//===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the MC-JIT runtime dynamic linker. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dyld" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/Object/MachOObject.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/Memory.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/system_error.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::object; // Empty out-of-line virtual destructor as the key function. RTDyldMemoryManager::~RTDyldMemoryManager() {} namespace llvm { class RuntimeDyldImpl { unsigned CPUType; unsigned CPUSubtype; // The MemoryManager to load objects into. RTDyldMemoryManager *MemMgr; // FIXME: This all assumes we're dealing with external symbols for anything // explicitly referenced. I.e., we can index by name and things // will work out. In practice, this may not be the case, so we // should find a way to effectively generalize. // For each function, we have a MemoryBlock of it's instruction data. StringMap Functions; // Master symbol table. As modules are loaded and external symbols are // resolved, their addresses are stored here. StringMap SymbolTable; // For each symbol, keep a list of relocations based on it. Anytime // its address is reassigned (the JIT re-compiled the function, e.g.), // the relocations get re-resolved. struct RelocationEntry { std::string Target; // Object this relocation is contained in. uint64_t Offset; // Offset into the object for the relocation. uint32_t Data; // Second word of the raw macho relocation entry. int64_t Addend; // Addend encoded in the instruction itself, if any. bool isResolved; // Has this relocation been resolved previously? RelocationEntry(StringRef t, uint64_t offset, uint32_t data, int64_t addend) : Target(t), Offset(offset), Data(data), Addend(addend), isResolved(false) {} }; typedef SmallVector RelocationList; StringMap Relocations; // FIXME: Also keep a map of all the relocations contained in an object. Use // this to dynamically answer whether all of the relocations in it have // been resolved or not. bool HasError; std::string ErrorStr; // Set the error state and record an error string. bool Error(const Twine &Msg) { ErrorStr = Msg.str(); HasError = true; return true; } void extractFunction(StringRef Name, uint8_t *StartAddress, uint8_t *EndAddress); bool resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel, unsigned Type, unsigned Size); bool resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel, unsigned Type, unsigned Size); bool resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel, unsigned Type, unsigned Size); bool loadSegment32(const MachOObject *Obj, const MachOObject::LoadCommandInfo *SegmentLCI, const InMemoryStruct &SymtabLC); bool loadSegment64(const MachOObject *Obj, const MachOObject::LoadCommandInfo *SegmentLCI, const InMemoryStruct &SymtabLC); public: RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {} bool loadObject(MemoryBuffer *InputBuffer); void *getSymbolAddress(StringRef Name) { // FIXME: Just look up as a function for now. Overly simple of course. // Work in progress. return SymbolTable.lookup(Name); } void resolveRelocations(); void reassignSymbolAddress(StringRef Name, uint8_t *Addr); // Is the linker in an error state? bool hasError() { return HasError; } // Mark the error condition as handled and continue. void clearError() { HasError = false; } // Get the error message. StringRef getErrorString() { return ErrorStr; } }; void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress, uint8_t *EndAddress) { // Allocate memory for the function via the memory manager. uintptr_t Size = EndAddress - StartAddress + 1; uintptr_t AllocSize = Size; uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), AllocSize); assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) && "Memory manager failed to allocate enough memory!"); // Copy the function payload into the memory block. memcpy(Mem, StartAddress, Size); MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size); // Remember where we put it. Functions[Name] = sys::MemoryBlock(Mem, Size); // Default the assigned address for this symbol to wherever this // allocated it. SymbolTable[Name] = Mem; DEBUG(dbgs() << " allocated to [" << Mem << ", " << Mem + Size << "]\n"); } bool RuntimeDyldImpl:: resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel, unsigned Type, unsigned Size) { // This just dispatches to the proper target specific routine. switch (CPUType) { default: