1//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines several CodeGen-specific LLVM IR analysis utilities.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/Analysis.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineModuleInfo.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/IR/DataLayout.h"
20#include "llvm/IR/DerivedTypes.h"
21#include "llvm/IR/Function.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/LLVMContext.h"
25#include "llvm/IR/Module.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetSubtargetInfo.h"
31#include "llvm/Transforms/Utils/GlobalStatus.h"
32
33using namespace llvm;
34
35/// Compute the linearized index of a member in a nested aggregate/struct/array
36/// by recursing and accumulating CurIndex as long as there are indices in the
37/// index list.
38unsigned llvm::ComputeLinearIndex(Type *Ty,
39                                  const unsigned *Indices,
40                                  const unsigned *IndicesEnd,
41                                  unsigned CurIndex) {
42  // Base case: We're done.
43  if (Indices && Indices == IndicesEnd)
44    return CurIndex;
45
46  // Given a struct type, recursively traverse the elements.
47  if (StructType *STy = dyn_cast<StructType>(Ty)) {
48    for (StructType::element_iterator EB = STy->element_begin(),
49                                      EI = EB,
50                                      EE = STy->element_end();
51        EI != EE; ++EI) {
52      if (Indices && *Indices == unsigned(EI - EB))
53        return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
54      CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
55    }
56    assert(!Indices && "Unexpected out of bound");
57    return CurIndex;
58  }
59  // Given an array type, recursively traverse the elements.
60  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
61    Type *EltTy = ATy->getElementType();
62    unsigned NumElts = ATy->getNumElements();
63    // Compute the Linear offset when jumping one element of the array
64    unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
65    if (Indices) {
66      assert(*Indices < NumElts && "Unexpected out of bound");
67      // If the indice is inside the array, compute the index to the requested
68      // elt and recurse inside the element with the end of the indices list
69      CurIndex += EltLinearOffset* *Indices;
70      return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
71    }
72    CurIndex += EltLinearOffset*NumElts;
73    return CurIndex;
74  }
75  // We haven't found the type we're looking for, so keep searching.
76  return CurIndex + 1;
77}
78
79/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
80/// EVTs that represent all the individual underlying
81/// non-aggregate types that comprise it.
82///
83/// If Offsets is non-null, it points to a vector to be filled in
84/// with the in-memory offsets of each of the individual values.
85///
86void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
87                           Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
88                           SmallVectorImpl<uint64_t> *Offsets,
89                           uint64_t StartingOffset) {
90  // Given a struct type, recursively traverse the elements.
91  if (StructType *STy = dyn_cast<StructType>(Ty)) {
92    const StructLayout *SL = DL.getStructLayout(STy);
93    for (StructType::element_iterator EB = STy->element_begin(),
94                                      EI = EB,
95                                      EE = STy->element_end();
96         EI != EE; ++EI)
97      ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
98                      StartingOffset + SL->getElementOffset(EI - EB));
99    return;
100  }
101  // Given an array type, recursively traverse the elements.
102  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
103    Type *EltTy = ATy->getElementType();
104    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
105    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
106      ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
107                      StartingOffset + i * EltSize);
108    return;
109  }
110  // Interpret void as zero return values.
111  if (Ty->isVoidTy())
112    return;
113  // Base case: we can get an EVT for this LLVM IR type.
114  ValueVTs.push_back(TLI.getValueType(DL, Ty));
115  if (Offsets)
116    Offsets->push_back(StartingOffset);
117}
118
119/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
120GlobalValue *llvm::ExtractTypeInfo(Value *V) {
121  V = V->stripPointerCasts();
122  GlobalValue *GV = dyn_cast<GlobalValue>(V);
123  GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
124
125  if (Var && Var->getName() == "llvm.eh.catch.all.value") {
126    assert(Var->hasInitializer() &&
127           "The EH catch-all value must have an initializer");
128    Value *Init = Var->getInitializer();
129    GV = dyn_cast<GlobalValue>(Init);
130    if (!GV) V = cast<ConstantPointerNull>(Init);
131  }
132
133  assert((GV || isa<ConstantPointerNull>(V)) &&
134         "TypeInfo must be a global variable or NULL");
135  return GV;
136}
137
138/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
139/// processed uses a memory 'm' constraint.
