName != ".opd")
831      continue;
832
833    for (elf_relocation_iterator i = si->relocation_begin(),
834                                 e = si->relocation_end();
835         i != e;) {
836      // The R_PPC64_ADDR64 relocation indicates the first field
837      // of a .opd entry
838      uint64_t TypeFunc = i->getType();
839      if (TypeFunc != ELF::R_PPC64_ADDR64) {
840        ++i;
841        continue;
842      }
843
844      uint64_t TargetSymbolOffset = i->getOffset();
845      symbol_iterator TargetSymbol = i->getSymbol();
846      ErrorOr<int64_t> AddendOrErr = i->getAddend();
847      Check(AddendOrErr.getError());
848      int64_t Addend = *AddendOrErr;
849
850      ++i;
851      if (i == e)
852        break;
853
854      // Just check if following relocation is a R_PPC64_TOC
855      uint64_t TypeTOC = i->getType();
856      if (TypeTOC != ELF::R_PPC64_TOC)
857        continue;
858
859      // Finally compares the Symbol value and the target symbol offset
860      // to check if this .opd entry refers to the symbol the relocation
861      // points to.
862      if (Rel.Addend != (int64_t)TargetSymbolOffset)
863        continue;
864
865      ErrorOr<section_iterator> TSIOrErr = TargetSymbol->getSection();
866      check(TSIOrErr.getError());
867      section_iterator tsi = *TSIOrErr;
868      bool IsCode = tsi->isText();
869      Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
870      Rel.Addend = (intptr_t)Addend;
871      return;
872    }
873  }
874  llvm_unreachable("Attempting to get address of ODP entry!");
875}
876
877// Relocation masks following the #lo(value), #hi(value), #ha(value),
878// #higher(value), #highera(value), #highest(value), and #highesta(value)
879// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
880// document.
881
882static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
883
884static inline uint16_t applyPPChi(uint64_t value) {
885  return (value >> 16) & 0xffff;
886}
887
888static inline uint16_t applyPPCha (uint64_t value) {
889  return ((value + 0x8000) >> 16) & 0xffff;
890}
891
892static inline uint16_t applyPPChigher(uint64_t value) {
893  return (value >> 32) & 0xffff;
894}
895
896static inline uint16_t applyPPChighera (uint64_t value) {
897  return ((value + 0x8000) >> 32) & 0xffff;
898}
899
900static inline uint16_t applyPPChighest(uint64_t value) {
901  return (value >> 48) & 0xffff;
902}
903
904static inline uint16_t applyPPChighesta (uint64_t value) {
905  return ((value + 0x8000) >> 48) & 0xffff;
906}
907
908void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
909                                            uint64_t Offset, uint64_t Value,
910                                            uint32_t Type, int64_t Addend) {
911  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
912  switch (Type) {
913  default:
914    llvm_unreachable("Relocation type not implemented yet!");
915    break;
916  case ELF::R_PPC_ADDR16_LO:
917    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
918    break;
919  case ELF::R_PPC_ADDR16_HI:
920    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
921    break;
922  case ELF::R_PPC_ADDR16_HA:
923    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
924    break;
925  }
926}
927
928void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
929                                            uint64_t Offset, uint64_t Value,
930                                            uint32_t Type, int64_t Addend) {
931  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
932  switch (Type) {
933  default:
934    llvm_unreachable("Relocation type not implemented yet!");
935    break;
936  case ELF::R_PPC64_ADDR16:
937    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
938    break;
939  case ELF::R_PPC64_ADDR16_DS:
940    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
941    break;
942  case ELF::R_PPC64_ADDR16_LO:
943    writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
944    break;
945  case ELF::R_PPC64_ADDR16_LO_DS:
946    writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
947    break;
948  case ELF::R_PPC64_ADDR16_HI:
949    writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
950    break;
951  case ELF::R_PPC64_ADDR16_HA:
952    writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
953    break;
954  case ELF::R_PPC64_ADDR16_HIGHER:
955    writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
956    break;
957  case ELF::R_PPC64_ADDR16_HIGHERA:
958    writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
959    break;
960  case ELF::R_PPC64_ADDR16_HIGHEST:
961    writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
962    break;
963  case ELF::R_PPC64_ADDR16_HIGHESTA:
964    writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
965    break;
966  case ELF::R_PPC64_ADDR14: {
967    assert(((Value + Addend) & 3) == 0);
968    // Preserve the AA/LK bits in the branch instruction
969    uint8_t aalk = *(LocalAddress + 3);
970    writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
971  } break;
972  case ELF::R_PPC64_REL16_LO: {
973    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
974    uint64_t Delta = Value - FinalAddress + Addend;
975    writeInt16BE(LocalAddress, applyPPClo(Delta));
976  } break;
977  case ELF::R_PPC64_REL16_HI: {
978    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
979    uint64_t Delta = Value - FinalAddress + Addend;
980    writeInt16BE(LocalAddress, applyPPChi(Delta));
