1//===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the execution dependency fix pass.
11//
12// Some X86 SSE instructions like mov, and, or, xor are available in different
13// variants for different operand types. These variant instructions are
14// equivalent, but on Nehalem and newer cpus there is extra latency
15// transferring data between integer and floating point domains.  ARM cores
16// have similar issues when they are configured with both VFP and NEON
17// pipelines.
18//
19// This pass changes the variant instructions to minimize domain crossings.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/CodeGen/Passes.h"
24#include "llvm/ADT/PostOrderIterator.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/CodeGen/LivePhysRegs.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/Support/Allocator.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetSubtargetInfo.h"
34
35using namespace llvm;
36
37#define DEBUG_TYPE "execution-fix"
38
39/// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
40/// of execution domains.
41///
42/// An open DomainValue represents a set of instructions that can still switch
43/// execution domain. Multiple registers may refer to the same open
44/// DomainValue - they will eventually be collapsed to the same execution
45/// domain.
46///
47/// A collapsed DomainValue represents a single register that has been forced
48/// into one of more execution domains. There is a separate collapsed
49/// DomainValue for each register, but it may contain multiple execution
50/// domains. A register value is initially created in a single execution
51/// domain, but if we were forced to pay the penalty of a domain crossing, we
52/// keep track of the fact that the register is now available in multiple
53/// domains.
54namespace {
55struct DomainValue {
56  // Basic reference counting.
57  unsigned Refs;
58
59  // Bitmask of available domains. For an open DomainValue, it is the still
60  // possible domains for collapsing. For a collapsed DomainValue it is the
61  // domains where the register is available for free.
62  unsigned AvailableDomains;
63
64  // Pointer to the next DomainValue in a chain.  When two DomainValues are
65  // merged, Victim.Next is set to point to Victor, so old DomainValue
66  // references can be updated by following the chain.
67  DomainValue *Next;
68
69  // Twiddleable instructions using or defining these registers.
70  SmallVector<MachineInstr*, 8> Instrs;
71
72  // A collapsed DomainValue has no instructions to twiddle - it simply keeps
73  // track of the domains where the registers are already available.
74  bool isCollapsed() const { return Instrs.empty(); }
75
76  // Is domain available?
77  bool hasDomain(unsigned domain) const {
78    assert(domain <
79               static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
80           "undefined behavior");
81    return AvailableDomains & (1u << domain);
82  }
83
84  // Mark domain as available.
85  void addDomain(unsigned domain) {
86    AvailableDomains |= 1u << domain;
87  }
88
89  // Restrict to a single domain available.
90  void setSingleDomain(unsigned domain) {
91    AvailableDomains = 1u << domain;
92  }
93
94  // Return bitmask of domains that are available and in mask.
95  unsigned getCommonDomains(unsigned mask) const {
96    return AvailableDomains & mask;
97  }
98
99  // First domain available.
100  unsigned getFirstDomain() const {
101    return countTrailingZeros(AvailableDomains);
102  }
103
104  DomainValue() : Refs(0) { clear(); }
105
106  // Clear this DomainValue and point to next which has all its data.
107  void clear() {
108    AvailableDomains = 0;
109    Next = nullptr;
110    Instrs.clear();
111  }
112};
113}
114
115namespace {
116/// Information about a live register.
117struct LiveReg {
118  /// Value currently in this register, or NULL when no value is being tracked.
119  /// This counts as a DomainValue reference.
120  DomainValue *Value;
121
122  /// Instruction that defined this register, relative to the beginning of the
123  /// current basic block.  When a LiveReg is used to represent a live-out
124  /// register, this value is relative to the end of the basic block, so it
125  /// will be a negative number.
126  int Def;
127};
128} // anonymous namespace
129
130namespace {
131class ExeDepsFix : public MachineFunctionPass {
132  static char ID;
133  SpecificBumpPtrAllocator<DomainValue> Allocator;
134  SmallVector<DomainValue*,16> Avail;
135
136  const TargetRegisterClass *const RC;
137  MachineFunction *MF;
138  const TargetInstrInfo *TII;
139  const TargetRegisterInfo *TRI;
140  std::vector<SmallVector<int, 1>> AliasMap;
141  const unsigned NumRegs;
142  LiveReg *LiveRegs;
143  typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
144  LiveOutMap LiveOuts;
145
146  /// List of undefined register reads in this block in forward order.
147  std::vector<std::pair<MachineInstr*, unsigned> > UndefReads;
148
149  /// Storage for register unit liveness.
