TwoAddressInstructionPass.cpp revision 224145
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/ADT/BitVector.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/STLExtras.h"
50using namespace llvm;
51
52STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
54STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
55STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
57STATISTIC(NumReMats,           "Number of instructions re-materialized");
58STATISTIC(NumDeletes,          "Number of dead instructions deleted");
59
60namespace {
61  class TwoAddressInstructionPass : public MachineFunctionPass {
62    const TargetInstrInfo *TII;
63    const TargetRegisterInfo *TRI;
64    MachineRegisterInfo *MRI;
65    LiveVariables *LV;
66    AliasAnalysis *AA;
67
68    // DistanceMap - Keep track the distance of a MI from the start of the
69    // current basic block.
70    DenseMap<MachineInstr*, unsigned> DistanceMap;
71
72    // SrcRegMap - A map from virtual registers to physical registers which
73    // are likely targets to be coalesced to due to copies from physical
74    // registers to virtual registers. e.g. v1024 = move r0.
75    DenseMap<unsigned, unsigned> SrcRegMap;
76
77    // DstRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies to physical
79    // registers from virtual registers. e.g. r1 = move v1024.
80    DenseMap<unsigned, unsigned> DstRegMap;
81
82    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83    /// during the initial walk of the machine function.
84    SmallVector<MachineInstr*, 16> RegSequences;
85
86    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87                              unsigned Reg,
88                              MachineBasicBlock::iterator OldPos);
89
90    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91                             MachineInstr *MI, MachineInstr *DefMI,
92                             MachineBasicBlock *MBB, unsigned Loc);
93
94    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95                           unsigned &LastDef);
96
97    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98                                   unsigned Dist);
99
100    bool isProfitableToCommute(unsigned regB, unsigned regC,
101                               MachineInstr *MI, MachineBasicBlock *MBB,
102                               unsigned Dist);
103
104    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105                            MachineFunction::iterator &mbbi,
106                            unsigned RegB, unsigned RegC, unsigned Dist);
107
108    bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
109
110    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111                            MachineBasicBlock::iterator &nmi,
112                            MachineFunction::iterator &mbbi,
113                            unsigned RegA, unsigned RegB, unsigned Dist);
114
115    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117                               SmallVector<NewKill, 4> &NewKills,
118                               MachineBasicBlock *MBB, unsigned Dist);
119    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120                           MachineBasicBlock::iterator &nmi,
121                           MachineFunction::iterator &mbbi, unsigned Dist);
122
123    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124                                 MachineBasicBlock::iterator &nmi,
125                                 MachineFunction::iterator &mbbi,
126                                 unsigned SrcIdx, unsigned DstIdx,
127                                 unsigned Dist,
128                                 SmallPtrSet<MachineInstr*, 8> &Processed);
129
130    void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
131                  SmallPtrSet<MachineInstr*, 8> &Processed);
132
133    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
134                     SmallPtrSet<MachineInstr*, 8> &Processed);
135
136    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
137
138    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
139    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
140    /// sub-register references of the register defined by REG_SEQUENCE.
141    bool EliminateRegSequences();
142
143  public:
144    static char ID; // Pass identification, replacement for typeid
145    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
146      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
147    }
148
149    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
150      AU.setPreservesCFG();
151      AU.addRequired<AliasAnalysis>();
152      AU.addPreserved<LiveVariables>();
153      AU.addPreservedID(MachineLoopInfoID);
154      AU.addPreservedID(MachineDominatorsID);
155      AU.addPreservedID(PHIEliminationID);
156      MachineFunctionPass::getAnalysisUsage(AU);
157    }
158
159    /// runOnMachineFunction - Pass entry point.
160    bool runOnMachineFunction(MachineFunction&);
161  };
162}
163
164char TwoAddressInstructionPass::ID = 0;
165INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
166                "Two-Address instruction pass", false, false)
167INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
168INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
169                "Two-Address instruction pass", false, false)
170
171char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
172
173/// Sink3AddrInstruction - A two-address instruction has been converted to a
174/// three-address instruction to avoid clobbering a register. Try to sink it
175/// past the instruction that would kill the above mentioned register to reduce
176/// register pressure.
177bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
178                                           MachineInstr *MI, unsigned SavedReg,
179                                           MachineBasicBlock::iterator OldPos) {
180  // Check if it's safe to move this instruction.
181  bool SeenStore = true; // Be conservative.
182  if (!MI->isSafeToMove(TII, AA, SeenStore))
183    return false;
184
185  unsigned DefReg = 0;
186  SmallSet<unsigned, 4> UseRegs;
187
188  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
189    const MachineOperand &MO = MI->getOperand(i);
190    if (!MO.isReg())
191      continue;
192    unsigned MOReg = MO.getReg();
193    if (!MOReg)
194      continue;
195    if (MO.isUse() && MOReg != SavedReg)
196      UseRegs.insert(MO.getReg());
197    if (!MO.isDef())
198      continue;
199    if (MO.isImplicit())
200      // Don't try to move it if it implicitly defines a register.
201      return false;
202    if (DefReg)
203      // For now, don't move any instructions that define multiple registers.
204      return false;
205    DefReg = MO.getReg();
206  }
207
208  // Find the instruction that kills SavedReg.
209  MachineInstr *KillMI = NULL;
210  for (MachineRegisterInfo::use_nodbg_iterator
211         UI = MRI->use_nodbg_begin(SavedReg),
212         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
213    MachineOperand &UseMO = UI.getOperand();
214    if (!UseMO.isKill())
215      continue;
216    KillMI = UseMO.getParent();
217    break;
218  }
219
220  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
221    return false;
222
223  // If any of the definitions are used by another instruction between the
224  // position and the kill use, then it's not safe to sink it.
225  //
226  // FIXME: This can be sped up if there is an easy way to query whether an
227  // instruction is before or after another instruction. Then we can use
228  // MachineRegisterInfo def / use instead.
