1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/CodeGen/Passes.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/CodeGen/LiveIntervalAnalysis.h"
38#include "llvm/CodeGen/LiveVariables.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstr.h"
41#include "llvm/CodeGen/MachineInstrBuilder.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/IR/Function.h"
44#include "llvm/MC/MCInstrItineraries.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetMachine.h"
51#include "llvm/Target/TargetRegisterInfo.h"
52#include "llvm/Target/TargetSubtargetInfo.h"
53using namespace llvm;
54
55#define DEBUG_TYPE "twoaddrinstr"
56
57STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
58STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
59STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
60STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
61STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
62STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
63STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
64
65// Temporary flag to disable rescheduling.
66static cl::opt<bool>
67EnableRescheduling("twoaddr-reschedule",
68                   cl::desc("Coalesce copies by rescheduling (default=true)"),
69                   cl::init(true), cl::Hidden);
70
71namespace {
72class TwoAddressInstructionPass : public MachineFunctionPass {
73  MachineFunction *MF;
74  const TargetInstrInfo *TII;
75  const TargetRegisterInfo *TRI;
76  const InstrItineraryData *InstrItins;
77  MachineRegisterInfo *MRI;
78  LiveVariables *LV;
79  LiveIntervals *LIS;
80  AliasAnalysis *AA;
81  CodeGenOpt::Level OptLevel;
82
83  // The current basic block being processed.
84  MachineBasicBlock *MBB;
85
86  // Keep track the distance of a MI from the start of the current basic block.
87  DenseMap<MachineInstr*, unsigned> DistanceMap;
88
89  // Set of already processed instructions in the current block.
90  SmallPtrSet<MachineInstr*, 8> Processed;
91
92  // A map from virtual registers to physical registers which are likely targets
93  // to be coalesced to due to copies from physical registers to virtual
94  // registers. e.g. v1024 = move r0.
95  DenseMap<unsigned, unsigned> SrcRegMap;
96
97  // A map from virtual registers to physical registers which are likely targets
98  // to be coalesced to due to copies to physical registers from virtual
99  // registers. e.g. r1 = move v1024.
100  DenseMap<unsigned, unsigned> DstRegMap;
101
102  bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
103                            MachineBasicBlock::iterator OldPos);
104
105  bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
106
107  bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
108
109  bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
110                             MachineInstr *MI, unsigned Dist);
111
112  bool commuteInstruction(MachineInstr *MI,
113                          unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
114
115  bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
116
117  bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
118                          MachineBasicBlock::iterator &nmi,
119                          unsigned RegA, unsigned RegB, unsigned Dist);
120
121  bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
122
123  bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
124                             MachineBasicBlock::iterator &nmi,
125                             unsigned Reg);
126  bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
127                             MachineBasicBlock::iterator &nmi,
128                             unsigned Reg);
129
130  bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
131                               MachineBasicBlock::iterator &nmi,
132                               unsigned SrcIdx, unsigned DstIdx,
133                               unsigned Dist, bool shouldOnlyCommute);
134
135  bool tryInstructionCommute(MachineInstr *MI,
136                             unsigned DstOpIdx,
137                             unsigned BaseOpIdx,
138                             bool BaseOpKilled,
139                             unsigned Dist);
140  void scanUses(unsigned DstReg);
141
142  void processCopy(MachineInstr *MI);
143
144  typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
145  typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
146  bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
147  void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
148  void eliminateRegSequence(MachineBasicBlock::iterator&);
149
150public:
151  static char ID; // Pass identification, replacement for typeid
152  TwoAddressInstructionPass() : MachineFunctionPass(ID) {
153    initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
154  }
155
156  void getAnalysisUsage(AnalysisUsage &AU) const override {
157    AU.setPreservesCFG();
158    AU.addRequired<AAResultsWrapperPass>();
159    AU.addPreserved<LiveVariables>();
160    AU.addPreserved<SlotIndexes>();
161    AU.addPreserved<LiveIntervals>();
162    AU.addPreservedID(MachineLoopInfoID);
163    AU.addPreservedID(MachineDominatorsID);
164    MachineFunctionPass::getAnalysisUsage(AU);
165  }
166
167  /// Pass entry point.
168  bool runOnMachineFunction(MachineFunction&) override;
169};
170} // end anonymous namespace
171
172char TwoAddressInstructionPass::ID = 0;
173INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
174                "Two-Address instruction pass", false, false)
175INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
176INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
177                "Two-Address instruction pass", false, false)
178
179char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
180
181static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
182
183/// A two-address instruction has been converted to a three-address instruction
184/// to avoid clobbering a register. Try to sink it past the instruction that
185/// would kill the above mentioned register to reduce register pressure.
186bool TwoAddressInstructionPass::
187sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
188                     MachineBasicBlock::iterator OldPos) {
189  // FIXME: Shouldn't we be trying to do this before we three-addressify the
190  // instruction?  After this transformation is done, we no longer need
191  // the instruction to be in three-address form.
192
193  // Check if it's safe to move this instruction.
194  bool SeenStore = true; // Be conservative.
195  if (!MI->isSafeToMove(AA, SeenStore))
196    return false;
197
198  unsigned DefReg = 0;
199  SmallSet<unsigned, 4> UseRegs;
200
201  for (const MachineOperand &MO : MI->operands()) {
202    if (!MO.isReg())
203      continue;
204    unsigned MOReg = MO.getReg();
205    if (!MOReg)
206      continue;
207    if (MO.isUse() && MOReg != SavedReg)
208      UseRegs.insert(MO.getReg());
209    if (!MO.isDef())
210      continue;
211    if (MO.isImplicit())
212      // Don't try to move it if it implicitly defines a register.
213      return false;
214    if (DefReg)
215      // For now, don't move any instructions that define multiple registers.
216      return false;
217    DefReg = MO.getReg();
218  }
219
220  // Find the instruction that kills SavedReg.
221  MachineInstr *KillMI = nullptr;
222  if (LIS) {
223    LiveInterval &LI = LIS->getInterval(SavedReg);
224    assert(LI.end() != LI.begin() &&
225           "Reg should not have empty live interval.");
226
227    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
228    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
229    if (I != LI.end() && I->start < MBBEndIdx)
230      return false;
231
232    --I;
233    KillMI = LIS->getInstructionFromIndex(I->end);
234  }
235  if (!KillMI) {
236    for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) {
237      if (!UseMO.isKill())
238        continue;
239      KillMI = UseMO.getParent();
240      break;
241    }
242  }
243
244  // If we find the instruction that kills SavedReg, and it is in an
245  // appropriate location, we can try to sink the current instruction
246  // past it.
247  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
248      KillMI == OldPos || KillMI->isTerminator())
249    return false;
250
251  // If any of the definitions are used by another instruction between the
252  // position and the kill use, then it's not safe to sink it.
253  //
254  // FIXME: This can be sped up if there is an easy way to query whether an
255  // instruction is before or after another instruction. Then we can use
256  // MachineRegisterInfo def / use instead.
257  MachineOperand *KillMO = nullptr;
258  MachineBasicBlock::iterator KillPos = KillMI;
259  ++KillPos;
260
261  unsigned NumVisited = 0;
262  for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) {
263    MachineInstr *OtherMI = I;
264    // DBG_VALUE cannot be counted against the limit.