150  LivePhysRegs LiveRegSet;
151
152  /// Current instruction number.
153  /// The first instruction in each basic block is 0.
154  int CurInstr;
155
156  /// True when the current block has a predecessor that hasn't been visited
157  /// yet.
158  bool SeenUnknownBackEdge;
159
160public:
161  ExeDepsFix(const TargetRegisterClass *rc)
162    : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}
163
164  void getAnalysisUsage(AnalysisUsage &AU) const override {
165    AU.setPreservesAll();
166    MachineFunctionPass::getAnalysisUsage(AU);
167  }
168
169  bool runOnMachineFunction(MachineFunction &MF) override;
170
171  const char *getPassName() const override {
172    return "Execution dependency fix";
173  }
174
175private:
176  iterator_range<SmallVectorImpl<int>::const_iterator>
177  regIndices(unsigned Reg) const;
178
179  // DomainValue allocation.
180  DomainValue *alloc(int domain = -1);
181  DomainValue *retain(DomainValue *DV) {
182    if (DV) ++DV->Refs;
183    return DV;
184  }
185  void release(DomainValue*);
186  DomainValue *resolve(DomainValue*&);
187
188  // LiveRegs manipulations.
189  void setLiveReg(int rx, DomainValue *DV);
190  void kill(int rx);
191  void force(int rx, unsigned domain);
192  void collapse(DomainValue *dv, unsigned domain);
193  bool merge(DomainValue *A, DomainValue *B);
194
195  void enterBasicBlock(MachineBasicBlock*);
196  void leaveBasicBlock(MachineBasicBlock*);
197  void visitInstr(MachineInstr*);
198  void processDefs(MachineInstr*, bool Kill);
199  void visitSoftInstr(MachineInstr*, unsigned mask);
200  void visitHardInstr(MachineInstr*, unsigned domain);
201  bool shouldBreakDependence(MachineInstr*, unsigned OpIdx, unsigned Pref);
202  void processUndefReads(MachineBasicBlock*);
203};
204}
205
206char ExeDepsFix::ID = 0;
207
208/// Translate TRI register number to a list of indices into our smaller tables
209/// of interesting registers.
210iterator_range<SmallVectorImpl<int>::const_iterator>
211ExeDepsFix::regIndices(unsigned Reg) const {
212  assert(Reg < AliasMap.size() && "Invalid register");
213  const auto &Entry = AliasMap[Reg];
214  return make_range(Entry.begin(), Entry.end());
215}
216
217DomainValue *ExeDepsFix::alloc(int domain) {
218  DomainValue *dv = Avail.empty() ?
219                      new(Allocator.Allocate()) DomainValue :
220                      Avail.pop_back_val();
221  if (domain >= 0)
222    dv->addDomain(domain);
223  assert(dv->Refs == 0 && "Reference count wasn't cleared");
224  assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
225  return dv;
226}
227
228/// Release a reference to DV.  When the last reference is released,
229/// collapse if needed.
230void ExeDepsFix::release(DomainValue *DV) {
231  while (DV) {
232    assert(DV->Refs && "Bad DomainValue");
233    if (--DV->Refs)
234      return;
235
236    // There are no more DV references. Collapse any contained instructions.
237    if (DV->AvailableDomains && !DV->isCollapsed())
238      collapse(DV, DV->getFirstDomain());
239
240    DomainValue *Next = DV->Next;
241    DV->clear();
242    Avail.push_back(DV);
243    // Also release the next DomainValue in the chain.
244    DV = Next;
245  }
246}
247
248/// Follow the chain of dead DomainValues until a live DomainValue is reached.
249/// Update the referenced pointer when necessary.
250DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) {
251  DomainValue *DV = DVRef;
252  if (!DV || !DV->Next)
253    return DV;
254
255  // DV has a chain. Find the end.
256  do DV = DV->Next;
257  while (DV->Next);
258
259  // Update DVRef to point to DV.
260  retain(DV);
261  release(DVRef);
262  DVRef = DV;
263  return DV;
264}
265
266/// Set LiveRegs[rx] = dv, updating reference counts.
267void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) {
268  assert(unsigned(rx) < NumRegs && "Invalid index");
269  assert(LiveRegs && "Must enter basic block first.");
270
271  if (LiveRegs[rx].Value == dv)
272    return;
273  if (LiveRegs[rx].Value)
274    release(LiveRegs[rx].Value);
275  LiveRegs[rx].Value = retain(dv);
276}
277
278// Kill register rx, recycle or collapse any DomainValue.