229  MachineOperand *KillMO = NULL;
230  MachineBasicBlock::iterator KillPos = KillMI;
231  ++KillPos;
232
233  unsigned NumVisited = 0;
234  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
235    MachineInstr *OtherMI = I;
236    // DBG_VALUE cannot be counted against the limit.
237    if (OtherMI->isDebugValue())
238      continue;
239    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
240      return false;
241    ++NumVisited;
242    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
243      MachineOperand &MO = OtherMI->getOperand(i);
244      if (!MO.isReg())
245        continue;
246      unsigned MOReg = MO.getReg();
247      if (!MOReg)
248        continue;
249      if (DefReg == MOReg)
250        return false;
251
252      if (MO.isKill()) {
253        if (OtherMI == KillMI && MOReg == SavedReg)
254          // Save the operand that kills the register. We want to unset the kill
255          // marker if we can sink MI past it.
256          KillMO = &MO;
257        else if (UseRegs.count(MOReg))
258          // One of the uses is killed before the destination.
259          return false;
260      }
261    }
262  }
263
264  // Update kill and LV information.
265  KillMO->setIsKill(false);
266  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
267  KillMO->setIsKill(true);
268
269  if (LV)
270    LV->replaceKillInstruction(SavedReg, KillMI, MI);
271
272  // Move instruction to its destination.
273  MBB->remove(MI);
274  MBB->insert(KillPos, MI);
275
276  ++Num3AddrSunk;
277  return true;
278}
279
280/// isTwoAddrUse - Return true if the specified MI is using the specified
281/// register as a two-address operand.
282static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
283  const MCInstrDesc &MCID = UseMI->getDesc();
284  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
285    MachineOperand &MO = UseMI->getOperand(i);
286    if (MO.isReg() && MO.getReg() == Reg &&
287        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
288      // Earlier use is a two-address one.
289      return true;
290  }
291  return false;
292}
293
294/// isProfitableToReMat - Return true if the heuristics determines it is likely
295/// to be profitable to re-materialize the definition of Reg rather than copy
296/// the register.
297bool
298TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
299                                         const TargetRegisterClass *RC,
300                                         MachineInstr *MI, MachineInstr *DefMI,
301                                         MachineBasicBlock *MBB, unsigned Loc) {
302  bool OtherUse = false;
303  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
304         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
305    MachineOperand &UseMO = UI.getOperand();
306    MachineInstr *UseMI = UseMO.getParent();
307    MachineBasicBlock *UseMBB = UseMI->getParent();
308    if (UseMBB == MBB) {
309      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
310      if (DI != DistanceMap.end() && DI->second == Loc)
311        continue;  // Current use.
312      OtherUse = true;
313      // There is at least one other use in the MBB that will clobber the
314      // register.
315      if (isTwoAddrUse(UseMI, Reg))
316        return true;
317    }
318  }
319
320  // If other uses in MBB are not two-address uses, then don't remat.
321  if (OtherUse)
322    return false;
323
324  // No other uses in the same block, remat if it's defined in the same
325  // block so it does not unnecessarily extend the live range.
326  return MBB == DefMI->getParent();
327}
328
329/// NoUseAfterLastDef - Return true if there are no intervening uses between the
330/// last instruction in the MBB that defines the specified register and the
331/// two-address instruction which is being processed. It also returns the last
332/// def location by reference
333bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
334                                           MachineBasicBlock *MBB, unsigned Dist,
335                                           unsigned &LastDef) {
336  LastDef = 0;
337  unsigned LastUse = Dist;
338  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
339         E = MRI->reg_end(); I != E; ++I) {
340    MachineOperand &MO = I.getOperand();
341    MachineInstr *MI = MO.getParent();
342    if (MI->getParent() != MBB || MI->isDebugValue())
343      continue;
344    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
345    if (DI == DistanceMap.end())
346      continue;
347    if (MO.isUse() && DI->second < LastUse)
348      LastUse = DI->second;
349    if (MO.isDef() && DI->second > LastDef)
350      LastDef = DI->second;
351  }
352
353  return !(LastUse > LastDef && LastUse < Dist);
354}
355
356MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
357                                                         MachineBasicBlock *MBB,
358                                                         unsigned Dist) {
359  unsigned LastUseDist = 0;
360  MachineInstr *LastUse = 0;
361  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
362         E = MRI->reg_end(); I != E; ++I) {
363    MachineOperand &MO = I.getOperand();
364    MachineInstr *MI = MO.getParent();
365    if (MI->getParent() != MBB || MI->isDebugValue())
366      continue;
367    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
368    if (DI == DistanceMap.end())
369      continue;
370    if (DI->second >= Dist)
371      continue;
372
373    if (MO.isUse() && DI->second > LastUseDist) {
374      LastUse = DI->first;
375      LastUseDist = DI->second;
376    }
377  }
378  return LastUse;
379}
380
381/// isCopyToReg - Return true if the specified MI is a copy instruction or
382/// a extract_subreg instruction. It also returns the source and destination
383/// registers and whether they are physical registers by reference.
384static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
385                        unsigned &SrcReg, unsigned &DstReg,
386                        bool &IsSrcPhys, bool &IsDstPhys) {
387  SrcReg = 0;
388  DstReg = 0;
389  if (MI.isCopy()) {
390    DstReg = MI.getOperand(0).getReg();
391    SrcReg = MI.getOperand(1).getReg();
392  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
393    DstReg = MI.getOperand(0).getReg();
394    SrcReg = MI.getOperand(2).getReg();
395  } else
396    return false;
397
398  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
399  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
400  return true;
401}
402
403/// isKilled - Test if the given register value, which is used by the given
404/// instruction, is killed by the given instruction. This looks through
405/// coalescable copies to see if the original value is potentially not killed.
406///
407/// For example, in this code:
408///
409///   %reg1034 = copy %reg1024
410///   %reg1035 = copy %reg1025<kill>
411///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
412///
413/// %reg1034 is not considered to be killed, since it is copied from a
414/// register which is not killed. Treating it as not killed lets the
415/// normal heuristics commute the (two-address) add, which lets
416/// coalescing eliminate the extra copy.
