RuntimeDyld.cpp revision 223017
1//===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringMap.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/ExecutionEngine/RuntimeDyld.h"
22#include "llvm/Object/MachOObject.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/Format.h"
26#include "llvm/Support/Memory.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/Support/system_error.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31using namespace llvm::object;
32
33// Empty out-of-line virtual destructor as the key function.
34RTDyldMemoryManager::~RTDyldMemoryManager() {}
35
36namespace llvm {
37class RuntimeDyldImpl {
38  unsigned CPUType;
39  unsigned CPUSubtype;
40
41  // The MemoryManager to load objects into.
42  RTDyldMemoryManager *MemMgr;
43
44  // FIXME: This all assumes we're dealing with external symbols for anything
45  //        explicitly referenced. I.e., we can index by name and things
46  //        will work out. In practice, this may not be the case, so we
47  //        should find a way to effectively generalize.
48
49  // For each function, we have a MemoryBlock of it's instruction data.
50  StringMap<sys::MemoryBlock> Functions;
51
52  // Master symbol table. As modules are loaded and external symbols are
53  // resolved, their addresses are stored here.
54  StringMap<uint8_t*> SymbolTable;
55
56  // For each symbol, keep a list of relocations based on it. Anytime
57  // its address is reassigned (the JIT re-compiled the function, e.g.),
58  // the relocations get re-resolved.
59  struct RelocationEntry {
60    std::string Target;     // Object this relocation is contained in.
61    uint64_t    Offset;     // Offset into the object for the relocation.
62    uint32_t    Data;       // Second word of the raw macho relocation entry.
63    int64_t     Addend;     // Addend encoded in the instruction itself, if any.
64    bool        isResolved; // Has this relocation been resolved previously?
65
66    RelocationEntry(StringRef t, uint64_t offset, uint32_t data, int64_t addend)
67      : Target(t), Offset(offset), Data(data), Addend(addend),
68        isResolved(false) {}
69  };
70  typedef SmallVector<RelocationEntry, 4> RelocationList;
71  StringMap<RelocationList> Relocations;
72
73  // FIXME: Also keep a map of all the relocations contained in an object. Use
74  // this to dynamically answer whether all of the relocations in it have
75  // been resolved or not.
76
77  bool HasError;
78  std::string ErrorStr;
79
80  // Set the error state and record an error string.
81  bool Error(const Twine &Msg) {
82    ErrorStr = Msg.str();
83    HasError = true;
84    return true;
85  }
86
87  void extractFunction(StringRef Name, uint8_t *StartAddress,
88                       uint8_t *EndAddress);
89  bool resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
90                         unsigned Type, unsigned Size);
91  bool resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
92                               unsigned Type, unsigned Size);
93  bool resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
94                            unsigned Type, unsigned Size);
95
96  bool loadSegment32(const MachOObject *Obj,
97                     const MachOObject::LoadCommandInfo *SegmentLCI,
98                     const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
99  bool loadSegment64(const MachOObject *Obj,
100                     const MachOObject::LoadCommandInfo *SegmentLCI,
101                     const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
102
103public:
104  RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}
105
106  bool loadObject(MemoryBuffer *InputBuffer);
107
108  void *getSymbolAddress(StringRef Name) {
109    // FIXME: Just look up as a function for now. Overly simple of course.
110    // Work in progress.
111    return SymbolTable.lookup(Name);
112  }
113
114  void resolveRelocations();
115
116  void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
117
118  // Is the linker in an error state?
119  bool hasError() { return HasError; }
120
121  // Mark the error condition as handled and continue.
122  void clearError() { HasError = false; }
123
124  // Get the error message.
125  StringRef getErrorString() { return ErrorStr; }
126};
127
128void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
129                                      uint8_t *EndAddress) {
130  // Allocate memory for the function via the memory manager.
131  uintptr_t Size = EndAddress - StartAddress + 1;
132  uintptr_t AllocSize = Size;
133  uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), AllocSize);
134  assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) &&
135         "Memory manager failed to allocate enough memory!");
136  // Copy the function payload into the memory block.