279void ExeDepsFix::kill(int rx) {
280  assert(unsigned(rx) < NumRegs && "Invalid index");
281  assert(LiveRegs && "Must enter basic block first.");
282  if (!LiveRegs[rx].Value)
283    return;
284
285  release(LiveRegs[rx].Value);
286  LiveRegs[rx].Value = nullptr;
287}
288
289/// Force register rx into domain.
290void ExeDepsFix::force(int rx, unsigned domain) {
291  assert(unsigned(rx) < NumRegs && "Invalid index");
292  assert(LiveRegs && "Must enter basic block first.");
293  if (DomainValue *dv = LiveRegs[rx].Value) {
294    if (dv->isCollapsed())
295      dv->addDomain(domain);
296    else if (dv->hasDomain(domain))
297      collapse(dv, domain);
298    else {
299      // This is an incompatible open DomainValue. Collapse it to whatever and
300      // force the new value into domain. This costs a domain crossing.
301      collapse(dv, dv->getFirstDomain());
302      assert(LiveRegs[rx].Value && "Not live after collapse?");
303      LiveRegs[rx].Value->addDomain(domain);
304    }
305  } else {
306    // Set up basic collapsed DomainValue.
307    setLiveReg(rx, alloc(domain));
308  }
309}
310
311/// Collapse open DomainValue into given domain. If there are multiple
312/// registers using dv, they each get a unique collapsed DomainValue.
313void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) {
314  assert(dv->hasDomain(domain) && "Cannot collapse");
315
316  // Collapse all the instructions.
317  while (!dv->Instrs.empty())
318    TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain);
319  dv->setSingleDomain(domain);
320
321  // If there are multiple users, give them new, unique DomainValues.
322  if (LiveRegs && dv->Refs > 1)
323    for (unsigned rx = 0; rx != NumRegs; ++rx)
324      if (LiveRegs[rx].Value == dv)
325        setLiveReg(rx, alloc(domain));
326}
327
328/// All instructions and registers in B are moved to A, and B is released.
329bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
330  assert(!A->isCollapsed() && "Cannot merge into collapsed");
331  assert(!B->isCollapsed() && "Cannot merge from collapsed");
332  if (A == B)
333    return true;
334  // Restrict to the domains that A and B have in common.
335  unsigned common = A->getCommonDomains(B->AvailableDomains);
336  if (!common)
337    return false;
338  A->AvailableDomains = common;
339  A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
340
341  // Clear the old DomainValue so we won't try to swizzle instructions twice.
342  B->clear();
343  // All uses of B are referred to A.
344  B->Next = retain(A);
345
346  for (unsigned rx = 0; rx != NumRegs; ++rx) {
347    assert(LiveRegs && "no space allocated for live registers");
348    if (LiveRegs[rx].Value == B)
349      setLiveReg(rx, A);
350  }
351  return true;
352}
353
354/// Set up LiveRegs by merging predecessor live-out values.
355void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
356  // Detect back-edges from predecessors we haven't processed yet.
357  SeenUnknownBackEdge = false;
358
359  // Reset instruction counter in each basic block.
360  CurInstr = 0;
361
362  // Set up UndefReads to track undefined register reads.
363  UndefReads.clear();
364  LiveRegSet.clear();
365
366  // Set up LiveRegs to represent registers entering MBB.
367  if (!LiveRegs)
368    LiveRegs = new LiveReg[NumRegs];
369
370  // Default values are 'nothing happened a long time ago'.
371  for (unsigned rx = 0; rx != NumRegs; ++rx) {
372    LiveRegs[rx].Value = nullptr;
373    LiveRegs[rx].Def = -(1 << 20);
374  }
375
376  // This is the entry block.
377  if (MBB->pred_empty()) {
378    for (const auto &LI : MBB->liveins()) {
379      for (int rx : regIndices(LI.PhysReg)) {
380        // Treat function live-ins as if they were defined just before the first
381        // instruction.  Usually, function arguments are set up immediately
382        // before the call.
383        LiveRegs[rx].Def = -1;
384      }
385    }
386    DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
387    return;
388  }
389
390  // Try to coalesce live-out registers from predecessors.
391  for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
392       pe = MBB->pred_end(); pi != pe; ++pi) {
393    LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
394    if (fi == LiveOuts.end()) {
395      SeenUnknownBackEdge = true;
396      continue;
397    }
398    assert(fi->second && "Can't have NULL entries");
399
400    for (unsigned rx = 0; rx != NumRegs; ++rx) {
401      // Use the most recent predecessor def for each register.