417///
418static bool isKilled(MachineInstr &MI, unsigned Reg,
419                     const MachineRegisterInfo *MRI,
420                     const TargetInstrInfo *TII) {
421  MachineInstr *DefMI = &MI;
422  for (;;) {
423    if (!DefMI->killsRegister(Reg))
424      return false;
425    if (TargetRegisterInfo::isPhysicalRegister(Reg))
426      return true;
427    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
428    // If there are multiple defs, we can't do a simple analysis, so just
429    // go with what the kill flag says.
430    if (llvm::next(Begin) != MRI->def_end())
431      return true;
432    DefMI = &*Begin;
433    bool IsSrcPhys, IsDstPhys;
434    unsigned SrcReg,  DstReg;
435    // If the def is something other than a copy, then it isn't going to
436    // be coalesced, so follow the kill flag.
437    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
438      return true;
439    Reg = SrcReg;
440  }
441}
442
443/// isTwoAddrUse - Return true if the specified MI uses the specified register
444/// as a two-address use. If so, return the destination register by reference.
445static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
446  const MCInstrDesc &MCID = MI.getDesc();
447  unsigned NumOps = MI.isInlineAsm()
448    ? MI.getNumOperands() : MCID.getNumOperands();
449  for (unsigned i = 0; i != NumOps; ++i) {
450    const MachineOperand &MO = MI.getOperand(i);
451    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
452      continue;
453    unsigned ti;
454    if (MI.isRegTiedToDefOperand(i, &ti)) {
455      DstReg = MI.getOperand(ti).getReg();
456      return true;
457    }
458  }
459  return false;
460}
461
462/// findOnlyInterestingUse - Given a register, if has a single in-basic block
463/// use, return the use instruction if it's a copy or a two-address use.
464static
465MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
466                                     MachineRegisterInfo *MRI,
467                                     const TargetInstrInfo *TII,
468                                     bool &IsCopy,
469                                     unsigned &DstReg, bool &IsDstPhys) {
470  if (!MRI->hasOneNonDBGUse(Reg))
471    // None or more than one use.
472    return 0;
473  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
474  if (UseMI.getParent() != MBB)
475    return 0;
476  unsigned SrcReg;
477  bool IsSrcPhys;
478  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
479    IsCopy = true;
480    return &UseMI;
481  }
482  IsDstPhys = false;
483  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
484    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
485    return &UseMI;
486  }
487  return 0;
488}
489
490/// getMappedReg - Return the physical register the specified virtual register
491/// might be mapped to.
492static unsigned
493getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
494  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
495    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
496    if (SI == RegMap.end())
497      return 0;
498    Reg = SI->second;
499  }
500  if (TargetRegisterInfo::isPhysicalRegister(Reg))
501    return Reg;
502  return 0;
503}
504
505/// regsAreCompatible - Return true if the two registers are equal or aliased.
506///
507static bool
508regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
509  if (RegA == RegB)
510    return true;
511  if (!RegA || !RegB)
512    return false;
513  return TRI->regsOverlap(RegA, RegB);
514}
515
516
517/// isProfitableToReMat - Return true if it's potentially profitable to commute
518/// the two-address instruction that's being processed.
519bool
520TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
521                                       MachineInstr *MI, MachineBasicBlock *MBB,
522                                       unsigned Dist) {
523  // Determine if it's profitable to commute this two address instruction. In
524  // general, we want no uses between this instruction and the definition of
525  // the two-address register.
526  // e.g.
527  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
528  // %reg1029<def> = MOV8rr %reg1028
529  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
530  // insert => %reg1030<def> = MOV8rr %reg1028
531  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
532  // In this case, it might not be possible to coalesce the second MOV8rr
533  // instruction if the first one is coalesced. So it would be profitable to
534  // commute it:
535  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
536  // %reg1029<def> = MOV8rr %reg1028
537  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
538  // insert => %reg1030<def> = MOV8rr %reg1029
539  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
540
541  if (!MI->killsRegister(regC))
542    return false;
543
544  // Ok, we have something like:
545  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
546  // let's see if it's worth commuting it.
547
548  // Look for situations like this:
549  // %reg1024<def> = MOV r1
550  // %reg1025<def> = MOV r0
551  // %reg1026<def> = ADD %reg1024, %reg1025
552  // r0            = MOV %reg1026
553  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
554  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
555  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
556  unsigned ToRegB = getMappedReg(regB, DstRegMap);
557  unsigned ToRegC = getMappedReg(regC, DstRegMap);
558  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
559      ((!FromRegC && !ToRegC) ||
560       regsAreCompatible(FromRegB, ToRegC, TRI) ||
561       regsAreCompatible(FromRegC, ToRegB, TRI)))
562    return true;
563
564  // If there is a use of regC between its last def (could be livein) and this
565  // instruction, then bail.
566  unsigned LastDefC = 0;
567  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
568    return false;
569
570  // If there is a use of regB between its last def (could be livein) and this
571  // instruction, then go ahead and make this transformation.
572  unsigned LastDefB = 0;
573  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
574    return true;
575
576  // Since there are no intervening uses for both registers, then commute
577  // if the def of regC is closer. Its live interval is shorter.
578  return LastDefB && LastDefC && LastDefC > LastDefB;
579}
580
581/// CommuteInstruction - Commute a two-address instruction and update the basic
582/// block, distance map, and live variables if needed. Return true if it is
583/// successful.
584bool
585TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
586                               MachineFunction::iterator &mbbi,
587                               unsigned RegB, unsigned RegC, unsigned Dist) {
588  MachineInstr *MI = mi;
589  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
590  MachineInstr *NewMI = TII->commuteInstruction(MI);
591
592  if (NewMI == 0) {
593    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
594    return false;
595  }
596
597  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
598  // If the instruction changed to commute it, update livevar.