137  memcpy(Mem, StartAddress, Size);
138  MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size);
139  // Remember where we put it.
140  Functions[Name] = sys::MemoryBlock(Mem, Size);
141  // Default the assigned address for this symbol to wherever this
142  // allocated it.
143  SymbolTable[Name] = Mem;
144  DEBUG(dbgs() << "    allocated to [" << Mem << ", " << Mem + Size << "]\n");
145}
146
147bool RuntimeDyldImpl::
148resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
149                  unsigned Type, unsigned Size) {
150  // This just dispatches to the proper target specific routine.
151  switch (CPUType) {
152  default: assert(0 && "Unsupported CPU type!");
153  case mach::CTM_x86_64:
154    return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value,
155                                   isPCRel, Type, Size);
156  case mach::CTM_ARM:
157    return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value,
158                                isPCRel, Type, Size);
159  }
160  llvm_unreachable("");
161}
162
163bool RuntimeDyldImpl::
164resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
165                        bool isPCRel, unsigned Type,
166                        unsigned Size) {
167  // If the relocation is PC-relative, the value to be encoded is the
168  // pointer difference.
169  if (isPCRel)
170    // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
171    // address. Is that expected? Only for branches, perhaps?
172    Value -= Address + 4;
173
174  switch(Type) {
175  default:
176    llvm_unreachable("Invalid relocation type!");
177  case macho::RIT_X86_64_Unsigned:
178  case macho::RIT_X86_64_Branch: {
179    // Mask in the target value a byte at a time (we don't have an alignment
180    // guarantee for the target address, so this is safest).
181    uint8_t *p = (uint8_t*)Address;
182    for (unsigned i = 0; i < Size; ++i) {
183      *p++ = (uint8_t)Value;
184      Value >>= 8;
185    }
186    return false;
187  }
188  case macho::RIT_X86_64_Signed:
189  case macho::RIT_X86_64_GOTLoad:
190  case macho::RIT_X86_64_GOT:
191  case macho::RIT_X86_64_Subtractor:
192  case macho::RIT_X86_64_Signed1:
193  case macho::RIT_X86_64_Signed2:
194  case macho::RIT_X86_64_Signed4:
195  case macho::RIT_X86_64_TLV:
196    return Error("Relocation type not implemented yet!");
197  }
198  return false;
199}
200
201bool RuntimeDyldImpl::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
202                                           bool isPCRel, unsigned Type,
203                                           unsigned Size) {
204  // If the relocation is PC-relative, the value to be encoded is the
205  // pointer difference.
206  if (isPCRel) {
207    Value -= Address;
208    // ARM PCRel relocations have an effective-PC offset of two instructions
209    // (four bytes in Thumb mode, 8 bytes in ARM mode).
210    // FIXME: For now, assume ARM mode.
211    Value -= 8;
212  }
213
214  switch(Type) {
215  default:
216    llvm_unreachable("Invalid relocation type!");
217  case macho::RIT_Vanilla: {
218    llvm_unreachable("Invalid relocation type!");
219    // Mask in the target value a byte at a time (we don't have an alignment
220    // guarantee for the target address, so this is safest).
221    uint8_t *p = (uint8_t*)Address;
222    for (unsigned i = 0; i < Size; ++i) {
223      *p++ = (uint8_t)Value;
224      Value >>= 8;
225    }
226    break;
227  }
228  case macho::RIT_ARM_Branch24Bit: {
229    // Mask the value into the target address. We know instructions are
230    // 32-bit aligned, so we can do it all at once.
231    uint32_t *p = (uint32_t*)Address;
232    // The low two bits of the value are not encoded.
233    Value >>= 2;
234    // Mask the value to 24 bits.
235    Value &= 0xffffff;
236    // FIXME: If the destination is a Thumb function (and the instruction
237    // is a non-predicated BL instruction), we need to change it to a BLX
238    // instruction instead.
239
240    // Insert the value into the instruction.