265    if (OtherMI->isDebugValue())
266      continue;
267    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
268      return false;
269    ++NumVisited;
270    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
271      MachineOperand &MO = OtherMI->getOperand(i);
272      if (!MO.isReg())
273        continue;
274      unsigned MOReg = MO.getReg();
275      if (!MOReg)
276        continue;
277      if (DefReg == MOReg)
278        return false;
279
280      if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
281        if (OtherMI == KillMI && MOReg == SavedReg)
282          // Save the operand that kills the register. We want to unset the kill
283          // marker if we can sink MI past it.
284          KillMO = &MO;
285        else if (UseRegs.count(MOReg))
286          // One of the uses is killed before the destination.
287          return false;
288      }
289    }
290  }
291  assert(KillMO && "Didn't find kill");
292
293  if (!LIS) {
294    // Update kill and LV information.
295    KillMO->setIsKill(false);
296    KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
297    KillMO->setIsKill(true);
298
299    if (LV)
300      LV->replaceKillInstruction(SavedReg, KillMI, MI);
301  }
302
303  // Move instruction to its destination.
304  MBB->remove(MI);
305  MBB->insert(KillPos, MI);
306
307  if (LIS)
308    LIS->handleMove(MI);
309
310  ++Num3AddrSunk;
311  return true;
312}
313
314/// Return the MachineInstr* if it is the single def of the Reg in current BB.
315static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
316                                  const MachineRegisterInfo *MRI) {
317  MachineInstr *Ret = nullptr;
318  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
319    if (DefMI.getParent() != BB || DefMI.isDebugValue())
320      continue;
321    if (!Ret)
322      Ret = &DefMI;
323    else if (Ret != &DefMI)
324      return nullptr;
325  }
326  return Ret;
327}
328
329/// Check if there is a reversed copy chain from FromReg to ToReg:
330/// %Tmp1 = copy %Tmp2;
331/// %FromReg = copy %Tmp1;
332/// %ToReg = add %FromReg ...
333/// %Tmp2 = copy %ToReg;
334/// MaxLen specifies the maximum length of the copy chain the func
335/// can walk through.
336bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
337                                               int Maxlen) {
338  unsigned TmpReg = FromReg;
339  for (int i = 0; i < Maxlen; i++) {
340    MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
341    if (!Def || !Def->isCopy())
342      return false;
343
344    TmpReg = Def->getOperand(1).getReg();
345
346    if (TmpReg == ToReg)
347      return true;
348  }
349  return false;
350}
351
352/// Return true if there are no intervening uses between the last instruction
353/// in the MBB that defines the specified register and the two-address
354/// instruction which is being processed. It also returns the last def location
355/// by reference.
356bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
357                                                  unsigned &LastDef) {
358  LastDef = 0;
359  unsigned LastUse = Dist;
360  for (MachineOperand &MO : MRI->reg_operands(Reg)) {
361    MachineInstr *MI = MO.getParent();
362    if (MI->getParent() != MBB || MI->isDebugValue())
363      continue;
364    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
365    if (DI == DistanceMap.end())
366      continue;
367    if (MO.isUse() && DI->second < LastUse)
368      LastUse = DI->second;
369    if (MO.isDef() && DI->second > LastDef)
370      LastDef = DI->second;
371  }
372
373  return !(LastUse > LastDef && LastUse < Dist);
374}
375
376/// Return true if the specified MI is a copy instruction or an extract_subreg
377/// instruction. It also returns the source and destination registers and
378/// whether they are physical registers by reference.
379static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
380                        unsigned &SrcReg, unsigned &DstReg,
381                        bool &IsSrcPhys, bool &IsDstPhys) {
382  SrcReg = 0;
383  DstReg = 0;
384  if (MI.isCopy()) {
385    DstReg = MI.getOperand(0).getReg();
386    SrcReg = MI.getOperand(1).getReg();
387  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
388    DstReg = MI.getOperand(0).getReg();
389    SrcReg = MI.getOperand(2).getReg();
390  } else
391    return false;
392
393  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
394  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
395  return true;
396}
397
398/// Test if the given register value, which is used by the
399/// given instruction, is killed by the given instruction.
400static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
401                            LiveIntervals *LIS) {
402  if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
403      !LIS->isNotInMIMap(MI)) {
404    // FIXME: Sometimes tryInstructionTransform() will add instructions and
405    // test whether they can be folded before keeping them. In this case it
406    // sets a kill before recursively calling tryInstructionTransform() again.
407    // If there is no interval available, we assume that this instruction is
408    // one of those. A kill flag is manually inserted on the operand so the
409    // check below will handle it.
410    LiveInterval &LI = LIS->getInterval(Reg);
411    // This is to match the kill flag version where undefs don't have kill
412    // flags.
413    if (!LI.hasAtLeastOneValue())
414      return false;
415
416    SlotIndex useIdx = LIS->getInstructionIndex(MI);
417    LiveInterval::const_iterator I = LI.find(useIdx);
418    assert(I != LI.end() && "Reg must be live-in to use.");
419    return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
420  }
421
422  return MI->killsRegister(Reg);
423}
424
425/// Test if the given register value, which is used by the given
426/// instruction, is killed by the given instruction. This looks through
427/// coalescable copies to see if the original value is potentially not killed.
428///
429/// For example, in this code:
430///
431///   %reg1034 = copy %reg1024
432///   %reg1035 = copy %reg1025<kill>
433///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
434///
435/// %reg1034 is not considered to be killed, since it is copied from a
436/// register which is not killed. Treating it as not killed lets the
437/// normal heuristics commute the (two-address) add, which lets
438/// coalescing eliminate the extra copy.
439///
440/// If allowFalsePositives is true then likely kills are treated as kills even
441/// if it can't be proven that they are kills.
442static bool isKilled(MachineInstr &MI, unsigned Reg,
443                     const MachineRegisterInfo *MRI,
444                     const TargetInstrInfo *TII,
445                     LiveIntervals *LIS,
446                     bool allowFalsePositives) {
447  MachineInstr *DefMI = &MI;
448  for (;;) {
449    // All uses of physical registers are likely to be kills.
450    if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
451        (allowFalsePositives || MRI->hasOneUse(Reg)))
452      return true;
453    if (!isPlainlyKilled(DefMI, Reg, LIS))
454      return false;
455    if (TargetRegisterInfo::isPhysicalRegister(Reg))
456      return true;
457    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
458    // If there are multiple defs, we can't do a simple analysis, so just
459    // go with what the kill flag says.
460    if (std::next(Begin) != MRI->def_end())
461      return true;
462    DefMI = Begin->getParent();
463    bool IsSrcPhys, IsDstPhys;
464    unsigned SrcReg,  DstReg;
465    // If the def is something other than a copy, then it isn't going to
466    // be coalesced, so follow the kill flag.
467    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
468      return true;
469    Reg = SrcReg;
470  }
471}
472
473/// Return true if the specified MI uses the specified register as a two-address
474/// use. If so, return the destination register by reference.
475static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
476  for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
477    const MachineOperand &MO = MI.getOperand(i);
478    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
479      continue;
480    unsigned ti;
481    if (MI.isRegTiedToDefOperand(i, &ti)) {
482      DstReg = MI.getOperand(ti).getReg();
483      return true;
484    }
485  }
486  return false;
487}
488
489/// Given a register, if has a single in-basic block use, return the use
490/// instruction if it's a copy or a two-address use.