599  if (NewMI != MI) {
600    if (LV)
601      // Update live variables
602      LV->replaceKillInstruction(RegC, MI, NewMI);
603
604    mbbi->insert(mi, NewMI);           // Insert the new inst
605    mbbi->erase(mi);                   // Nuke the old inst.
606    mi = NewMI;
607    DistanceMap.insert(std::make_pair(NewMI, Dist));
608  }
609
610  // Update source register map.
611  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
612  if (FromRegC) {
613    unsigned RegA = MI->getOperand(0).getReg();
614    SrcRegMap[RegA] = FromRegC;
615  }
616
617  return true;
618}
619
620/// isProfitableToConv3Addr - Return true if it is profitable to convert the
621/// given 2-address instruction to a 3-address one.
622bool
623TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
624  // Look for situations like this:
625  // %reg1024<def> = MOV r1
626  // %reg1025<def> = MOV r0
627  // %reg1026<def> = ADD %reg1024, %reg1025
628  // r2            = MOV %reg1026
629  // Turn ADD into a 3-address instruction to avoid a copy.
630  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
631  if (!FromRegB)
632    return false;
633  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
634  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
635}
636
637/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
638/// three address one. Return true if this transformation was successful.
639bool
640TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
641                                              MachineBasicBlock::iterator &nmi,
642                                              MachineFunction::iterator &mbbi,
643                                              unsigned RegA, unsigned RegB,
644                                              unsigned Dist) {
645  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
646  if (NewMI) {
647    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
648    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
649    bool Sunk = false;
650
651    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
652      // FIXME: Temporary workaround. If the new instruction doesn't
653      // uses RegB, convertToThreeAddress must have created more
654      // then one instruction.
655      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
656
657    mbbi->erase(mi); // Nuke the old inst.
658
659    if (!Sunk) {
660      DistanceMap.insert(std::make_pair(NewMI, Dist));
661      mi = NewMI;
662      nmi = llvm::next(mi);
663    }
664
665    // Update source and destination register maps.
666    SrcRegMap.erase(RegA);
667    DstRegMap.erase(RegB);
668    return true;
669  }
670
671  return false;
672}
673
674/// ScanUses - Scan forward recursively for only uses, update maps if the use
675/// is a copy or a two-address instruction.
676void
677TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
678                                    SmallPtrSet<MachineInstr*, 8> &Processed) {
679  SmallVector<unsigned, 4> VirtRegPairs;
680  bool IsDstPhys;
681  bool IsCopy = false;
682  unsigned NewReg = 0;
683  unsigned Reg = DstReg;
684  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
685                                                      NewReg, IsDstPhys)) {
686    if (IsCopy && !Processed.insert(UseMI))
687      break;
688
689    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
690    if (DI != DistanceMap.end())
691      // Earlier in the same MBB.Reached via a back edge.
692      break;
693
694    if (IsDstPhys) {
695      VirtRegPairs.push_back(NewReg);
696      break;
697    }
698    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
699    if (!isNew)
700      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
701    VirtRegPairs.push_back(NewReg);
702    Reg = NewReg;
703  }
704
705  if (!VirtRegPairs.empty()) {
706    unsigned ToReg = VirtRegPairs.back();
707    VirtRegPairs.pop_back();
708    while (!VirtRegPairs.empty()) {
709      unsigned FromReg = VirtRegPairs.back();
710      VirtRegPairs.pop_back();
711      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
712      if (!isNew)
713        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
714      ToReg = FromReg;
715    }
716    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
717    if (!isNew)
718      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
719  }
720}
721
722/// ProcessCopy - If the specified instruction is not yet processed, process it
723/// if it's a copy. For a copy instruction, we find the physical registers the
724/// source and destination registers might be mapped to. These are kept in
725/// point-to maps used to determine future optimizations. e.g.
726/// v1024 = mov r0
727/// v1025 = mov r1
728/// v1026 = add v1024, v1025
729/// r1    = mov r1026
730/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
731/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
732/// potentially joined with r1 on the output side. It's worthwhile to commute
733/// 'add' to eliminate a copy.
734void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
735                                     MachineBasicBlock *MBB,
736                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
737  if (Processed.count(MI))
738    return;
739
740  bool IsSrcPhys, IsDstPhys;
741  unsigned SrcReg, DstReg;
742  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
743    return;
744
745  if (IsDstPhys && !IsSrcPhys)
746    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
747  else if (!IsDstPhys && IsSrcPhys) {
748    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
749    if (!isNew)
750      assert(SrcRegMap[DstReg] == SrcReg &&
751             "Can't map to two src physical registers!");
752
753    ScanUses(DstReg, MBB, Processed);
754  }
755
756  Processed.insert(MI);
757  return;
758}
759
760/// isSafeToDelete - If the specified instruction does not produce any side
761/// effects and all of its defs are dead, then it's safe to delete.
762static bool isSafeToDelete(MachineInstr *MI,
763                           const TargetInstrInfo *TII,
764                           SmallVector<unsigned, 4> &Kills) {
765  const MCInstrDesc &MCID = MI->getDesc();
766  if (MCID.mayStore() || MCID.isCall())
767    return false;
768  if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
769    return false;
770
771  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
772    MachineOperand &MO = MI->getOperand(i);
773    if (!MO.isReg())
774      continue;
775    if (MO.isDef() && !MO.isDead())
776      return false;
777    if (MO.isUse() && MO.isKill())
778      Kills.push_back(MO.getReg());
779  }
780  return true;
781}
782
783/// canUpdateDeletedKills - Check if all the registers listed in Kills are
784/// killed by instructions in MBB preceding the current instruction at
785/// position Dist.  If so, return true and record information about the
786/// preceding kills in NewKills.