241    *p = (*p & ~0xffffff) | Value;
242    break;
243  }
244  case macho::RIT_ARM_ThumbBranch22Bit:
245  case macho::RIT_ARM_ThumbBranch32Bit:
246  case macho::RIT_ARM_Half:
247  case macho::RIT_ARM_HalfDifference:
248  case macho::RIT_Pair:
249  case macho::RIT_Difference:
250  case macho::RIT_ARM_LocalDifference:
251  case macho::RIT_ARM_PreboundLazyPointer:
252    return Error("Relocation type not implemented yet!");
253  }
254  return false;
255}
256
257bool RuntimeDyldImpl::
258loadSegment32(const MachOObject *Obj,
259              const MachOObject::LoadCommandInfo *SegmentLCI,
260              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
261  InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
262  Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
263  if (!SegmentLC)
264    return Error("unable to load segment load command");
265
266  for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
267    InMemoryStruct<macho::Section> Sect;
268    Obj->ReadSection(*SegmentLCI, SectNum, Sect);
269    if (!Sect)
270      return Error("unable to load section: '" + Twine(SectNum) + "'");
271
272    // FIXME: For the time being, we're only loading text segments.
273    if (Sect->Flags != 0x80000400)
274      continue;
275
276    // Address and names of symbols in the section.
277    typedef std::pair<uint64_t, StringRef> SymbolEntry;
278    SmallVector<SymbolEntry, 64> Symbols;
279    // Index of all the names, in this section or not. Used when we're
280    // dealing with relocation entries.
281    SmallVector<StringRef, 64> SymbolNames;
282    for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
283      InMemoryStruct<macho::SymbolTableEntry> STE;
284      Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
285      if (!STE)
286        return Error("unable to read symbol: '" + Twine(i) + "'");
287      if (STE->SectionIndex > SegmentLC->NumSections)
288        return Error("invalid section index for symbol: '" + Twine(i) + "'");
289      // Get the symbol name.
290      StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
291      SymbolNames.push_back(Name);
292
293      // Just skip symbols not defined in this section.
294      if ((unsigned)STE->SectionIndex - 1 != SectNum)
295        continue;
296
297      // FIXME: Check the symbol type and flags.
298      if (STE->Type != 0xF)  // external, defined in this section.
299        continue;
300      // Flags == 0x8 marks a thumb function for ARM, which is fine as it
301      // doesn't require any special handling here.
302      if (STE->Flags != 0x0 && STE->Flags != 0x8)
303        continue;
304
305      // Remember the symbol.
306      Symbols.push_back(SymbolEntry(STE->Value, Name));
307
308      DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
309            (Sect->Address + STE->Value) << "\n");
310    }
311    // Sort the symbols by address, just in case they didn't come in that way.
312    array_pod_sort(Symbols.begin(), Symbols.end());
313
314    // If there weren't any functions (odd, but just in case...)
315    if (!Symbols.size())
316      continue;
317
318    // Extract the function data.
319    uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
320                                           SegmentLC->FileSize).data();
321    for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
322      uint64_t StartOffset = Sect->Address + Symbols[i].first;
323      uint64_t EndOffset = Symbols[i + 1].first - 1;
324      DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
325                   << " from [" << StartOffset << ", " << EndOffset << "]\n");
326      extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
327    }
328    // The last symbol we do after since the end address is calculated
329    // differently because there is no next symbol to reference.
330    uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
331    uint64_t EndOffset = Sect->Size - 1;
332    DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
333                 << " from [" << StartOffset << ", " << EndOffset << "]\n");
334    extractFunction(Symbols[Symbols.size()-1].second,
335                    Base + StartOffset, Base + EndOffset);
336
337    // Now extract the relocation information for each function and process it.
338    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
339      InMemoryStruct<macho::RelocationEntry> RE;
340      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
341      if (RE->Word0 & macho::RF_Scattered)
342        return Error("NOT YET IMPLEMENTED: scattered relocations.");
343      // Word0 of the relocation is the offset into the section where the
344      // relocation should be applied. We need to translate that into an
345      // offset into a function since that's our atom.