491static
492MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
493                                     MachineRegisterInfo *MRI,
494                                     const TargetInstrInfo *TII,
495                                     bool &IsCopy,
496                                     unsigned &DstReg, bool &IsDstPhys) {
497  if (!MRI->hasOneNonDBGUse(Reg))
498    // None or more than one use.
499    return nullptr;
500  MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
501  if (UseMI.getParent() != MBB)
502    return nullptr;
503  unsigned SrcReg;
504  bool IsSrcPhys;
505  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
506    IsCopy = true;
507    return &UseMI;
508  }
509  IsDstPhys = false;
510  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
511    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
512    return &UseMI;
513  }
514  return nullptr;
515}
516
517/// Return the physical register the specified virtual register might be mapped
518/// to.
519static unsigned
520getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
521  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
522    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
523    if (SI == RegMap.end())
524      return 0;
525    Reg = SI->second;
526  }
527  if (TargetRegisterInfo::isPhysicalRegister(Reg))
528    return Reg;
529  return 0;
530}
531
532/// Return true if the two registers are equal or aliased.
533static bool
534regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
535  if (RegA == RegB)
536    return true;
537  if (!RegA || !RegB)
538    return false;
539  return TRI->regsOverlap(RegA, RegB);
540}
541
542
543/// Return true if it's potentially profitable to commute the two-address
544/// instruction that's being processed.
545bool
546TwoAddressInstructionPass::
547isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
548                      MachineInstr *MI, unsigned Dist) {
549  if (OptLevel == CodeGenOpt::None)
550    return false;
551
552  // Determine if it's profitable to commute this two address instruction. In
553  // general, we want no uses between this instruction and the definition of
554  // the two-address register.
555  // e.g.
556  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
557  // %reg1029<def> = MOV8rr %reg1028
558  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
559  // insert => %reg1030<def> = MOV8rr %reg1028
560  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
561  // In this case, it might not be possible to coalesce the second MOV8rr
562  // instruction if the first one is coalesced. So it would be profitable to
563  // commute it:
564  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
565  // %reg1029<def> = MOV8rr %reg1028
566  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
567  // insert => %reg1030<def> = MOV8rr %reg1029
568  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
569
570  if (!isPlainlyKilled(MI, regC, LIS))
571    return false;
572
573  // Ok, we have something like:
574  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
575  // let's see if it's worth commuting it.
576
577  // Look for situations like this:
578  // %reg1024<def> = MOV r1
579  // %reg1025<def> = MOV r0
580  // %reg1026<def> = ADD %reg1024, %reg1025
581  // r0            = MOV %reg1026
582  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
583  unsigned ToRegA = getMappedReg(regA, DstRegMap);
584  if (ToRegA) {
585    unsigned FromRegB = getMappedReg(regB, SrcRegMap);
586    unsigned FromRegC = getMappedReg(regC, SrcRegMap);
587    bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
588    bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
589
590    // Compute if any of the following are true:
591    // -RegB is not tied to a register and RegC is compatible with RegA.
592    // -RegB is tied to the wrong physical register, but RegC is.
593    // -RegB is tied to the wrong physical register, and RegC isn't tied.
594    if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
595      return true;
596    // Don't compute if any of the following are true:
597    // -RegC is not tied to a register and RegB is compatible with RegA.
598    // -RegC is tied to the wrong physical register, but RegB is.
599    // -RegC is tied to the wrong physical register, and RegB isn't tied.
600    if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
601      return false;
602  }
603
604  // If there is a use of regC between its last def (could be livein) and this
605  // instruction, then bail.
606  unsigned LastDefC = 0;
607  if (!noUseAfterLastDef(regC, Dist, LastDefC))
608    return false;
609
610  // If there is a use of regB between its last def (could be livein) and this
611  // instruction, then go ahead and make this transformation.
612  unsigned LastDefB = 0;
613  if (!noUseAfterLastDef(regB, Dist, LastDefB))
614    return true;
615
616  // Look for situation like this:
617  // %reg101 = MOV %reg100
618  // %reg102 = ...
619  // %reg103 = ADD %reg102, %reg101
620  // ... = %reg103 ...
621  // %reg100 = MOV %reg103
622  // If there is a reversed copy chain from reg101 to reg103, commute the ADD
623  // to eliminate an otherwise unavoidable copy.
624  // FIXME:
625  // We can extend the logic further: If an pair of operands in an insn has
626  // been merged, the insn could be regarded as a virtual copy, and the virtual
627  // copy could also be used to construct a copy chain.
628  // To more generally minimize register copies, ideally the logic of two addr
629  // instruction pass should be integrated with register allocation pass where
630  // interference graph is available.
631  if (isRevCopyChain(regC, regA, 3))
632    return true;
633
634  if (isRevCopyChain(regB, regA, 3))
635    return false;
636
637  // Since there are no intervening uses for both registers, then commute
638  // if the def of regC is closer. Its live interval is shorter.
639  return LastDefB && LastDefC && LastDefC > LastDefB;
640}
641
642/// Commute a two-address instruction and update the basic block, distance map,
643/// and live variables if needed. Return true if it is successful.
644bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
645                                                   unsigned RegBIdx,
646                                                   unsigned RegCIdx,
647                                                   unsigned Dist) {
648  unsigned RegC = MI->getOperand(RegCIdx).getReg();
649  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
650  MachineInstr *NewMI = TII->commuteInstruction(MI, false, RegBIdx, RegCIdx);
651
652  if (NewMI == nullptr) {
653    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
654    return false;
655  }
656
657  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
658  assert(NewMI == MI &&
659         "TargetInstrInfo::commuteInstruction() should not return a new "
660         "instruction unless it was requested.");
661
662  // Update source register map.
663  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
664  if (FromRegC) {
665    unsigned RegA = MI->getOperand(0).getReg();
666    SrcRegMap[RegA] = FromRegC;
667  }
668
669  return true;
670}
671
672/// Return true if it is profitable to convert the given 2-address instruction
673/// to a 3-address one.
674bool
675TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
676  // Look for situations like this:
677  // %reg1024<def> = MOV r1
678  // %reg1025<def> = MOV r0
679  // %reg1026<def> = ADD %reg1024, %reg1025
680  // r2            = MOV %reg1026
681  // Turn ADD into a 3-address instruction to avoid a copy.
682  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
683  if (!FromRegB)
684    return false;
685  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
686  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
687}
688
689/// Convert the specified two-address instruction into a three address one.
690/// Return true if this transformation was successful.
691bool
692TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
693                                              MachineBasicBlock::iterator &nmi,
694                                              unsigned RegA, unsigned RegB,
695                                              unsigned Dist) {
696  // FIXME: Why does convertToThreeAddress() need an iterator reference?
697  MachineFunction::iterator MFI = MBB->getIterator();
698  MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
699  assert(MBB->getIterator() == MFI &&
700         "convertToThreeAddress changed iterator reference");
701  if (!NewMI)
702    return false;
703
704  DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
705  DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
706  bool Sunk = false;
707
708  if (LIS)
709    LIS->ReplaceMachineInstrInMaps(mi, NewMI);
710
711  if (NewMI->findRegisterUseOperand(RegB, false, TRI))
712    // FIXME: Temporary workaround. If the new instruction doesn't
713    // uses RegB, convertToThreeAddress must have created more
714    // then one instruction.