402      LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def);
403
404      DomainValue *pdv = resolve(fi->second[rx].Value);
405      if (!pdv)
406        continue;
407      if (!LiveRegs[rx].Value) {
408        setLiveReg(rx, pdv);
409        continue;
410      }
411
412      // We have a live DomainValue from more than one predecessor.
413      if (LiveRegs[rx].Value->isCollapsed()) {
414        // We are already collapsed, but predecessor is not. Force it.
415        unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
416        if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
417          collapse(pdv, Domain);
418        continue;
419      }
420
421      // Currently open, merge in predecessor.
422      if (!pdv->isCollapsed())
423        merge(LiveRegs[rx].Value, pdv);
424      else
425        force(rx, pdv->getFirstDomain());
426    }
427  }
428  DEBUG(dbgs() << "BB#" << MBB->getNumber()
429        << (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n"));
430}
431
432void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
433  assert(LiveRegs && "Must enter basic block first.");
434  // Save live registers at end of MBB - used by enterBasicBlock().
435  // Also use LiveOuts as a visited set to detect back-edges.
436  bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second;
437
438  if (First) {
439    // LiveRegs was inserted in LiveOuts.  Adjust all defs to be relative to
440    // the end of this block instead of the beginning.
441    for (unsigned i = 0, e = NumRegs; i != e; ++i)
442      LiveRegs[i].Def -= CurInstr;
443  } else {
444    // Insertion failed, this must be the second pass.
445    // Release all the DomainValues instead of keeping them.
446    for (unsigned i = 0, e = NumRegs; i != e; ++i)
447      release(LiveRegs[i].Value);
448    delete[] LiveRegs;
449  }
450  LiveRegs = nullptr;
451}
452
453void ExeDepsFix::visitInstr(MachineInstr *MI) {
454  if (MI->isDebugValue())
455    return;
456
457  // Update instructions with explicit execution domains.
458  std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(MI);
459  if (DomP.first) {
460    if (DomP.second)
461      visitSoftInstr(MI, DomP.second);
462    else
463      visitHardInstr(MI, DomP.first);
464  }
465
466  // Process defs to track register ages, and kill values clobbered by generic
467  // instructions.
468  processDefs(MI, !DomP.first);
469}
470
471/// \brief Return true to if it makes sense to break dependence on a partial def
472/// or undef use.
473bool ExeDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
474                                       unsigned Pref) {
475  unsigned reg = MI->getOperand(OpIdx).getReg();
476  for (int rx : regIndices(reg)) {
477    unsigned Clearance = CurInstr - LiveRegs[rx].Def;
478    DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
479
480    if (Pref > Clearance) {
481      DEBUG(dbgs() << ": Break dependency.\n");
482      continue;
483    }
484    // The current clearance seems OK, but we may be ignoring a def from a
485    // back-edge.
486    if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
487      DEBUG(dbgs() << ": OK .\n");
488      return false;
489    }
490    // A def from an unprocessed back-edge may make us break this dependency.
491    DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
492    return false;
493  }
494  return true;
495}
496
497// Update def-ages for registers defined by MI.
498// If Kill is set, also kill off DomainValues clobbered by the defs.
499//
500// Also break dependencies on partial defs and undef uses.
501void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
502  assert(!MI->isDebugValue() && "Won't process debug values");
503
504  // Break dependence on undef uses. Do this before updating LiveRegs below.
505  unsigned OpNum;
506  unsigned Pref = TII->getUndefRegClearance(MI, OpNum, TRI);
507  if (Pref) {
508    if (shouldBreakDependence(MI, OpNum, Pref))
509      UndefReads.push_back(std::make_pair(MI, OpNum));
510  }
511  const MCInstrDesc &MCID = MI->getDesc();
512  for (unsigned i = 0,
513         e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
514         i != e; ++i) {
515    MachineOperand &MO = MI->getOperand(i);
516    if (!MO.isReg())
517      continue;
518    if (MO.isImplicit())
519      break;
520    if (MO.isUse())
521      continue;
522    for (int rx : regIndices(MO.getReg())) {
523      // This instruction explicitly defines rx.
524      DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
525                   << '\t' << *MI);
526
527      // Check clearance before partial register updates.
528      // Call breakDependence before setting LiveRegs[rx].Def.
529      unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
530      if (Pref && shouldBreakDependence(MI, i, Pref))
531        TII->breakPartialRegDependency(MI, i, TRI);
532
533      // How many instructions since rx was last written?