140bool
141llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
142                                const TargetLowering &TLI) {
143  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
144    InlineAsm::ConstraintInfo &CI = CInfos[i];
145    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
146      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
147      if (CType == TargetLowering::C_Memory)
148        return true;
149    }
150
151    // Indirect operand accesses access memory.
152    if (CI.isIndirect)
153      return true;
154  }
155
156  return false;
157}
158
159/// getFCmpCondCode - Return the ISD condition code corresponding to
160/// the given LLVM IR floating-point condition code.  This includes
161/// consideration of global floating-point math flags.
162///
163ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
164  switch (Pred) {
165  case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
166  case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
167  case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
168  case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
169  case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
170  case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
171  case FCmpInst::FCMP_ONE:   return ISD::SETONE;
172  case FCmpInst::FCMP_ORD:   return ISD::SETO;
173  case FCmpInst::FCMP_UNO:   return ISD::SETUO;
174  case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
175  case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
176  case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
177  case FCmpInst::FCMP_ULT:   return ISD::SETULT;
178  case FCmpInst::FCMP_ULE:   return ISD::SETULE;
179  case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
180  case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
181  default: llvm_unreachable("Invalid FCmp predicate opcode!");
182  }
183}
184
185ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
186  switch (CC) {
187    case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
188    case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
189    case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
190    case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
191    case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
192    case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
193    default: return CC;
194  }
195}
196
197/// getICmpCondCode - Return the ISD condition code corresponding to
198/// the given LLVM IR integer condition code.
199///
200ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
201  switch (Pred) {
202  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
203  case ICmpInst::ICMP_NE:  return ISD::SETNE;
204  case ICmpInst::ICMP_SLE: return ISD::SETLE;
205  case ICmpInst::ICMP_ULE: return ISD::SETULE;
206  case ICmpInst::ICMP_SGE: return ISD::SETGE;
207  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
208  case ICmpInst::ICMP_SLT: return ISD::SETLT;
209  case ICmpInst::ICMP_ULT: return ISD::SETULT;
210  case ICmpInst::ICMP_SGT: return ISD::SETGT;
211  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
212  default:
213    llvm_unreachable("Invalid ICmp predicate opcode!");
214  }
215}
216
217static bool isNoopBitcast(Type *T1, Type *T2,
218                          const TargetLoweringBase& TLI) {
219  return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
220         (isa<VectorType>(T1) && isa<VectorType>(T2) &&
221          TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
222}
223
224/// Look through operations that will be free to find the earliest source of
225/// this value.
226///
227/// @param ValLoc If V has aggegate type, we will be interested in a particular
228/// scalar component. This records its address; the reverse of this list gives a
229/// sequence of indices appropriate for an extractvalue to locate the important
230/// value. This value is updated during the function and on exit will indicate
231/// similar information for the Value returned.
232///
233/// @param DataBits If this function looks through truncate instructions, this
234/// will record the smallest size attained.
235static const Value *getNoopInput(const Value *V,
236                                 SmallVectorImpl<unsigned> &ValLoc,
237                                 unsigned &DataBits,
238                                 const TargetLoweringBase &TLI,
239                                 const DataLayout &DL) {
240  while (true) {
241    // Try to look through V1; if V1 is not an instruction, it can't be looked
242    // through.
243    const Instruction *I = dyn_cast<Instruction>(V);
244    if (!I || I->getNumOperands() == 0) return V;
245    const Value *NoopInput = nullptr;
246
247    Value *Op = I->getOperand(0);
248    if (isa<BitCastInst>(I)) {
249      // Look through truly no-op bitcasts.
250      if (isNoopBitcast(Op->getType(), I->getType(), TLI))
251        NoopInput = Op;
252    } else if (isa<GetElementPtrInst>(I)) {
253      // Look through getelementptr
254      if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
255        NoopInput = Op;
256    } else if (isa<IntToPtrInst>(I)) {
257      // Look through inttoptr.
258      // Make sure this isn't a truncating or extending cast.  We could
259      // support this eventually, but don't bother for now.