787bool TwoAddressInstructionPass::
788canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
789                      SmallVector<NewKill, 4> &NewKills,
790                      MachineBasicBlock *MBB, unsigned Dist) {
791  while (!Kills.empty()) {
792    unsigned Kill = Kills.back();
793    Kills.pop_back();
794    if (TargetRegisterInfo::isPhysicalRegister(Kill))
795      return false;
796
797    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
798    if (!LastKill)
799      return false;
800
801    bool isModRef = LastKill->definesRegister(Kill);
802    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
803                                      LastKill));
804  }
805  return true;
806}
807
808/// DeleteUnusedInstr - If an instruction with a tied register operand can
809/// be safely deleted, just delete it.
810bool
811TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
812                                             MachineBasicBlock::iterator &nmi,
813                                             MachineFunction::iterator &mbbi,
814                                             unsigned Dist) {
815  // Check if the instruction has no side effects and if all its defs are dead.
816  SmallVector<unsigned, 4> Kills;
817  if (!isSafeToDelete(mi, TII, Kills))
818    return false;
819
820  // If this instruction kills some virtual registers, we need to
821  // update the kill information. If it's not possible to do so,
822  // then bail out.
823  SmallVector<NewKill, 4> NewKills;
824  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
825    return false;
826
827  if (LV) {
828    while (!NewKills.empty()) {
829      MachineInstr *NewKill = NewKills.back().second;
830      unsigned Kill = NewKills.back().first.first;
831      bool isDead = NewKills.back().first.second;
832      NewKills.pop_back();
833      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
834        if (isDead)
835          LV->addVirtualRegisterDead(Kill, NewKill);
836        else
837          LV->addVirtualRegisterKilled(Kill, NewKill);
838      }
839    }
840  }
841
842  mbbi->erase(mi); // Nuke the old inst.
843  mi = nmi;
844  return true;
845}
846
847/// TryInstructionTransform - For the case where an instruction has a single
848/// pair of tied register operands, attempt some transformations that may
849/// either eliminate the tied operands or improve the opportunities for
850/// coalescing away the register copy.  Returns true if the tied operands
851/// are eliminated altogether.
852bool TwoAddressInstructionPass::
853TryInstructionTransform(MachineBasicBlock::iterator &mi,
854                        MachineBasicBlock::iterator &nmi,
855                        MachineFunction::iterator &mbbi,
856                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
857                        SmallPtrSet<MachineInstr*, 8> &Processed) {
858  const MCInstrDesc &MCID = mi->getDesc();
859  unsigned regA = mi->getOperand(DstIdx).getReg();
860  unsigned regB = mi->getOperand(SrcIdx).getReg();
861
862  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
863         "cannot make instruction into two-address form");
864
865  // If regA is dead and the instruction can be deleted, just delete
866  // it so it doesn't clobber regB.
867  bool regBKilled = isKilled(*mi, regB, MRI, TII);
868  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
869      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
870    ++NumDeletes;
871    return true; // Done with this instruction.
872  }
873
874  // Check if it is profitable to commute the operands.
875  unsigned SrcOp1, SrcOp2;
876  unsigned regC = 0;
877  unsigned regCIdx = ~0U;
878  bool TryCommute = false;
879  bool AggressiveCommute = false;
880  if (MCID.isCommutable() && mi->getNumOperands() >= 3 &&
881      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
882    if (SrcIdx == SrcOp1)
883      regCIdx = SrcOp2;
884    else if (SrcIdx == SrcOp2)
885      regCIdx = SrcOp1;
886
887    if (regCIdx != ~0U) {
888      regC = mi->getOperand(regCIdx).getReg();
889      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
890        // If C dies but B does not, swap the B and C operands.
891        // This makes the live ranges of A and C joinable.
892        TryCommute = true;
893      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
894        TryCommute = true;
895        AggressiveCommute = true;
896      }
897    }
898  }
899
900  // If it's profitable to commute, try to do so.
901  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
902    ++NumCommuted;
903    if (AggressiveCommute)
904      ++NumAggrCommuted;
905    return false;
906  }
907
908  if (TargetRegisterInfo::isVirtualRegister(regA))
909    ScanUses(regA, &*mbbi, Processed);
910
911  if (MCID.isConvertibleTo3Addr()) {
912    // This instruction is potentially convertible to a true
913    // three-address instruction.  Check if it is profitable.
914    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
915      // Try to convert it.
916      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
917        ++NumConvertedTo3Addr;
918        return true; // Done with this instruction.
919      }
920    }
921  }
922
923  // If this is an instruction with a load folded into it, try unfolding
924  // the load, e.g. avoid this:
925  //   movq %rdx, %rcx
926  //   addq (%rax), %rcx
927  // in favor of this:
928  //   movq (%rax), %rcx
929  //   addq %rdx, %rcx
930  // because it's preferable to schedule a load than a register copy.
931  if (MCID.mayLoad() && !regBKilled) {
932    // Determine if a load can be unfolded.
933    unsigned LoadRegIndex;
934    unsigned NewOpc =
935      TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
936                                      /*UnfoldLoad=*/true,
937                                      /*UnfoldStore=*/false,
938                                      &LoadRegIndex);
939    if (NewOpc != 0) {
940      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
941      if (UnfoldMCID.getNumDefs() == 1) {
942        MachineFunction &MF = *mbbi->getParent();
943
944        // Unfold the load.
945        DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi);
946        const TargetRegisterClass *RC =
947          TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
948        unsigned Reg = MRI->createVirtualRegister(RC);
949        SmallVector<MachineInstr *, 2> NewMIs;
950        if (!TII->unfoldMemoryOperand(MF, mi, Reg,
951                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
952                                      NewMIs)) {
953          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
954          return false;
955        }
956        assert(NewMIs.size() == 2 &&
957               "Unfolded a load into multiple instructions!");
958        // The load was previously folded, so this is the only use.
959        NewMIs[1]->addRegisterKilled(Reg, TRI);
960
961        // Tentatively insert the instructions into the block so that they
962        // look "normal" to the transformation logic.
963        mbbi->insert(mi, NewMIs[0]);
964        mbbi->insert(mi, NewMIs[1]);
965
966        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
967                     << "2addr:    NEW INST: " << *NewMIs[1]);
968
969        // Transform the instruction, now that it no longer has a load.
