1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "ValueEnumerator.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/Bitcode/BitstreamWriter.h"
19#include "llvm/Bitcode/LLVMBitCodes.h"
20#include "llvm/IR/CallSite.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DebugInfoMetadata.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/InlineAsm.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Module.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/IR/UseListOrder.h"
31#include "llvm/IR/ValueSymbolTable.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/Program.h"
36#include "llvm/Support/raw_ostream.h"
37#include <cctype>
38#include <map>
39using namespace llvm;
40
41/// These are manifest constants used by the bitcode writer. They do not need to
42/// be kept in sync with the reader, but need to be consistent within this file.
43enum {
44  // VALUE_SYMTAB_BLOCK abbrev id's.
45  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46  VST_ENTRY_7_ABBREV,
47  VST_ENTRY_6_ABBREV,
48  VST_BBENTRY_6_ABBREV,
49
50  // CONSTANTS_BLOCK abbrev id's.
51  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52  CONSTANTS_INTEGER_ABBREV,
53  CONSTANTS_CE_CAST_Abbrev,
54  CONSTANTS_NULL_Abbrev,
55
56  // FUNCTION_BLOCK abbrev id's.
57  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58  FUNCTION_INST_BINOP_ABBREV,
59  FUNCTION_INST_BINOP_FLAGS_ABBREV,
60  FUNCTION_INST_CAST_ABBREV,
61  FUNCTION_INST_RET_VOID_ABBREV,
62  FUNCTION_INST_RET_VAL_ABBREV,
63  FUNCTION_INST_UNREACHABLE_ABBREV,
64  FUNCTION_INST_GEP_ABBREV,
65};
66
67static unsigned GetEncodedCastOpcode(unsigned Opcode) {
68  switch (Opcode) {
69  default: llvm_unreachable("Unknown cast instruction!");
70  case Instruction::Trunc   : return bitc::CAST_TRUNC;
71  case Instruction::ZExt    : return bitc::CAST_ZEXT;
72  case Instruction::SExt    : return bitc::CAST_SEXT;
73  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
74  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
75  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
76  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
77  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
78  case Instruction::FPExt   : return bitc::CAST_FPEXT;
79  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
80  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
81  case Instruction::BitCast : return bitc::CAST_BITCAST;
82  case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
83  }
84}
85
86static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
87  switch (Opcode) {
88  default: llvm_unreachable("Unknown binary instruction!");
89  case Instruction::Add:
90  case Instruction::FAdd: return bitc::BINOP_ADD;
91  case Instruction::Sub:
92  case Instruction::FSub: return bitc::BINOP_SUB;
93  case Instruction::Mul:
94  case Instruction::FMul: return bitc::BINOP_MUL;
95  case Instruction::UDiv: return bitc::BINOP_UDIV;
96  case Instruction::FDiv:
97  case Instruction::SDiv: return bitc::BINOP_SDIV;
98  case Instruction::URem: return bitc::BINOP_UREM;
99  case Instruction::FRem:
100  case Instruction::SRem: return bitc::BINOP_SREM;
101  case Instruction::Shl:  return bitc::BINOP_SHL;
102  case Instruction::LShr: return bitc::BINOP_LSHR;
103  case Instruction::AShr: return bitc::BINOP_ASHR;
104  case Instruction::And:  return bitc::BINOP_AND;
105  case Instruction::Or:   return bitc::BINOP_OR;
106  case Instruction::Xor:  return bitc::BINOP_XOR;
107  }
108}
109
110static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
111  switch (Op) {
112  default: llvm_unreachable("Unknown RMW operation!");
113  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
114  case AtomicRMWInst::Add: return bitc::RMW_ADD;
115  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
116  case AtomicRMWInst::And: return bitc::RMW_AND;
117  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
118  case AtomicRMWInst::Or: return bitc::RMW_OR;
119  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
120  case AtomicRMWInst::Max: return bitc::RMW_MAX;
121  case AtomicRMWInst::Min: return bitc::RMW_MIN;
122  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
123  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
124  }
125}
126
127static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
128  switch (Ordering) {
129  case NotAtomic: return bitc::ORDERING_NOTATOMIC;
130  case Unordered: return bitc::ORDERING_UNORDERED;
131  case Monotonic: return bitc::ORDERING_MONOTONIC;
132  case Acquire: return bitc::ORDERING_ACQUIRE;
133  case Release: return bitc::ORDERING_RELEASE;
134  case AcquireRelease: return bitc::ORDERING_ACQREL;
135  case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
136  }
137  llvm_unreachable("Invalid ordering");
138}
139
140static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
141  switch (SynchScope) {
142  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
143  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
144  }
145  llvm_unreachable("Invalid synch scope");
146}
147
148static void WriteStringRecord(unsigned Code, StringRef Str,
149                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
150  SmallVector<unsigned, 64> Vals;
151
152  // Code: [strchar x N]
153  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
154    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
155      AbbrevToUse = 0;
156    Vals.push_back(Str[i]);
157  }
158
159  // Emit the finished record.
160  Stream.EmitRecord(Code, Vals, AbbrevToUse);
161}
162
163static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
164  switch (Kind) {
165  case Attribute::Alignment:
166    return bitc::ATTR_KIND_ALIGNMENT;
167  case Attribute::AlwaysInline:
168    return bitc::ATTR_KIND_ALWAYS_INLINE;
169  case Attribute::ArgMemOnly:
170    return bitc::ATTR_KIND_ARGMEMONLY;
171  case Attribute::Builtin:
172    return bitc::ATTR_KIND_BUILTIN;
173  case Attribute::ByVal:
174    return bitc::ATTR_KIND_BY_VAL;
175  case Attribute::Convergent:
176    return bitc::ATTR_KIND_CONVERGENT;
177  case Attribute::InAlloca:
178    return bitc::ATTR_KIND_IN_ALLOCA;
179  case Attribute::Cold:
180    return bitc::ATTR_KIND_COLD;
181  case Attribute::InaccessibleMemOnly:
182    return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
183  case Attribute::InaccessibleMemOrArgMemOnly:
184    return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
185  case Attribute::InlineHint:
186    return bitc::ATTR_KIND_INLINE_HINT;
187  case Attribute::InReg:
188    return bitc::ATTR_KIND_IN_REG;
189  case Attribute::JumpTable:
190    return bitc::ATTR_KIND_JUMP_TABLE;
191  case Attribute::MinSize:
192    return bitc::ATTR_KIND_MIN_SIZE;
193  case Attribute::Naked:
194    return bitc::ATTR_KIND_NAKED;
195  case Attribute::Nest:
196    return bitc::ATTR_KIND_NEST;
197  case Attribute::NoAlias:
198    return bitc::ATTR_KIND_NO_ALIAS;
199  case Attribute::NoBuiltin:
200    return bitc::ATTR_KIND_NO_BUILTIN;
201  case Attribute::NoCapture:
202    return bitc::ATTR_KIND_NO_CAPTURE;
203  case Attribute::NoDuplicate:
204    return bitc::ATTR_KIND_NO_DUPLICATE;
205  case Attribute::NoImplicitFloat:
206    return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
207  case Attribute::NoInline:
208    return bitc::ATTR_KIND_NO_INLINE;
209  case Attribute::NoRecurse:
210    return bitc::ATTR_KIND_NO_RECURSE;
211  case Attribute::NonLazyBind:
212    return bitc::ATTR_KIND_NON_LAZY_BIND;
213  case Attribute::NonNull:
214    return bitc::ATTR_KIND_NON_NULL;
215  case Attribute::Dereferenceable:
216    return bitc::ATTR_KIND_DEREFERENCEABLE;
217  case Attribute::DereferenceableOrNull:
218    return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
219  case Attribute::NoRedZone:
220    return bitc::ATTR_KIND_NO_RED_ZONE;
221  case Attribute::NoReturn:
222    return bitc::ATTR_KIND_NO_RETURN;
223  case Attribute::NoUnwind:
224    return bitc::ATTR_KIND_NO_UNWIND;
225  case Attribute::OptimizeForSize:
226    return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
227  case Attribute::OptimizeNone:
228    return bitc::ATTR_KIND_OPTIMIZE_NONE;
229  case Attribute::ReadNone:
230    return bitc::ATTR_KIND_READ_NONE;
231  case Attribute::ReadOnly:
232    return bitc::ATTR_KIND_READ_ONLY;
233  case Attribute::Returned:
234    return bitc::ATTR_KIND_RETURNED;
235  case Attribute::ReturnsTwice:
236    return bitc::ATTR_KIND_RETURNS_TWICE;
237  case Attribute::SExt:
238    return bitc::ATTR_KIND_S_EXT;
239  case Attribute::StackAlignment:
240    return bitc::ATTR_KIND_STACK_ALIGNMENT;
241  case Attribute::StackProtect:
242    return bitc::ATTR_KIND_STACK_PROTECT;
243  case Attribute::StackProtectReq:
244    return bitc::ATTR_KIND_STACK_PROTECT_REQ;
245  case Attribute::StackProtectStrong:
246    return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
247  case Attribute::SafeStack:
248    return bitc::ATTR_KIND_SAFESTACK;
249  case Attribute::StructRet:
250    return bitc::ATTR_KIND_STRUCT_RET;
251  case Attribute::SanitizeAddress:
252    return bitc::ATTR_KIND_SANITIZE_ADDRESS;
253  case Attribute::SanitizeThread:
254    return bitc::ATTR_KIND_SANITIZE_THREAD;
255  case Attribute::SanitizeMemory:
256    return bitc::ATTR_KIND_SANITIZE_MEMORY;
257  case Attribute::UWTable:
258    return bitc::ATTR_KIND_UW_TABLE;
259  case Attribute::ZExt:
260    return bitc::ATTR_KIND_Z_EXT;
261  case Attribute::EndAttrKinds:
262    llvm_unreachable("Can not encode end-attribute kinds marker.");
263  case Attribute::None:
264    llvm_unreachable("Can not encode none-attribute.");
265  }
266
267  llvm_unreachable("Trying to encode unknown attribute");
268}
269
270static void WriteAttributeGroupTable(const ValueEnumerator &VE,
271                                     BitstreamWriter &Stream) {
272  const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
273  if (AttrGrps.empty()) return;
274
275  Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
276
277  SmallVector<uint64_t, 64> Record;
278  for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
279    AttributeSet AS = AttrGrps[i];
280    for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
281      AttributeSet A = AS.getSlotAttributes(i);
282
283      Record.push_back(VE.getAttributeGroupID(A));
284      Record.push_back(AS.getSlotIndex(i));
285
286      for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
287           I != E; ++I) {
288        Attribute Attr = *I;
289        if (Attr.isEnumAttribute()) {
290          Record.push_back(0);
291          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
292        } else if (Attr.isIntAttribute()) {
293          Record.push_back(1);
294          Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
295          Record.push_back(Attr.getValueAsInt());
296        } else {
297          StringRef Kind = Attr.getKindAsString();
298          StringRef Val = Attr.getValueAsString();
299
300          Record.push_back(Val.empty() ? 3 : 4);
301          Record.append(Kind.begin(), Kind.end());
302          Record.push_back(0);
303          if (!Val.empty()) {
304            Record.append(Val.begin(), Val.end());
305            Record.push_back(0);
306          }
307        }
308      }
309
310      Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
311      Record.clear();
312    }
313  }
314
315  Stream.ExitBlock();
316}
317
318static void WriteAttributeTable(const ValueEnumerator &VE,
319                                BitstreamWriter &Stream) {
320  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
321  if (Attrs.empty()) return;
322
323  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
324
325  SmallVector<uint64_t, 64> Record;
326  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
327    const AttributeSet &A = Attrs[i];
328    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
329      Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
330
331    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
332    Record.clear();
333  }
334
335  Stream.ExitBlock();
336}
337
338/// WriteTypeTable - Write out the type table for a module.
339static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
340  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
341
342  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
343  SmallVector<uint64_t, 64> TypeVals;
344
345  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
346
347  // Abbrev for TYPE_CODE_POINTER.
348  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
349  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
350  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
351  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
352  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
353
354  // Abbrev for TYPE_CODE_FUNCTION.
355  Abbv = new BitCodeAbbrev();
356  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
357  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
358  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
359  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
360
361  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
362
363  // Abbrev for TYPE_CODE_STRUCT_ANON.
364  Abbv = new BitCodeAbbrev();
365  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
366  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
367  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
368  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
369
370  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
371
372  // Abbrev for TYPE_CODE_STRUCT_NAME.
373  Abbv = new BitCodeAbbrev();
374  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
375  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
376  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
377  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
378
379  // Abbrev for TYPE_CODE_STRUCT_NAMED.
380  Abbv = new BitCodeAbbrev();
381  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
382  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
383  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
384  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
385
386  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
387
388  // Abbrev for TYPE_CODE_ARRAY.