715    Sunk = sink3AddrInstruction(NewMI, RegB, mi);
716
717  MBB->erase(mi); // Nuke the old inst.
718
719  if (!Sunk) {
720    DistanceMap.insert(std::make_pair(NewMI, Dist));
721    mi = NewMI;
722    nmi = std::next(mi);
723  }
724
725  // Update source and destination register maps.
726  SrcRegMap.erase(RegA);
727  DstRegMap.erase(RegB);
728  return true;
729}
730
731/// Scan forward recursively for only uses, update maps if the use is a copy or
732/// a two-address instruction.
733void
734TwoAddressInstructionPass::scanUses(unsigned DstReg) {
735  SmallVector<unsigned, 4> VirtRegPairs;
736  bool IsDstPhys;
737  bool IsCopy = false;
738  unsigned NewReg = 0;
739  unsigned Reg = DstReg;
740  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
741                                                      NewReg, IsDstPhys)) {
742    if (IsCopy && !Processed.insert(UseMI).second)
743      break;
744
745    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
746    if (DI != DistanceMap.end())
747      // Earlier in the same MBB.Reached via a back edge.
748      break;
749
750    if (IsDstPhys) {
751      VirtRegPairs.push_back(NewReg);
752      break;
753    }
754    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
755    if (!isNew)
756      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
757    VirtRegPairs.push_back(NewReg);
758    Reg = NewReg;
759  }
760
761  if (!VirtRegPairs.empty()) {
762    unsigned ToReg = VirtRegPairs.back();
763    VirtRegPairs.pop_back();
764    while (!VirtRegPairs.empty()) {
765      unsigned FromReg = VirtRegPairs.back();
766      VirtRegPairs.pop_back();
767      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
768      if (!isNew)
769        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
770      ToReg = FromReg;
771    }
772    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
773    if (!isNew)
774      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
775  }
776}
777
778/// If the specified instruction is not yet processed, process it if it's a
779/// copy. For a copy instruction, we find the physical registers the
780/// source and destination registers might be mapped to. These are kept in
781/// point-to maps used to determine future optimizations. e.g.
782/// v1024 = mov r0
783/// v1025 = mov r1
784/// v1026 = add v1024, v1025
785/// r1    = mov r1026
786/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
787/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
788/// potentially joined with r1 on the output side. It's worthwhile to commute
789/// 'add' to eliminate a copy.
790void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
791  if (Processed.count(MI))
792    return;
793
794  bool IsSrcPhys, IsDstPhys;
795  unsigned SrcReg, DstReg;
796  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
797    return;
798
799  if (IsDstPhys && !IsSrcPhys)
800    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
801  else if (!IsDstPhys && IsSrcPhys) {
802    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
803    if (!isNew)
804      assert(SrcRegMap[DstReg] == SrcReg &&
805             "Can't map to two src physical registers!");
806
807    scanUses(DstReg);
808  }
809
810  Processed.insert(MI);
811  return;
812}
813
814/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
815/// consider moving the instruction below the kill instruction in order to
816/// eliminate the need for the copy.
817bool TwoAddressInstructionPass::
818rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
819                      MachineBasicBlock::iterator &nmi,
820                      unsigned Reg) {
821  // Bail immediately if we don't have LV or LIS available. We use them to find
822  // kills efficiently.
823  if (!LV && !LIS)
824    return false;
825
826  MachineInstr *MI = &*mi;
827  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
828  if (DI == DistanceMap.end())
829    // Must be created from unfolded load. Don't waste time trying this.
830    return false;
831
832  MachineInstr *KillMI = nullptr;
833  if (LIS) {
834    LiveInterval &LI = LIS->getInterval(Reg);
835    assert(LI.end() != LI.begin() &&
836           "Reg should not have empty live interval.");
837
838    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
839    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
840    if (I != LI.end() && I->start < MBBEndIdx)
841      return false;
842
843    --I;
844    KillMI = LIS->getInstructionFromIndex(I->end);
845  } else {
846    KillMI = LV->getVarInfo(Reg).findKill(MBB);
847  }
848  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
849    // Don't mess with copies, they may be coalesced later.
850    return false;
851
852  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
853      KillMI->isBranch() || KillMI->isTerminator())
854    // Don't move pass calls, etc.
855    return false;
856
857  unsigned DstReg;
858  if (isTwoAddrUse(*KillMI, Reg, DstReg))
859    return false;
860
861  bool SeenStore = true;
862  if (!MI->isSafeToMove(AA, SeenStore))
863    return false;
864
865  if (TII->getInstrLatency(InstrItins, MI) > 1)
866    // FIXME: Needs more sophisticated heuristics.
867    return false;
868
869  SmallSet<unsigned, 2> Uses;
870  SmallSet<unsigned, 2> Kills;
871  SmallSet<unsigned, 2> Defs;
872  for (const MachineOperand &MO : MI->operands()) {
873    if (!MO.isReg())
874      continue;
875    unsigned MOReg = MO.getReg();
876    if (!MOReg)
877      continue;
878    if (MO.isDef())
879      Defs.insert(MOReg);
880    else {
881      Uses.insert(MOReg);
882      if (MOReg != Reg && (MO.isKill() ||
883                           (LIS && isPlainlyKilled(MI, MOReg, LIS))))
884        Kills.insert(MOReg);
885    }
886  }
887
888  // Move the copies connected to MI down as well.
889  MachineBasicBlock::iterator Begin = MI;
890  MachineBasicBlock::iterator AfterMI = std::next(Begin);
891
892  MachineBasicBlock::iterator End = AfterMI;
893  while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
894    Defs.insert(End->getOperand(0).getReg());
895    ++End;
896  }
897
898  // Check if the reschedule will not break depedencies.
899  unsigned NumVisited = 0;
900  MachineBasicBlock::iterator KillPos = KillMI;
901  ++KillPos;
902  for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
903    MachineInstr *OtherMI = I;
904    // DBG_VALUE cannot be counted against the limit.
905    if (OtherMI->isDebugValue())
906      continue;
907    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
908      return false;
909    ++NumVisited;
910    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
911        OtherMI->isBranch() || OtherMI->isTerminator())
912      // Don't move pass calls, etc.
913      return false;
914    for (const MachineOperand &MO : OtherMI->operands()) {
915      if (!MO.isReg())
916        continue;
917      unsigned MOReg = MO.getReg();
918      if (!MOReg)
919        continue;
920      if (MO.isDef()) {
921        if (Uses.count(MOReg))
922          // Physical register use would be clobbered.
923          return false;
924        if (!MO.isDead() && Defs.count(MOReg))
925          // May clobber a physical register def.
926          // FIXME: This may be too conservative. It's ok if the instruction
927          // is sunken completely below the use.
928          return false;
929      } else {
930        if (Defs.count(MOReg))
931          return false;
932        bool isKill = MO.isKill() ||
933                      (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
934        if (MOReg != Reg &&
935            ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
936          // Don't want to extend other live ranges and update kills.
937          return false;
938        if (MOReg == Reg && !isKill)
939          // We can't schedule across a use of the register in question.