981  } break;
982  case ELF::R_PPC64_REL16_HA: {
983    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
984    uint64_t Delta = Value - FinalAddress + Addend;
985    writeInt16BE(LocalAddress, applyPPCha(Delta));
986  } break;
987  case ELF::R_PPC64_ADDR32: {
988    int32_t Result = static_cast<int32_t>(Value + Addend);
989    if (SignExtend32<32>(Result) != Result)
990      llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
991    writeInt32BE(LocalAddress, Result);
992  } break;
993  case ELF::R_PPC64_REL24: {
994    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
995    int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
996    if (SignExtend32<26>(delta) != delta)
997      llvm_unreachable("Relocation R_PPC64_REL24 overflow");
998    // Generates a 'bl <address>' instruction
999    writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
1000  } break;
1001  case ELF::R_PPC64_REL32: {
1002    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1003    int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
1004    if (SignExtend32<32>(delta) != delta)
1005      llvm_unreachable("Relocation R_PPC64_REL32 overflow");
1006    writeInt32BE(LocalAddress, delta);
1007  } break;
1008  case ELF::R_PPC64_REL64: {
1009    uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1010    uint64_t Delta = Value - FinalAddress + Addend;
1011    writeInt64BE(LocalAddress, Delta);
1012  } break;
1013  case ELF::R_PPC64_ADDR64:
1014    writeInt64BE(LocalAddress, Value + Addend);
1015    break;
1016  }
1017}
1018
1019void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
1020                                              uint64_t Offset, uint64_t Value,
1021                                              uint32_t Type, int64_t Addend) {
1022  uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1023  switch (Type) {
1024  default:
1025    llvm_unreachable("Relocation type not implemented yet!");
1026    break;
1027  case ELF::R_390_PC16DBL:
1028  case ELF::R_390_PLT16DBL: {
1029    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1030    assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
1031    writeInt16BE(LocalAddress, Delta / 2);
1032    break;
1033  }
1034  case ELF::R_390_PC32DBL:
1035  case ELF::R_390_PLT32DBL: {
1036    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1037    assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
1038    writeInt32BE(LocalAddress, Delta / 2);
1039    break;
1040  }
1041  case ELF::R_390_PC32: {
1042    int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1043    assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
1044    writeInt32BE(LocalAddress, Delta);
1045    break;
1046  }
1047  case ELF::R_390_64:
1048    writeInt64BE(LocalAddress, Value + Addend);
1049    break;
1050  }
1051}
1052
1053// The target location for the relocation is described by RE.SectionID and
1054// RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
1055// SectionEntry has three members describing its location.
1056// SectionEntry::Address is the address at which the section has been loaded
1057// into memory in the current (host) process.  SectionEntry::LoadAddress is the
1058// address that the section will have in the target process.
1059// SectionEntry::ObjAddress is the address of the bits for this section in the
1060// original emitted object image (also in the current address space).
1061//
1062// Relocations will be applied as if the section were loaded at
1063// SectionEntry::LoadAddress, but they will be applied at an address based
1064// on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
1065// Target memory contents if they are required for value calculations.
1066//
1067// The Value parameter here is the load address of the symbol for the
1068// relocation to be applied.  For relocations which refer to symbols in the
1069// current object Value will be the LoadAddress of the section in which
1070// the symbol resides (RE.Addend provides additional information about the
1071// symbol location).  For external symbols, Value will be the address of the
1072// symbol in the target address space.
1073void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1074                                       uint64_t Value) {
1075  const SectionEntry &Section = Sections[RE.SectionID];
1076  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1077                           RE.SymOffset, RE.SectionID);
1078}
1079
1080void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1081                                       uint64_t Offset, uint64_t Value,
1082                                       uint32_t Type, int64_t Addend,
1083                                       uint64_t SymOffset, SID SectionID) {
1084  switch (Arch) {
1085  case Triple::x86_64:
1086    resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1087    break;
1088  case Triple::x86:
1089    resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1090                         (uint32_t)(Addend & 0xffffffffL));
1091    break;
1092  case Triple::aarch64:
1093  case Triple::aarch64_be:
1094    resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1095    break;
1096  case Triple::arm: // Fall through.
1097  case Triple::armeb:
1098  case Triple::thumb:
1099  case Triple::thumbeb:
1100    resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1101                         (uint32_t)(Addend & 0xffffffffL));
1102    break;
1103  case Triple::mips: // Fall through.