389  Abbv = new BitCodeAbbrev();
390  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
391  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
392  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
393
394  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
395
396  // Emit an entry count so the reader can reserve space.
397  TypeVals.push_back(TypeList.size());
398  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
399  TypeVals.clear();
400
401  // Loop over all of the types, emitting each in turn.
402  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
403    Type *T = TypeList[i];
404    int AbbrevToUse = 0;
405    unsigned Code = 0;
406
407    switch (T->getTypeID()) {
408    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
409    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
410    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
411    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
412    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
413    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
414    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
415    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
416    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
417    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
418    case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
419    case Type::IntegerTyID:
420      // INTEGER: [width]
421      Code = bitc::TYPE_CODE_INTEGER;
422      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
423      break;
424    case Type::PointerTyID: {
425      PointerType *PTy = cast<PointerType>(T);
426      // POINTER: [pointee type, address space]
427      Code = bitc::TYPE_CODE_POINTER;
428      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
429      unsigned AddressSpace = PTy->getAddressSpace();
430      TypeVals.push_back(AddressSpace);
431      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
432      break;
433    }
434    case Type::FunctionTyID: {
435      FunctionType *FT = cast<FunctionType>(T);
436      // FUNCTION: [isvararg, retty, paramty x N]
437      Code = bitc::TYPE_CODE_FUNCTION;
438      TypeVals.push_back(FT->isVarArg());
439      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
440      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
441        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
442      AbbrevToUse = FunctionAbbrev;
443      break;
444    }
445    case Type::StructTyID: {
446      StructType *ST = cast<StructType>(T);
447      // STRUCT: [ispacked, eltty x N]
448      TypeVals.push_back(ST->isPacked());
449      // Output all of the element types.
450      for (StructType::element_iterator I = ST->element_begin(),
451           E = ST->element_end(); I != E; ++I)
452        TypeVals.push_back(VE.getTypeID(*I));
453
454      if (ST->isLiteral()) {
455        Code = bitc::TYPE_CODE_STRUCT_ANON;
456        AbbrevToUse = StructAnonAbbrev;
457      } else {
458        if (ST->isOpaque()) {
459          Code = bitc::TYPE_CODE_OPAQUE;
460        } else {
461          Code = bitc::TYPE_CODE_STRUCT_NAMED;
462          AbbrevToUse = StructNamedAbbrev;
463        }
464
465        // Emit the name if it is present.
466        if (!ST->getName().empty())
467          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
468                            StructNameAbbrev, Stream);
469      }
470      break;
471    }
472    case Type::ArrayTyID: {
473      ArrayType *AT = cast<ArrayType>(T);
474      // ARRAY: [numelts, eltty]
475      Code = bitc::TYPE_CODE_ARRAY;
476      TypeVals.push_back(AT->getNumElements());
477      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
478      AbbrevToUse = ArrayAbbrev;
479      break;
480    }
481    case Type::VectorTyID: {
482      VectorType *VT = cast<VectorType>(T);
483      // VECTOR [numelts, eltty]
484      Code = bitc::TYPE_CODE_VECTOR;
485      TypeVals.push_back(VT->getNumElements());
486      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
487      break;
488    }
489    }
490
491    // Emit the finished record.
492    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
493    TypeVals.clear();
494  }
495
496  Stream.ExitBlock();
497}
498
499static unsigned getEncodedLinkage(const GlobalValue &GV) {
500  switch (GV.getLinkage()) {
501  case GlobalValue::ExternalLinkage:
502    return 0;
503  case GlobalValue::WeakAnyLinkage:
504    return 16;
505  case GlobalValue::AppendingLinkage:
506    return 2;
507  case GlobalValue::InternalLinkage:
508    return 3;
509  case GlobalValue::LinkOnceAnyLinkage:
510    return 18;
511  case GlobalValue::ExternalWeakLinkage:
512    return 7;
513  case GlobalValue::CommonLinkage:
514    return 8;
515  case GlobalValue::PrivateLinkage:
516    return 9;
517  case GlobalValue::WeakODRLinkage:
518    return 17;
519  case GlobalValue::LinkOnceODRLinkage:
520    return 19;
521  case GlobalValue::AvailableExternallyLinkage:
522    return 12;
523  }
524  llvm_unreachable("Invalid linkage");
525}
526
527static unsigned getEncodedVisibility(const GlobalValue &GV) {
528  switch (GV.getVisibility()) {
529  case GlobalValue::DefaultVisibility:   return 0;
530  case GlobalValue::HiddenVisibility:    return 1;
531  case GlobalValue::ProtectedVisibility: return 2;
532  }
533  llvm_unreachable("Invalid visibility");
534}
535
536static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
537  switch (GV.getDLLStorageClass()) {
538  case GlobalValue::DefaultStorageClass:   return 0;
539  case GlobalValue::DLLImportStorageClass: return 1;
540  case GlobalValue::DLLExportStorageClass: return 2;
541  }
542  llvm_unreachable("Invalid DLL storage class");
543}
544
545static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
546  switch (GV.getThreadLocalMode()) {
547    case GlobalVariable::NotThreadLocal:         return 0;
548    case GlobalVariable::GeneralDynamicTLSModel: return 1;
549    case GlobalVariable::LocalDynamicTLSModel:   return 2;
550    case GlobalVariable::InitialExecTLSModel:    return 3;
551    case GlobalVariable::LocalExecTLSModel:      return 4;
552  }
553  llvm_unreachable("Invalid TLS model");
554}
555
556static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
557  switch (C.getSelectionKind()) {
558  case Comdat::Any:
559    return bitc::COMDAT_SELECTION_KIND_ANY;
560  case Comdat::ExactMatch:
561    return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
562  case Comdat::Largest:
563    return bitc::COMDAT_SELECTION_KIND_LARGEST;
564  case Comdat::NoDuplicates:
565    return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
566  case Comdat::SameSize:
567    return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
568  }
569  llvm_unreachable("Invalid selection kind");
570}
571
572static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
573  SmallVector<uint16_t, 64> Vals;
574  for (const Comdat *C : VE.getComdats()) {
575    // COMDAT: [selection_kind, name]
576    Vals.push_back(getEncodedComdatSelectionKind(*C));
577    size_t Size = C->getName().size();
578    assert(isUInt<16>(Size));
579    Vals.push_back(Size);
580    for (char Chr : C->getName())
581      Vals.push_back((unsigned char)Chr);
582    Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
583    Vals.clear();
584  }
585}
586
587/// Write a record that will eventually hold the word offset of the
588/// module-level VST. For now the offset is 0, which will be backpatched
589/// after the real VST is written. Returns the bit offset to backpatch.
590static uint64_t WriteValueSymbolTableForwardDecl(const ValueSymbolTable &VST,
591                                                 BitstreamWriter &Stream) {
592  if (VST.empty())
593    return 0;
594
595  // Write a placeholder value in for the offset of the real VST,
596  // which is written after the function blocks so that it can include
597  // the offset of each function. The placeholder offset will be
598  // updated when the real VST is written.
599  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
600  Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
601  // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
602  // hold the real VST offset. Must use fixed instead of VBR as we don't
603  // know how many VBR chunks to reserve ahead of time.
604  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
605  unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
606
607  // Emit the placeholder
608  uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
609  Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
610
611  // Compute and return the bit offset to the placeholder, which will be
612  // patched when the real VST is written. We can simply subtract the 32-bit
613  // fixed size from the current bit number to get the location to backpatch.
614  return Stream.GetCurrentBitNo() - 32;
615}
616
617/// Emit top-level description of module, including target triple, inline asm,
618/// descriptors for global variables, and function prototype info.
619/// Returns the bit offset to backpatch with the location of the real VST.
620static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
621                                BitstreamWriter &Stream) {
622  // Emit various pieces of data attached to a module.
623  if (!M->getTargetTriple().empty())
624    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
625                      0/*TODO*/, Stream);
626  const std::string &DL = M->getDataLayoutStr();
627  if (!DL.empty())
628    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
629  if (!M->getModuleInlineAsm().empty())
630    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
631                      0/*TODO*/, Stream);
632
633  // Emit information about sections and GC, computing how many there are. Also
634  // compute the maximum alignment value.
635  std::map<std::string, unsigned> SectionMap;
636  std::map<std::string, unsigned> GCMap;
637  unsigned MaxAlignment = 0;
638  unsigned MaxGlobalType = 0;
639  for (const GlobalValue &GV : M->globals()) {
640    MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
641    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
642    if (GV.hasSection()) {
643      // Give section names unique ID's.
644      unsigned &Entry = SectionMap[GV.getSection()];
645      if (!Entry) {
646        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
647                          0/*TODO*/, Stream);
648        Entry = SectionMap.size();
649      }
650    }
651  }
652  for (const Function &F : *M) {
653    MaxAlignment = std::max(MaxAlignment, F.getAlignment());
654    if (F.hasSection()) {
655      // Give section names unique ID's.
656      unsigned &Entry = SectionMap[F.getSection()];
657      if (!Entry) {
658        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
659                          0/*TODO*/, Stream);
660        Entry = SectionMap.size();
661      }
662    }
663    if (F.hasGC()) {
664      // Same for GC names.
665      unsigned &Entry = GCMap[F.getGC()];
666      if (!Entry) {
667        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
668                          0/*TODO*/, Stream);
669        Entry = GCMap.size();
670      }
671    }
672  }
673
674  // Emit abbrev for globals, now that we know # sections and max alignment.
675  unsigned SimpleGVarAbbrev = 0;
676  if (!M->global_empty()) {
677    // Add an abbrev for common globals with no visibility or thread localness.
678    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
679    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
680    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
681                              Log2_32_Ceil(MaxGlobalType+1)));
682    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
683                                                           //| explicitType << 1
684                                                           //| constant
685    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
686    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
687    if (MaxAlignment == 0)                                 // Alignment.
688      Abbv->Add(BitCodeAbbrevOp(0));
689    else {
690      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
691      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
692                               Log2_32_Ceil(MaxEncAlignment+1)));
693    }
694    if (SectionMap.empty())                                    // Section.
695      Abbv->Add(BitCodeAbbrevOp(0));
696    else
697      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
698                               Log2_32_Ceil(SectionMap.size()+1)));
699    // Don't bother emitting vis + thread local.
700    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
701  }
702
703  // Emit the global variable information.
704  SmallVector<unsigned, 64> Vals;
705  for (const GlobalVariable &GV : M->globals()) {
706    unsigned AbbrevToUse = 0;
707
708    // GLOBALVAR: [type, isconst, initid,
709    //             linkage, alignment, section, visibility, threadlocal,
710    //             unnamed_addr, externally_initialized, dllstorageclass,
711    //             comdat]
712    Vals.push_back(VE.getTypeID(GV.getValueType()));
713    Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
714    Vals.push_back(GV.isDeclaration() ? 0 :
715                   (VE.getValueID(GV.getInitializer()) + 1));
716    Vals.push_back(getEncodedLinkage(GV));
717    Vals.push_back(Log2_32(GV.getAlignment())+1);
718    Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
719    if (GV.isThreadLocal() ||
720        GV.getVisibility() != GlobalValue::DefaultVisibility ||
721        GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
722        GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
723        GV.hasComdat()) {
724      Vals.push_back(getEncodedVisibility(GV));
725      Vals.push_back(getEncodedThreadLocalMode(GV));
726      Vals.push_back(GV.hasUnnamedAddr());
727      Vals.push_back(GV.isExternallyInitialized());
728      Vals.push_back(getEncodedDLLStorageClass(GV));
729      Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
730    } else {
731      AbbrevToUse = SimpleGVarAbbrev;
732    }
733
734    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
735    Vals.clear();
736  }
737
738  // Emit the function proto information.
739  for (const Function &F : *M) {
740    // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
741    //             section, visibility, gc, unnamed_addr, prologuedata,
742    //             dllstorageclass, comdat, prefixdata, personalityfn]
743    Vals.push_back(VE.getTypeID(F.getFunctionType()));
744    Vals.push_back(F.getCallingConv());
745    Vals.push_back(F.isDeclaration());
746    Vals.push_back(getEncodedLinkage(F));
747    Vals.push_back(VE.getAttributeID(F.getAttributes()));
748    Vals.push_back(Log2_32(F.getAlignment())+1);
749    Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
750    Vals.push_back(getEncodedVisibility(F));
751    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
752    Vals.push_back(F.hasUnnamedAddr());
753    Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
754                                       : 0);
755    Vals.push_back(getEncodedDLLStorageClass(F));
756    Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
757    Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
758                                     : 0);
759    Vals.push_back(
760        F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
761
762    unsigned AbbrevToUse = 0;
763    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
764    Vals.clear();
765  }
766
767  // Emit the alias information.
