1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Analysis/LoopInfoImpl.h"
21#include "llvm/Analysis/LoopIterator.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/IR/CFG.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/IR/Metadata.h"
29#include "llvm/IR/PassManager.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include <algorithm>
34using namespace llvm;
35
36// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
37template class llvm::LoopBase<BasicBlock, Loop>;
38template class llvm::LoopInfoBase<BasicBlock, Loop>;
39
40// Always verify loopinfo if expensive checking is enabled.
41#ifdef XDEBUG
42static bool VerifyLoopInfo = true;
43#else
44static bool VerifyLoopInfo = false;
45#endif
46static cl::opt<bool,true>
47VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
48                cl::desc("Verify loop info (time consuming)"));
49
50// Loop identifier metadata name.
51static const char *const LoopMDName = "llvm.loop";
52
53//===----------------------------------------------------------------------===//
54// Loop implementation
55//
56
57/// isLoopInvariant - Return true if the specified value is loop invariant
58///
59bool Loop::isLoopInvariant(const Value *V) const {
60  if (const Instruction *I = dyn_cast<Instruction>(V))
61    return !contains(I);
62  return true;  // All non-instructions are loop invariant
63}
64
65/// hasLoopInvariantOperands - Return true if all the operands of the
66/// specified instruction are loop invariant.
67bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
68  return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
69}
70
71/// makeLoopInvariant - If the given value is an instruciton inside of the
72/// loop and it can be hoisted, do so to make it trivially loop-invariant.
73/// Return true if the value after any hoisting is loop invariant. This
74/// function can be used as a slightly more aggressive replacement for
75/// isLoopInvariant.
76///
77/// If InsertPt is specified, it is the point to hoist instructions to.
78/// If null, the terminator of the loop preheader is used.
79///
80bool Loop::makeLoopInvariant(Value *V, bool &Changed,
81                             Instruction *InsertPt) const {
82  if (Instruction *I = dyn_cast<Instruction>(V))
83    return makeLoopInvariant(I, Changed, InsertPt);
84  return true;  // All non-instructions are loop-invariant.
85}
86
87/// makeLoopInvariant - If the given instruction is inside of the
88/// loop and it can be hoisted, do so to make it trivially loop-invariant.
89/// Return true if the instruction after any hoisting is loop invariant. This
90/// function can be used as a slightly more aggressive replacement for
91/// isLoopInvariant.
92///
93/// If InsertPt is specified, it is the point to hoist instructions to.
94/// If null, the terminator of the loop preheader is used.
95///
96bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
97                             Instruction *InsertPt) const {
98  // Test if the value is already loop-invariant.
99  if (isLoopInvariant(I))
100    return true;
101  if (!isSafeToSpeculativelyExecute(I))
102    return false;
103  if (I->mayReadFromMemory())
104    return false;
105  // EH block instructions are immobile.
106  if (I->isEHPad())
107    return false;
108  // Determine the insertion point, unless one was given.
109  if (!InsertPt) {
110    BasicBlock *Preheader = getLoopPreheader();
111    // Without a preheader, hoisting is not feasible.
112    if (!Preheader)
113      return false;
114    InsertPt = Preheader->getTerminator();
115  }
116  // Don't hoist instructions with loop-variant operands.
117  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
118    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
119      return false;
120
121  // Hoist.
122  I->moveBefore(InsertPt);
123
124  // There is possibility of hoisting this instruction above some arbitrary
125  // condition. Any metadata defined on it can be control dependent on this
126  // condition. Conservatively strip it here so that we don't give any wrong
127  // information to the optimizer.
128  I->dropUnknownNonDebugMetadata();
129
130  Changed = true;
131  return true;
132}
133
134/// getCanonicalInductionVariable - Check to see if the loop has a canonical
135/// induction variable: an integer recurrence that starts at 0 and increments
136/// by one each time through the loop.  If so, return the phi node that
137/// corresponds to it.
138///
139/// The IndVarSimplify pass transforms loops to have a canonical induction
140/// variable.
141///
142PHINode *Loop::getCanonicalInductionVariable() const {
143  BasicBlock *H = getHeader();
144
145  BasicBlock *Incoming = nullptr, *Backedge = nullptr;
146  pred_iterator PI = pred_begin(H);
147  assert(PI != pred_end(H) &&
148         "Loop must have at least one backedge!");
149  Backedge = *PI++;
150  if (PI == pred_end(H)) return nullptr;  // dead loop
151  Incoming = *PI++;
152  if (PI != pred_end(H)) return nullptr;  // multiple backedges?