1104  case Triple::mipsel:
1105  case Triple::mips64:
1106  case Triple::mips64el:
1107    if (IsMipsO32ABI)
1108      resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
1109                            Type, (uint32_t)(Addend & 0xffffffffL));
1110    else if (IsMipsN64ABI)
1111      resolveMIPS64Relocation(Section, Offset, Value, Type, Addend, SymOffset,
1112                              SectionID);
1113    else
1114      llvm_unreachable("Mips ABI not handled");
1115    break;
1116  case Triple::ppc:
1117    resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1118    break;
1119  case Triple::ppc64: // Fall through.
1120  case Triple::ppc64le:
1121    resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1122    break;
1123  case Triple::systemz:
1124    resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1125    break;
1126  default:
1127    llvm_unreachable("Unsupported CPU type!");
1128  }
1129}
1130
1131void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1132  return (void *)(Sections[SectionID].getObjAddress() + Offset);
1133}
1134
1135void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1136  RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1137  if (Value.SymbolName)
1138    addRelocationForSymbol(RE, Value.SymbolName);
1139  else
1140    addRelocationForSection(RE, Value.SectionID);
1141}
1142
1143uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1144                                                 bool IsLocal) const {
1145  switch (RelType) {
1146  case ELF::R_MICROMIPS_GOT16:
1147    if (IsLocal)
1148      return ELF::R_MICROMIPS_LO16;
1149    break;
1150  case ELF::R_MICROMIPS_HI16:
1151    return ELF::R_MICROMIPS_LO16;
1152  case ELF::R_MIPS_GOT16:
1153    if (IsLocal)
1154      return ELF::R_MIPS_LO16;
1155    break;
1156  case ELF::R_MIPS_HI16:
1157    return ELF::R_MIPS_LO16;
1158  case ELF::R_MIPS_PCHI16:
1159    return ELF::R_MIPS_PCLO16;
1160  default:
1161    break;
1162  }
1163  return ELF::R_MIPS_NONE;
1164}
1165
1166relocation_iterator RuntimeDyldELF::processRelocationRef(
1167    unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1168    ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1169  const auto &Obj = cast<ELFObjectFileBase>(O);
1170  uint64_t RelType = RelI->getType();
1171  ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
1172  int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
1173  elf_symbol_iterator Symbol = RelI->getSymbol();
1174
1175  // Obtain the symbol name which is referenced in the relocation
1176  StringRef TargetName;
1177  if (Symbol != Obj.symbol_end()) {
1178    ErrorOr<StringRef> TargetNameOrErr = Symbol->getName();
1179    if (std::error_code EC = TargetNameOrErr.getError())
1180      report_fatal_error(EC.message());
1181    TargetName = *TargetNameOrErr;
1182  }
1183  DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1184               << " TargetName: " << TargetName << "\n");
1185  RelocationValueRef Value;
1186  // First search for the symbol in the local symbol table
1187  SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1188
1189  // Search for the symbol in the global symbol table
1190  RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1191  if (Symbol != Obj.symbol_end()) {
1192    gsi = GlobalSymbolTable.find(TargetName.data());
1193    SymType = Symbol->getType();
1194  }
1195  if (gsi != GlobalSymbolTable.end()) {
1196    const auto &SymInfo = gsi->second;
1197    Value.SectionID = SymInfo.getSectionID();
1198    Value.Offset = SymInfo.getOffset();
1199    Value.Addend = SymInfo.getOffset() + Addend;
1200  } else {
1201    switch (SymType) {
1202    case SymbolRef::ST_Debug: {
1203      // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1204      // and can be changed by another developers. Maybe best way is add
1205      // a new symbol type ST_Section to SymbolRef and use it.
1206      section_iterator si = *Symbol->getSection();
1207      if (si == Obj.section_end())
1208        llvm_unreachable("Symbol section not found, bad object file format!");
1209      DEBUG(dbgs() << "\t\tThis is section symbol\n");
1210      bool isCode = si->isText();
1211      Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
1212      Value.Addend = Addend;
1213      break;
1214    }
1215    case SymbolRef::ST_Data:
1216    case SymbolRef::ST_Unknown: {
1217      Value.SymbolName = TargetName.data();
1218      Value.Addend = Addend;
1219
1220      // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1221      // will manifest here as a NULL symbol name.
1222      // We can set this as a valid (but empty) symbol name, and rely
1223      // on addRelocationForSymbol to handle this.
1224      if (!Value.SymbolName)
1225        Value.SymbolName = "";
1226      break;
1227    }
1228    default:
1229      llvm_unreachable("Unresolved symbol type!");
1230      break;
1231    }
1232  }
1233
1234  uint64_t Offset = RelI->getOffset();
1235
1236  DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1237               << "\n");
1238  if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
1239      (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
1240    // This is an AArch64 branch relocation, need to use a stub function.
1241    DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1242    SectionEntry &Section = Sections[SectionID];
1243
1244    // Look for an existing stub.