768  for (const GlobalAlias &A : M->aliases()) {
769    // ALIAS: [alias type, aliasee val#, linkage, visibility]
770    Vals.push_back(VE.getTypeID(A.getValueType()));
771    Vals.push_back(A.getType()->getAddressSpace());
772    Vals.push_back(VE.getValueID(A.getAliasee()));
773    Vals.push_back(getEncodedLinkage(A));
774    Vals.push_back(getEncodedVisibility(A));
775    Vals.push_back(getEncodedDLLStorageClass(A));
776    Vals.push_back(getEncodedThreadLocalMode(A));
777    Vals.push_back(A.hasUnnamedAddr());
778    unsigned AbbrevToUse = 0;
779    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
780    Vals.clear();
781  }
782
783  // Write a record indicating the number of module-level metadata IDs
784  // This is needed because the ids of metadata are assigned implicitly
785  // based on their ordering in the bitcode, with the function-level
786  // metadata ids starting after the module-level metadata ids. For
787  // function importing where we lazy load the metadata as a postpass,
788  // we want to avoid parsing the module-level metadata before parsing
789  // the imported functions.
790  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
791  Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_METADATA_VALUES));
792  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
793  unsigned MDValsAbbrev = Stream.EmitAbbrev(Abbv);
794  Vals.push_back(VE.numMDs());
795  Stream.EmitRecord(bitc::MODULE_CODE_METADATA_VALUES, Vals, MDValsAbbrev);
796  Vals.clear();
797
798  uint64_t VSTOffsetPlaceholder =
799      WriteValueSymbolTableForwardDecl(M->getValueSymbolTable(), Stream);
800  return VSTOffsetPlaceholder;
801}
802
803static uint64_t GetOptimizationFlags(const Value *V) {
804  uint64_t Flags = 0;
805
806  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
807    if (OBO->hasNoSignedWrap())
808      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
809    if (OBO->hasNoUnsignedWrap())
810      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
811  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
812    if (PEO->isExact())
813      Flags |= 1 << bitc::PEO_EXACT;
814  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
815    if (FPMO->hasUnsafeAlgebra())
816      Flags |= FastMathFlags::UnsafeAlgebra;
817    if (FPMO->hasNoNaNs())
818      Flags |= FastMathFlags::NoNaNs;
819    if (FPMO->hasNoInfs())
820      Flags |= FastMathFlags::NoInfs;
821    if (FPMO->hasNoSignedZeros())
822      Flags |= FastMathFlags::NoSignedZeros;
823    if (FPMO->hasAllowReciprocal())
824      Flags |= FastMathFlags::AllowReciprocal;
825  }
826
827  return Flags;
828}
829
830static void WriteValueAsMetadata(const ValueAsMetadata *MD,
831                                 const ValueEnumerator &VE,
832                                 BitstreamWriter &Stream,
833                                 SmallVectorImpl<uint64_t> &Record) {
834  // Mimic an MDNode with a value as one operand.
835  Value *V = MD->getValue();
836  Record.push_back(VE.getTypeID(V->getType()));
837  Record.push_back(VE.getValueID(V));
838  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
839  Record.clear();
840}
841
842static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
843                         BitstreamWriter &Stream,
844                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
845  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
846    Metadata *MD = N->getOperand(i);
847    assert(!(MD && isa<LocalAsMetadata>(MD)) &&
848           "Unexpected function-local metadata");
849    Record.push_back(VE.getMetadataOrNullID(MD));
850  }
851  Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
852                                    : bitc::METADATA_NODE,
853                    Record, Abbrev);
854  Record.clear();
855}
856
857static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE,
858                            BitstreamWriter &Stream,
859                            SmallVectorImpl<uint64_t> &Record,
860                            unsigned Abbrev) {
861  Record.push_back(N->isDistinct());
862  Record.push_back(N->getLine());
863  Record.push_back(N->getColumn());
864  Record.push_back(VE.getMetadataID(N->getScope()));
865  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
866
867  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
868  Record.clear();
869}
870
871static void WriteGenericDINode(const GenericDINode *N,
872                               const ValueEnumerator &VE,
873                               BitstreamWriter &Stream,
874                               SmallVectorImpl<uint64_t> &Record,
875                               unsigned Abbrev) {
876  Record.push_back(N->isDistinct());
877  Record.push_back(N->getTag());
878  Record.push_back(0); // Per-tag version field; unused for now.
879
880  for (auto &I : N->operands())
881    Record.push_back(VE.getMetadataOrNullID(I));
882
883  Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
884  Record.clear();
885}
886
887static uint64_t rotateSign(int64_t I) {
888  uint64_t U = I;
889  return I < 0 ? ~(U << 1) : U << 1;
890}
891
892static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &,
893                            BitstreamWriter &Stream,
894                            SmallVectorImpl<uint64_t> &Record,
895                            unsigned Abbrev) {
896  Record.push_back(N->isDistinct());
897  Record.push_back(N->getCount());
898  Record.push_back(rotateSign(N->getLowerBound()));
899
900  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
901  Record.clear();
902}
903
904static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE,
905                              BitstreamWriter &Stream,
906                              SmallVectorImpl<uint64_t> &Record,
907                              unsigned Abbrev) {
908  Record.push_back(N->isDistinct());
909  Record.push_back(rotateSign(N->getValue()));
910  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
911
912  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
913  Record.clear();
914}
915
916static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE,
917                             BitstreamWriter &Stream,
918                             SmallVectorImpl<uint64_t> &Record,
919                             unsigned Abbrev) {
920  Record.push_back(N->isDistinct());
921  Record.push_back(N->getTag());
922  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
923  Record.push_back(N->getSizeInBits());
924  Record.push_back(N->getAlignInBits());
925  Record.push_back(N->getEncoding());
926
927  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
928  Record.clear();
929}
930
931static void WriteDIDerivedType(const DIDerivedType *N,
932                               const ValueEnumerator &VE,
933                               BitstreamWriter &Stream,
934                               SmallVectorImpl<uint64_t> &Record,
935                               unsigned Abbrev) {
936  Record.push_back(N->isDistinct());
937  Record.push_back(N->getTag());
938  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
939  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
940  Record.push_back(N->getLine());
941  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
942  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
943  Record.push_back(N->getSizeInBits());
944  Record.push_back(N->getAlignInBits());
945  Record.push_back(N->getOffsetInBits());
946  Record.push_back(N->getFlags());
947  Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
948
949  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
950  Record.clear();
951}
952
953static void WriteDICompositeType(const DICompositeType *N,
954                                 const ValueEnumerator &VE,
955                                 BitstreamWriter &Stream,
956                                 SmallVectorImpl<uint64_t> &Record,
957                                 unsigned Abbrev) {
958  Record.push_back(N->isDistinct());
959  Record.push_back(N->getTag());
960  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
961  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
962  Record.push_back(N->getLine());
963  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
964  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
965  Record.push_back(N->getSizeInBits());
966  Record.push_back(N->getAlignInBits());
967  Record.push_back(N->getOffsetInBits());
968  Record.push_back(N->getFlags());
969  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
970  Record.push_back(N->getRuntimeLang());
971  Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
972  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
973  Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
974
975  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
976  Record.clear();
977}
978
979static void WriteDISubroutineType(const DISubroutineType *N,
980                                  const ValueEnumerator &VE,
981                                  BitstreamWriter &Stream,
982                                  SmallVectorImpl<uint64_t> &Record,
983                                  unsigned Abbrev) {
984  Record.push_back(N->isDistinct());
985  Record.push_back(N->getFlags());
986  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
987
988  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
989  Record.clear();
990}
991
992static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE,
993                        BitstreamWriter &Stream,
994                        SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
995  Record.push_back(N->isDistinct());
996  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
997  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
998
999  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1000  Record.clear();
1001}
1002
1003static void WriteDICompileUnit(const DICompileUnit *N,
1004                               const ValueEnumerator &VE,
1005                               BitstreamWriter &Stream,
1006                               SmallVectorImpl<uint64_t> &Record,
1007                               unsigned Abbrev) {
1008  assert(N->isDistinct() && "Expected distinct compile units");
1009  Record.push_back(/* IsDistinct */ true);
1010  Record.push_back(N->getSourceLanguage());
1011  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1012  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1013  Record.push_back(N->isOptimized());
1014  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1015  Record.push_back(N->getRuntimeVersion());
1016  Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1017  Record.push_back(N->getEmissionKind());
1018  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1019  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1020  Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
1021  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1022  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1023  Record.push_back(N->getDWOId());
1024  Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1025
1026  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1027  Record.clear();
1028}
1029
1030static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE,
1031                              BitstreamWriter &Stream,
1032                              SmallVectorImpl<uint64_t> &Record,
1033                              unsigned Abbrev) {
1034  Record.push_back(N->isDistinct());
1035  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1036  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1037  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1038  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1039  Record.push_back(N->getLine());
1040  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1041  Record.push_back(N->isLocalToUnit());
1042  Record.push_back(N->isDefinition());
1043  Record.push_back(N->getScopeLine());
1044  Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1045  Record.push_back(N->getVirtuality());
1046  Record.push_back(N->getVirtualIndex());
1047  Record.push_back(N->getFlags());
1048  Record.push_back(N->isOptimized());
1049  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1050  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1051  Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1052
1053  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1054  Record.clear();
1055}
1056
1057static void WriteDILexicalBlock(const DILexicalBlock *N,
1058                                const ValueEnumerator &VE,
1059                                BitstreamWriter &Stream,
1060                                SmallVectorImpl<uint64_t> &Record,
1061                                unsigned Abbrev) {
1062  Record.push_back(N->isDistinct());
1063  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1064  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1065  Record.push_back(N->getLine());
1066  Record.push_back(N->getColumn());
1067
1068  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1069  Record.clear();
1070}
1071
1072static void WriteDILexicalBlockFile(const DILexicalBlockFile *N,
1073                                    const ValueEnumerator &VE,
1074                                    BitstreamWriter &Stream,
1075                                    SmallVectorImpl<uint64_t> &Record,
1076                                    unsigned Abbrev) {
1077  Record.push_back(N->isDistinct());
1078  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1079  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1080  Record.push_back(N->getDiscriminator());
1081
1082  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1083  Record.clear();
1084}
1085
1086static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE,
1087                             BitstreamWriter &Stream,
1088                             SmallVectorImpl<uint64_t> &Record,
1089                             unsigned Abbrev) {
1090  Record.push_back(N->isDistinct());
1091  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1092  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1093  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1094  Record.push_back(N->getLine());
1095
1096  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1097  Record.clear();
1098}
1099
1100static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE,
1101                         BitstreamWriter &Stream,
1102                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1103  Record.push_back(N->isDistinct());
1104  Record.push_back(N->getMacinfoType());
1105  Record.push_back(N->getLine());
1106  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1107  Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1108
1109  Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1110  Record.clear();
1111}
1112
1113static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE,
1114                             BitstreamWriter &Stream,
1115                             SmallVectorImpl<uint64_t> &Record,
1116                             unsigned Abbrev) {
1117  Record.push_back(N->isDistinct());
1118  Record.push_back(N->getMacinfoType());
1119  Record.push_back(N->getLine());
1120  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1121  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1122
1123  Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1124  Record.clear();
1125}
1126
1127static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE,
1128                          BitstreamWriter &Stream,
1129                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1130  Record.push_back(N->isDistinct());
1131  for (auto &I : N->operands())
1132    Record.push_back(VE.getMetadataOrNullID(I));
1133
1134  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1135  Record.clear();
1136}
1137
1138static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N,
1139                                         const ValueEnumerator &VE,
1140                                         BitstreamWriter &Stream,
1141                                         SmallVectorImpl<uint64_t> &Record,
1142                                         unsigned Abbrev) {
1143  Record.push_back(N->isDistinct());
1144  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1145  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1146
1147  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1148  Record.clear();
1149}
1150
1151static void WriteDITemplateValueParameter(const DITemplateValueParameter *N,
1152                                          const ValueEnumerator &VE,
1153                                          BitstreamWriter &Stream,
1154                                          SmallVectorImpl<uint64_t> &Record,
1155                                          unsigned Abbrev) {
1156  Record.push_back(N->isDistinct());
1157  Record.push_back(N->getTag());
1158  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1159  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1160  Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1161
1162  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1163  Record.clear();
1164}
1165
1166static void WriteDIGlobalVariable(const DIGlobalVariable *N,
1167                                  const ValueEnumerator &VE,
1168                                  BitstreamWriter &Stream,
1169                                  SmallVectorImpl<uint64_t> &Record,
1170                                  unsigned Abbrev) {
1171  Record.push_back(N->isDistinct());
1172  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1173  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1174  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1175  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1176  Record.push_back(N->getLine());
1177  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1178  Record.push_back(N->isLocalToUnit());
1179  Record.push_back(N->isDefinition());
1180  Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1181  Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1182
1183  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1184  Record.clear();
1185}
1186
1187static void WriteDILocalVariable(const DILocalVariable *N,
1188                                 const ValueEnumerator &VE,
1189                                 BitstreamWriter &Stream,
1190                                 SmallVectorImpl<uint64_t> &Record,
1191                                 unsigned Abbrev) {
1192  Record.push_back(N->isDistinct());
1193  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1194  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1195  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1196  Record.push_back(N->getLine());
1197  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1198  Record.push_back(N->getArg());
1199  Record.push_back(N->getFlags());
1200
1201  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1202  Record.clear();
1203}
1204
1205static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &,
1206                              BitstreamWriter &Stream,
1207                              SmallVectorImpl<uint64_t> &Record,
1208                              unsigned Abbrev) {
1209  Record.reserve(N->getElements().size() + 1);
1210
1211  Record.push_back(N->isDistinct());
1212  Record.append(N->elements_begin(), N->elements_end());
1213
1214  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1215  Record.clear();
1216}
1217
1218static void WriteDIObjCProperty(const DIObjCProperty *N,
1219                                const ValueEnumerator &VE,
1220                                BitstreamWriter &Stream,
1221                                SmallVectorImpl<uint64_t> &Record,
1222                                unsigned Abbrev) {
1223  Record.push_back(N->isDistinct());
1224  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1225  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1226  Record.push_back(N->getLine());
1227  Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1228  Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1229  Record.push_back(N->getAttributes());
1230  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1231
1232  Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1233  Record.clear();
1234}
1235
1236static void WriteDIImportedEntity(const DIImportedEntity *N,
1237                                  const ValueEnumerator &VE,
1238                                  BitstreamWriter &Stream,
1239                                  SmallVectorImpl<uint64_t> &Record,
1240                                  unsigned Abbrev) {
1241  Record.push_back(N->isDistinct());
1242  Record.push_back(N->getTag());
1243  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1244  Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1245  Record.push_back(N->getLine());
1246  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1247
1248  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1249  Record.clear();
1250}
1251
1252static void WriteModuleMetadata(const Module *M,
1253                                const ValueEnumerator &VE,
1254                                BitstreamWriter &Stream) {
1255  const auto &MDs = VE.getMDs();
1256  if (MDs.empty() && M->named_metadata_empty())
1257    return;
1258
1259  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1260
1261  unsigned MDSAbbrev = 0;
1262  if (VE.hasMDString()) {
1263    // Abbrev for METADATA_STRING.