260      if (!isa<VectorType>(I->getType()) &&
261          DL.getPointerSizeInBits() ==
262              cast<IntegerType>(Op->getType())->getBitWidth())
263        NoopInput = Op;
264    } else if (isa<PtrToIntInst>(I)) {
265      // Look through ptrtoint.
266      // Make sure this isn't a truncating or extending cast.  We could
267      // support this eventually, but don't bother for now.
268      if (!isa<VectorType>(I->getType()) &&
269          DL.getPointerSizeInBits() ==
270              cast<IntegerType>(I->getType())->getBitWidth())
271        NoopInput = Op;
272    } else if (isa<TruncInst>(I) &&
273               TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
274      DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
275      NoopInput = Op;
276    } else if (isa<CallInst>(I)) {
277      // Look through call (skipping callee)
278      for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
279           i != e; ++i) {
280        unsigned attrInd = i - I->op_begin() + 1;
281        if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
282            isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
283          NoopInput = *i;
284          break;
285        }
286      }
287    } else if (isa<InvokeInst>(I)) {
288      // Look through invoke (skipping BB, BB, Callee)
289      for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
290           i != e; ++i) {
291        unsigned attrInd = i - I->op_begin() + 1;
292        if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
293            isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
294          NoopInput = *i;
295          break;
296        }
297      }
298    } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
299      // Value may come from either the aggregate or the scalar
300      ArrayRef<unsigned> InsertLoc = IVI->getIndices();
301      if (ValLoc.size() >= InsertLoc.size() &&
302          std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
303        // The type being inserted is a nested sub-type of the aggregate; we
304        // have to remove those initial indices to get the location we're
305        // interested in for the operand.
306        ValLoc.resize(ValLoc.size() - InsertLoc.size());
307        NoopInput = IVI->getInsertedValueOperand();
308      } else {
309        // The struct we're inserting into has the value we're interested in, no
310        // change of address.
311        NoopInput = Op;
312      }
313    } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
314      // The part we're interested in will inevitably be some sub-section of the
315      // previous aggregate. Combine the two paths to obtain the true address of
316      // our element.
317      ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
318      ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
319      NoopInput = Op;
320    }
321    // Terminate if we couldn't find anything to look through.
322    if (!NoopInput)
323      return V;
324
325    V = NoopInput;
326  }
327}
328
329/// Return true if this scalar return value only has bits discarded on its path
330/// from the "tail call" to the "ret". This includes the obvious noop
331/// instructions handled by getNoopInput above as well as free truncations (or
332/// extensions prior to the call).
333static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
334                                 SmallVectorImpl<unsigned> &RetIndices,
335                                 SmallVectorImpl<unsigned> &CallIndices,
336                                 bool AllowDifferingSizes,
337                                 const TargetLoweringBase &TLI,
338                                 const DataLayout &DL) {
339
340  // Trace the sub-value needed by the return value as far back up the graph as
341  // possible, in the hope that it will intersect with the value produced by the
342  // call. In the simple case with no "returned" attribute, the hope is actually
343  // that we end up back at the tail call instruction itself.
344  unsigned BitsRequired = UINT_MAX;
345  RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
346
347  // If this slot in the value returned is undef, it doesn't matter what the
348  // call puts there, it'll be fine.
349  if (isa<UndefValue>(RetVal))
350    return true;
351
352  // Now do a similar search up through the graph to find where the value
353  // actually returned by the "tail call" comes from. In the simple case without
354  // a "returned" attribute, the search will be blocked immediately and the loop
355  // a Noop.
356  unsigned BitsProvided = UINT_MAX;
357  CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
358
359  // There's no hope if we can't actually trace them to (the same part of!) the
360  // same value.
361  if (CallVal != RetVal || CallIndices != RetIndices)
362    return false;
363
364  // However, intervening truncates may have made the call non-tail. Make sure
365  // all the bits that are needed by the "ret" have been provided by the "tail
366  // call". FIXME: with sufficiently cunning bit-tracking, we could look through
367  // extensions too.
368  if (BitsProvided < BitsRequired ||
369      (!AllowDifferingSizes && BitsProvided != BitsRequired))
370    return false;
371
372  return true;
373}
374
375/// For an aggregate type, determine whether a given index is within bounds or
376/// not.