346      uint32_t Offset = RE->Word0;
347      // Look for the function containing the address. This is used for JIT
348      // code, so the number of functions in section is almost always going
349      // to be very small (usually just one), so until we have use cases
350      // where that's not true, just use a trivial linear search.
351      unsigned SymbolNum;
352      unsigned NumSymbols = Symbols.size();
353      assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
354             "No symbol containing relocation!");
355      for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
356        if (Symbols[SymbolNum + 1].first > Offset)
357          break;
358      // Adjust the offset to be relative to the symbol.
359      Offset -= Symbols[SymbolNum].first;
360      // Get the name of the symbol containing the relocation.
361      StringRef TargetName = SymbolNames[SymbolNum];
362
363      bool isExtern = (RE->Word1 >> 27) & 1;
364      // Figure out the source symbol of the relocation. If isExtern is true,
365      // this relocation references the symbol table, otherwise it references
366      // a section in the same object, numbered from 1 through NumSections
367      // (SectionBases is [0, NumSections-1]).
368      // FIXME: Some targets (ARM) use internal relocations even for
369      // externally visible symbols, if the definition is in the same
370      // file as the reference. We need to convert those back to by-name
371      // references. We can resolve the address based on the section
372      // offset and see if we have a symbol at that address. If we do,
373      // use that; otherwise, puke.
374      if (!isExtern)
375        return Error("Internal relocations not supported.");
376      uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
377      StringRef SourceName = SymbolNames[SourceNum];
378
379      // FIXME: Get the relocation addend from the target address.
380
381      // Now store the relocation information. Associate it with the source
382      // symbol.
383      Relocations[SourceName].push_back(RelocationEntry(TargetName,
384                                                        Offset,
385                                                        RE->Word1,
386                                                        0 /*Addend*/));
387      DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
388                   << " from '" << SourceName << "(Word1: "
389                   << format("0x%x", RE->Word1) << ")\n");
390    }
391  }
392  return false;
393}
394
395
396bool RuntimeDyldImpl::
397loadSegment64(const MachOObject *Obj,
398              const MachOObject::LoadCommandInfo *SegmentLCI,
399              const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
400  InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
401  Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
402  if (!Segment64LC)
403    return Error("unable to load segment load command");
404
405  for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
406    InMemoryStruct<macho::Section64> Sect;
407    Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
408    if (!Sect)
409      return Error("unable to load section: '" + Twine(SectNum) + "'");
410
411    // FIXME: For the time being, we're only loading text segments.
412    if (Sect->Flags != 0x80000400)
413      continue;
414
415    // Address and names of symbols in the section.
416    typedef std::pair<uint64_t, StringRef> SymbolEntry;
417    SmallVector<SymbolEntry, 64> Symbols;
418    // Index of all the names, in this section or not. Used when we're
419    // dealing with relocation entries.
420    SmallVector<StringRef, 64> SymbolNames;
421    for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
422      InMemoryStruct<macho::Symbol64TableEntry> STE;
423      Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
424      if (!STE)
425        return Error("unable to read symbol: '" + Twine(i) + "'");
426      if (STE->SectionIndex > Segment64LC->NumSections)
427        return Error("invalid section index for symbol: '" + Twine(i) + "'");
428      // Get the symbol name.
429      StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
430      SymbolNames.push_back(Name);
431
432      // Just skip symbols not defined in this section.
433      if ((unsigned)STE->SectionIndex - 1 != SectNum)
434        continue;
435
436      // FIXME: Check the symbol type and flags.
437      if (STE->Type != 0xF)  // external, defined in this section.
438        continue;
439      if (STE->Flags != 0x0)
440        continue;
441
442      // Remember the symbol.
443      Symbols.push_back(SymbolEntry(STE->Value, Name));
444
445      DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
446            (Sect->Address + STE->Value) << "\n");
447    }
448    // Sort the symbols by address, just in case they didn't come in that way.
449    array_pod_sort(Symbols.begin(), Symbols.end());
450
451    // If there weren't any functions (odd, but just in case...)
452    if (!Symbols.size())
453      continue;
454
455    // Extract the function data.