153
154  if (contains(Incoming)) {
155    if (contains(Backedge))
156      return nullptr;
157    std::swap(Incoming, Backedge);
158  } else if (!contains(Backedge))
159    return nullptr;
160
161  // Loop over all of the PHI nodes, looking for a canonical indvar.
162  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
163    PHINode *PN = cast<PHINode>(I);
164    if (ConstantInt *CI =
165        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
166      if (CI->isNullValue())
167        if (Instruction *Inc =
168            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
169          if (Inc->getOpcode() == Instruction::Add &&
170                Inc->getOperand(0) == PN)
171            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
172              if (CI->equalsInt(1))
173                return PN;
174  }
175  return nullptr;
176}
177
178/// isLCSSAForm - Return true if the Loop is in LCSSA form
179bool Loop::isLCSSAForm(DominatorTree &DT) const {
180  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
181    BasicBlock *BB = *BI;
182    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) {
183      // Tokens can't be used in PHI nodes and live-out tokens prevent loop
184      // optimizations, so for the purposes of considered LCSSA form, we
185      // can ignore them.
186      if (I->getType()->isTokenTy())
187        continue;
188
189      for (Use &U : I->uses()) {
190        Instruction *UI = cast<Instruction>(U.getUser());
191        BasicBlock *UserBB = UI->getParent();
192        if (PHINode *P = dyn_cast<PHINode>(UI))
193          UserBB = P->getIncomingBlock(U);
194
195        // Check the current block, as a fast-path, before checking whether
196        // the use is anywhere in the loop.  Most values are used in the same
197        // block they are defined in.  Also, blocks not reachable from the
198        // entry are special; uses in them don't need to go through PHIs.
199        if (UserBB != BB &&
200            !contains(UserBB) &&
201            DT.isReachableFromEntry(UserBB))
202          return false;
203      }
204    }
205  }
206
207  return true;
208}
209
210bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT) const {
211  if (!isLCSSAForm(DT))
212    return false;
213
214  return std::all_of(begin(), end(), [&](const Loop *L) {
215    return L->isRecursivelyLCSSAForm(DT);
216  });
217}
218
219/// isLoopSimplifyForm - Return true if the Loop is in the form that
220/// the LoopSimplify form transforms loops to, which is sometimes called
221/// normal form.
222bool Loop::isLoopSimplifyForm() const {
223  // Normal-form loops have a preheader, a single backedge, and all of their
224  // exits have all their predecessors inside the loop.
225  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
226}
227
228/// isSafeToClone - Return true if the loop body is safe to clone in practice.
229/// Routines that reform the loop CFG and split edges often fail on indirectbr.
230bool Loop::isSafeToClone() const {
231  // Return false if any loop blocks contain indirectbrs, or there are any calls
232  // to noduplicate functions.
233  for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
234    if (isa<IndirectBrInst>((*I)->getTerminator()))
235      return false;
236
237    if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) {
238      if (II->cannotDuplicate())
239        return false;
240      // Return false if any loop blocks contain invokes to EH-pads other than
241      // landingpads;  we don't know how to split those edges yet.
242      auto *FirstNonPHI = II->getUnwindDest()->getFirstNonPHI();
243      if (FirstNonPHI->isEHPad() && !isa<LandingPadInst>(FirstNonPHI))
244        return false;
245    }
246
247    for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
248      if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
249        if (CI->cannotDuplicate())
250          return false;
251      }
252      if (BI->getType()->isTokenTy() && BI->isUsedOutsideOfBlock(*I))
253        return false;
254    }
255  }
256  return true;
257}
258
259MDNode *Loop::getLoopID() const {
260  MDNode *LoopID = nullptr;
261  if (isLoopSimplifyForm()) {
262    LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
263  } else {
264    // Go through each predecessor of the loop header and check the
265    // terminator for the metadata.
266    BasicBlock *H = getHeader();
267    for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
268      TerminatorInst *TI = (*I)->getTerminator();
269      MDNode *MD = nullptr;
270
271      // Check if this terminator branches to the loop header.