940          return false;
941        // Ensure that if this is register in question, its the kill we expect.
942        assert((MOReg != Reg || OtherMI == KillMI) &&
943               "Found multiple kills of a register in a basic block");
944      }
945    }
946  }
947
948  // Move debug info as well.
949  while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue())
950    --Begin;
951
952  nmi = End;
953  MachineBasicBlock::iterator InsertPos = KillPos;
954  if (LIS) {
955    // We have to move the copies first so that the MBB is still well-formed
956    // when calling handleMove().
957    for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
958      MachineInstr *CopyMI = MBBI;
959      ++MBBI;
960      MBB->splice(InsertPos, MBB, CopyMI);
961      LIS->handleMove(CopyMI);
962      InsertPos = CopyMI;
963    }
964    End = std::next(MachineBasicBlock::iterator(MI));
965  }
966
967  // Copies following MI may have been moved as well.
968  MBB->splice(InsertPos, MBB, Begin, End);
969  DistanceMap.erase(DI);
970
971  // Update live variables
972  if (LIS) {
973    LIS->handleMove(MI);
974  } else {
975    LV->removeVirtualRegisterKilled(Reg, KillMI);
976    LV->addVirtualRegisterKilled(Reg, MI);
977  }
978
979  DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
980  return true;
981}
982
983/// Return true if the re-scheduling will put the given instruction too close
984/// to the defs of its register dependencies.
985bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
986                                              MachineInstr *MI) {
987  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
988    if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
989      continue;
990    if (&DefMI == MI)
991      return true; // MI is defining something KillMI uses
992    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
993    if (DDI == DistanceMap.end())
994      return true;  // Below MI
995    unsigned DefDist = DDI->second;
996    assert(Dist > DefDist && "Visited def already?");
997    if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist))
998      return true;
999  }
1000  return false;
1001}
1002
1003/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
1004/// consider moving the kill instruction above the current two-address
1005/// instruction in order to eliminate the need for the copy.
1006bool TwoAddressInstructionPass::
1007rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
1008                      MachineBasicBlock::iterator &nmi,
1009                      unsigned Reg) {
1010  // Bail immediately if we don't have LV or LIS available. We use them to find
1011  // kills efficiently.
1012  if (!LV && !LIS)
1013    return false;
1014
1015  MachineInstr *MI = &*mi;
1016  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1017  if (DI == DistanceMap.end())
1018    // Must be created from unfolded load. Don't waste time trying this.
1019    return false;
1020
1021  MachineInstr *KillMI = nullptr;
1022  if (LIS) {
1023    LiveInterval &LI = LIS->getInterval(Reg);
1024    assert(LI.end() != LI.begin() &&
1025           "Reg should not have empty live interval.");
1026
1027    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1028    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1029    if (I != LI.end() && I->start < MBBEndIdx)
1030      return false;
1031
1032    --I;
1033    KillMI = LIS->getInstructionFromIndex(I->end);
1034  } else {
1035    KillMI = LV->getVarInfo(Reg).findKill(MBB);
1036  }
1037  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1038    // Don't mess with copies, they may be coalesced later.
1039    return false;
1040
1041  unsigned DstReg;
1042  if (isTwoAddrUse(*KillMI, Reg, DstReg))
1043    return false;
1044
1045  bool SeenStore = true;
1046  if (!KillMI->isSafeToMove(AA, SeenStore))
1047    return false;
1048
1049  SmallSet<unsigned, 2> Uses;
1050  SmallSet<unsigned, 2> Kills;
1051  SmallSet<unsigned, 2> Defs;
1052  SmallSet<unsigned, 2> LiveDefs;
1053  for (const MachineOperand &MO : KillMI->operands()) {
1054    if (!MO.isReg())
1055      continue;
1056    unsigned MOReg = MO.getReg();
1057    if (MO.isUse()) {
1058      if (!MOReg)
1059        continue;
1060      if (isDefTooClose(MOReg, DI->second, MI))
1061        return false;
1062      bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1063      if (MOReg == Reg && !isKill)
1064        return false;
1065      Uses.insert(MOReg);
1066      if (isKill && MOReg != Reg)
1067        Kills.insert(MOReg);
1068    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1069      Defs.insert(MOReg);
1070      if (!MO.isDead())
1071        LiveDefs.insert(MOReg);
1072    }
1073  }
1074
1075  // Check if the reschedule will not break depedencies.
1076  unsigned NumVisited = 0;
1077  MachineBasicBlock::iterator KillPos = KillMI;
1078  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1079    MachineInstr *OtherMI = I;
1080    // DBG_VALUE cannot be counted against the limit.
1081    if (OtherMI->isDebugValue())
1082      continue;
1083    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1084      return false;
1085    ++NumVisited;
1086    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1087        OtherMI->isBranch() || OtherMI->isTerminator())
1088      // Don't move pass calls, etc.
1089      return false;
1090    SmallVector<unsigned, 2> OtherDefs;
1091    for (const MachineOperand &MO : OtherMI->operands()) {
1092      if (!MO.isReg())
1093        continue;
1094      unsigned MOReg = MO.getReg();
1095      if (!MOReg)
1096        continue;
1097      if (MO.isUse()) {
1098        if (Defs.count(MOReg))
1099          // Moving KillMI can clobber the physical register if the def has
1100          // not been seen.
1101          return false;
1102        if (Kills.count(MOReg))
1103          // Don't want to extend other live ranges and update kills.
1104          return false;
1105        if (OtherMI != MI && MOReg == Reg &&
1106            !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
1107          // We can't schedule across a use of the register in question.
1108          return false;
1109      } else {
1110        OtherDefs.push_back(MOReg);
1111      }
1112    }
1113
1114    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1115      unsigned MOReg = OtherDefs[i];
1116      if (Uses.count(MOReg))
1117        return false;
1118      if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1119          LiveDefs.count(MOReg))
1120        return false;
1121      // Physical register def is seen.
1122      Defs.erase(MOReg);
1123    }
1124  }
1125
1126  // Move the old kill above MI, don't forget to move debug info as well.
1127  MachineBasicBlock::iterator InsertPos = mi;
1128  while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue())
1129    --InsertPos;
1130  MachineBasicBlock::iterator From = KillMI;
1131  MachineBasicBlock::iterator To = std::next(From);
1132  while (std::prev(From)->isDebugValue())
1133    --From;
1134  MBB->splice(InsertPos, MBB, From, To);
1135
1136  nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1137  DistanceMap.erase(DI);
1138
1139  // Update live variables
1140  if (LIS) {
1141    LIS->handleMove(KillMI);
1142  } else {
1143    LV->removeVirtualRegisterKilled(Reg, KillMI);
1144    LV->addVirtualRegisterKilled(Reg, MI);
1145  }
1146
1147  DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1148  return true;
1149}
1150
1151/// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1152/// given machine instruction to improve opportunities for coalescing and
1153/// elimination of a register to register copy.
1154///
1155/// 'DstOpIdx' specifies the index of MI def operand.
1156/// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1157/// operand is killed by the given instruction.
1158/// The 'Dist' arguments provides the distance of MI from the start of the
1159/// current basic block and it is used to determine if it is profitable
1160/// to commute operands in the instruction.
1161///
1162/// Returns true if the transformation happened. Otherwise, returns false.