1245    StubMap::const_iterator i = Stubs.find(Value);
1246    if (i != Stubs.end()) {
1247      resolveRelocation(Section, Offset,
1248                        (uint64_t)Section.getAddressWithOffset(i->second),
1249                        RelType, 0);
1250      DEBUG(dbgs() << " Stub function found\n");
1251    } else {
1252      // Create a new stub function.
1253      DEBUG(dbgs() << " Create a new stub function\n");
1254      Stubs[Value] = Section.getStubOffset();
1255      uint8_t *StubTargetAddr = createStubFunction(
1256          Section.getAddressWithOffset(Section.getStubOffset()));
1257
1258      RelocationEntry REmovz_g3(SectionID,
1259                                StubTargetAddr - Section.getAddress(),
1260                                ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1261      RelocationEntry REmovk_g2(SectionID, StubTargetAddr -
1262                                               Section.getAddress() + 4,
1263                                ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1264      RelocationEntry REmovk_g1(SectionID, StubTargetAddr -
1265                                               Section.getAddress() + 8,
1266                                ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1267      RelocationEntry REmovk_g0(SectionID, StubTargetAddr -
1268                                               Section.getAddress() + 12,
1269                                ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1270
1271      if (Value.SymbolName) {
1272        addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1273        addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1274        addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1275        addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1276      } else {
1277        addRelocationForSection(REmovz_g3, Value.SectionID);
1278        addRelocationForSection(REmovk_g2, Value.SectionID);
1279        addRelocationForSection(REmovk_g1, Value.SectionID);
1280        addRelocationForSection(REmovk_g0, Value.SectionID);
1281      }
1282      resolveRelocation(Section, Offset,
1283                        reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1284                            Section.getStubOffset())),
1285                        RelType, 0);
1286      Section.advanceStubOffset(getMaxStubSize());
1287    }
1288  } else if (Arch == Triple::arm) {
1289    if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1290      RelType == ELF::R_ARM_JUMP24) {
1291      // This is an ARM branch relocation, need to use a stub function.
1292      DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
1293      SectionEntry &Section = Sections[SectionID];
1294
1295      // Look for an existing stub.
1296      StubMap::const_iterator i = Stubs.find(Value);
1297      if (i != Stubs.end()) {
1298        resolveRelocation(
1299            Section, Offset,
1300            reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1301            RelType, 0);
1302        DEBUG(dbgs() << " Stub function found\n");
1303      } else {
1304        // Create a new stub function.
1305        DEBUG(dbgs() << " Create a new stub function\n");
1306        Stubs[Value] = Section.getStubOffset();
1307        uint8_t *StubTargetAddr = createStubFunction(
1308            Section.getAddressWithOffset(Section.getStubOffset()));
1309        RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1310                           ELF::R_ARM_ABS32, Value.Addend);
1311        if (Value.SymbolName)
1312          addRelocationForSymbol(RE, Value.SymbolName);
1313        else
1314          addRelocationForSection(RE, Value.SectionID);
1315
1316        resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1317                                               Section.getAddressWithOffset(
1318                                                   Section.getStubOffset())),
1319                          RelType, 0);
1320        Section.advanceStubOffset(getMaxStubSize());
1321      }
1322    } else {
1323      uint32_t *Placeholder =
1324        reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1325      if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1326          RelType == ELF::R_ARM_ABS32) {
1327        Value.Addend += *Placeholder;
1328      } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1329        // See ELF for ARM documentation
1330        Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1331      }
1332      processSimpleRelocation(SectionID, Offset, RelType, Value);
1333    }
1334  } else if (IsMipsO32ABI) {
1335    uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1336        computePlaceholderAddress(SectionID, Offset));
1337    uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1338    if (RelType == ELF::R_MIPS_26) {
1339      // This is an Mips branch relocation, need to use a stub function.
1340      DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1341      SectionEntry &Section = Sections[SectionID];
1342
1343      // Extract the addend from the instruction.
1344      // We shift up by two since the Value will be down shifted again
1345      // when applying the relocation.
1346      uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1347
1348      Value.Addend += Addend;
1349
1350      //  Look up for existing stub.
1351      StubMap::const_iterator i = Stubs.find(Value);
1352      if (i != Stubs.end()) {
1353        RelocationEntry RE(SectionID, Offset, RelType, i->second);
1354        addRelocationForSection(RE, SectionID);
1355        DEBUG(dbgs() << " Stub function found\n");
1356      } else {
1357        // Create a new stub function.
1358        DEBUG(dbgs() << " Create a new stub function\n");
1359        Stubs[Value] = Section.getStubOffset();
1360        uint8_t *StubTargetAddr = createStubFunction(
1361            Section.getAddressWithOffset(Section.getStubOffset()));
1362
1363        // Creating Hi and Lo relocations for the filled stub instructions.