970        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
971        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
972        MachineBasicBlock::iterator NewMI = NewMIs[1];
973        bool TransformSuccess =
974          TryInstructionTransform(NewMI, mi, mbbi,
975                                  NewSrcIdx, NewDstIdx, Dist, Processed);
976        if (TransformSuccess ||
977            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
978          // Success, or at least we made an improvement. Keep the unfolded
979          // instructions and discard the original.
980          if (LV) {
981            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
982              MachineOperand &MO = mi->getOperand(i);
983              if (MO.isReg() &&
984                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
985                if (MO.isUse()) {
986                  if (MO.isKill()) {
987                    if (NewMIs[0]->killsRegister(MO.getReg()))
988                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
989                    else {
990                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
991                             "Kill missing after load unfold!");
992                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
993                    }
994                  }
995                } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
996                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
997                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
998                  else {
999                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1000                           "Dead flag missing after load unfold!");
1001                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1002                  }
1003                }
1004              }
1005            }
1006            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1007          }
1008          mi->eraseFromParent();
1009          mi = NewMIs[1];
1010          if (TransformSuccess)
1011            return true;
1012        } else {
1013          // Transforming didn't eliminate the tie and didn't lead to an
1014          // improvement. Clean up the unfolded instructions and keep the
1015          // original.
1016          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1017          NewMIs[0]->eraseFromParent();
1018          NewMIs[1]->eraseFromParent();
1019        }
1020      }
1021    }
1022  }
1023
1024  return false;
1025}
1026
1027/// runOnMachineFunction - Reduce two-address instructions to two operands.
1028///
1029bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1030  DEBUG(dbgs() << "Machine Function\n");
1031  const TargetMachine &TM = MF.getTarget();
1032  MRI = &MF.getRegInfo();
1033  TII = TM.getInstrInfo();
1034  TRI = TM.getRegisterInfo();
1035  LV = getAnalysisIfAvailable<LiveVariables>();
1036  AA = &getAnalysis<AliasAnalysis>();
1037
1038  bool MadeChange = false;
1039
1040  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1041  DEBUG(dbgs() << "********** Function: "
1042        << MF.getFunction()->getName() << '\n');
1043
1044  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1045  BitVector ReMatRegs(MRI->getNumVirtRegs());
1046
1047  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1048    TiedOperandMap;
1049  TiedOperandMap TiedOperands(4);
1050
1051  SmallPtrSet<MachineInstr*, 8> Processed;
1052  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1053       mbbi != mbbe; ++mbbi) {
1054    unsigned Dist = 0;
1055    DistanceMap.clear();
1056    SrcRegMap.clear();
1057    DstRegMap.clear();
1058    Processed.clear();
1059    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1060         mi != me; ) {
1061      MachineBasicBlock::iterator nmi = llvm::next(mi);
1062      if (mi->isDebugValue()) {
1063        mi = nmi;
1064        continue;
1065      }
1066
1067      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1068      if (mi->isRegSequence())
1069        RegSequences.push_back(&*mi);
1070
1071      const MCInstrDesc &MCID = mi->getDesc();
1072      bool FirstTied = true;
1073
1074      DistanceMap.insert(std::make_pair(mi, ++Dist));
1075
1076      ProcessCopy(&*mi, &*mbbi, Processed);
1077
1078      // First scan through all the tied register uses in this instruction
1079      // and record a list of pairs of tied operands for each register.
1080      unsigned NumOps = mi->isInlineAsm()
1081        ? mi->getNumOperands() : MCID.getNumOperands();
1082      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1083        unsigned DstIdx = 0;
1084        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1085          continue;
1086
1087        if (FirstTied) {
1088          FirstTied = false;
1089          ++NumTwoAddressInstrs;
1090          DEBUG(dbgs() << '\t' << *mi);
1091        }
1092
1093        assert(mi->getOperand(SrcIdx).isReg() &&
1094               mi->getOperand(SrcIdx).getReg() &&
1095               mi->getOperand(SrcIdx).isUse() &&
1096               "two address instruction invalid");
1097
1098        unsigned regB = mi->getOperand(SrcIdx).getReg();
1099        TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1100      }
1101
1102      // Now iterate over the information collected above.
1103      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1104             OE = TiedOperands.end(); OI != OE; ++OI) {
1105        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1106
1107        // If the instruction has a single pair of tied operands, try some
1108        // transformations that may either eliminate the tied operands or
1109        // improve the opportunities for coalescing away the register copy.
1110        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1111          unsigned SrcIdx = TiedPairs[0].first;
1112          unsigned DstIdx = TiedPairs[0].second;
1113
1114          // If the registers are already equal, nothing needs to be done.
1115          if (mi->getOperand(SrcIdx).getReg() ==
1116              mi->getOperand(DstIdx).getReg())
1117            break; // Done with this instruction.
1118
1119          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1120                                      Processed))
1121            break; // The tied operands have been eliminated.
1122        }
1123
1124        bool IsEarlyClobber = false;
1125        bool RemovedKillFlag = false;
1126        bool AllUsesCopied = true;
1127        unsigned LastCopiedReg = 0;
1128        unsigned regB = OI->first;
1129        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1130          unsigned SrcIdx = TiedPairs[tpi].first;
1131          unsigned DstIdx = TiedPairs[tpi].second;
1132
1133          const MachineOperand &DstMO = mi->getOperand(DstIdx);
1134          unsigned regA = DstMO.getReg();
1135          IsEarlyClobber |= DstMO.isEarlyClobber();
1136
1137          // Grab regB from the instruction because it may have changed if the
1138          // instruction was commuted.
1139          regB = mi->getOperand(SrcIdx).getReg();
1140
1141          if (regA == regB) {
1142            // The register is tied to multiple destinations (or else we would
1143            // not have continued this far), but this use of the register
1144            // already matches the tied destination.  Leave it.