assert(0 && "Unsupported CPU type!"); case mach::CTM_x86_64: return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value, isPCRel, Type, Size); case mach::CTM_ARM: return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value, isPCRel, Type, Size); } llvm_unreachable(""); } bool RuntimeDyldImpl:: resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel, unsigned Type, unsigned Size) { // If the relocation is PC-relative, the value to be encoded is the // pointer difference. if (isPCRel) // FIXME: It seems this value needs to be adjusted by 4 for an effective PC // address. Is that expected? Only for branches, perhaps? Value -= Address + 4; switch(Type) { default: llvm_unreachable("Invalid relocation type!"); case macho::RIT_X86_64_Unsigned: case macho::RIT_X86_64_Branch: { // Mask in the target value a byte at a time (we don't have an alignment // guarantee for the target address, so this is safest). uint8_t *p = (uint8_t*)Address; for (unsigned i = 0; i < Size; ++i) { *p++ = (uint8_t)Value; Value >>= 8; } return false; } case macho::RIT_X86_64_Signed: case macho::RIT_X86_64_GOTLoad: case macho::RIT_X86_64_GOT: case macho::RIT_X86_64_Subtractor: case macho::RIT_X86_64_Signed1: case macho::RIT_X86_64_Signed2: case macho::RIT_X86_64_Signed4: case macho::RIT_X86_64_TLV: return Error("Relocation type not implemented yet!"); } return false; } bool RuntimeDyldImpl::resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel, unsigned Type, unsigned Size) { // If the relocation is PC-relative, the value to be encoded is the // pointer difference. if (isPCRel) { Value -= Address; // ARM PCRel relocations have an effective-PC offset of two instructions // (four bytes in Thumb mode, 8 bytes in ARM mode). // FIXME: For now, assume ARM mode. Value -= 8; } switch(Type) { default: llvm_unreachable("Invalid relocation type!"); case macho::RIT_Vanilla: { llvm_unreachable("Invalid relocation type!"); // Mask in the target value a byte at a time (we don't have an alignment // guarantee for the target address, so this is safest). uint8_t *p = (uint8_t*)Address; for (unsigned i = 0; i < Size; ++i) { *p++ = (uint8_t)Value; Value >>= 8; } break; } case macho::RIT_ARM_Branch24Bit: { // Mask the value into the target address. We know instructions are // 32-bit aligned, so we can do it all at once. uint32_t *p = (uint32_t*)Address; // The low two bits of the value are not encoded. Value >>= 2; // Mask the value to 24 bits. Value &= 0xffffff; // FIXME: If the destination is a Thumb function (and the instruction // is a non-predicated BL instruction), we need to change it to a BLX // instruction instead. // Insert the value into the instruction. *p = (*p & ~0xffffff) | Value; break; } case macho::RIT_ARM_ThumbBranch22Bit: case macho::RIT_ARM_ThumbBranch32Bit: case macho::RIT_ARM_Half: case macho::RIT_ARM_HalfDifference: case macho::RIT_Pair: case macho::RIT_Difference: case macho::RIT_ARM_LocalDifference: case macho::RIT_ARM_PreboundLazyPointer: return Error("Relocation type not implemented yet!"); } return false; } bool RuntimeDyldImpl:: loadSegment32(const MachOObject *Obj, const MachOObject::LoadCommandInfo *SegmentLCI, const InMemoryStruct &SymtabLC) { InMemoryStruct SegmentLC; Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC); if (!SegmentLC) return Error("unable to load segment load command"); for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) { InMemoryStruct Sect; Obj->ReadSection(*SegmentLCI, SectNum, Sect); if (!Sect) return Error("unable to load section: '" + Twine(SectNum) + "'"); // FIXME: For the time being, we're only loading text segments. if (Sect->Flags != 0x80000400) continue; // Address and names of symbols in the section. typedef std::pair SymbolEntry; SmallVector Symbols; // Index of all the names, in this section or not. Used when we're // dealing with relocation entries. SmallVector SymbolNames; for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { InMemoryStruct STE; Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE); if (!STE) return Error("unable to read symbol: '" + Twine(i) + "'"); if (STE->SectionIndex > SegmentLC->NumSections) return Error("invalid section index for symbol: '" + Twine(i) + "'"); // Get the symbol name. StringRef Name = Obj->getStringAtIndex(STE->StringIndex); SymbolNames.push_back(Name); // Just skip symbols not defined in this section. if ((unsigned)STE->SectionIndex - 1 != SectNum) continue; // FIXME: Check the symbol type and flags. if (STE->Type != 