1364        RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1365                             ELF::R_MIPS_HI16, Value.Addend);
1366        RelocationEntry RELo(SectionID,
1367                             StubTargetAddr - Section.getAddress() + 4,
1368                             ELF::R_MIPS_LO16, Value.Addend);
1369
1370        if (Value.SymbolName) {
1371          addRelocationForSymbol(REHi, Value.SymbolName);
1372          addRelocationForSymbol(RELo, Value.SymbolName);
1373        }
1374        else {
1375          addRelocationForSection(REHi, Value.SectionID);
1376          addRelocationForSection(RELo, Value.SectionID);
1377        }
1378
1379        RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1380        addRelocationForSection(RE, SectionID);
1381        Section.advanceStubOffset(getMaxStubSize());
1382      }
1383    } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1384      int64_t Addend = (Opcode & 0x0000ffff) << 16;
1385      RelocationEntry RE(SectionID, Offset, RelType, Addend);
1386      PendingRelocs.push_back(std::make_pair(Value, RE));
1387    } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1388      int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1389      for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1390        const RelocationValueRef &MatchingValue = I->first;
1391        RelocationEntry &Reloc = I->second;
1392        if (MatchingValue == Value &&
1393            RelType == getMatchingLoRelocation(Reloc.RelType) &&
1394            SectionID == Reloc.SectionID) {
1395          Reloc.Addend += Addend;
1396          if (Value.SymbolName)
1397            addRelocationForSymbol(Reloc, Value.SymbolName);
1398          else
1399            addRelocationForSection(Reloc, Value.SectionID);
1400          I = PendingRelocs.erase(I);
1401        } else
1402          ++I;
1403      }
1404      RelocationEntry RE(SectionID, Offset, RelType, Addend);
1405      if (Value.SymbolName)
1406        addRelocationForSymbol(RE, Value.SymbolName);
1407      else
1408        addRelocationForSection(RE, Value.SectionID);
1409    } else {
1410      if (RelType == ELF::R_MIPS_32)
1411        Value.Addend += Opcode;
1412      else if (RelType == ELF::R_MIPS_PC16)
1413        Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1414      else if (RelType == ELF::R_MIPS_PC19_S2)
1415        Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1416      else if (RelType == ELF::R_MIPS_PC21_S2)
1417        Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1418      else if (RelType == ELF::R_MIPS_PC26_S2)
1419        Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1420      processSimpleRelocation(SectionID, Offset, RelType, Value);
1421    }
1422  } else if (IsMipsN64ABI) {
1423    uint32_t r_type = RelType & 0xff;
1424    RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1425    if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1426        || r_type == ELF::R_MIPS_GOT_DISP) {
1427      StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1428      if (i != GOTSymbolOffsets.end())
1429        RE.SymOffset = i->second;
1430      else {
1431        RE.SymOffset = allocateGOTEntries(SectionID, 1);
1432        GOTSymbolOffsets[TargetName] = RE.SymOffset;
1433      }
1434    }
1435    if (Value.SymbolName)
1436      addRelocationForSymbol(RE, Value.SymbolName);
1437    else
1438      addRelocationForSection(RE, Value.SectionID);
1439  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1440    if (RelType == ELF::R_PPC64_REL24) {
1441      // Determine ABI variant in use for this object.
1442      unsigned AbiVariant;
1443      Obj.getPlatformFlags(AbiVariant);
1444      AbiVariant &= ELF::EF_PPC64_ABI;
1445      // A PPC branch relocation will need a stub function if the target is
1446      // an external symbol (Symbol::ST_Unknown) or if the target address
1447      // is not within the signed 24-bits branch address.
1448      SectionEntry &Section = Sections[SectionID];
1449      uint8_t *Target = Section.getAddressWithOffset(Offset);
1450      bool RangeOverflow = false;
1451      if (SymType != SymbolRef::ST_Unknown) {
1452        if (AbiVariant != 2) {
1453          // In the ELFv1 ABI, a function call may point to the .opd entry,
1454          // so the final symbol value is calculated based on the relocation
1455          // values in the .opd section.
1456          findOPDEntrySection(Obj, ObjSectionToID, Value);
1457        } else {
1458          // In the ELFv2 ABI, a function symbol may provide a local entry
1459          // point, which must be used for direct calls.
1460          uint8_t SymOther = Symbol->getOther();
1461          Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1462        }
1463        uint8_t *RelocTarget =
1464            Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1465        int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1466        // If it is within 26-bits branch range, just set the branch target
1467        if (SignExtend32<26>(delta) == delta) {
1468          RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1469          if (Value.SymbolName)
1470            addRelocationForSymbol(RE, Value.SymbolName);
1471          else
1472            addRelocationForSection(RE, Value.SectionID);
1473        } else {
1474          RangeOverflow = true;
1475        }
1476      }
1477      if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
1478        // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1479        // larger than 24-bits.