1145            AllUsesCopied = false;
1146            continue;
1147          }
1148          LastCopiedReg = regA;
1149
1150          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1151                 "cannot make instruction into two-address form");
1152
1153#ifndef NDEBUG
1154          // First, verify that we don't have a use of "a" in the instruction
1155          // (a = b + a for example) because our transformation will not
1156          // work. This should never occur because we are in SSA form.
1157          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1158            assert(i == DstIdx ||
1159                   !mi->getOperand(i).isReg() ||
1160                   mi->getOperand(i).getReg() != regA);
1161#endif
1162
1163          // Emit a copy or rematerialize the definition.
1164          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1165          MachineInstr *DefMI = MRI->getVRegDef(regB);
1166          // If it's safe and profitable, remat the definition instead of
1167          // copying it.
1168          if (DefMI &&
1169              DefMI->getDesc().isAsCheapAsAMove() &&
1170              DefMI->isSafeToReMat(TII, AA, regB) &&
1171              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1172            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1173            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1174            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1175            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1176            ++NumReMats;
1177          } else {
1178            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1179                    regA).addReg(regB);
1180          }
1181
1182          MachineBasicBlock::iterator prevMI = prior(mi);
1183          // Update DistanceMap.
1184          DistanceMap.insert(std::make_pair(prevMI, Dist));
1185          DistanceMap[mi] = ++Dist;
1186
1187          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1188
1189          MachineOperand &MO = mi->getOperand(SrcIdx);
1190          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1191                 "inconsistent operand info for 2-reg pass");
1192          if (MO.isKill()) {
1193            MO.setIsKill(false);
1194            RemovedKillFlag = true;
1195          }
1196          MO.setReg(regA);
1197        }
1198
1199        if (AllUsesCopied) {
1200          if (!IsEarlyClobber) {
1201            // Replace other (un-tied) uses of regB with LastCopiedReg.
1202            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1203              MachineOperand &MO = mi->getOperand(i);
1204              if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1205                if (MO.isKill()) {
1206                  MO.setIsKill(false);
1207                  RemovedKillFlag = true;
1208                }
1209                MO.setReg(LastCopiedReg);
1210              }
1211            }
1212          }
1213
1214          // Update live variables for regB.
1215          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1216            LV->addVirtualRegisterKilled(regB, prior(mi));
1217
1218        } else if (RemovedKillFlag) {
1219          // Some tied uses of regB matched their destination registers, so
1220          // regB is still used in this instruction, but a kill flag was
1221          // removed from a different tied use of regB, so now we need to add
1222          // a kill flag to one of the remaining uses of regB.
1223          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1224            MachineOperand &MO = mi->getOperand(i);
1225            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1226              MO.setIsKill(true);
1227              break;
1228            }
1229          }
1230        }
1231
1232        // Schedule the source copy / remat inserted to form two-address
1233        // instruction. FIXME: Does it matter the distance map may not be
1234        // accurate after it's scheduled?
1235        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1236
1237        MadeChange = true;
1238
1239        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1240      }
1241
1242      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1243      if (mi->isInsertSubreg()) {
1244        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1245        // To   %reg:subidx = COPY %subreg
1246        unsigned SubIdx = mi->getOperand(3).getImm();
1247        mi->RemoveOperand(3);
1248        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1249        mi->getOperand(0).setSubReg(SubIdx);
1250        mi->RemoveOperand(1);
1251        mi->setDesc(TII->get(TargetOpcode::COPY));
1252        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1253      }
1254
1255      // Clear TiedOperands here instead of at the top of the loop
1256      // since most instructions do not have tied operands.
1257      TiedOperands.clear();
1258      mi = nmi;
1259    }
1260  }
1261
1262  // Some remat'ed instructions are dead.
1263  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1264    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1265    if (MRI->use_nodbg_empty(VReg)) {
1266      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1267      DefMI->eraseFromParent();
1268    }
1269  }
1270
1271  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1272  // SSA form. It's now safe to de-SSA.
1273  MadeChange |= EliminateRegSequences();
1274
1275  return MadeChange;
1276}
1277
1278static void UpdateRegSequenceSrcs(unsigned SrcReg,
1279                                  unsigned DstReg, unsigned SubIdx,
1280                                  MachineRegisterInfo *MRI,
1281                                  const TargetRegisterInfo &TRI) {
1282  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1283         RE = MRI->reg_end(); RI != RE; ) {
1284    MachineOperand &MO = RI.getOperand();
1285    ++RI;
1286    MO.substVirtReg(DstReg, SubIdx, TRI);
1287  }
1288}
1289
1290/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1291/// EXTRACT_SUBREG from the same register and to the same virtual register
1292/// with different sub-register indices, attempt to combine the
1293/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1294/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1295/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1296/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1297/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1298/// reg1026 to reg1029.
1299void
1300TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1301                                              unsigned DstReg) {
1302  SmallSet<unsigned, 4> Seen;
1303  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1304    unsigned SrcReg = Srcs[i];
1305    if (!Seen.insert(SrcReg))
1306      continue;
1307
1308    // Check that the instructions are all in the same basic block.
1309    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1310    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1311    if (SrcDefMI->getParent() != DstDefMI->getParent())
1312      continue;
1313
1314    // If there are no other uses than copies which feed into
1315    // the reg_sequence, then we might be able to coalesce them.
1316    bool CanCoalesce = true;
1317    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1318    for (MachineRegisterInfo::use_nodbg_iterator
1319           UI = MRI->use_nodbg_begin(SrcReg),
1320           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1321      MachineInstr *UseMI = &*UI;
1322      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1323        CanCoalesce = false;
1324        break;
1325      }
1326      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1327      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1328    }
1329
1330    if (!CanCoalesce || SrcSubIndices.size() < 2)
1331      continue;
1332
1333    // Check that the source subregisters can be combined.
1334    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1335    unsigned NewSrcSubIdx = 0;
1336    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1337                                      NewSrcSubIdx))
1338      continue;
1339
1340    // Check that the destination subregisters can also be combined.