1264    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1265    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1266    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1267    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1268    MDSAbbrev = Stream.EmitAbbrev(Abbv);
1269  }
1270
1271  // Initialize MDNode abbreviations.
1272#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1273#include "llvm/IR/Metadata.def"
1274
1275  if (VE.hasDILocation()) {
1276    // Abbrev for METADATA_LOCATION.
1277    //
1278    // Assume the column is usually under 128, and always output the inlined-at
1279    // location (it's never more expensive than building an array size 1).
1280    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1281    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1282    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1283    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1284    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1285    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1286    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1287    DILocationAbbrev = Stream.EmitAbbrev(Abbv);
1288  }
1289
1290  if (VE.hasGenericDINode()) {
1291    // Abbrev for METADATA_GENERIC_DEBUG.
1292    //
1293    // Assume the column is usually under 128, and always output the inlined-at
1294    // location (it's never more expensive than building an array size 1).
1295    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1296    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1297    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1298    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1299    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1300    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1301    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1302    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1303    GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv);
1304  }
1305
1306  unsigned NameAbbrev = 0;
1307  if (!M->named_metadata_empty()) {
1308    // Abbrev for METADATA_NAME.
1309    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1310    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1311    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1312    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1313    NameAbbrev = Stream.EmitAbbrev(Abbv);
1314  }
1315
1316  SmallVector<uint64_t, 64> Record;
1317  for (const Metadata *MD : MDs) {
1318    if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1319      assert(N->isResolved() && "Expected forward references to be resolved");
1320
1321      switch (N->getMetadataID()) {
1322      default:
1323        llvm_unreachable("Invalid MDNode subclass");
1324#define HANDLE_MDNODE_LEAF(CLASS)                                              \
1325  case Metadata::CLASS##Kind:                                                  \
1326    Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
1327    continue;
1328#include "llvm/IR/Metadata.def"
1329      }
1330    }
1331    if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1332      WriteValueAsMetadata(MDC, VE, Stream, Record);
1333      continue;
1334    }
1335    const MDString *MDS = cast<MDString>(MD);
1336    // Code: [strchar x N]
1337    Record.append(MDS->bytes_begin(), MDS->bytes_end());
1338
1339    // Emit the finished record.
1340    Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1341    Record.clear();
1342  }
1343
1344  // Write named metadata.
1345  for (const NamedMDNode &NMD : M->named_metadata()) {
1346    // Write name.
1347    StringRef Str = NMD.getName();
1348    Record.append(Str.bytes_begin(), Str.bytes_end());
1349    Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1350    Record.clear();
1351
1352    // Write named metadata operands.
1353    for (const MDNode *N : NMD.operands())
1354      Record.push_back(VE.getMetadataID(N));
1355    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1356    Record.clear();
1357  }
1358
1359  Stream.ExitBlock();
1360}
1361
1362static void WriteFunctionLocalMetadata(const Function &F,
1363                                       const ValueEnumerator &VE,
1364                                       BitstreamWriter &Stream) {
1365  bool StartedMetadataBlock = false;
1366  SmallVector<uint64_t, 64> Record;
1367  const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1368      VE.getFunctionLocalMDs();
1369  for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1370    assert(MDs[i] && "Expected valid function-local metadata");
1371    if (!StartedMetadataBlock) {
1372      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1373      StartedMetadataBlock = true;
1374    }
1375    WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1376  }
1377
1378  if (StartedMetadataBlock)
1379    Stream.ExitBlock();
1380}
1381
1382static void WriteMetadataAttachment(const Function &F,
1383                                    const ValueEnumerator &VE,
1384                                    BitstreamWriter &Stream) {
1385  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1386
1387  SmallVector<uint64_t, 64> Record;
1388
1389  // Write metadata attachments
1390  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1391  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1392  F.getAllMetadata(MDs);
1393  if (!MDs.empty()) {
1394    for (const auto &I : MDs) {
1395      Record.push_back(I.first);
1396      Record.push_back(VE.getMetadataID(I.second));
1397    }
1398    Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1399    Record.clear();
1400  }
1401
1402  for (const BasicBlock &BB : F)
1403    for (const Instruction &I : BB) {
1404      MDs.clear();
1405      I.getAllMetadataOtherThanDebugLoc(MDs);
1406
1407      // If no metadata, ignore instruction.
1408      if (MDs.empty()) continue;
1409
1410      Record.push_back(VE.getInstructionID(&I));
1411
1412      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1413        Record.push_back(MDs[i].first);
1414        Record.push_back(VE.getMetadataID(MDs[i].second));
1415      }
1416      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1417      Record.clear();
1418    }
1419
1420  Stream.ExitBlock();
1421}
1422
1423static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1424  SmallVector<uint64_t, 64> Record;
1425
1426  // Write metadata kinds
1427  // METADATA_KIND - [n x [id, name]]
1428  SmallVector<StringRef, 8> Names;
1429  M->getMDKindNames(Names);
1430
1431  if (Names.empty()) return;
1432
1433  Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
1434
1435  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1436    Record.push_back(MDKindID);
1437    StringRef KName = Names[MDKindID];
1438    Record.append(KName.begin(), KName.end());
1439
1440    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1441    Record.clear();
1442  }
1443
1444  Stream.ExitBlock();
1445}
1446
1447static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) {
1448  // Write metadata kinds
1449  //
1450  // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1451  //
1452  // OPERAND_BUNDLE_TAG - [strchr x N]
1453
1454  SmallVector<StringRef, 8> Tags;
1455  M->getOperandBundleTags(Tags);
1456
1457  if (Tags.empty())
1458    return;
1459
1460  Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1461
1462  SmallVector<uint64_t, 64> Record;
1463
1464  for (auto Tag : Tags) {
1465    Record.append(Tag.begin(), Tag.end());
1466
1467    Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1468    Record.clear();
1469  }
1470
1471  Stream.ExitBlock();
1472}
1473
1474static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1475  if ((int64_t)V >= 0)
1476    Vals.push_back(V << 1);
1477  else
1478    Vals.push_back((-V << 1) | 1);
1479}
1480
1481static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1482                           const ValueEnumerator &VE,
1483                           BitstreamWriter &Stream, bool isGlobal) {
1484  if (FirstVal == LastVal) return;
1485
1486  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1487
1488  unsigned AggregateAbbrev = 0;
1489  unsigned String8Abbrev = 0;
1490  unsigned CString7Abbrev = 0;
1491  unsigned CString6Abbrev = 0;
1492  // If this is a constant pool for the module, emit module-specific abbrevs.
1493  if (isGlobal) {
1494    // Abbrev for CST_CODE_AGGREGATE.
1495    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1496    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1497    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1498    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1499    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1500
1501    // Abbrev for CST_CODE_STRING.
1502    Abbv = new BitCodeAbbrev();
1503    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1504    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1505    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1506    String8Abbrev = Stream.EmitAbbrev(Abbv);
1507    // Abbrev for CST_CODE_CSTRING.
1508    Abbv = new BitCodeAbbrev();
1509    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1510    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1511    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1512    CString7Abbrev = Stream.EmitAbbrev(Abbv);
1513    // Abbrev for CST_CODE_CSTRING.
1514    Abbv = new BitCodeAbbrev();
1515    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1516    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1517    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1518    CString6Abbrev = Stream.EmitAbbrev(Abbv);
1519  }
1520
1521  SmallVector<uint64_t, 64> Record;
1522
1523  const ValueEnumerator::ValueList &Vals = VE.getValues();
1524  Type *LastTy = nullptr;
1525  for (unsigned i = FirstVal; i != LastVal; ++i) {
1526    const Value *V = Vals[i].first;
1527    // If we need to switch types, do so now.
1528    if (V->getType() != LastTy) {
1529      LastTy = V->getType();
1530      Record.push_back(VE.getTypeID(LastTy));
1531      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1532                        CONSTANTS_SETTYPE_ABBREV);
1533      Record.clear();
1534    }
1535
1536    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1537      Record.push_back(unsigned(IA->hasSideEffects()) |
1538                       unsigned(IA->isAlignStack()) << 1 |
1539                       unsigned(IA->getDialect()&1) << 2);
1540
1541      // Add the asm string.
1542      const std::string &AsmStr = IA->getAsmString();
1543      Record.push_back(AsmStr.size());
1544      Record.append(AsmStr.begin(), AsmStr.end());
1545
1546      // Add the constraint string.
1547      const std::string &ConstraintStr = IA->getConstraintString();
1548      Record.push_back(ConstraintStr.size());
1549      Record.append(ConstraintStr.begin(), ConstraintStr.end());
1550      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1551      Record.clear();
1552      continue;
1553    }
1554    const Constant *C = cast<Constant>(V);
1555    unsigned Code = -1U;
1556    unsigned AbbrevToUse = 0;
1557    if (C->isNullValue()) {
1558      Code = bitc::CST_CODE_NULL;
1559    } else if (isa<UndefValue>(C)) {
1560      Code = bitc::CST_CODE_UNDEF;
1561    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1562      if (IV->getBitWidth() <= 64) {
1563        uint64_t V = IV->getSExtValue();
1564        emitSignedInt64(Record, V);
1565        Code = bitc::CST_CODE_INTEGER;
1566        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1567      } else {                             // Wide integers, > 64 bits in size.
1568        // We have an arbitrary precision integer value to write whose
1569        // bit width is > 64. However, in canonical unsigned integer
1570        // format it is likely that the high bits are going to be zero.
1571        // So, we only write the number of active words.
1572        unsigned NWords = IV->getValue().getActiveWords();
1573        const uint64_t *RawWords = IV->getValue().getRawData();
1574        for (unsigned i = 0; i != NWords; ++i) {
1575          emitSignedInt64(Record, RawWords[i]);
1576        }
1577        Code = bitc::CST_CODE_WIDE_INTEGER;
1578      }
1579    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1580      Code = bitc::CST_CODE_FLOAT;
1581      Type *Ty = CFP->getType();
1582      if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1583        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1584      } else if (Ty->isX86_FP80Ty()) {
1585        // api needed to prevent premature destruction
1586        // bits are not in the same order as a normal i80 APInt, compensate.