456    uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
457                                           Segment64LC->FileSize).data();
458    for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
459      uint64_t StartOffset = Sect->Address + Symbols[i].first;
460      uint64_t EndOffset = Symbols[i + 1].first - 1;
461      DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
462                   << " from [" << StartOffset << ", " << EndOffset << "]\n");
463      extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
464    }
465    // The last symbol we do after since the end address is calculated
466    // differently because there is no next symbol to reference.
467    uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
468    uint64_t EndOffset = Sect->Size - 1;
469    DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
470                 << " from [" << StartOffset << ", " << EndOffset << "]\n");
471    extractFunction(Symbols[Symbols.size()-1].second,
472                    Base + StartOffset, Base + EndOffset);
473
474    // Now extract the relocation information for each function and process it.
475    for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
476      InMemoryStruct<macho::RelocationEntry> RE;
477      Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
478      if (RE->Word0 & macho::RF_Scattered)
479        return Error("NOT YET IMPLEMENTED: scattered relocations.");
480      // Word0 of the relocation is the offset into the section where the
481      // relocation should be applied. We need to translate that into an
482      // offset into a function since that's our atom.
483      uint32_t Offset = RE->Word0;
484      // Look for the function containing the address. This is used for JIT
485      // code, so the number of functions in section is almost always going
486      // to be very small (usually just one), so until we have use cases
487      // where that's not true, just use a trivial linear search.
488      unsigned SymbolNum;
489      unsigned NumSymbols = Symbols.size();
490      assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
491             "No symbol containing relocation!");
492      for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
493        if (Symbols[SymbolNum + 1].first > Offset)
494          break;
495      // Adjust the offset to be relative to the symbol.
496      Offset -= Symbols[SymbolNum].first;
497      // Get the name of the symbol containing the relocation.
498      StringRef TargetName = SymbolNames[SymbolNum];
499
500      bool isExtern = (RE->Word1 >> 27) & 1;
501      // Figure out the source symbol of the relocation. If isExtern is true,
502      // this relocation references the symbol table, otherwise it references
503      // a section in the same object, numbered from 1 through NumSections
504      // (SectionBases is [0, NumSections-1]).
505      if (!isExtern)
506        return Error("Internal relocations not supported.");
507      uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
508      StringRef SourceName = SymbolNames[SourceNum];
509
510      // FIXME: Get the relocation addend from the target address.
511
512      // Now store the relocation information. Associate it with the source
513      // symbol.
514      Relocations[SourceName].push_back(RelocationEntry(TargetName,
515                                                        Offset,
516                                                        RE->Word1,
517                                                        0 /*Addend*/));
518      DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
519                   << " from '" << SourceName << "(Word1: "
520                   << format("0x%x", RE->Word1) << ")\n");
521    }
522  }
523  return false;
524}
525
526bool RuntimeDyldImpl::loadObject(MemoryBuffer *InputBuffer) {
527  // If the linker is in an error state, don't do anything.
528  if (hasError())
529    return true;
530  // Load the Mach-O wrapper object.
531  std::string ErrorStr;
532  OwningPtr<MachOObject> Obj(
533    MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
534  if (!Obj)
535    return Error("unable to load object: '" + ErrorStr + "'");
536
537  // Get the CPU type information from the header.
538  const macho::Header &Header = Obj->getHeader();
539
540  // FIXME: Error checking that the loaded object is compatible with
541  //        the system we're running on.
542  CPUType = Header.CPUType;
543  CPUSubtype = Header.CPUSubtype;
544
545  // Validate that the load commands match what we expect.