1480        StubMap::const_iterator i = Stubs.find(Value);
1481        if (i != Stubs.end()) {
1482          // Symbol function stub already created, just relocate to it
1483          resolveRelocation(Section, Offset,
1484                            reinterpret_cast<uint64_t>(
1485                                Section.getAddressWithOffset(i->second)),
1486                            RelType, 0);
1487          DEBUG(dbgs() << " Stub function found\n");
1488        } else {
1489          // Create a new stub function.
1490          DEBUG(dbgs() << " Create a new stub function\n");
1491          Stubs[Value] = Section.getStubOffset();
1492          uint8_t *StubTargetAddr = createStubFunction(
1493              Section.getAddressWithOffset(Section.getStubOffset()),
1494              AbiVariant);
1495          RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1496                             ELF::R_PPC64_ADDR64, Value.Addend);
1497
1498          // Generates the 64-bits address loads as exemplified in section
1499          // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
1500          // apply to the low part of the instructions, so we have to update
1501          // the offset according to the target endianness.
1502          uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1503          if (!IsTargetLittleEndian)
1504            StubRelocOffset += 2;
1505
1506          RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1507                                ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1508          RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1509                               ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1510          RelocationEntry REh(SectionID, StubRelocOffset + 12,
1511                              ELF::R_PPC64_ADDR16_HI, Value.Addend);
1512          RelocationEntry REl(SectionID, StubRelocOffset + 16,
1513                              ELF::R_PPC64_ADDR16_LO, Value.Addend);
1514
1515          if (Value.SymbolName) {
1516            addRelocationForSymbol(REhst, Value.SymbolName);
1517            addRelocationForSymbol(REhr, Value.SymbolName);
1518            addRelocationForSymbol(REh, Value.SymbolName);
1519            addRelocationForSymbol(REl, Value.SymbolName);
1520          } else {
1521            addRelocationForSection(REhst, Value.SectionID);
1522            addRelocationForSection(REhr, Value.SectionID);
1523            addRelocationForSection(REh, Value.SectionID);
1524            addRelocationForSection(REl, Value.SectionID);
1525          }
1526
1527          resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1528                                                 Section.getAddressWithOffset(
1529                                                     Section.getStubOffset())),
1530                            RelType, 0);
1531          Section.advanceStubOffset(getMaxStubSize());
1532        }
1533        if (SymType == SymbolRef::ST_Unknown) {
1534          // Restore the TOC for external calls
1535          if (AbiVariant == 2)
1536            writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
1537          else
1538            writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1539        }
1540      }
1541    } else if (RelType == ELF::R_PPC64_TOC16 ||
1542               RelType == ELF::R_PPC64_TOC16_DS ||
1543               RelType == ELF::R_PPC64_TOC16_LO ||
1544               RelType == ELF::R_PPC64_TOC16_LO_DS ||
1545               RelType == ELF::R_PPC64_TOC16_HI ||
1546               RelType == ELF::R_PPC64_TOC16_HA) {
1547      // These relocations are supposed to subtract the TOC address from
1548      // the final value.  This does not fit cleanly into the RuntimeDyld
1549      // scheme, since there may be *two* sections involved in determining
1550      // the relocation value (the section of the symbol referred to by the
1551      // relocation, and the TOC section associated with the current module).
1552      //
1553      // Fortunately, these relocations are currently only ever generated
1554      // referring to symbols that themselves reside in the TOC, which means
1555      // that the two sections are actually the same.  Thus they cancel out
1556      // and we can immediately resolve the relocation right now.
1557      switch (RelType) {
1558      case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1559      case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1560      case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1561      case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1562      case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1563      case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1564      default: llvm_unreachable("Wrong relocation type.");
1565      }
1566
1567      RelocationValueRef TOCValue;
1568      findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
1569      if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1570        llvm_unreachable("Unsupported TOC relocation.");
1571      Value.Addend -= TOCValue.Addend;
1572      resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1573    } else {
1574      // There are two ways to refer to the TOC address directly: either
1575      // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1576      // ignored), or via any relocation that refers to the magic ".TOC."
1577      // symbols (in which case the addend is respected).
1578      if (RelType == ELF::R_PPC64_TOC) {
1579        RelType = ELF::R_PPC64_ADDR64;
1580        findPPC64TOCSection(Obj, ObjSectionToID, Value);
1581      } else if (TargetName == ".TOC.") {
1582        findPPC64TOCSection(Obj, ObjSectionToID, Value);
1583        Value.Addend += Addend;
1584      }
1585
1586      RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1587
1588      if (Value.SymbolName)
1589        addRelocationForSymbol(RE, Value.SymbolName);
1590      else
1591        addRelocationForSection(RE, Value.SectionID);
1592    }
1593  } else if (Arch == Triple::systemz &&
1594             (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1595    // Create function stubs for both PLT and GOT references, regardless of
1596    // whether the GOT reference is to data or code.  The stub contains the
1597    // full address of the symbol, as needed by GOT references, and the
1598    // executable part only adds an overhead of 8 bytes.