377static bool indexReallyValid(CompositeType *T, unsigned Idx) {
378  if (ArrayType *AT = dyn_cast<ArrayType>(T))
379    return Idx < AT->getNumElements();
380
381  return Idx < cast<StructType>(T)->getNumElements();
382}
383
384/// Move the given iterators to the next leaf type in depth first traversal.
385///
386/// Performs a depth-first traversal of the type as specified by its arguments,
387/// stopping at the next leaf node (which may be a legitimate scalar type or an
388/// empty struct or array).
389///
390/// @param SubTypes List of the partial components making up the type from
391/// outermost to innermost non-empty aggregate. The element currently
392/// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
393///
394/// @param Path Set of extractvalue indices leading from the outermost type
395/// (SubTypes[0]) to the leaf node currently represented.
396///
397/// @returns true if a new type was found, false otherwise. Calling this
398/// function again on a finished iterator will repeatedly return
399/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
400/// aggregate or a non-aggregate
401static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
402                                  SmallVectorImpl<unsigned> &Path) {
403  // First march back up the tree until we can successfully increment one of the
404  // coordinates in Path.
405  while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
406    Path.pop_back();
407    SubTypes.pop_back();
408  }
409
410  // If we reached the top, then the iterator is done.
411  if (Path.empty())
412    return false;
413
414  // We know there's *some* valid leaf now, so march back down the tree picking
415  // out the left-most element at each node.
416  ++Path.back();
417  Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
418  while (DeeperType->isAggregateType()) {
419    CompositeType *CT = cast<CompositeType>(DeeperType);
420    if (!indexReallyValid(CT, 0))
421      return true;
422
423    SubTypes.push_back(CT);
424    Path.push_back(0);
425
426    DeeperType = CT->getTypeAtIndex(0U);
427  }
428
429  return true;
430}
431
432/// Find the first non-empty, scalar-like type in Next and setup the iterator
433/// components.
434///
435/// Assuming Next is an aggregate of some kind, this function will traverse the
436/// tree from left to right (i.e. depth-first) looking for the first
437/// non-aggregate type which will play a role in function return.
438///
439/// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
440/// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
441/// i32 in that type.
442static bool firstRealType(Type *Next,
443                          SmallVectorImpl<CompositeType *> &SubTypes,
444                          SmallVectorImpl<unsigned> &Path) {
445  // First initialise the iterator components to the first "leaf" node
446  // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
447  // despite nominally being an aggregate).
448  while (Next->isAggregateType() &&
449         indexReallyValid(cast<CompositeType>(Next), 0)) {
450    SubTypes.push_back(cast<CompositeType>(Next));
451    Path.push_back(0);
452    Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
453  }
454
455  // If there's no Path now, Next was originally scalar already (or empty
456  // leaf). We're done.
457  if (Path.empty())
458    return true;
459
460  // Otherwise, use normal iteration to keep looking through the tree until we
461  // find a non-aggregate type.
462  while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
463    if (!advanceToNextLeafType(SubTypes, Path))
464      return false;
465  }
466
467  return true;
468}
469
470/// Set the iterator data-structures to the next non-empty, non-aggregate
471/// subtype.
472static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
473                         SmallVectorImpl<unsigned> &Path) {
474  do {
475    if (!advanceToNextLeafType(SubTypes, Path))
476      return false;
477
478    assert(!Path.empty() && "found a leaf but didn't set the path?");
479  } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
480
481  return true;
482}
483
484
485/// Test if the given instruction is in a position to be optimized
486/// with a tail-call. This roughly means that it's in a block with
487/// a return and there's nothing that needs to be scheduled
488/// between it and the return.
489///
490/// This function only tests target-independent requirements.
491bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
492  const Instruction *I = CS.getInstruction();
493  const BasicBlock *ExitBB = I->getParent();
494  const TerminatorInst *Term = ExitBB->getTerminator();
495  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
496
497  // The block must end in a return statement or unreachable.
498  //
499  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
500  // an unreachable, for now. The way tailcall optimization is currently
501  // implemented means it will add an epilogue followed by a jump. That is
502  // not profitable. Also, if the callee is a special function (e.g.