1587        APInt api = CFP->getValueAPF().bitcastToAPInt();
1588        const uint64_t *p = api.getRawData();
1589        Record.push_back((p[1] << 48) | (p[0] >> 16));
1590        Record.push_back(p[0] & 0xffffLL);
1591      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1592        APInt api = CFP->getValueAPF().bitcastToAPInt();
1593        const uint64_t *p = api.getRawData();
1594        Record.push_back(p[0]);
1595        Record.push_back(p[1]);
1596      } else {
1597        assert (0 && "Unknown FP type!");
1598      }
1599    } else if (isa<ConstantDataSequential>(C) &&
1600               cast<ConstantDataSequential>(C)->isString()) {
1601      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1602      // Emit constant strings specially.
1603      unsigned NumElts = Str->getNumElements();
1604      // If this is a null-terminated string, use the denser CSTRING encoding.
1605      if (Str->isCString()) {
1606        Code = bitc::CST_CODE_CSTRING;
1607        --NumElts;  // Don't encode the null, which isn't allowed by char6.
1608      } else {
1609        Code = bitc::CST_CODE_STRING;
1610        AbbrevToUse = String8Abbrev;
1611      }
1612      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1613      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1614      for (unsigned i = 0; i != NumElts; ++i) {
1615        unsigned char V = Str->getElementAsInteger(i);
1616        Record.push_back(V);
1617        isCStr7 &= (V & 128) == 0;
1618        if (isCStrChar6)
1619          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1620      }
1621
1622      if (isCStrChar6)
1623        AbbrevToUse = CString6Abbrev;
1624      else if (isCStr7)
1625        AbbrevToUse = CString7Abbrev;
1626    } else if (const ConstantDataSequential *CDS =
1627                  dyn_cast<ConstantDataSequential>(C)) {
1628      Code = bitc::CST_CODE_DATA;
1629      Type *EltTy = CDS->getType()->getElementType();
1630      if (isa<IntegerType>(EltTy)) {
1631        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1632          Record.push_back(CDS->getElementAsInteger(i));
1633      } else {
1634        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1635          Record.push_back(
1636              CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
1637      }
1638    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1639               isa<ConstantVector>(C)) {
1640      Code = bitc::CST_CODE_AGGREGATE;
1641      for (const Value *Op : C->operands())
1642        Record.push_back(VE.getValueID(Op));
1643      AbbrevToUse = AggregateAbbrev;
1644    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1645      switch (CE->getOpcode()) {
1646      default:
1647        if (Instruction::isCast(CE->getOpcode())) {
1648          Code = bitc::CST_CODE_CE_CAST;
1649          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1650          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1651          Record.push_back(VE.getValueID(C->getOperand(0)));
1652          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1653        } else {
1654          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1655          Code = bitc::CST_CODE_CE_BINOP;
1656          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1657          Record.push_back(VE.getValueID(C->getOperand(0)));
1658          Record.push_back(VE.getValueID(C->getOperand(1)));
1659          uint64_t Flags = GetOptimizationFlags(CE);
1660          if (Flags != 0)
1661            Record.push_back(Flags);
1662        }
1663        break;
1664      case Instruction::GetElementPtr: {
1665        Code = bitc::CST_CODE_CE_GEP;
1666        const auto *GO = cast<GEPOperator>(C);
1667        if (GO->isInBounds())
1668          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1669        Record.push_back(VE.getTypeID(GO->getSourceElementType()));
1670        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1671          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1672          Record.push_back(VE.getValueID(C->getOperand(i)));
1673        }
1674        break;
1675      }
1676      case Instruction::Select:
1677        Code = bitc::CST_CODE_CE_SELECT;
1678        Record.push_back(VE.getValueID(C->getOperand(0)));
1679        Record.push_back(VE.getValueID(C->getOperand(1)));
1680        Record.push_back(VE.getValueID(C->getOperand(2)));
1681        break;
1682      case Instruction::ExtractElement:
1683        Code = bitc::CST_CODE_CE_EXTRACTELT;
1684        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1685        Record.push_back(VE.getValueID(C->getOperand(0)));
1686        Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1687        Record.push_back(VE.getValueID(C->getOperand(1)));
1688        break;
1689      case Instruction::InsertElement:
1690        Code = bitc::CST_CODE_CE_INSERTELT;
1691        Record.push_back(VE.getValueID(C->getOperand(0)));
1692        Record.push_back(VE.getValueID(C->getOperand(1)));
1693        Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1694        Record.push_back(VE.getValueID(C->getOperand(2)));
1695        break;
1696      case Instruction::ShuffleVector:
1697        // If the return type and argument types are the same, this is a
1698        // standard shufflevector instruction.  If the types are different,
1699        // then the shuffle is widening or truncating the input vectors, and
1700        // the argument type must also be encoded.
1701        if (C->getType() == C->getOperand(0)->getType()) {
1702          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1703        } else {
1704          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1705          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1706        }
1707        Record.push_back(VE.getValueID(C->getOperand(0)));
1708        Record.push_back(VE.getValueID(C->getOperand(1)));
1709        Record.push_back(VE.getValueID(C->getOperand(2)));
1710        break;
1711      case Instruction::ICmp:
1712      case Instruction::FCmp:
1713        Code = bitc::CST_CODE_CE_CMP;
1714        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1715        Record.push_back(VE.getValueID(C->getOperand(0)));
1716        Record.push_back(VE.getValueID(C->getOperand(1)));
1717        Record.push_back(CE->getPredicate());
1718        break;
1719      }
1720    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1721      Code = bitc::CST_CODE_BLOCKADDRESS;
1722      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1723      Record.push_back(VE.getValueID(BA->getFunction()));
1724      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1725    } else {
1726#ifndef NDEBUG
1727      C->dump();
1728#endif
1729      llvm_unreachable("Unknown constant!");
1730    }
1731    Stream.EmitRecord(Code, Record, AbbrevToUse);
1732    Record.clear();
1733  }
1734
1735  Stream.ExitBlock();
1736}
1737
1738static void WriteModuleConstants(const ValueEnumerator &VE,
1739                                 BitstreamWriter &Stream) {
1740  const ValueEnumerator::ValueList &Vals = VE.getValues();
1741
1742  // Find the first constant to emit, which is the first non-globalvalue value.
1743  // We know globalvalues have been emitted by WriteModuleInfo.
1744  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1745    if (!isa<GlobalValue>(Vals[i].first)) {
1746      WriteConstants(i, Vals.size(), VE, Stream, true);
1747      return;
1748    }
1749  }
1750}
1751
1752/// PushValueAndType - The file has to encode both the value and type id for
1753/// many values, because we need to know what type to create for forward
1754/// references.  However, most operands are not forward references, so this type
1755/// field is not needed.
1756///
1757/// This function adds V's value ID to Vals.  If the value ID is higher than the
1758/// instruction ID, then it is a forward reference, and it also includes the
1759/// type ID.  The value ID that is written is encoded relative to the InstID.
1760static bool PushValueAndType(const Value *V, unsigned InstID,
1761                             SmallVectorImpl<unsigned> &Vals,
1762                             ValueEnumerator &VE) {
1763  unsigned ValID = VE.getValueID(V);
1764  // Make encoding relative to the InstID.
1765  Vals.push_back(InstID - ValID);
1766  if (ValID >= InstID) {
1767    Vals.push_back(VE.getTypeID(V->getType()));
1768    return true;
1769  }
1770  return false;
1771}
1772
1773static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS,
1774                                unsigned InstID, ValueEnumerator &VE) {
1775  SmallVector<unsigned, 64> Record;
1776  LLVMContext &C = CS.getInstruction()->getContext();
1777
1778  for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1779    const auto &Bundle = CS.getOperandBundleAt(i);
1780    Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
1781
1782    for (auto &Input : Bundle.Inputs)
1783      PushValueAndType(Input, InstID, Record, VE);
1784
1785    Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
1786    Record.clear();
1787  }
1788}
1789
1790/// pushValue - Like PushValueAndType, but where the type of the value is
1791/// omitted (perhaps it was already encoded in an earlier operand).
1792static void pushValue(const Value *V, unsigned InstID,
1793                      SmallVectorImpl<unsigned> &Vals,
1794                      ValueEnumerator &VE) {
1795  unsigned ValID = VE.getValueID(V);
1796  Vals.push_back(InstID - ValID);
1797}
1798
1799static void pushValueSigned(const Value *V, unsigned InstID,
1800                            SmallVectorImpl<uint64_t> &Vals,
1801                            ValueEnumerator &VE) {
1802  unsigned ValID = VE.getValueID(V);
1803  int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1804  emitSignedInt64(Vals, diff);
1805}
1806
1807/// WriteInstruction - Emit an instruction to the specified stream.
1808static void WriteInstruction(const Instruction &I, unsigned InstID,
1809                             ValueEnumerator &VE, BitstreamWriter &Stream,
1810                             SmallVectorImpl<unsigned> &Vals) {
1811  unsigned Code = 0;
1812  unsigned AbbrevToUse = 0;
1813  VE.setInstructionID(&I);
1814  switch (I.getOpcode()) {
1815  default:
1816    if (Instruction::isCast(I.getOpcode())) {
1817      Code = bitc::FUNC_CODE_INST_CAST;
1818      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1819        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1820      Vals.push_back(VE.getTypeID(I.getType()));
1821      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1822    } else {
1823      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1824      Code = bitc::FUNC_CODE_INST_BINOP;
1825      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1826        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1827      pushValue(I.getOperand(1), InstID, Vals, VE);
1828      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1829      uint64_t Flags = GetOptimizationFlags(&I);
1830      if (Flags != 0) {
1831        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1832          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1833        Vals.push_back(Flags);
1834      }
1835    }
1836    break;
1837
1838  case Instruction::GetElementPtr: {
1839    Code = bitc::FUNC_CODE_INST_GEP;
1840    AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
1841    auto &GEPInst = cast<GetElementPtrInst>(I);
1842    Vals.push_back(GEPInst.isInBounds());
1843    Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
1844    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1845      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1846    break;
1847  }
1848  case Instruction::ExtractValue: {
1849    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1850    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1851    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1852    Vals.append(EVI->idx_begin(), EVI->idx_end());
1853    break;
1854  }
1855  case Instruction::InsertValue: {
1856    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1857    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1858    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1859    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1860    Vals.append(IVI->idx_begin(), IVI->idx_end());
1861    break;
1862  }
1863  case Instruction::Select:
1864    Code = bitc::FUNC_CODE_INST_VSELECT;
1865    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1866    pushValue(I.getOperand(2), InstID, Vals, VE);
1867    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1868    break;
1869  case Instruction::ExtractElement:
1870    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1871    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1872    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1873    break;
1874  case Instruction::InsertElement:
1875    Code = bitc::FUNC_CODE_INST_INSERTELT;
1876    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1877    pushValue(I.getOperand(1), InstID, Vals, VE);
1878    PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1879    break;
1880  case Instruction::ShuffleVector:
1881    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1882    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1883    pushValue(I.getOperand(1), InstID, Vals, VE);
1884    pushValue(I.getOperand(2), InstID, Vals, VE);
1885    break;
1886  case Instruction::ICmp:
1887  case Instruction::FCmp: {
1888    // compare returning Int1Ty or vector of Int1Ty
1889    Code = bitc::FUNC_CODE_INST_CMP2;
1890    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1891    pushValue(I.getOperand(1), InstID, Vals, VE);
1892    Vals.push_back(cast<CmpInst>(I).getPredicate());
1893    uint64_t Flags = GetOptimizationFlags(&I);
1894    if (Flags != 0)
1895      Vals.push_back(Flags);
1896    break;
1897  }
1898
1899  case Instruction::Ret:
1900    {
1901      Code = bitc::FUNC_CODE_INST_RET;
1902      unsigned NumOperands = I.getNumOperands();
1903      if (NumOperands == 0)
1904        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1905      else if (NumOperands == 1) {
1906        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1907          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1908      } else {
1909        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1910          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1911      }
1912    }
1913    break;
1914  case Instruction::Br:
1915    {
1916      Code = bitc::FUNC_CODE_INST_BR;
1917      const BranchInst &II = cast<BranchInst>(I);
1918      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1919      if (II.isConditional()) {
1920        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1921        pushValue(II.getCondition(), InstID, Vals, VE);
1922      }
1923    }
1924    break;
1925  case Instruction::Switch:
1926    {
1927      Code = bitc::FUNC_CODE_INST_SWITCH;
1928      const SwitchInst &SI = cast<SwitchInst>(I);
1929      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1930      pushValue(SI.getCondition(), InstID, Vals, VE);
1931      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1932      for (SwitchInst::ConstCaseIt Case : SI.cases()) {
1933        Vals.push_back(VE.getValueID(Case.getCaseValue()));
1934        Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
1935      }
1936    }
1937    break;
1938  case Instruction::IndirectBr:
1939    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1940    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1941    // Encode the address operand as relative, but not the basic blocks.