0xF) // external, defined in this section. continue; // Flags == 0x8 marks a thumb function for ARM, which is fine as it // doesn't require any special handling here. if (STE->Flags != 0x0 && STE->Flags != 0x8) continue; // Remember the symbol. Symbols.push_back(SymbolEntry(STE->Value, Name)); DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << (Sect->Address + STE->Value) << "\n"); } // Sort the symbols by address, just in case they didn't come in that way. array_pod_sort(Symbols.begin(), Symbols.end()); // If there weren't any functions (odd, but just in case...) if (!Symbols.size()) continue; // Extract the function data. uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset, SegmentLC->FileSize).data(); for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { uint64_t StartOffset = Sect->Address + Symbols[i].first; uint64_t EndOffset = Symbols[i + 1].first - 1; DEBUG(dbgs() << "Extracting function: " << Symbols[i].second << " from [" << StartOffset << ", " << EndOffset << "]\n"); extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); } // The last symbol we do after since the end address is calculated // differently because there is no next symbol to reference. uint64_t StartOffset = Symbols[Symbols.size() - 1].first; uint64_t EndOffset = Sect->Size - 1; DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second << " from [" << StartOffset << ", " << EndOffset << "]\n"); extractFunction(Symbols[Symbols.size()-1].second, Base + StartOffset, Base + EndOffset); // Now extract the relocation information for each function and process it. for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { InMemoryStruct RE; Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); if (RE->Word0 & macho::RF_Scattered) return Error("NOT YET IMPLEMENTED: scattered relocations."); // Word0 of the relocation is the offset into the section where the // relocation should be applied. We need to translate that into an // offset into a function since that's our atom. uint32_t Offset = RE->Word0; // Look for the function containing the address. This is used for JIT // code, so the number of functions in section is almost always going // to be very small (usually just one), so until we have use cases // where that's not true, just use a trivial linear search. unsigned SymbolNum; unsigned NumSymbols = Symbols.size(); assert(NumSymbols > 0 && Symbols[0].first <= Offset && "No symbol containing relocation!"); for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) if (Symbols[SymbolNum + 1].first > Offset) break; // Adjust the offset to be relative to the symbol. Offset -= Symbols[SymbolNum].first; // Get the name of the symbol containing the relocation. StringRef TargetName = SymbolNames[SymbolNum]; bool isExtern = (RE->Word1 >> 27) & 1; // Figure out the source symbol of the relocation. If isExtern is true, // this relocation references the symbol table, otherwise it references // a section in the same object, numbered from 1 through NumSections // (SectionBases is [0, NumSections-1]). // FIXME: Some targets (ARM) use internal relocations even for // externally visible symbols, if the definition is in the same // file as the reference. We need to convert those back to by-name // references. We can resolve the address based on the section // offset and see if we have a symbol at that address. If we do, // use that; otherwise, puke. if (!isExtern) return Error("Internal relocations not supported."); uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value StringRef SourceName = SymbolNames[SourceNum]; // FIXME: Get the relocation addend from the target address. // Now store the relocation information. Associate it with the source // symbol. Relocations[SourceName].push_back(RelocationEntry(TargetName, Offset, RE->Word1, 0 /*Addend*/)); DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset << " from '" << SourceName << "(Word1: " << format("0x%x", RE->Word1) << ")\n"); } } return false; } bool RuntimeDyldImpl:: loadSegment64(const MachOObject *Obj, const MachOObject::LoadCommandInfo *SegmentLCI, const InMemoryStruct &SymtabLC) { InMemoryStruct Segment64LC; Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC); if (!Segment64LC) return Error("unable to load segment load command"); for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { InMemoryStruct Sect; Obj->ReadSection64(*SegmentLCI, SectNum, Sect); if (!Sect) return Error("unable to load section: '" + Twine(SectNum) + "'"); // FIXME: For the time