503  // longjmp on x86), it can end up causing miscompilation that has not
504  // been fully understood.
505  if (!Ret &&
506      (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
507    return false;
508
509  // If I will have a chain, make sure no other instruction that will have a
510  // chain interposes between I and the return.
511  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
512      !isSafeToSpeculativelyExecute(I))
513    for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
514      if (&*BBI == I)
515        break;
516      // Debug info intrinsics do not get in the way of tail call optimization.
517      if (isa<DbgInfoIntrinsic>(BBI))
518        continue;
519      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
520          !isSafeToSpeculativelyExecute(&*BBI))
521        return false;
522    }
523
524  const Function *F = ExitBB->getParent();
525  return returnTypeIsEligibleForTailCall(
526      F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
527}
528
529bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
530                                           const Instruction *I,
531                                           const ReturnInst *Ret,
532                                           const TargetLoweringBase &TLI) {
533  // If the block ends with a void return or unreachable, it doesn't matter
534  // what the call's return type is.
535  if (!Ret || Ret->getNumOperands() == 0) return true;
536
537  // If the return value is undef, it doesn't matter what the call's
538  // return type is.
539  if (isa<UndefValue>(Ret->getOperand(0))) return true;
540
541  // Make sure the attributes attached to each return are compatible.
542  AttrBuilder CallerAttrs(F->getAttributes(),
543                          AttributeSet::ReturnIndex);
544  AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
545                          AttributeSet::ReturnIndex);
546
547  // Noalias is completely benign as far as calling convention goes, it
548  // shouldn't affect whether the call is a tail call.
549  CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
550  CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
551
552  bool AllowDifferingSizes = true;
553  if (CallerAttrs.contains(Attribute::ZExt)) {
554    if (!CalleeAttrs.contains(Attribute::ZExt))
555      return false;
556
557    AllowDifferingSizes = false;
558    CallerAttrs.removeAttribute(Attribute::ZExt);
559    CalleeAttrs.removeAttribute(Attribute::ZExt);
560  } else if (CallerAttrs.contains(Attribute::SExt)) {
561    if (!CalleeAttrs.contains(Attribute::SExt))
562      return false;
563
564    AllowDifferingSizes = false;
565    CallerAttrs.removeAttribute(Attribute::SExt);
566    CalleeAttrs.removeAttribute(Attribute::SExt);
567  }
568
569  // If they're still different, there's some facet we don't understand
570  // (currently only "inreg", but in future who knows). It may be OK but the
571  // only safe option is to reject the tail call.
572  if (CallerAttrs != CalleeAttrs)
573    return false;
574
575  const Value *RetVal = Ret->getOperand(0), *CallVal = I;
576  SmallVector<unsigned, 4> RetPath, CallPath;
577  SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
578
579  bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
580  bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
581
582  // Nothing's actually returned, it doesn't matter what the callee put there
583  // it's a valid tail call.
584  if (RetEmpty)
585    return true;
586
587  // Iterate pairwise through each of the value types making up the tail call
588  // and the corresponding return. For each one we want to know whether it's
589  // essentially going directly from the tail call to the ret, via operations
590  // that end up not generating any code.
591  //
592  // We allow a certain amount of covariance here. For example it's permitted
593  // for the tail call to define more bits than the ret actually cares about
594  // (e.g. via a truncate).
595  do {
596    if (CallEmpty) {
597      // We've exhausted the values produced by the tail call instruction, the
598      // rest are essentially undef. The type doesn't really matter, but we need
599      // *something*.
600      Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
601      CallVal = UndefValue::get(SlotType);
602    }
603
604    // The manipulations performed when we're looking through an insertvalue or
605    // an extractvalue would happen at the front of the RetPath list, so since
606    // we have to copy it anyway it's more efficient to create a reversed copy.
607    SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
608    SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
609
610    // Finally, we can check whether the value produced by the tail call at this
611    // index is compatible with the value we return.
612    if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
613                              AllowDifferingSizes, TLI,
614                              F->getParent()->getDataLayout()))
615      return false;
616
617    CallEmpty  = !nextRealType(CallSubTypes, CallPath);
618  } while(nextRealType(RetSubTypes, RetPath));
619
620  return true;
621}
622
623bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
624  if (!GV->hasLinkOnceODRLinkage())
625    return false;
626
627  if (GV->hasUnnamedAddr())
628    return true;
629
630  // If it is a non constant variable, it needs to be uniqued across shared
631  // objects.