1942    pushValue(I.getOperand(0), InstID, Vals, VE);
1943    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1944      Vals.push_back(VE.getValueID(I.getOperand(i)));
1945    break;
1946
1947  case Instruction::Invoke: {
1948    const InvokeInst *II = cast<InvokeInst>(&I);
1949    const Value *Callee = II->getCalledValue();
1950    FunctionType *FTy = II->getFunctionType();
1951
1952    if (II->hasOperandBundles())
1953      WriteOperandBundles(Stream, II, InstID, VE);
1954
1955    Code = bitc::FUNC_CODE_INST_INVOKE;
1956
1957    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1958    Vals.push_back(II->getCallingConv() | 1 << 13);
1959    Vals.push_back(VE.getValueID(II->getNormalDest()));
1960    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1961    Vals.push_back(VE.getTypeID(FTy));
1962    PushValueAndType(Callee, InstID, Vals, VE);
1963
1964    // Emit value #'s for the fixed parameters.
1965    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1966      pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
1967
1968    // Emit type/value pairs for varargs params.
1969    if (FTy->isVarArg()) {
1970      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1971           i != e; ++i)
1972        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1973    }
1974    break;
1975  }
1976  case Instruction::Resume:
1977    Code = bitc::FUNC_CODE_INST_RESUME;
1978    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1979    break;
1980  case Instruction::CleanupRet: {
1981    Code = bitc::FUNC_CODE_INST_CLEANUPRET;
1982    const auto &CRI = cast<CleanupReturnInst>(I);
1983    pushValue(CRI.getCleanupPad(), InstID, Vals, VE);
1984    if (CRI.hasUnwindDest())
1985      Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
1986    break;
1987  }
1988  case Instruction::CatchRet: {
1989    Code = bitc::FUNC_CODE_INST_CATCHRET;
1990    const auto &CRI = cast<CatchReturnInst>(I);
1991    pushValue(CRI.getCatchPad(), InstID, Vals, VE);
1992    Vals.push_back(VE.getValueID(CRI.getSuccessor()));
1993    break;
1994  }
1995  case Instruction::CleanupPad:
1996  case Instruction::CatchPad: {
1997    const auto &FuncletPad = cast<FuncletPadInst>(I);
1998    Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
1999                                         : bitc::FUNC_CODE_INST_CLEANUPPAD;
2000    pushValue(FuncletPad.getParentPad(), InstID, Vals, VE);
2001
2002    unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2003    Vals.push_back(NumArgOperands);
2004    for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2005      PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE);
2006    break;
2007  }
2008  case Instruction::CatchSwitch: {
2009    Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2010    const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2011
2012    pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE);
2013
2014    unsigned NumHandlers = CatchSwitch.getNumHandlers();
2015    Vals.push_back(NumHandlers);
2016    for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2017      Vals.push_back(VE.getValueID(CatchPadBB));
2018
2019    if (CatchSwitch.hasUnwindDest())
2020      Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2021    break;
2022  }
2023  case Instruction::Unreachable:
2024    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2025    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2026    break;
2027
2028  case Instruction::PHI: {
2029    const PHINode &PN = cast<PHINode>(I);
2030    Code = bitc::FUNC_CODE_INST_PHI;
2031    // With the newer instruction encoding, forward references could give
2032    // negative valued IDs.  This is most common for PHIs, so we use
2033    // signed VBRs.
2034    SmallVector<uint64_t, 128> Vals64;
2035    Vals64.push_back(VE.getTypeID(PN.getType()));
2036    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2037      pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
2038      Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2039    }
2040    // Emit a Vals64 vector and exit.
2041    Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2042    Vals64.clear();
2043    return;
2044  }
2045
2046  case Instruction::LandingPad: {
2047    const LandingPadInst &LP = cast<LandingPadInst>(I);
2048    Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2049    Vals.push_back(VE.getTypeID(LP.getType()));
2050    Vals.push_back(LP.isCleanup());
2051    Vals.push_back(LP.getNumClauses());
2052    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2053      if (LP.isCatch(I))
2054        Vals.push_back(LandingPadInst::Catch);
2055      else
2056        Vals.push_back(LandingPadInst::Filter);
2057      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
2058    }
2059    break;
2060  }
2061
2062  case Instruction::Alloca: {
2063    Code = bitc::FUNC_CODE_INST_ALLOCA;
2064    const AllocaInst &AI = cast<AllocaInst>(I);
2065    Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2066    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2067    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2068    unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2069    assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2070           "not enough bits for maximum alignment");
2071    assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2072    AlignRecord |= AI.isUsedWithInAlloca() << 5;
2073    AlignRecord |= 1 << 6;
2074    // Reserve bit 7 for SwiftError flag.
2075    // AlignRecord |= AI.isSwiftError() << 7;
2076    Vals.push_back(AlignRecord);
2077    break;
2078  }
2079
2080  case Instruction::Load:
2081    if (cast<LoadInst>(I).isAtomic()) {
2082      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2083      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
2084    } else {
2085      Code = bitc::FUNC_CODE_INST_LOAD;
2086      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
2087        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2088    }
2089    Vals.push_back(VE.getTypeID(I.getType()));
2090    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2091    Vals.push_back(cast<LoadInst>(I).isVolatile());
2092    if (cast<LoadInst>(I).isAtomic()) {
2093      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2094      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2095    }
2096    break;
2097  case Instruction::Store:
2098    if (cast<StoreInst>(I).isAtomic())
2099      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2100    else
2101      Code = bitc::FUNC_CODE_INST_STORE;
2102    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
2103    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // valty + val
2104    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2105    Vals.push_back(cast<StoreInst>(I).isVolatile());
2106    if (cast<StoreInst>(I).isAtomic()) {
2107      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2108      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2109    }
2110    break;
2111  case Instruction::AtomicCmpXchg:
2112    Code = bitc::FUNC_CODE_INST_CMPXCHG;
2113    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2114    PushValueAndType(I.getOperand(1), InstID, Vals, VE);         // cmp.
2115    pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
2116    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2117    Vals.push_back(GetEncodedOrdering(
2118                     cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2119    Vals.push_back(GetEncodedSynchScope(
2120                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
2121    Vals.push_back(GetEncodedOrdering(
2122                     cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2123    Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2124    break;
2125  case Instruction::AtomicRMW:
2126    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2127    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2128    pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
2129    Vals.push_back(GetEncodedRMWOperation(
2130                     cast<AtomicRMWInst>(I).getOperation()));
2131    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2132    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2133    Vals.push_back(GetEncodedSynchScope(
2134                     cast<AtomicRMWInst>(I).getSynchScope()));
2135    break;
2136  case Instruction::Fence:
2137    Code = bitc::FUNC_CODE_INST_FENCE;
2138    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2139    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2140    break;
2141  case Instruction::Call: {
2142    const CallInst &CI = cast<CallInst>(I);
2143    FunctionType *FTy = CI.getFunctionType();
2144
2145    if (CI.hasOperandBundles())
2146      WriteOperandBundles(Stream, &CI, InstID, VE);
2147
2148    Code = bitc::FUNC_CODE_INST_CALL;
2149
2150    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2151
2152    unsigned Flags = GetOptimizationFlags(&I);
2153    Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2154                   unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2155                   unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2156                   1 << bitc::CALL_EXPLICIT_TYPE |
2157                   unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2158                   unsigned(Flags != 0) << bitc::CALL_FMF);
2159    if (Flags != 0)
2160      Vals.push_back(Flags);
2161
2162    Vals.push_back(VE.getTypeID(FTy));
2163    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
2164
2165    // Emit value #'s for the fixed parameters.
2166    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2167      // Check for labels (can happen with asm labels).
2168      if (FTy->getParamType(i)->isLabelTy())
2169        Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2170      else
2171        pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
2172    }
2173
2174    // Emit type/value pairs for varargs params.
2175    if (FTy->isVarArg()) {
2176      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2177           i != e; ++i)
2178        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
2179    }
2180    break;
2181  }
2182  case Instruction::VAArg:
2183    Code = bitc::FUNC_CODE_INST_VAARG;
2184    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2185    pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
2186    Vals.push_back(VE.getTypeID(I.getType())); // restype.
2187    break;
2188  }
2189
2190  Stream.EmitRecord(Code, Vals, AbbrevToUse);
2191  Vals.clear();
2192}
2193
2194enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
2195
2196/// Determine the encoding to use for the given string name and length.
2197static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
2198  bool isChar6 = true;
2199  for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
2200    if (isChar6)
2201      isChar6 = BitCodeAbbrevOp::isChar6(*C);
2202    if ((unsigned char)*C & 128)
2203      // don't bother scanning the rest.
2204      return SE_Fixed8;
2205  }
2206  if (isChar6)
2207    return SE_Char6;
2208  else
2209    return SE_Fixed7;
2210}
2211
2212/// Emit names for globals/functions etc. The VSTOffsetPlaceholder,
2213/// BitcodeStartBit and FunctionIndex are only passed for the module-level
2214/// VST, where we are including a function bitcode index and need to
2215/// backpatch the VST forward declaration record.
2216static void WriteValueSymbolTable(
2217    const ValueSymbolTable &VST, const ValueEnumerator &VE,
2218    BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0,
2219    uint64_t BitcodeStartBit = 0,
2220    DenseMap<const Function *, std::unique_ptr<FunctionInfo>> *FunctionIndex =
2221        nullptr) {
2222  if (VST.empty()) {
2223    // WriteValueSymbolTableForwardDecl should have returned early as
2224    // well. Ensure this handling remains in sync by asserting that
2225    // the placeholder offset is not set.
2226    assert(VSTOffsetPlaceholder == 0);
2227    return;
2228  }
2229
2230  if (VSTOffsetPlaceholder > 0) {
2231    // Get the offset of the VST we are writing, and backpatch it into
2232    // the VST forward declaration record.
2233    uint64_t VSTOffset = Stream.GetCurrentBitNo();
2234    // The BitcodeStartBit was the stream offset of the actual bitcode
2235    // (e.g. excluding any initial darwin header).
2236    VSTOffset -= BitcodeStartBit;
2237    assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2238    Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2239  }
2240
2241  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2242
2243  // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2244  // records, which are not used in the per-function VSTs.
2245  unsigned FnEntry8BitAbbrev;
2246  unsigned FnEntry7BitAbbrev;
2247  unsigned FnEntry6BitAbbrev;
2248  if (VSTOffsetPlaceholder > 0) {
2249    // 8-bit fixed-width VST_FNENTRY function strings.
2250    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2251    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2252    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2253    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2254    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2255    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2256    FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2257
2258    // 7-bit fixed width VST_FNENTRY function strings.
2259    Abbv = new BitCodeAbbrev();
2260    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2261    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2262    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2263    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2264    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2265    FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2266
2267    // 6-bit char6 VST_FNENTRY function strings.
2268    Abbv = new BitCodeAbbrev();
2269    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2270    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2271    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2272    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2273    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2274    FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2275  }
2276
2277  // FIXME: Set up the abbrev, we know how many values there are!
2278  // FIXME: We know if the type names can use 7-bit ascii.
2279  SmallVector<unsigned, 64> NameVals;
2280
2281  for (const ValueName &Name : VST) {
2282    // Figure out the encoding to use for the name.
2283    StringEncoding Bits =
2284        getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2285
2286    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2287    NameVals.push_back(VE.getValueID(Name.getValue()));
2288
2289    Function *F = dyn_cast<Function>(Name.getValue());
2290    if (!F) {
2291      // If value is an alias, need to get the aliased base object to
2292      // see if it is a function.
2293      auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2294      if (GA && GA->getBaseObject())
2295        F = dyn_cast<Function>(GA->getBaseObject());
2296    }
2297
2298    // VST_ENTRY:   [valueid, namechar x N]
2299    // VST_FNENTRY: [valueid, funcoffset, namechar x N]
2300    // VST_BBENTRY: [bbid, namechar x N]
2301    unsigned Code;
2302    if (isa<BasicBlock>(Name.getValue())) {
2303      Code = bitc::VST_CODE_BBENTRY;
2304      if (Bits == SE_Char6)
2305        AbbrevToUse = VST_BBENTRY_6_ABBREV;
2306    } else if (F && !F->isDeclaration()) {
2307      // Must be the module-level VST, where we pass in the Index and
2308      // have a VSTOffsetPlaceholder. The function-level VST should not
2309      // contain any Function symbols.
2310      assert(FunctionIndex);
2311      assert(VSTOffsetPlaceholder > 0);
2312
2313      // Save the word offset of the function (from the start of the
2314      // actual bitcode written to the stream).