being, we're only loading text segments. if (Sect->Flags != 0x80000400) continue; // Address and names of symbols in the section. typedef std::pair SymbolEntry; SmallVector Symbols; // Index of all the names, in this section or not. Used when we're // dealing with relocation entries. SmallVector SymbolNames; for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { InMemoryStruct STE; Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE); if (!STE) return Error("unable to read symbol: '" + Twine(i) + "'"); if (STE->SectionIndex > Segment64LC->NumSections) return Error("invalid section index for symbol: '" + Twine(i) + "'"); // Get the symbol name. StringRef Name = Obj->getStringAtIndex(STE->StringIndex); SymbolNames.push_back(Name); // Just skip symbols not defined in this section. if ((unsigned)STE->SectionIndex - 1 != SectNum) continue; // FIXME: Check the symbol type and flags. if (STE->Type != 0xF) // external, defined in this section. continue; if (STE->Flags != 0x0) continue; // Remember the symbol. Symbols.push_back(SymbolEntry(STE->Value, Name)); DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << (Sect->Address + STE->Value) << "\n"); } // Sort the symbols by address, just in case they didn't come in that way. array_pod_sort(Symbols.begin(), Symbols.end()); // If there weren't any functions (odd, but just in case...) if (!Symbols.size()) continue; // Extract the function data. uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset, Segment64LC->FileSize).data(); for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { uint64_t StartOffset = Sect->Address + Symbols[i].first; uint64_t EndOffset = Symbols[i + 1].first - 1; DEBUG(dbgs() << "Extracting function: " << Symbols[i].second << " from [" << StartOffset << ", " << EndOffset << "]\n"); extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); } // The last symbol we do after since the end address is calculated // differently because there is no next symbol to reference. uint64_t StartOffset = Symbols[Symbols.size() - 1].first; uint64_t EndOffset = Sect->Size - 1; DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second << " from [" << StartOffset << ", " << EndOffset << "]\n"); extractFunction(Symbols[Symbols.size()-1].second, Base + StartOffset, Base + EndOffset); // Now extract the relocation information for each function and process it. for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { InMemoryStruct RE; Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); if (RE->Word0 & macho::RF_Scattered) return Error("NOT YET IMPLEMENTED: scattered relocations."); // Word0 of the relocation is the offset into the section where the // relocation should be applied. We need to translate that into an // offset into a function since that's our atom. uint32_t Offset = RE->Word0; // Look for the function containing the address. This is used for JIT // code, so the number of functions in section is almost always going // to be very small (usually just one), so until we have use cases // where that's not true, just use a trivial linear search. unsigned SymbolNum; unsigned NumSymbols = Symbols.size(); assert(NumSymbols > 0 && Symbols[0].first <= Offset && "No symbol containing relocation!"); for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) if (Symbols[SymbolNum + 1].first > Offset) break; // Adjust the offset to be relative to the symbol. Offset -= Symbols[SymbolNum].first; // Get the name of the symbol containing the relocation. StringRef TargetName = SymbolNames[SymbolNum]; bool isExtern = (RE->Word1 >> 27) & 1; // Figure out the source symbol of the relocation. If isExtern is true, // this relocation references the symbol table, otherwise it references // a section in the same object, numbered from 1 through NumSections // (SectionBases is [0, NumSections-1]). if (!isExtern) return Error("Internal relocations not supported."); uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value StringRef SourceName = SymbolNames[SourceNum]; // FIXME: Get the relocation addend from the target address. // Now store the relocation information. Associate it with the source // symbol. Relocations[SourceName].push_back(RelocationEntry(TargetName, Offset, RE->Word1, 0 /*Addend*/)); DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset << " from '" << SourceName << "(Word1: " << format("0x%x", RE->Word1) << ")\n"); } } return false; } bool RuntimeDyldImpl::loadObject(MemoryBuffer *InputBuffer) { // If the linker is in an error state, don't