632  if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
633    if (!Var->isConstant())
634      return false;
635  }
636
637  // An alias can point to a variable. We could try to resolve the alias to
638  // decide, but for now just don't hide them.
639  if (isa<GlobalAlias>(GV))
640    return false;
641
642  GlobalStatus GS;
643  if (GlobalStatus::analyzeGlobal(GV, GS))
644    return false;
645
646  return !GS.IsCompared;
647}
648
649static void collectFuncletMembers(
650    DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet,
651    const MachineBasicBlock *MBB) {
652  // Add this MBB to our funclet.
653  auto P = FuncletMembership.insert(std::make_pair(MBB, Funclet));
654
655  // Don't revisit blocks.
656  if (!P.second) {
657    assert(P.first->second == Funclet && "MBB is part of two funclets!");
658    return;
659  }
660
661  bool IsReturn = false;
662  int NumTerminators = 0;
663  for (const MachineInstr &MI : MBB->terminators()) {
664    IsReturn |= MI.isReturn();
665    ++NumTerminators;
666  }
667  assert((!IsReturn || NumTerminators == 1) &&
668         "Expected only one terminator when a return is present!");
669
670  // Returns are boundaries where funclet transfer can occur, don't follow
671  // successors.
672  if (IsReturn)
673    return;
674
675  for (const MachineBasicBlock *SMBB : MBB->successors())
676    if (!SMBB->isEHPad())
677      collectFuncletMembers(FuncletMembership, Funclet, SMBB);
678}
679
680DenseMap<const MachineBasicBlock *, int>
681llvm::getFuncletMembership(const MachineFunction &MF) {
682  DenseMap<const MachineBasicBlock *, int> FuncletMembership;
683
684  // We don't have anything to do if there aren't any EH pads.
685  if (!MF.getMMI().hasEHFunclets())
686    return FuncletMembership;
687
688  int EntryBBNumber = MF.front().getNumber();
689  bool IsSEH = isAsynchronousEHPersonality(
690      classifyEHPersonality(MF.getFunction()->getPersonalityFn()));
691
692  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
693  SmallVector<const MachineBasicBlock *, 16> FuncletBlocks;
694  SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
695  SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
696  SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
697  for (const MachineBasicBlock &MBB : MF) {
698    if (MBB.isEHFuncletEntry()) {
699      FuncletBlocks.push_back(&MBB);
700    } else if (IsSEH && MBB.isEHPad()) {
701      SEHCatchPads.push_back(&MBB);
702    } else if (MBB.pred_empty()) {
703      UnreachableBlocks.push_back(&MBB);
704    }
705
706    MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
707    // CatchPads are not funclets for SEH so do not consider CatchRet to
708    // transfer control to another funclet.
709    if (MBBI->getOpcode() != TII->getCatchReturnOpcode())
710      continue;
711
712    // FIXME: SEH CatchPads are not necessarily in the parent function:
713    // they could be inside a finally block.
714    const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
715    const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
716    CatchRetSuccessors.push_back(
717        {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
718  }
719
720  // We don't have anything to do if there aren't any EH pads.
721  if (FuncletBlocks.empty())
722    return FuncletMembership;
723
724  // Identify all the basic blocks reachable from the function entry.
725  collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front());
726  // All blocks not part of a funclet are in the parent function.
727  for (const MachineBasicBlock *MBB : UnreachableBlocks)
728    collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
729  // Next, identify all the blocks inside the funclets.
730  for (const MachineBasicBlock *MBB : FuncletBlocks)
731    collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB);
732  // SEH CatchPads aren't really funclets, handle them separately.
733  for (const MachineBasicBlock *MBB : SEHCatchPads)
734    collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
735  // Finally, identify all the targets of a catchret.
736  for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
737       CatchRetSuccessors)
738    collectFuncletMembers(FuncletMembership, CatchRetPair.second,
739                          CatchRetPair.first);
740  return FuncletMembership;
741}
742