1163bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1164                                                      unsigned DstOpIdx,
1165                                                      unsigned BaseOpIdx,
1166                                                      bool BaseOpKilled,
1167                                                      unsigned Dist) {
1168  unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg();
1169  unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1170  unsigned OpsNum = MI->getDesc().getNumOperands();
1171  unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1172  for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1173    // The call of findCommutedOpIndices below only checks if BaseOpIdx
1174    // and OtherOpIdx are commutable, it does not really search for
1175    // other commutable operands and does not change the values of passed
1176    // variables.
1177    if (OtherOpIdx == BaseOpIdx ||
1178        !TII->findCommutedOpIndices(MI, BaseOpIdx, OtherOpIdx))
1179      continue;
1180
1181    unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1182    bool AggressiveCommute = false;
1183
1184    // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1185    // operands. This makes the live ranges of DstOp and OtherOp joinable.
1186    bool DoCommute =
1187        !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1188
1189    if (!DoCommute &&
1190        isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1191      DoCommute = true;
1192      AggressiveCommute = true;
1193    }
1194
1195    // If it's profitable to commute, try to do so.
1196    if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) {
1197      ++NumCommuted;
1198      if (AggressiveCommute)
1199        ++NumAggrCommuted;
1200      return true;
1201    }
1202  }
1203  return false;
1204}
1205
1206/// For the case where an instruction has a single pair of tied register
1207/// operands, attempt some transformations that may either eliminate the tied
1208/// operands or improve the opportunities for coalescing away the register copy.
1209/// Returns true if no copy needs to be inserted to untie mi's operands
1210/// (either because they were untied, or because mi was rescheduled, and will
1211/// be visited again later). If the shouldOnlyCommute flag is true, only
1212/// instruction commutation is attempted.
1213bool TwoAddressInstructionPass::
1214tryInstructionTransform(MachineBasicBlock::iterator &mi,
1215                        MachineBasicBlock::iterator &nmi,
1216                        unsigned SrcIdx, unsigned DstIdx,
1217                        unsigned Dist, bool shouldOnlyCommute) {
1218  if (OptLevel == CodeGenOpt::None)
1219    return false;
1220
1221  MachineInstr &MI = *mi;
1222  unsigned regA = MI.getOperand(DstIdx).getReg();
1223  unsigned regB = MI.getOperand(SrcIdx).getReg();
1224
1225  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1226         "cannot make instruction into two-address form");
1227  bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1228
1229  if (TargetRegisterInfo::isVirtualRegister(regA))
1230    scanUses(regA);
1231
1232  bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1233
1234  // If the instruction is convertible to 3 Addr, instead
1235  // of returning try 3 Addr transformation aggresively and
1236  // use this variable to check later. Because it might be better.
1237  // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1238  // instead of the following code.
1239  //   addl     %esi, %edi
1240  //   movl     %edi, %eax
1241  //   ret
1242  if (Commuted && !MI.isConvertibleTo3Addr())
1243    return false;
1244
1245  if (shouldOnlyCommute)
1246    return false;
1247
1248  // If there is one more use of regB later in the same MBB, consider
1249  // re-schedule this MI below it.
1250  if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1251    ++NumReSchedDowns;
1252    return true;
1253  }
1254
1255  // If we commuted, regB may have changed so we should re-sample it to avoid
1256  // confusing the three address conversion below.
1257  if (Commuted) {
1258    regB = MI.getOperand(SrcIdx).getReg();
1259    regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1260  }
1261
1262  if (MI.isConvertibleTo3Addr()) {
1263    // This instruction is potentially convertible to a true
1264    // three-address instruction.  Check if it is profitable.
1265    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1266      // Try to convert it.
1267      if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1268        ++NumConvertedTo3Addr;
1269        return true; // Done with this instruction.
1270      }
1271    }
1272  }
1273
1274  // Return if it is commuted but 3 addr conversion is failed.
1275  if (Commuted)
1276    return false;
1277
1278  // If there is one more use of regB later in the same MBB, consider
1279  // re-schedule it before this MI if it's legal.
1280  if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1281    ++NumReSchedUps;
1282    return true;
1283  }
1284
1285  // If this is an instruction with a load folded into it, try unfolding
1286  // the load, e.g. avoid this:
1287  //   movq %rdx, %rcx
1288  //   addq (%rax), %rcx
1289  // in favor of this:
1290  //   movq (%rax), %rcx
1291  //   addq %rdx, %rcx
1292  // because it's preferable to schedule a load than a register copy.
1293  if (MI.mayLoad() && !regBKilled) {
1294    // Determine if a load can be unfolded.
1295    unsigned LoadRegIndex;
1296    unsigned NewOpc =
1297      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1298                                      /*UnfoldLoad=*/true,
1299                                      /*UnfoldStore=*/false,
1300                                      &LoadRegIndex);
1301    if (NewOpc != 0) {
1302      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1303      if (UnfoldMCID.getNumDefs() == 1) {
1304        // Unfold the load.
1305        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1306        const TargetRegisterClass *RC =
1307          TRI->getAllocatableClass(
1308            TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1309        unsigned Reg = MRI->createVirtualRegister(RC);
1310        SmallVector<MachineInstr *, 2> NewMIs;
1311        if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
1312                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1313                                      NewMIs)) {
1314          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1315          return false;
1316        }
1317        assert(NewMIs.size() == 2 &&
1318               "Unfolded a load into multiple instructions!");
1319        // The load was previously folded, so this is the only use.
1320        NewMIs[1]->addRegisterKilled(Reg, TRI);
1321
1322        // Tentatively insert the instructions into the block so that they
1323        // look "normal" to the transformation logic.
1324        MBB->insert(mi, NewMIs[0]);
1325        MBB->insert(mi, NewMIs[1]);
1326
1327        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1328                     << "2addr:    NEW INST: " << *NewMIs[1]);
1329
1330        // Transform the instruction, now that it no longer has a load.
1331        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1332        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1333        MachineBasicBlock::iterator NewMI = NewMIs[1];
1334        bool TransformResult =
1335          tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1336        (void)TransformResult;
1337        assert(!TransformResult &&
1338               "tryInstructionTransform() should return false.");
1339        if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1340          // Success, or at least we made an improvement. Keep the unfolded
1341          // instructions and discard the original.
1342          if (LV) {
1343            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1344              MachineOperand &MO = MI.getOperand(i);
1345              if (MO.isReg() &&
1346                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1347                if (MO.isUse()) {
1348                  if (MO.isKill()) {
1349                    if (NewMIs[0]->killsRegister(MO.getReg()))
1350                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1351                    else {
1352                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1353                             "Kill missing after load unfold!");
1354                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1355                    }
1356                  }
1357                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1358                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1359                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1360                  else {
1361                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1362                           "Dead flag missing after load unfold!");
1363                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1364                  }
1365                }
1366              }
1367            }
1368            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1369          }
1370
1371          SmallVector<unsigned, 4> OrigRegs;
1372          if (LIS) {
1373            for (const MachineOperand &MO : MI.operands()) {
1374              if (MO.isReg())
1375                OrigRegs.push_back(MO.getReg());
1376            }
1377          }
1378
1379          MI.eraseFromParent();
1380
1381          // Update LiveIntervals.