do anything. if (hasError()) return true; // Load the Mach-O wrapper object. std::string ErrorStr; OwningPtr Obj( MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr)); if (!Obj) return Error("unable to load object: '" + ErrorStr + "'"); // Get the CPU type information from the header. const macho::Header &Header = Obj->getHeader(); // FIXME: Error checking that the loaded object is compatible with // the system we're running on. CPUType = Header.CPUType; CPUSubtype = Header.CPUSubtype; // Validate that the load commands match what we expect. const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0, *DysymtabLCI = 0; for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i); switch (LCI.Command.Type) { case macho::LCT_Segment: case macho::LCT_Segment64: if (SegmentLCI) return Error("unexpected input object (multiple segments)"); SegmentLCI = &LCI; break; case macho::LCT_Symtab: if (SymtabLCI) return Error("unexpected input object (multiple symbol tables)"); SymtabLCI = &LCI; break; case macho::LCT_Dysymtab: if (DysymtabLCI) return Error("unexpected input object (multiple symbol tables)"); DysymtabLCI = &LCI; break; default: return Error("unexpected input object (unexpected load command"); } } if (!SymtabLCI) return Error("no symbol table found in object"); if (!SegmentLCI) return Error("no symbol table found in object"); // Read and register the symbol table data. InMemoryStruct SymtabLC; Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); if (!SymtabLC) return Error("unable to load symbol table load command"); Obj->RegisterStringTable(*SymtabLC); // Read the dynamic link-edit information, if present (not present in static // objects). if (DysymtabLCI) { InMemoryStruct DysymtabLC; Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC); if (!DysymtabLC) return Error("unable to load dynamic link-exit load command"); // FIXME: We don't support anything interesting yet. // if (DysymtabLC->LocalSymbolsIndex != 0) // return Error("NOT YET IMPLEMENTED: local symbol entries"); // if (DysymtabLC->ExternalSymbolsIndex != 0) // return Error("NOT YET IMPLEMENTED: non-external symbol entries"); // if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries) // return Error("NOT YET IMPLEMENTED: undefined symbol entries"); } // Load the segment load command. if (SegmentLCI->Command.Type == macho::LCT_Segment) { if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC)) return true; } else { if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC)) return true; } return false; } // Resolve the relocations for all symbols we currently know about. void RuntimeDyldImpl::resolveRelocations() { // Just iterate over the symbols in our symbol table and assign their // addresses. StringMap::iterator i = SymbolTable.begin(); StringMap::iterator e = SymbolTable.end(); for (;i != e; ++i) reassignSymbolAddress(i->getKey(), i->getValue()); } // Assign an address to a symbol name and resolve all the relocations // associated with it. void RuntimeDyldImpl::reassignSymbolAddress(StringRef Name, uint8_t *Addr) { // Assign the address in our symbol table. SymbolTable[Name] = Addr; RelocationList &Relocs = Relocations[Name]; for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { RelocationEntry &RE = Relocs[i]; uint8_t *Target = SymbolTable[RE.Target] + RE.Offset; bool isPCRel = (RE.Data >> 24) & 1; unsigned Type = (RE.Data >> 28) & 0xf; unsigned Size = 1 << ((RE.Data >> 25) & 3); DEBUG(dbgs() << "Resolving relocation at '" << RE.Target << "' + " << RE.Offset << " (" << format("%p", Target) << ")" << " from '" << Name << " (" << format("%p", Addr) << ")" << "(" << (isPCRel ? "pcrel" : "absolute") << ", type: " << Type << ", Size: " << Size << ").\n"); resolveRelocation(Target, Addr, isPCRel, Type, Size); RE.isResolved = true; } } //===----------------------------------------------------------------------===// // RuntimeDyld class implementation RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *MM) { Dyld = new RuntimeDyldImpl(MM); } RuntimeDyld::~RuntimeDyld() { delete Dyld; } bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) { return Dyld->loadObject(InputBuffer); } void *RuntimeDyld::getSymbolAddress(StringRef Name) { return Dyld->getSymbolAddress(Name); } void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } void RuntimeDyld::reassignSymbolAddress(StringRef Name, uint8_t *Addr) { Dyld->reassignSymbolAddress(Name, Addr); } StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } } // end namespace llvm