1341    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1342    unsigned NewDstSubIdx = 0;
1343    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1344                                      NewDstSubIdx))
1345      continue;
1346
1347    // If neither source nor destination can be combined to the full register,
1348    // just give up.  This could be improved if it ever matters.
1349    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1350      continue;
1351
1352    // Now that we know that all the uses are extract_subregs and that those
1353    // subregs can somehow be combined, scan all the extract_subregs again to
1354    // make sure the subregs are in the right order and can be composed.
1355    MachineInstr *SomeMI = 0;
1356    CanCoalesce = true;
1357    for (MachineRegisterInfo::use_nodbg_iterator
1358           UI = MRI->use_nodbg_begin(SrcReg),
1359           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1360      MachineInstr *UseMI = &*UI;
1361      assert(UseMI->isCopy());
1362      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1363      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1364      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1365      if ((NewDstSubIdx == 0 &&
1366           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1367          (NewSrcSubIdx == 0 &&
1368           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1369        CanCoalesce = false;
1370        break;
1371      }
1372      // Keep track of one of the uses.
1373      SomeMI = UseMI;
1374    }
1375    if (!CanCoalesce)
1376      continue;
1377
1378    // Insert a copy to replace the original.
1379    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1380                                   SomeMI->getDebugLoc(),
1381                                   TII->get(TargetOpcode::COPY))
1382      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1383      .addReg(SrcReg, 0, NewSrcSubIdx);
1384
1385    // Remove all the old extract instructions.
1386    for (MachineRegisterInfo::use_nodbg_iterator
1387           UI = MRI->use_nodbg_begin(SrcReg),
1388           UE = MRI->use_nodbg_end(); UI != UE; ) {
1389      MachineInstr *UseMI = &*UI;
1390      ++UI;
1391      if (UseMI == CopyMI)
1392        continue;
1393      assert(UseMI->isCopy());
1394      // Move any kills to the new copy or extract instruction.
1395      if (UseMI->getOperand(1).isKill()) {
1396        CopyMI->getOperand(1).setIsKill();
1397        if (LV)
1398          // Update live variables
1399          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1400      }
1401      UseMI->eraseFromParent();
1402    }
1403  }
1404}
1405
1406static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1407                                    MachineRegisterInfo *MRI) {
1408  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1409         UE = MRI->use_end(); UI != UE; ++UI) {
1410    MachineInstr *UseMI = &*UI;
1411    if (UseMI != RegSeq && UseMI->isRegSequence())
1412      return true;
1413  }
1414  return false;
1415}
1416
1417/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1418/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1419/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1420///
1421/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1422/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1423/// =>
1424/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1425bool TwoAddressInstructionPass::EliminateRegSequences() {
1426  if (RegSequences.empty())
1427    return false;
1428
1429  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1430    MachineInstr *MI = RegSequences[i];
1431    unsigned DstReg = MI->getOperand(0).getReg();
1432    if (MI->getOperand(0).getSubReg() ||
1433        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1434        !(MI->getNumOperands() & 1)) {
1435      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1436      llvm_unreachable(0);
1437    }
1438
1439    bool IsImpDef = true;
1440    SmallVector<unsigned, 4> RealSrcs;
1441    SmallSet<unsigned, 4> Seen;
1442    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1443      unsigned SrcReg = MI->getOperand(i).getReg();
1444      unsigned SubIdx = MI->getOperand(i+1).getImm();
1445      if (MI->getOperand(i).getSubReg() ||
1446          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1447        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1448        llvm_unreachable(0);
1449      }
1450
1451      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1452      if (DefMI->isImplicitDef()) {
1453        DefMI->eraseFromParent();
1454        continue;
1455      }
1456      IsImpDef = false;
1457
1458      // Remember COPY sources. These might be candidate for coalescing.
1459      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1460        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1461
1462      bool isKill = MI->getOperand(i).isKill();
1463      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1464          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1465          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1466                                         MRI->getRegClass(SrcReg), SubIdx)) {
1467        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1468        // Also add an copy if the source is live-in the block. We don't want
1469        // to end up with a partial-redef of a livein, e.g.
1470        // BB0:
1471        // reg1051:10<def> =
1472        // ...
1473        // BB1:
1474        // ... = reg1051:10
1475        // BB2:
1476        // reg1051:9<def> =
1477        // LiveIntervalAnalysis won't like it.
1478        //
1479        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1480        // correctly up to date becomes very difficult. Insert a copy.
1481
1482        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1483        // might insert a COPY that uses SrcReg after is was killed.
1484        if (isKill)
1485          for (unsigned j = i + 2; j < e; j += 2)
1486            if (MI->getOperand(j).getReg() == SrcReg) {
1487              MI->getOperand(j).setIsKill();
1488              isKill = false;
1489              break;
1490            }
1491
1492        MachineBasicBlock::iterator InsertLoc = MI;
1493        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1494                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1495            .addReg(DstReg, RegState::Define, SubIdx)
1496            .addReg(SrcReg, getKillRegState(isKill));
1497        MI->getOperand(i).setReg(0);
1498        if (LV && isKill)
1499          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1500        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1501      }
1502    }
1503
1504    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1505      unsigned SrcReg = MI->getOperand(i).getReg();
1506      if (!SrcReg) continue;
1507      unsigned SubIdx = MI->getOperand(i+1).getImm();
1508      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1509    }
1510
1511    if (IsImpDef) {
1512      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1513      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1514      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1515        MI->RemoveOperand(j);
1516    } else {
1517      DEBUG(dbgs() << "Eliminated: " << *MI);
1518      MI->eraseFromParent();
1519    }
1520
1521    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1522    // INSERT_SUBREG instructions that must have <undef> flags added by
1523    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1524    if (LV)
1525      CoalesceExtSubRegs(RealSrcs, DstReg);
1526  }
1527
1528  RegSequences.clear();
1529  return true;
1530}
1531