272      for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
273        if (TI->getSuccessor(i) == H) {
274          MD = TI->getMetadata(LoopMDName);
275          break;
276        }
277      }
278      if (!MD)
279        return nullptr;
280
281      if (!LoopID)
282        LoopID = MD;
283      else if (MD != LoopID)
284        return nullptr;
285    }
286  }
287  if (!LoopID || LoopID->getNumOperands() == 0 ||
288      LoopID->getOperand(0) != LoopID)
289    return nullptr;
290  return LoopID;
291}
292
293void Loop::setLoopID(MDNode *LoopID) const {
294  assert(LoopID && "Loop ID should not be null");
295  assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
296  assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
297
298  if (isLoopSimplifyForm()) {
299    getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
300    return;
301  }
302
303  BasicBlock *H = getHeader();
304  for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
305    TerminatorInst *TI = (*I)->getTerminator();
306    for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
307      if (TI->getSuccessor(i) == H)
308        TI->setMetadata(LoopMDName, LoopID);
309    }
310  }
311}
312
313bool Loop::isAnnotatedParallel() const {
314  MDNode *desiredLoopIdMetadata = getLoopID();
315
316  if (!desiredLoopIdMetadata)
317      return false;
318
319  // The loop branch contains the parallel loop metadata. In order to ensure
320  // that any parallel-loop-unaware optimization pass hasn't added loop-carried
321  // dependencies (thus converted the loop back to a sequential loop), check
322  // that all the memory instructions in the loop contain parallelism metadata
323  // that point to the same unique "loop id metadata" the loop branch does.
324  for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
325    for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
326         II != EE; II++) {
327
328      if (!II->mayReadOrWriteMemory())
329        continue;
330
331      // The memory instruction can refer to the loop identifier metadata
332      // directly or indirectly through another list metadata (in case of
333      // nested parallel loops). The loop identifier metadata refers to
334      // itself so we can check both cases with the same routine.
335      MDNode *loopIdMD =
336          II->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
337
338      if (!loopIdMD)
339        return false;
340
341      bool loopIdMDFound = false;
342      for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
343        if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
344          loopIdMDFound = true;
345          break;
346        }
347      }
348
349      if (!loopIdMDFound)
350        return false;
351    }
352  }
353  return true;
354}
355
356
357/// hasDedicatedExits - Return true if no exit block for the loop
358/// has a predecessor that is outside the loop.
359bool Loop::hasDedicatedExits() const {
360  // Each predecessor of each exit block of a normal loop is contained
361  // within the loop.
362  SmallVector<BasicBlock *, 4> ExitBlocks;
363  getExitBlocks(ExitBlocks);
364  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
365    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
366         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
367      if (!contains(*PI))
368        return false;
369  // All the requirements are met.
370  return true;
371}
372
373/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
374/// These are the blocks _outside of the current loop_ which are branched to.
375/// This assumes that loop exits are in canonical form.
376///
377void
378Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
379  assert(hasDedicatedExits() &&
380         "getUniqueExitBlocks assumes the loop has canonical form exits!");
381
382  SmallVector<BasicBlock *, 32> switchExitBlocks;
383
384  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
385
386    BasicBlock *current = *BI;
387    switchExitBlocks.clear();
388
389    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
390      // If block is inside the loop then it is not a exit block.
391      if (contains(*I))
392        continue;
393
394      pred_iterator PI = pred_begin(*I);
395      BasicBlock *firstPred = *PI;
396
397      // If current basic block is this exit block's first predecessor
398      // then only insert exit block in to the output ExitBlocks vector.
399      // This ensures that same exit block is not inserted twice into
400      // ExitBlocks vector.
401      if (current != firstPred)
402        continue;
403
404      // If a terminator has more then two successors, for example SwitchInst,
405      // then it is possible that there are multiple edges from current block
406      // to one exit block.
407      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
408        ExitBlocks.push_back(*I);
409        continue;
410      }
411
412      // In case of multiple edges from current block to exit block, collect
413      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
414      // duplicate edges.
415      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
416          == switchExitBlocks.end()) {
417        switchExitBlocks.push_back(*I);
418        ExitBlocks.push_back(*I);
419      }
420    }
421  }
422}
423
424/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
425/// block, return that block. Otherwise return null.