1599    //
1600    // We could try to conserve space by allocating the code and data
1601    // parts of the stub separately.  However, as things stand, we allocate
1602    // a stub for every relocation, so using a GOT in JIT code should be
1603    // no less space efficient than using an explicit constant pool.
1604    DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1605    SectionEntry &Section = Sections[SectionID];
1606
1607    // Look for an existing stub.
1608    StubMap::const_iterator i = Stubs.find(Value);
1609    uintptr_t StubAddress;
1610    if (i != Stubs.end()) {
1611      StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1612      DEBUG(dbgs() << " Stub function found\n");
1613    } else {
1614      // Create a new stub function.
1615      DEBUG(dbgs() << " Create a new stub function\n");
1616
1617      uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1618      uintptr_t StubAlignment = getStubAlignment();
1619      StubAddress =
1620          (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1621          -StubAlignment;
1622      unsigned StubOffset = StubAddress - BaseAddress;
1623
1624      Stubs[Value] = StubOffset;
1625      createStubFunction((uint8_t *)StubAddress);
1626      RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1627                         Value.Offset);
1628      if (Value.SymbolName)
1629        addRelocationForSymbol(RE, Value.SymbolName);
1630      else
1631        addRelocationForSection(RE, Value.SectionID);
1632      Section.advanceStubOffset(getMaxStubSize());
1633    }
1634
1635    if (RelType == ELF::R_390_GOTENT)
1636      resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1637                        Addend);
1638    else
1639      resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1640  } else if (Arch == Triple::x86_64) {
1641    if (RelType == ELF::R_X86_64_PLT32) {
1642      // The way the PLT relocations normally work is that the linker allocates
1643      // the
1644      // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
1645      // entry will then jump to an address provided by the GOT.  On first call,
1646      // the
1647      // GOT address will point back into PLT code that resolves the symbol. After
1648      // the first call, the GOT entry points to the actual function.
1649      //
1650      // For local functions we're ignoring all of that here and just replacing
1651      // the PLT32 relocation type with PC32, which will translate the relocation
1652      // into a PC-relative call directly to the function. For external symbols we
1653      // can't be sure the function will be within 2^32 bytes of the call site, so
1654      // we need to create a stub, which calls into the GOT.  This case is
1655      // equivalent to the usual PLT implementation except that we use the stub
1656      // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1657      // rather than allocating a PLT section.
1658      if (Value.SymbolName) {
1659        // This is a call to an external function.
1660        // Look for an existing stub.
1661        SectionEntry &Section = Sections[SectionID];
1662        StubMap::const_iterator i = Stubs.find(Value);
1663        uintptr_t StubAddress;
1664        if (i != Stubs.end()) {
1665          StubAddress = uintptr_t(Section.getAddress()) + i->second;
1666          DEBUG(dbgs() << " Stub function found\n");
1667        } else {
1668          // Create a new stub function (equivalent to a PLT entry).
1669          DEBUG(dbgs() << " Create a new stub function\n");
1670
1671          uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1672          uintptr_t StubAlignment = getStubAlignment();
1673          StubAddress =
1674              (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1675              -StubAlignment;
1676          unsigned StubOffset = StubAddress - BaseAddress;
1677          Stubs[Value] = StubOffset;
1678          createStubFunction((uint8_t *)StubAddress);
1679
1680          // Bump our stub offset counter
1681          Section.advanceStubOffset(getMaxStubSize());
1682
1683          // Allocate a GOT Entry
1684          uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1685
1686          // The load of the GOT address has an addend of -4
1687          resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
1688
1689          // Fill in the value of the symbol we're targeting into the GOT
1690          addRelocationForSymbol(
1691              computeGOTOffsetRE(SectionID, GOTOffset, 0, ELF::R_X86_64_64),
1692              Value.SymbolName);
1693        }
1694
1695        // Make the target call a call into the stub table.
1696        resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1697                          Addend);
1698      } else {
1699        RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1700                  Value.Offset);
1701        addRelocationForSection(RE, Value.SectionID);
1702      }
1703    } else if (RelType == ELF::R_X86_64_GOTPCREL) {
1704      uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
1705      resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
1706
1707      // Fill in the value of the symbol we're targeting into the GOT
1708      RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
1709      if (Value.SymbolName)
1710        addRelocationForSymbol(RE, Value.SymbolName);
1711      else
1712        addRelocationForSection(RE, Value.SectionID);
1713    } else if (RelType == ELF::R_X86_64_PC32) {
1714      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1715      processSimpleRelocation(SectionID, Offset, RelType, Value);
1716    } else if (RelType == ELF::R_X86_64_PC64) {
1717      Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1718      processSimpleRelocation(SectionID, Offset, RelType, Value);
1719    } else {
1720      processSimpleRelocation(SectionID, Offset, RelType, Value);
1721    }
1722  } else {
1723    if (Arch == Triple::x86) {
1724      Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1725    }
1726    processSimpleRelocation(SectionID, Offset, RelType, Value);
1727  }
1728  return ++RelI;
1729}
1730
1731size_t RuntimeDyldELF::getGOTEntrySize() {
1732  // We don't use the GOT in all of these cases, but it's essentially free
1733  // to put them all here.