534      LiveRegs[rx].Def = CurInstr;
535
536      // Kill off domains redefined by generic instructions.
537      if (Kill)
538        kill(rx);
539    }
540  }
541  ++CurInstr;
542}
543
544/// \break Break false dependencies on undefined register reads.
545///
546/// Walk the block backward computing precise liveness. This is expensive, so we
547/// only do it on demand. Note that the occurrence of undefined register reads
548/// that should be broken is very rare, but when they occur we may have many in
549/// a single block.
550void ExeDepsFix::processUndefReads(MachineBasicBlock *MBB) {
551  if (UndefReads.empty())
552    return;
553
554  // Collect this block's live out register units.
555  LiveRegSet.init(TRI);
556  LiveRegSet.addLiveOuts(MBB);
557
558  MachineInstr *UndefMI = UndefReads.back().first;
559  unsigned OpIdx = UndefReads.back().second;
560
561  for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
562    // Update liveness, including the current instruction's defs.
563    LiveRegSet.stepBackward(I);
564
565    if (UndefMI == &I) {
566      if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
567        TII->breakPartialRegDependency(UndefMI, OpIdx, TRI);
568
569      UndefReads.pop_back();
570      if (UndefReads.empty())
571        return;
572
573      UndefMI = UndefReads.back().first;
574      OpIdx = UndefReads.back().second;
575    }
576  }
577}
578
579// A hard instruction only works in one domain. All input registers will be
580// forced into that domain.
581void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
582  // Collapse all uses.
583  for (unsigned i = mi->getDesc().getNumDefs(),
584                e = mi->getDesc().getNumOperands(); i != e; ++i) {
585    MachineOperand &mo = mi->getOperand(i);
586    if (!mo.isReg()) continue;
587    for (int rx : regIndices(mo.getReg())) {
588      force(rx, domain);
589    }
590  }
591
592  // Kill all defs and force them.
593  for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
594    MachineOperand &mo = mi->getOperand(i);
595    if (!mo.isReg()) continue;
596    for (int rx : regIndices(mo.getReg())) {
597      kill(rx);
598      force(rx, domain);
599    }
600  }
601}
602
603// A soft instruction can be changed to work in other domains given by mask.
604void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
605  // Bitmask of available domains for this instruction after taking collapsed
606  // operands into account.
607  unsigned available = mask;
608
609  // Scan the explicit use operands for incoming domains.
610  SmallVector<int, 4> used;
611  if (LiveRegs)
612    for (unsigned i = mi->getDesc().getNumDefs(),
613                  e = mi->getDesc().getNumOperands(); i != e; ++i) {
614      MachineOperand &mo = mi->getOperand(i);
615      if (!mo.isReg()) continue;
616      for (int rx : regIndices(mo.getReg())) {
617        DomainValue *dv = LiveRegs[rx].Value;
618        if (dv == nullptr)
619          continue;
620        // Bitmask of domains that dv and available have in common.
621        unsigned common = dv->getCommonDomains(available);
622        // Is it possible to use this collapsed register for free?
623        if (dv->isCollapsed()) {
624          // Restrict available domains to the ones in common with the operand.
625          // If there are no common domains, we must pay the cross-domain
626          // penalty for this operand.
627          if (common) available = common;
628        } else if (common)
629          // Open DomainValue is compatible, save it for merging.
630          used.push_back(rx);
631        else
632          // Open DomainValue is not compatible with instruction. It is useless
633          // now.
634          kill(rx);
635      }
636    }
637
638  // If the collapsed operands force a single domain, propagate the collapse.
639  if (isPowerOf2_32(available)) {
640    unsigned domain = countTrailingZeros(available);
641    TII->setExecutionDomain(mi, domain);
642    visitHardInstr(mi, domain);
643    return;
644  }
645
646  // Kill off any remaining uses that don't match available, and build a list of
647  // incoming DomainValues that we want to merge.
648  SmallVector<LiveReg, 4> Regs;
649  for (SmallVectorImpl<int>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
650    int rx = *i;
651    assert(LiveRegs && "no space allocated for live registers");
652    const LiveReg &LR = LiveRegs[rx];
653    // This useless DomainValue could have been missed above.
654    if (!LR.Value->getCommonDomains(available)) {
655      kill(rx);
656      continue;
657    }
658    // Sorted insertion.