1382          if (LIS) {
1383            MachineBasicBlock::iterator Begin(NewMIs[0]);
1384            MachineBasicBlock::iterator End(NewMIs[1]);
1385            LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1386          }
1387
1388          mi = NewMIs[1];
1389        } else {
1390          // Transforming didn't eliminate the tie and didn't lead to an
1391          // improvement. Clean up the unfolded instructions and keep the
1392          // original.
1393          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1394          NewMIs[0]->eraseFromParent();
1395          NewMIs[1]->eraseFromParent();
1396        }
1397      }
1398    }
1399  }
1400
1401  return false;
1402}
1403
1404// Collect tied operands of MI that need to be handled.
1405// Rewrite trivial cases immediately.
1406// Return true if any tied operands where found, including the trivial ones.
1407bool TwoAddressInstructionPass::
1408collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1409  const MCInstrDesc &MCID = MI->getDesc();
1410  bool AnyOps = false;
1411  unsigned NumOps = MI->getNumOperands();
1412
1413  for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1414    unsigned DstIdx = 0;
1415    if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1416      continue;
1417    AnyOps = true;
1418    MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1419    MachineOperand &DstMO = MI->getOperand(DstIdx);
1420    unsigned SrcReg = SrcMO.getReg();
1421    unsigned DstReg = DstMO.getReg();
1422    // Tied constraint already satisfied?
1423    if (SrcReg == DstReg)
1424      continue;
1425
1426    assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1427
1428    // Deal with <undef> uses immediately - simply rewrite the src operand.
1429    if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1430      // Constrain the DstReg register class if required.
1431      if (TargetRegisterInfo::isVirtualRegister(DstReg))
1432        if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1433                                                             TRI, *MF))
1434          MRI->constrainRegClass(DstReg, RC);
1435      SrcMO.setReg(DstReg);
1436      SrcMO.setSubReg(0);
1437      DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1438      continue;
1439    }
1440    TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1441  }
1442  return AnyOps;
1443}
1444
1445// Process a list of tied MI operands that all use the same source register.
1446// The tied pairs are of the form (SrcIdx, DstIdx).
1447void
1448TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1449                                            TiedPairList &TiedPairs,
1450                                            unsigned &Dist) {
1451  bool IsEarlyClobber = false;
1452  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1453    const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1454    IsEarlyClobber |= DstMO.isEarlyClobber();
1455  }
1456
1457  bool RemovedKillFlag = false;
1458  bool AllUsesCopied = true;
1459  unsigned LastCopiedReg = 0;
1460  SlotIndex LastCopyIdx;
1461  unsigned RegB = 0;
1462  unsigned SubRegB = 0;
1463  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1464    unsigned SrcIdx = TiedPairs[tpi].first;
1465    unsigned DstIdx = TiedPairs[tpi].second;
1466
1467    const MachineOperand &DstMO = MI->getOperand(DstIdx);
1468    unsigned RegA = DstMO.getReg();
1469
1470    // Grab RegB from the instruction because it may have changed if the
1471    // instruction was commuted.
1472    RegB = MI->getOperand(SrcIdx).getReg();
1473    SubRegB = MI->getOperand(SrcIdx).getSubReg();
1474
1475    if (RegA == RegB) {
1476      // The register is tied to multiple destinations (or else we would
1477      // not have continued this far), but this use of the register
1478      // already matches the tied destination.  Leave it.
1479      AllUsesCopied = false;
1480      continue;
1481    }
1482    LastCopiedReg = RegA;
1483
1484    assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
1485           "cannot make instruction into two-address form");
1486
1487#ifndef NDEBUG
1488    // First, verify that we don't have a use of "a" in the instruction
1489    // (a = b + a for example) because our transformation will not
1490    // work. This should never occur because we are in SSA form.
1491    for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1492      assert(i == DstIdx ||
1493             !MI->getOperand(i).isReg() ||
1494             MI->getOperand(i).getReg() != RegA);
1495#endif
1496
1497    // Emit a copy.
1498    MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1499                                      TII->get(TargetOpcode::COPY), RegA);
1500    // If this operand is folding a truncation, the truncation now moves to the
1501    // copy so that the register classes remain valid for the operands.
1502    MIB.addReg(RegB, 0, SubRegB);
1503    const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1504    if (SubRegB) {
1505      if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1506        assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1507                                             SubRegB) &&
1508               "tied subregister must be a truncation");
1509        // The superreg class will not be used to constrain the subreg class.
1510        RC = nullptr;
1511      }
1512      else {
1513        assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1514               && "tied subregister must be a truncation");
1515      }
1516    }
1517
1518    // Update DistanceMap.
1519    MachineBasicBlock::iterator PrevMI = MI;
1520    --PrevMI;
1521    DistanceMap.insert(std::make_pair(PrevMI, Dist));
1522    DistanceMap[MI] = ++Dist;
1523
1524    if (LIS) {
1525      LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
1526
1527      if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1528        LiveInterval &LI = LIS->getInterval(RegA);
1529        VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1530        SlotIndex endIdx =
1531          LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
1532        LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1533      }
1534    }
1535
1536    DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1537
1538    MachineOperand &MO = MI->getOperand(SrcIdx);
1539    assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1540           "inconsistent operand info for 2-reg pass");
1541    if (MO.isKill()) {
1542      MO.setIsKill(false);
1543      RemovedKillFlag = true;
1544    }
1545
1546    // Make sure regA is a legal regclass for the SrcIdx operand.
1547    if (TargetRegisterInfo::isVirtualRegister(RegA) &&
1548        TargetRegisterInfo::isVirtualRegister(RegB))
1549      MRI->constrainRegClass(RegA, RC);
1550    MO.setReg(RegA);
1551    // The getMatchingSuper asserts guarantee that the register class projected
1552    // by SubRegB is compatible with RegA with no subregister. So regardless of
1553    // whether the dest oper writes a subreg, the source oper should not.
1554    MO.setSubReg(0);
1555
1556    // Propagate SrcRegMap.
1557    SrcRegMap[RegA] = RegB;
1558  }
1559
1560  if (AllUsesCopied) {
1561    if (!IsEarlyClobber) {
1562      // Replace other (un-tied) uses of regB with LastCopiedReg.
1563      for (MachineOperand &MO : MI->operands()) {
1564        if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
1565            MO.isUse()) {
1566          if (MO.isKill()) {
1567            MO.setIsKill(false);
1568            RemovedKillFlag = true;
1569          }
1570          MO.setReg(LastCopiedReg);
1571          MO.setSubReg(0);
1572        }
1573      }
1574    }
1575
1576    // Update live variables for regB.
1577    if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
1578      MachineBasicBlock::iterator PrevMI = MI;
1579      --PrevMI;
1580      LV->addVirtualRegisterKilled(RegB, PrevMI);
1581    }
1582
1583    // Update LiveIntervals.
1584    if (LIS) {
1585      LiveInterval &LI = LIS->getInterval(RegB);
1586      SlotIndex MIIdx = LIS->getInstructionIndex(MI);
1587      LiveInterval::const_iterator I = LI.find(MIIdx);
1588      assert(I != LI.end() && "RegB must be live-in to use.");
1589
1590      SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1591      if (I->end == UseIdx)
1592        LI.removeSegment(LastCopyIdx, UseIdx);
1593    }
1594
1595  } else if (RemovedKillFlag) {
1596    // Some tied uses of regB matched their destination registers, so
1597    // regB is still used in this instruction, but a kill flag was
1598    // removed from a different tied use of regB, so now we need to add
1599    // a kill flag to one of the remaining uses of regB.