546  const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
547    *DysymtabLCI = 0;
548  for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
549    const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
550    switch (LCI.Command.Type) {
551    case macho::LCT_Segment:
552    case macho::LCT_Segment64:
553      if (SegmentLCI)
554        return Error("unexpected input object (multiple segments)");
555      SegmentLCI = &LCI;
556      break;
557    case macho::LCT_Symtab:
558      if (SymtabLCI)
559        return Error("unexpected input object (multiple symbol tables)");
560      SymtabLCI = &LCI;
561      break;
562    case macho::LCT_Dysymtab:
563      if (DysymtabLCI)
564        return Error("unexpected input object (multiple symbol tables)");
565      DysymtabLCI = &LCI;
566      break;
567    default:
568      return Error("unexpected input object (unexpected load command");
569    }
570  }
571
572  if (!SymtabLCI)
573    return Error("no symbol table found in object");
574  if (!SegmentLCI)
575    return Error("no symbol table found in object");
576
577  // Read and register the symbol table data.
578  InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
579  Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
580  if (!SymtabLC)
581    return Error("unable to load symbol table load command");
582  Obj->RegisterStringTable(*SymtabLC);
583
584  // Read the dynamic link-edit information, if present (not present in static
585  // objects).
586  if (DysymtabLCI) {
587    InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
588    Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
589    if (!DysymtabLC)
590      return Error("unable to load dynamic link-exit load command");
591
592    // FIXME: We don't support anything interesting yet.
593//    if (DysymtabLC->LocalSymbolsIndex != 0)
594//      return Error("NOT YET IMPLEMENTED: local symbol entries");
595//    if (DysymtabLC->ExternalSymbolsIndex != 0)
596//      return Error("NOT YET IMPLEMENTED: non-external symbol entries");
597//    if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
598//      return Error("NOT YET IMPLEMENTED: undefined symbol entries");
599  }
600
601  // Load the segment load command.
602  if (SegmentLCI->Command.Type == macho::LCT_Segment) {
603    if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
604      return true;
605  } else {
606    if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
607      return true;
608  }
609
610  return false;
611}
612
613// Resolve the relocations for all symbols we currently know about.
614void RuntimeDyldImpl::resolveRelocations() {
615  // Just iterate over the symbols in our symbol table and assign their
616  // addresses.
617  StringMap<uint8_t*>::iterator i = SymbolTable.begin();
618  StringMap<uint8_t*>::iterator e = SymbolTable.end();
619  for (;i != e; ++i)
620    reassignSymbolAddress(i->getKey(), i->getValue());
621}
622
623// Assign an address to a symbol name and resolve all the relocations
624// associated with it.
625void RuntimeDyldImpl::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
626  // Assign the address in our symbol table.
627  SymbolTable[Name] = Addr;
628
629  RelocationList &Relocs = Relocations[Name];
630  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
631    RelocationEntry &RE = Relocs[i];
632    uint8_t *Target = SymbolTable[RE.Target] + RE.Offset;
633    bool isPCRel = (RE.Data >> 24) & 1;
634    unsigned Type = (RE.Data >> 28) & 0xf;
635    unsigned Size = 1 << ((RE.Data >> 25) & 3);
636
637    DEBUG(dbgs() << "Resolving relocation at '" << RE.Target
638          << "' + " << RE.Offset << " (" << format("%p", Target) << ")"
639          << " from '" << Name << " (" << format("%p", Addr) << ")"
640          << "(" << (isPCRel ? "pcrel" : "absolute")
641          << ", type: " << Type << ", Size: " << Size << ").\n");
642
643    resolveRelocation(Target, Addr, isPCRel, Type, Size);
644    RE.isResolved = true;
645  }
646}
647
648//===----------------------------------------------------------------------===//
649// RuntimeDyld class implementation
650RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *MM) {
651  Dyld = new RuntimeDyldImpl(MM);
652}
653
654RuntimeDyld::~RuntimeDyld() {
655  delete Dyld;
656}
657
658bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
659  return Dyld->loadObject(InputBuffer);
660}
661
662void *RuntimeDyld::getSymbolAddress(StringRef Name) {
663  return Dyld->getSymbolAddress(Name);
664}
665
666void RuntimeDyld::resolveRelocations() {
667  Dyld->resolveRelocations();
668}
669
670void RuntimeDyld::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
671  Dyld->reassignSymbolAddress(Name, Addr);
672}
673
674StringRef RuntimeDyld::getErrorString() {
675  return Dyld->getErrorString();
676}
677
678} // end namespace llvm
679