1734  size_t Result = 0;
1735  switch (Arch) {
1736  case Triple::x86_64:
1737  case Triple::aarch64:
1738  case Triple::aarch64_be:
1739  case Triple::ppc64:
1740  case Triple::ppc64le:
1741  case Triple::systemz:
1742    Result = sizeof(uint64_t);
1743    break;
1744  case Triple::x86:
1745  case Triple::arm:
1746  case Triple::thumb:
1747    Result = sizeof(uint32_t);
1748    break;
1749  case Triple::mips:
1750  case Triple::mipsel:
1751  case Triple::mips64:
1752  case Triple::mips64el:
1753    if (IsMipsO32ABI)
1754      Result = sizeof(uint32_t);
1755    else if (IsMipsN64ABI)
1756      Result = sizeof(uint64_t);
1757    else
1758      llvm_unreachable("Mips ABI not handled");
1759    break;
1760  default:
1761    llvm_unreachable("Unsupported CPU type!");
1762  }
1763  return Result;
1764}
1765
1766uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
1767{
1768  (void)SectionID; // The GOT Section is the same for all section in the object file
1769  if (GOTSectionID == 0) {
1770    GOTSectionID = Sections.size();
1771    // Reserve a section id. We'll allocate the section later
1772    // once we know the total size
1773    Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1774  }
1775  uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1776  CurrentGOTIndex += no;
1777  return StartOffset;
1778}
1779
1780void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
1781{
1782  // Fill in the relative address of the GOT Entry into the stub
1783  RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
1784  addRelocationForSection(GOTRE, GOTSectionID);
1785}
1786
1787RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
1788                                                   uint32_t Type)
1789{
1790  (void)SectionID; // The GOT Section is the same for all section in the object file
1791  return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1792}
1793
1794void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1795                                  ObjSectionToIDMap &SectionMap) {
1796  if (IsMipsO32ABI)
1797    if (!PendingRelocs.empty())
1798      report_fatal_error("Can't find matching LO16 reloc");
1799
1800  // If necessary, allocate the global offset table
1801  if (GOTSectionID != 0) {
1802    // Allocate memory for the section
1803    size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1804    uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1805                                                GOTSectionID, ".got", false);
1806    if (!Addr)
1807      report_fatal_error("Unable to allocate memory for GOT!");
1808
1809    Sections[GOTSectionID] =
1810        SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1811
1812    if (Checker)
1813      Checker->registerSection(Obj.getFileName(), GOTSectionID);
1814
1815    // For now, initialize all GOT entries to zero.  We'll fill them in as
1816    // needed when GOT-based relocations are applied.
1817    memset(Addr, 0, TotalSize);
1818    if (IsMipsN64ABI) {
1819      // To correctly resolve Mips GOT relocations, we need a mapping from
1820      // object's sections to GOTs.
1821      for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1822           SI != SE; ++SI) {
1823        if (SI->relocation_begin() != SI->relocation_end()) {
1824          section_iterator RelocatedSection = SI->getRelocatedSection();
1825          ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1826          assert (i != SectionMap.end());
1827          SectionToGOTMap[i->second] = GOTSectionID;
1828        }
1829      }
1830      GOTSymbolOffsets.clear();
1831    }
1832  }
1833
1834  // Look for and record the EH frame section.
1835  ObjSectionToIDMap::iterator i, e;
1836  for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1837    const SectionRef &Section = i->first;
1838    StringRef Name;
1839    Section.getName(Name);
1840    if (Name == ".eh_frame") {
1841      UnregisteredEHFrameSections.push_back(i->second);
1842      break;
1843    }
1844  }
1845
1846  GOTSectionID = 0;
1847  CurrentGOTIndex = 0;
1848}
1849
1850bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1851  return Obj.isELF();
1852}
1853
1854bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1855  if (Arch != Triple::x86_64)
1856    return true;  // Conservative answer
1857
1858  switch (R.getType()) {
1859  default:
1860    return true;  // Conservative answer
1861
1862
1863  case ELF::R_X86_64_GOTPCREL:
1864  case ELF::R_X86_64_PC32:
1865  case ELF::R_X86_64_PC64:
1866  case ELF::R_X86_64_64:
1867    // We know that these reloation types won't need a stub function.  This list
1868    // can be extended as needed.
1869    return false;
1870  }
1871}
1872
1873} // namespace llvm
1874