1600    for (MachineOperand &MO : MI->operands()) {
1601      if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1602        MO.setIsKill(true);
1603        break;
1604      }
1605    }
1606  }
1607}
1608
1609/// Reduce two-address instructions to two operands.
1610bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1611  MF = &Func;
1612  const TargetMachine &TM = MF->getTarget();
1613  MRI = &MF->getRegInfo();
1614  TII = MF->getSubtarget().getInstrInfo();
1615  TRI = MF->getSubtarget().getRegisterInfo();
1616  InstrItins = MF->getSubtarget().getInstrItineraryData();
1617  LV = getAnalysisIfAvailable<LiveVariables>();
1618  LIS = getAnalysisIfAvailable<LiveIntervals>();
1619  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1620  OptLevel = TM.getOptLevel();
1621
1622  bool MadeChange = false;
1623
1624  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1625  DEBUG(dbgs() << "********** Function: "
1626        << MF->getName() << '\n');
1627
1628  // This pass takes the function out of SSA form.
1629  MRI->leaveSSA();
1630
1631  TiedOperandMap TiedOperands;
1632  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1633       MBBI != MBBE; ++MBBI) {
1634    MBB = &*MBBI;
1635    unsigned Dist = 0;
1636    DistanceMap.clear();
1637    SrcRegMap.clear();
1638    DstRegMap.clear();
1639    Processed.clear();
1640    for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1641         mi != me; ) {
1642      MachineBasicBlock::iterator nmi = std::next(mi);
1643      if (mi->isDebugValue()) {
1644        mi = nmi;
1645        continue;
1646      }
1647
1648      // Expand REG_SEQUENCE instructions. This will position mi at the first
1649      // expanded instruction.
1650      if (mi->isRegSequence())
1651        eliminateRegSequence(mi);
1652
1653      DistanceMap.insert(std::make_pair(mi, ++Dist));
1654
1655      processCopy(&*mi);
1656
1657      // First scan through all the tied register uses in this instruction
1658      // and record a list of pairs of tied operands for each register.
1659      if (!collectTiedOperands(mi, TiedOperands)) {
1660        mi = nmi;
1661        continue;
1662      }
1663
1664      ++NumTwoAddressInstrs;
1665      MadeChange = true;
1666      DEBUG(dbgs() << '\t' << *mi);
1667
1668      // If the instruction has a single pair of tied operands, try some
1669      // transformations that may either eliminate the tied operands or
1670      // improve the opportunities for coalescing away the register copy.
1671      if (TiedOperands.size() == 1) {
1672        SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
1673          = TiedOperands.begin()->second;
1674        if (TiedPairs.size() == 1) {
1675          unsigned SrcIdx = TiedPairs[0].first;
1676          unsigned DstIdx = TiedPairs[0].second;
1677          unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
1678          unsigned DstReg = mi->getOperand(DstIdx).getReg();
1679          if (SrcReg != DstReg &&
1680              tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1681            // The tied operands have been eliminated or shifted further down
1682            // the block to ease elimination. Continue processing with 'nmi'.
1683            TiedOperands.clear();
1684            mi = nmi;
1685            continue;
1686          }
1687        }
1688      }
1689
1690      // Now iterate over the information collected above.
1691      for (auto &TO : TiedOperands) {
1692        processTiedPairs(mi, TO.second, Dist);
1693        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1694      }
1695
1696      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1697      if (mi->isInsertSubreg()) {
1698        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1699        // To   %reg:subidx = COPY %subreg
1700        unsigned SubIdx = mi->getOperand(3).getImm();
1701        mi->RemoveOperand(3);
1702        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1703        mi->getOperand(0).setSubReg(SubIdx);
1704        mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1705        mi->RemoveOperand(1);
1706        mi->setDesc(TII->get(TargetOpcode::COPY));
1707        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1708      }
1709
1710      // Clear TiedOperands here instead of at the top of the loop
1711      // since most instructions do not have tied operands.
1712      TiedOperands.clear();
1713      mi = nmi;
1714    }
1715  }
1716
1717  if (LIS)
1718    MF->verify(this, "After two-address instruction pass");
1719
1720  return MadeChange;
1721}
1722
1723/// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1724///
1725/// The instruction is turned into a sequence of sub-register copies:
1726///
1727///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1728///
1729/// Becomes:
1730///
1731///   %dst:ssub0<def,undef> = COPY %v1
1732///   %dst:ssub1<def> = COPY %v2
1733///
1734void TwoAddressInstructionPass::
1735eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1736  MachineInstr *MI = MBBI;
1737  unsigned DstReg = MI->getOperand(0).getReg();
1738  if (MI->getOperand(0).getSubReg() ||
1739      TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1740      !(MI->getNumOperands() & 1)) {
1741    DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1742    llvm_unreachable(nullptr);
1743  }
1744
1745  SmallVector<unsigned, 4> OrigRegs;
1746  if (LIS) {
1747    OrigRegs.push_back(MI->getOperand(0).getReg());
1748    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
1749      OrigRegs.push_back(MI->getOperand(i).getReg());
1750  }
1751
1752  bool DefEmitted = false;
1753  for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1754    MachineOperand &UseMO = MI->getOperand(i);
1755    unsigned SrcReg = UseMO.getReg();
1756    unsigned SubIdx = MI->getOperand(i+1).getImm();
1757    // Nothing needs to be inserted for <undef> operands.
1758    if (UseMO.isUndef())
1759      continue;
1760
1761    // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1762    // might insert a COPY that uses SrcReg after is was killed.
1763    bool isKill = UseMO.isKill();
1764    if (isKill)
1765      for (unsigned j = i + 2; j < e; j += 2)
1766        if (MI->getOperand(j).getReg() == SrcReg) {
1767          MI->getOperand(j).setIsKill();
1768          UseMO.setIsKill(false);
1769          isKill = false;
1770          break;
1771        }
1772
1773    // Insert the sub-register copy.
1774    MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1775                                   TII->get(TargetOpcode::COPY))
1776      .addReg(DstReg, RegState::Define, SubIdx)
1777      .addOperand(UseMO);
1778
1779    // The first def needs an <undef> flag because there is no live register
1780    // before it.
1781    if (!DefEmitted) {
1782      CopyMI->getOperand(0).setIsUndef(true);
1783      // Return an iterator pointing to the first inserted instr.
1784      MBBI = CopyMI;
1785    }
1786    DefEmitted = true;
1787
1788    // Update LiveVariables' kill info.
1789    if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1790      LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1791
1792    DEBUG(dbgs() << "Inserted: " << *CopyMI);
1793  }
1794
1795  MachineBasicBlock::iterator EndMBBI =
1796      std::next(MachineBasicBlock::iterator(MI));
1797
1798  if (!DefEmitted) {
1799    DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1800    MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1801    for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1802      MI->RemoveOperand(j);
1803  } else {
1804    DEBUG(dbgs() << "Eliminated: " << *MI);
1805    MI->eraseFromParent();
1806  }
1807
1808  // Udpate LiveIntervals.
1809  if (LIS)
1810    LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1811}
1812