2315      assert(FunctionIndex->count(F) == 1);
2316      uint64_t BitcodeIndex =
2317          (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit;
2318      assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2319      NameVals.push_back(BitcodeIndex / 32);
2320
2321      Code = bitc::VST_CODE_FNENTRY;
2322      AbbrevToUse = FnEntry8BitAbbrev;
2323      if (Bits == SE_Char6)
2324        AbbrevToUse = FnEntry6BitAbbrev;
2325      else if (Bits == SE_Fixed7)
2326        AbbrevToUse = FnEntry7BitAbbrev;
2327    } else {
2328      Code = bitc::VST_CODE_ENTRY;
2329      if (Bits == SE_Char6)
2330        AbbrevToUse = VST_ENTRY_6_ABBREV;
2331      else if (Bits == SE_Fixed7)
2332        AbbrevToUse = VST_ENTRY_7_ABBREV;
2333    }
2334
2335    for (const auto P : Name.getKey())
2336      NameVals.push_back((unsigned char)P);
2337
2338    // Emit the finished record.
2339    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2340    NameVals.clear();
2341  }
2342  Stream.ExitBlock();
2343}
2344
2345/// Emit function names and summary offsets for the combined index
2346/// used by ThinLTO.
2347static void WriteCombinedValueSymbolTable(const FunctionInfoIndex &Index,
2348                                          BitstreamWriter &Stream) {
2349  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2350
2351  // 8-bit fixed-width VST_COMBINED_FNENTRY function strings.
2352  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2353  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY));
2354  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2355  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2356  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2357  unsigned FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2358
2359  // 7-bit fixed width VST_COMBINED_FNENTRY function strings.
2360  Abbv = new BitCodeAbbrev();
2361  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY));
2362  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2363  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2364  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2365  unsigned FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2366
2367  // 6-bit char6 VST_COMBINED_FNENTRY function strings.
2368  Abbv = new BitCodeAbbrev();
2369  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_FNENTRY));
2370  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2371  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2372  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2373  unsigned FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2374
2375  // FIXME: We know if the type names can use 7-bit ascii.
2376  SmallVector<unsigned, 64> NameVals;
2377
2378  for (const auto &FII : Index) {
2379    for (const auto &FI : FII.getValue()) {
2380      NameVals.push_back(FI->bitcodeIndex());
2381
2382      StringRef FuncName = FII.first();
2383
2384      // Figure out the encoding to use for the name.
2385      StringEncoding Bits = getStringEncoding(FuncName.data(), FuncName.size());
2386
2387      // VST_COMBINED_FNENTRY: [funcsumoffset, namechar x N]
2388      unsigned AbbrevToUse = FnEntry8BitAbbrev;
2389      if (Bits == SE_Char6)
2390        AbbrevToUse = FnEntry6BitAbbrev;
2391      else if (Bits == SE_Fixed7)
2392        AbbrevToUse = FnEntry7BitAbbrev;
2393
2394      for (const auto P : FuncName)
2395        NameVals.push_back((unsigned char)P);
2396
2397      // Emit the finished record.
2398      Stream.EmitRecord(bitc::VST_CODE_COMBINED_FNENTRY, NameVals, AbbrevToUse);
2399      NameVals.clear();
2400    }
2401  }
2402  Stream.ExitBlock();
2403}
2404
2405static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
2406                         BitstreamWriter &Stream) {
2407  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2408  unsigned Code;
2409  if (isa<BasicBlock>(Order.V))
2410    Code = bitc::USELIST_CODE_BB;
2411  else
2412    Code = bitc::USELIST_CODE_DEFAULT;
2413
2414  SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2415  Record.push_back(VE.getValueID(Order.V));
2416  Stream.EmitRecord(Code, Record);
2417}
2418
2419static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2420                              BitstreamWriter &Stream) {
2421  assert(VE.shouldPreserveUseListOrder() &&
2422         "Expected to be preserving use-list order");
2423
2424  auto hasMore = [&]() {
2425    return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2426  };
2427  if (!hasMore())
2428    // Nothing to do.
2429    return;
2430
2431  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2432  while (hasMore()) {
2433    WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2434    VE.UseListOrders.pop_back();
2435  }
2436  Stream.ExitBlock();
2437}
2438
2439/// \brief Save information for the given function into the function index.
2440///
2441/// At a minimum this saves the bitcode index of the function record that
2442/// was just written. However, if we are emitting function summary information,
2443/// for example for ThinLTO, then a \a FunctionSummary object is created
2444/// to hold the provided summary information.
2445static void SaveFunctionInfo(
2446    const Function &F,
2447    DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex,
2448    unsigned NumInsts, uint64_t BitcodeIndex, bool EmitFunctionSummary) {
2449  std::unique_ptr<FunctionSummary> FuncSummary;
2450  if (EmitFunctionSummary) {
2451    FuncSummary = llvm::make_unique<FunctionSummary>(NumInsts);
2452    FuncSummary->setLocalFunction(F.hasLocalLinkage());
2453  }
2454  FunctionIndex[&F] =
2455      llvm::make_unique<FunctionInfo>(BitcodeIndex, std::move(FuncSummary));
2456}
2457
2458/// Emit a function body to the module stream.
2459static void WriteFunction(
2460    const Function &F, ValueEnumerator &VE, BitstreamWriter &Stream,
2461    DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex,
2462    bool EmitFunctionSummary) {
2463  // Save the bitcode index of the start of this function block for recording
2464  // in the VST.
2465  uint64_t BitcodeIndex = Stream.GetCurrentBitNo();
2466
2467  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2468  VE.incorporateFunction(F);
2469
2470  SmallVector<unsigned, 64> Vals;
2471
2472  // Emit the number of basic blocks, so the reader can create them ahead of
2473  // time.
2474  Vals.push_back(VE.getBasicBlocks().size());
2475  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2476  Vals.clear();
2477
2478  // If there are function-local constants, emit them now.
2479  unsigned CstStart, CstEnd;
2480  VE.getFunctionConstantRange(CstStart, CstEnd);
2481  WriteConstants(CstStart, CstEnd, VE, Stream, false);
2482
2483  // If there is function-local metadata, emit it now.
2484  WriteFunctionLocalMetadata(F, VE, Stream);
2485
2486  // Keep a running idea of what the instruction ID is.
2487  unsigned InstID = CstEnd;
2488
2489  bool NeedsMetadataAttachment = F.hasMetadata();
2490
2491  DILocation *LastDL = nullptr;
2492  unsigned NumInsts = 0;
2493
2494  // Finally, emit all the instructions, in order.
2495  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2496    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2497         I != E; ++I) {
2498      WriteInstruction(*I, InstID, VE, Stream, Vals);
2499
2500      if (!isa<DbgInfoIntrinsic>(I))
2501        ++NumInsts;
2502
2503      if (!I->getType()->isVoidTy())
2504        ++InstID;
2505
2506      // If the instruction has metadata, write a metadata attachment later.
2507      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2508
2509      // If the instruction has a debug location, emit it.
2510      DILocation *DL = I->getDebugLoc();
2511      if (!DL)
2512        continue;
2513
2514      if (DL == LastDL) {
2515        // Just repeat the same debug loc as last time.
2516        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2517        continue;
2518      }
2519
2520      Vals.push_back(DL->getLine());
2521      Vals.push_back(DL->getColumn());
2522      Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2523      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2524      Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2525      Vals.clear();
2526
2527      LastDL = DL;
2528    }
2529
2530  // Emit names for all the instructions etc.
2531  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2532
2533  if (NeedsMetadataAttachment)
2534    WriteMetadataAttachment(F, VE, Stream);
2535  if (VE.shouldPreserveUseListOrder())
2536    WriteUseListBlock(&F, VE, Stream);
2537  VE.purgeFunction();
2538  Stream.ExitBlock();
2539
2540  SaveFunctionInfo(F, FunctionIndex, NumInsts, BitcodeIndex,
2541                   EmitFunctionSummary);
2542}
2543
2544// Emit blockinfo, which defines the standard abbreviations etc.
2545static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2546  // We only want to emit block info records for blocks that have multiple
2547  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2548  // Other blocks can define their abbrevs inline.
2549  Stream.EnterBlockInfoBlock(2);
2550
2551  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2552    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2553    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2554    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2555    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2556    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2557    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2558                                   Abbv) != VST_ENTRY_8_ABBREV)
2559      llvm_unreachable("Unexpected abbrev ordering!");
2560  }
2561
2562  { // 7-bit fixed width VST_ENTRY strings.
2563    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2564    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2565    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2566    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2567    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2568    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2569                                   Abbv) != VST_ENTRY_7_ABBREV)
2570      llvm_unreachable("Unexpected abbrev ordering!");
2571  }
2572  { // 6-bit char6 VST_ENTRY strings.
2573    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2574    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2575    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2576    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2577    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2578    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2579                                   Abbv) != VST_ENTRY_6_ABBREV)
2580      llvm_unreachable("Unexpected abbrev ordering!");
2581  }
2582  { // 6-bit char6 VST_BBENTRY strings.
2583    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2584    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2585    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2586    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2587    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2588    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2589                                   Abbv) != VST_BBENTRY_6_ABBREV)
2590      llvm_unreachable("Unexpected abbrev ordering!");
2591  }
2592
2593
2594
2595  { // SETTYPE abbrev for CONSTANTS_BLOCK.
2596    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2597    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2598    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2599                              VE.computeBitsRequiredForTypeIndicies()));
2600    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2601                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
2602      llvm_unreachable("Unexpected abbrev ordering!");
2603  }
2604
2605  { // INTEGER abbrev for CONSTANTS_BLOCK.
2606    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2607    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2608    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2609    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2610                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
2611      llvm_unreachable("Unexpected abbrev ordering!");
2612  }
2613
2614  { // CE_CAST abbrev for CONSTANTS_BLOCK.
2615    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2616    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2617    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2618    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2619                              VE.computeBitsRequiredForTypeIndicies()));
2620    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2621
2622    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2623                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
2624      llvm_unreachable("Unexpected abbrev ordering!");
2625  }
2626  { // NULL abbrev for CONSTANTS_BLOCK.
2627    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2628    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2629    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2630                                   Abbv) != CONSTANTS_NULL_Abbrev)
2631      llvm_unreachable("Unexpected abbrev ordering!");
2632  }
2633
2634  // FIXME: This should only use space for first class types!
2635
2636  { // INST_LOAD abbrev for FUNCTION_BLOCK.
2637    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2638    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2639    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2640    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2641                              VE.computeBitsRequiredForTypeIndicies()));
2642    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2643    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2644    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2645                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
2646      llvm_unreachable("Unexpected abbrev ordering!");
2647  }
2648  { // INST_BINOP abbrev for FUNCTION_BLOCK.
2649    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2650    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2651    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2652    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2653    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2654    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2655                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
2656      llvm_unreachable("Unexpected abbrev ordering!");
2657  }
2658  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2659    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2660    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2661    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2662    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2663    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2664    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2665    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2666                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2667      llvm_unreachable("Unexpected abbrev ordering!");
2668  }
2669  { // INST_CAST abbrev for FUNCTION_BLOCK.
2670    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2671    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2672    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2673    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2674                              VE.computeBitsRequiredForTypeIndicies()));
2675    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2676    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2677                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
2678      llvm_unreachable("Unexpected abbrev ordering!");
2679  }
2680
2681  { // INST_RET abbrev for FUNCTION_BLOCK.
2682    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2683    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2684    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2685                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2686      llvm_unreachable("Unexpected abbrev ordering!");
2687  }
2688  { // INST_RET abbrev for FUNCTION_BLOCK.
2689    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2690    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2691    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2692    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2693                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2694      llvm_unreachable("Unexpected abbrev ordering!");
2695  }
2696  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2697    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2698    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2699    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2700                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2701      llvm_unreachable("Unexpected abbrev ordering!");
2702  }
2703  {
2704    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2705    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2706    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2707    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2708                              Log2_32_Ceil(VE.getTypes().size() + 1)));
2709    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2710    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2711    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2712        FUNCTION_INST_GEP_ABBREV)
2713      llvm_unreachable("Unexpected abbrev ordering!");
2714  }
2715
2716  Stream.ExitBlock();
2717}
2718
2719/// Write the module path strings, currently only used when generating
2720/// a combined index file.
2721static void WriteModStrings(const FunctionInfoIndex &I,
2722                            BitstreamWriter &Stream) {
2723  Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
2724
2725  // TODO: See which abbrev sizes we actually need to emit
2726
2727  // 8-bit fixed-width MST_ENTRY strings.
2728  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2729  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2730  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2731  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2732  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2733  unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
2734
2735  // 7-bit fixed width MST_ENTRY strings.
2736  Abbv = new BitCodeAbbrev();
2737  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2738  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2739  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2740  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2741  unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
2742
2743  // 6-bit char6 MST_ENTRY strings.