659    bool Inserted = false;
660    for (SmallVectorImpl<LiveReg>::iterator i = Regs.begin(), e = Regs.end();
661           i != e && !Inserted; ++i) {
662      if (LR.Def < i->Def) {
663        Inserted = true;
664        Regs.insert(i, LR);
665      }
666    }
667    if (!Inserted)
668      Regs.push_back(LR);
669  }
670
671  // doms are now sorted in order of appearance. Try to merge them all, giving
672  // priority to the latest ones.
673  DomainValue *dv = nullptr;
674  while (!Regs.empty()) {
675    if (!dv) {
676      dv = Regs.pop_back_val().Value;
677      // Force the first dv to match the current instruction.
678      dv->AvailableDomains = dv->getCommonDomains(available);
679      assert(dv->AvailableDomains && "Domain should have been filtered");
680      continue;
681    }
682
683    DomainValue *Latest = Regs.pop_back_val().Value;
684    // Skip already merged values.
685    if (Latest == dv || Latest->Next)
686      continue;
687    if (merge(dv, Latest))
688      continue;
689
690    // If latest didn't merge, it is useless now. Kill all registers using it.
691    for (int i : used) {
692      assert(LiveRegs && "no space allocated for live registers");
693      if (LiveRegs[i].Value == Latest)
694        kill(i);
695    }
696  }
697
698  // dv is the DomainValue we are going to use for this instruction.
699  if (!dv) {
700    dv = alloc();
701    dv->AvailableDomains = available;
702  }
703  dv->Instrs.push_back(mi);
704
705  // Finally set all defs and non-collapsed uses to dv. We must iterate through
706  // all the operators, including imp-def ones.
707  for (MachineInstr::mop_iterator ii = mi->operands_begin(),
708                                  ee = mi->operands_end();
709                                  ii != ee; ++ii) {
710    MachineOperand &mo = *ii;
711    if (!mo.isReg()) continue;
712    for (int rx : regIndices(mo.getReg())) {
713      if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
714        kill(rx);
715        setLiveReg(rx, dv);
716      }
717    }
718  }
719}
720
721bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
722  MF = &mf;
723  TII = MF->getSubtarget().getInstrInfo();
724  TRI = MF->getSubtarget().getRegisterInfo();
725  LiveRegs = nullptr;
726  assert(NumRegs == RC->getNumRegs() && "Bad regclass");
727
728  DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
729               << TRI->getRegClassName(RC) << " **********\n");
730
731  // If no relevant registers are used in the function, we can skip it
732  // completely.
733  bool anyregs = false;
734  const MachineRegisterInfo &MRI = mf.getRegInfo();
735  for (unsigned Reg : *RC) {
736    if (MRI.isPhysRegUsed(Reg)) {
737      anyregs = true;
738      break;
739    }
740  }
741  if (!anyregs) return false;
742
743  // Initialize the AliasMap on the first use.
744  if (AliasMap.empty()) {
745    // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
746    // therefore the LiveRegs array.
747    AliasMap.resize(TRI->getNumRegs());
748    for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
749      for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
750           AI.isValid(); ++AI)
751        AliasMap[*AI].push_back(i);
752  }
753
754  MachineBasicBlock *Entry = &*MF->begin();
755  ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
756  SmallVector<MachineBasicBlock*, 16> Loops;
757  for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
758         MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
759    MachineBasicBlock *MBB = *MBBI;
760    enterBasicBlock(MBB);
761    if (SeenUnknownBackEdge)
762      Loops.push_back(MBB);
763    for (MachineInstr &MI : *MBB)
764      visitInstr(&MI);
765    processUndefReads(MBB);
766    leaveBasicBlock(MBB);
767  }
768
769  // Visit all the loop blocks again in order to merge DomainValues from
770  // back-edges.
771  for (MachineBasicBlock *MBB : Loops) {
772    enterBasicBlock(MBB);
773    for (MachineInstr &MI : *MBB)
774      if (!MI.isDebugValue())
775        processDefs(&MI, false);
776    processUndefReads(MBB);
777    leaveBasicBlock(MBB);
778  }
779
780  // Clear the LiveOuts vectors and collapse any remaining DomainValues.
781  for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
782         MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
783    LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI);
784    if (FI == LiveOuts.end() || !FI->second)
785      continue;
786    for (unsigned i = 0, e = NumRegs; i != e; ++i)
787      if (FI->second[i].Value)
788        release(FI->second[i].Value);
789    delete[] FI->second;
790  }
791  LiveOuts.clear();
792  UndefReads.clear();
793  Avail.clear();
794  Allocator.DestroyAll();
795
796  return false;
797}
798
799FunctionPass *
800llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
801  return new ExeDepsFix(RC);
802}
803