2744  Abbv = new BitCodeAbbrev();
2745  Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2746  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2747  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2748  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2749  unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
2750
2751  SmallVector<unsigned, 64> NameVals;
2752  for (const StringMapEntry<uint64_t> &MPSE : I.modPathStringEntries()) {
2753    StringEncoding Bits =
2754        getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
2755    unsigned AbbrevToUse = Abbrev8Bit;
2756    if (Bits == SE_Char6)
2757      AbbrevToUse = Abbrev6Bit;
2758    else if (Bits == SE_Fixed7)
2759      AbbrevToUse = Abbrev7Bit;
2760
2761    NameVals.push_back(MPSE.getValue());
2762
2763    for (const auto P : MPSE.getKey())
2764      NameVals.push_back((unsigned char)P);
2765
2766    // Emit the finished record.
2767    Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse);
2768    NameVals.clear();
2769  }
2770  Stream.ExitBlock();
2771}
2772
2773// Helper to emit a single function summary record.
2774static void WritePerModuleFunctionSummaryRecord(
2775    SmallVector<unsigned, 64> &NameVals, FunctionSummary *FS, unsigned ValueID,
2776    unsigned FSAbbrev, BitstreamWriter &Stream) {
2777  assert(FS);
2778  NameVals.push_back(ValueID);
2779  NameVals.push_back(FS->isLocalFunction());
2780  NameVals.push_back(FS->instCount());
2781
2782  // Emit the finished record.
2783  Stream.EmitRecord(bitc::FS_CODE_PERMODULE_ENTRY, NameVals, FSAbbrev);
2784  NameVals.clear();
2785}
2786
2787/// Emit the per-module function summary section alongside the rest of
2788/// the module's bitcode.
2789static void WritePerModuleFunctionSummary(
2790    DenseMap<const Function *, std::unique_ptr<FunctionInfo>> &FunctionIndex,
2791    const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) {
2792  Stream.EnterSubblock(bitc::FUNCTION_SUMMARY_BLOCK_ID, 3);
2793
2794  // Abbrev for FS_CODE_PERMODULE_ENTRY.
2795  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2796  Abbv->Add(BitCodeAbbrevOp(bitc::FS_CODE_PERMODULE_ENTRY));
2797  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
2798  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // islocal
2799  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
2800  unsigned FSAbbrev = Stream.EmitAbbrev(Abbv);
2801
2802  SmallVector<unsigned, 64> NameVals;
2803  for (auto &I : FunctionIndex) {
2804    // Skip anonymous functions. We will emit a function summary for
2805    // any aliases below.
2806    if (!I.first->hasName())
2807      continue;
2808
2809    WritePerModuleFunctionSummaryRecord(
2810        NameVals, I.second->functionSummary(),
2811        VE.getValueID(M->getValueSymbolTable().lookup(I.first->getName())),
2812        FSAbbrev, Stream);
2813  }
2814
2815  for (const GlobalAlias &A : M->aliases()) {
2816    if (!A.getBaseObject())
2817      continue;
2818    const Function *F = dyn_cast<Function>(A.getBaseObject());
2819    if (!F || F->isDeclaration())
2820      continue;
2821
2822    assert(FunctionIndex.count(F) == 1);
2823    WritePerModuleFunctionSummaryRecord(
2824        NameVals, FunctionIndex[F]->functionSummary(),
2825        VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), FSAbbrev,
2826        Stream);
2827  }
2828
2829  Stream.ExitBlock();
2830}
2831
2832/// Emit the combined function summary section into the combined index
2833/// file.
2834static void WriteCombinedFunctionSummary(const FunctionInfoIndex &I,
2835                                         BitstreamWriter &Stream) {
2836  Stream.EnterSubblock(bitc::FUNCTION_SUMMARY_BLOCK_ID, 3);
2837
2838  // Abbrev for FS_CODE_COMBINED_ENTRY.
2839  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2840  Abbv->Add(BitCodeAbbrevOp(bitc::FS_CODE_COMBINED_ENTRY));
2841  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
2842  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
2843  unsigned FSAbbrev = Stream.EmitAbbrev(Abbv);
2844
2845  SmallVector<unsigned, 64> NameVals;
2846  for (const auto &FII : I) {
2847    for (auto &FI : FII.getValue()) {
2848      FunctionSummary *FS = FI->functionSummary();
2849      assert(FS);
2850
2851      NameVals.push_back(I.getModuleId(FS->modulePath()));
2852      NameVals.push_back(FS->instCount());
2853
2854      // Record the starting offset of this summary entry for use
2855      // in the VST entry. Add the current code size since the
2856      // reader will invoke readRecord after the abbrev id read.
2857      FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth());
2858
2859      // Emit the finished record.
2860      Stream.EmitRecord(bitc::FS_CODE_COMBINED_ENTRY, NameVals, FSAbbrev);
2861      NameVals.clear();
2862    }
2863  }
2864
2865  Stream.ExitBlock();
2866}
2867
2868// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
2869// current llvm version, and a record for the epoch number.
2870static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) {
2871  Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
2872
2873  // Write the "user readable" string identifying the bitcode producer
2874  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2875  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
2876  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2877  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2878  auto StringAbbrev = Stream.EmitAbbrev(Abbv);
2879  WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING,
2880                    "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream);
2881
2882  // Write the epoch version
2883  Abbv = new BitCodeAbbrev();
2884  Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
2885  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2886  auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
2887  SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
2888  Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
2889  Stream.ExitBlock();
2890}
2891
2892/// WriteModule - Emit the specified module to the bitstream.
2893static void WriteModule(const Module *M, BitstreamWriter &Stream,
2894                        bool ShouldPreserveUseListOrder,
2895                        uint64_t BitcodeStartBit, bool EmitFunctionSummary) {
2896  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2897
2898  SmallVector<unsigned, 1> Vals;
2899  unsigned CurVersion = 1;
2900  Vals.push_back(CurVersion);
2901  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2902
2903  // Analyze the module, enumerating globals, functions, etc.
2904  ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
2905
2906  // Emit blockinfo, which defines the standard abbreviations etc.
2907  WriteBlockInfo(VE, Stream);
2908
2909  // Emit information about attribute groups.
2910  WriteAttributeGroupTable(VE, Stream);
2911
2912  // Emit information about parameter attributes.
2913  WriteAttributeTable(VE, Stream);
2914
2915  // Emit information describing all of the types in the module.
2916  WriteTypeTable(VE, Stream);
2917
2918  writeComdats(VE, Stream);
2919
2920  // Emit top-level description of module, including target triple, inline asm,
2921  // descriptors for global variables, and function prototype info.
2922  uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream);
2923
2924  // Emit constants.
2925  WriteModuleConstants(VE, Stream);
2926
2927  // Emit metadata.
2928  WriteModuleMetadata(M, VE, Stream);
2929
2930  // Emit metadata.
2931  WriteModuleMetadataStore(M, Stream);
2932
2933  // Emit module-level use-lists.
2934  if (VE.shouldPreserveUseListOrder())
2935    WriteUseListBlock(nullptr, VE, Stream);
2936
2937  WriteOperandBundleTags(M, Stream);
2938
2939  // Emit function bodies.
2940  DenseMap<const Function *, std::unique_ptr<FunctionInfo>> FunctionIndex;
2941  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2942    if (!F->isDeclaration())
2943      WriteFunction(*F, VE, Stream, FunctionIndex, EmitFunctionSummary);
2944
2945  // Need to write after the above call to WriteFunction which populates
2946  // the summary information in the index.
2947  if (EmitFunctionSummary)
2948    WritePerModuleFunctionSummary(FunctionIndex, M, VE, Stream);
2949
2950  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream,
2951                        VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex);
2952
2953  Stream.ExitBlock();
2954}
2955
2956/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2957/// header and trailer to make it compatible with the system archiver.  To do
2958/// this we emit the following header, and then emit a trailer that pads the
2959/// file out to be a multiple of 16 bytes.
2960///
2961/// struct bc_header {
2962///   uint32_t Magic;         // 0x0B17C0DE
2963///   uint32_t Version;       // Version, currently always 0.
2964///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2965///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
2966///   uint32_t CPUType;       // CPU specifier.
2967///   ... potentially more later ...
2968/// };
2969enum {
2970  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2971  DarwinBCHeaderSize = 5*4
2972};
2973
2974static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2975                               uint32_t &Position) {
2976  support::endian::write32le(&Buffer[Position], Value);
2977  Position += 4;
2978}
2979
2980static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2981                                         const Triple &TT) {
2982  unsigned CPUType = ~0U;
2983
2984  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2985  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2986  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
2987  // specific constants here because they are implicitly part of the Darwin ABI.
2988  enum {
2989    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
2990    DARWIN_CPU_TYPE_X86        = 7,
2991    DARWIN_CPU_TYPE_ARM        = 12,
2992    DARWIN_CPU_TYPE_POWERPC    = 18
2993  };
2994
2995  Triple::ArchType Arch = TT.getArch();
2996  if (Arch == Triple::x86_64)
2997    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2998  else if (Arch == Triple::x86)
2999    CPUType = DARWIN_CPU_TYPE_X86;
3000  else if (Arch == Triple::ppc)
3001    CPUType = DARWIN_CPU_TYPE_POWERPC;
3002  else if (Arch == Triple::ppc64)
3003    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3004  else if (Arch == Triple::arm || Arch == Triple::thumb)
3005    CPUType = DARWIN_CPU_TYPE_ARM;
3006
3007  // Traditional Bitcode starts after header.
3008  assert(Buffer.size() >= DarwinBCHeaderSize &&
3009         "Expected header size to be reserved");
3010  unsigned BCOffset = DarwinBCHeaderSize;
3011  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
3012
3013  // Write the magic and version.
3014  unsigned Position = 0;
3015  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
3016  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
3017  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
3018  WriteInt32ToBuffer(BCSize     , Buffer, Position);
3019  WriteInt32ToBuffer(CPUType    , Buffer, Position);
3020
3021  // If the file is not a multiple of 16 bytes, insert dummy padding.
3022  while (Buffer.size() & 15)
3023    Buffer.push_back(0);
3024}
3025
3026/// Helper to write the header common to all bitcode files.
3027static void WriteBitcodeHeader(BitstreamWriter &Stream) {
3028  // Emit the file header.
3029  Stream.Emit((unsigned)'B', 8);
3030  Stream.Emit((unsigned)'C', 8);
3031  Stream.Emit(0x0, 4);
3032  Stream.Emit(0xC, 4);
3033  Stream.Emit(0xE, 4);
3034  Stream.Emit(0xD, 4);
3035}
3036
3037/// WriteBitcodeToFile - Write the specified module to the specified output
3038/// stream.
3039void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3040                              bool ShouldPreserveUseListOrder,
3041                              bool EmitFunctionSummary) {
3042  SmallVector<char, 0> Buffer;
3043  Buffer.reserve(256*1024);
3044
3045  // If this is darwin or another generic macho target, reserve space for the
3046  // header.
3047  Triple TT(M->getTargetTriple());
3048  if (TT.isOSDarwin())
3049    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
3050
3051  // Emit the module into the buffer.
3052  {
3053    BitstreamWriter Stream(Buffer);
3054    // Save the start bit of the actual bitcode, in case there is space
3055    // saved at the start for the darwin header above. The reader stream
3056    // will start at the bitcode, and we need the offset of the VST
3057    // to line up.
3058    uint64_t BitcodeStartBit = Stream.GetCurrentBitNo();
3059
3060    // Emit the file header.
3061    WriteBitcodeHeader(Stream);
3062
3063    WriteIdentificationBlock(M, Stream);
3064
3065    // Emit the module.
3066    WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit,
3067                EmitFunctionSummary);
3068  }
3069
3070  if (TT.isOSDarwin())
3071    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
3072
3073  // Write the generated bitstream to "Out".
3074  Out.write((char*)&Buffer.front(), Buffer.size());
3075}
3076
3077// Write the specified function summary index to the given raw output stream,
3078// where it will be written in a new bitcode block. This is used when
3079// writing the combined index file for ThinLTO.
3080void llvm::WriteFunctionSummaryToFile(const FunctionInfoIndex &Index,
3081                                      raw_ostream &Out) {
3082  SmallVector<char, 0> Buffer;
3083  Buffer.reserve(256 * 1024);
3084
3085  BitstreamWriter Stream(Buffer);
3086
3087  // Emit the bitcode header.
3088  WriteBitcodeHeader(Stream);
3089
3090  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3091
3092  SmallVector<unsigned, 1> Vals;
3093  unsigned CurVersion = 1;
3094  Vals.push_back(CurVersion);
3095  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3096
3097  // Write the module paths in the combined index.
3098  WriteModStrings(Index, Stream);
3099
3100  // Write the function summary combined index records.
3101  WriteCombinedFunctionSummary(Index, Stream);
3102
3103  // Need a special VST writer for the combined index (we don't have a
3104  // real VST and real values when this is invoked).
3105  WriteCombinedValueSymbolTable(Index, Stream);
3106
3107  Stream.ExitBlock();
3108
3109  Out.write((char *)&Buffer.front(), Buffer.size());
3110}
3111