426BasicBlock *Loop::getUniqueExitBlock() const {
427  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
428  getUniqueExitBlocks(UniqueExitBlocks);
429  if (UniqueExitBlocks.size() == 1)
430    return UniqueExitBlocks[0];
431  return nullptr;
432}
433
434#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
435void Loop::dump() const {
436  print(dbgs());
437}
438#endif
439
440//===----------------------------------------------------------------------===//
441// UnloopUpdater implementation
442//
443
444namespace {
445/// Find the new parent loop for all blocks within the "unloop" whose last
446/// backedges has just been removed.
447class UnloopUpdater {
448  Loop *Unloop;
449  LoopInfo *LI;
450
451  LoopBlocksDFS DFS;
452
453  // Map unloop's immediate subloops to their nearest reachable parents. Nested
454  // loops within these subloops will not change parents. However, an immediate
455  // subloop's new parent will be the nearest loop reachable from either its own
456  // exits *or* any of its nested loop's exits.
457  DenseMap<Loop*, Loop*> SubloopParents;
458
459  // Flag the presence of an irreducible backedge whose destination is a block
460  // directly contained by the original unloop.
461  bool FoundIB;
462
463public:
464  UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
465    Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
466
467  void updateBlockParents();
468
469  void removeBlocksFromAncestors();
470
471  void updateSubloopParents();
472
473protected:
474  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
475};
476} // end anonymous namespace
477
478/// updateBlockParents - Update the parent loop for all blocks that are directly
479/// contained within the original "unloop".
480void UnloopUpdater::updateBlockParents() {
481  if (Unloop->getNumBlocks()) {
482    // Perform a post order CFG traversal of all blocks within this loop,
483    // propagating the nearest loop from sucessors to predecessors.
484    LoopBlocksTraversal Traversal(DFS, LI);
485    for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
486           POE = Traversal.end(); POI != POE; ++POI) {
487
488      Loop *L = LI->getLoopFor(*POI);
489      Loop *NL = getNearestLoop(*POI, L);
490
491      if (NL != L) {
492        // For reducible loops, NL is now an ancestor of Unloop.
493        assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
494               "uninitialized successor");
495        LI->changeLoopFor(*POI, NL);
496      }
497      else {
498        // Or the current block is part of a subloop, in which case its parent
499        // is unchanged.
500        assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
501      }
502    }
503  }
504  // Each irreducible loop within the unloop induces a round of iteration using
505  // the DFS result cached by Traversal.
506  bool Changed = FoundIB;
507  for (unsigned NIters = 0; Changed; ++NIters) {
508    assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
509
510    // Iterate over the postorder list of blocks, propagating the nearest loop
511    // from successors to predecessors as before.
512    Changed = false;
513    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
514           POE = DFS.endPostorder(); POI != POE; ++POI) {
515
516      Loop *L = LI->getLoopFor(*POI);
517      Loop *NL = getNearestLoop(*POI, L);
518      if (NL != L) {
519        assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
520               "uninitialized successor");
521        LI->changeLoopFor(*POI, NL);
522        Changed = true;
523      }
524    }
525  }
526}
527
528/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
529/// their new parents.
530void UnloopUpdater::removeBlocksFromAncestors() {
531  // Remove all unloop's blocks (including those in nested subloops) from
532  // ancestors below the new parent loop.
533  for (Loop::block_iterator BI = Unloop->block_begin(),
534         BE = Unloop->block_end(); BI != BE; ++BI) {
535    Loop *OuterParent = LI->getLoopFor(*BI);
536    if (Unloop->contains(OuterParent)) {
537      while (OuterParent->getParentLoop() != Unloop)
538        OuterParent = OuterParent->getParentLoop();
539      OuterParent = SubloopParents[OuterParent];
540    }
541    // Remove blocks from former Ancestors except Unloop itself which will be
542    // deleted.
543    for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
544         OldParent = OldParent->getParentLoop()) {
545      assert(OldParent && "new loop is not an ancestor of the original");
546      OldParent->removeBlockFromLoop(*BI);
547    }
548  }
549}
550
551/// updateSubloopParents - Update the parent loop for all subloops directly
552/// nested within unloop.
553void UnloopUpdater::updateSubloopParents() {
554  while (!Unloop->empty()) {
555    Loop *Subloop = *std::prev(Unloop->end());
556    Unloop->removeChildLoop(std::prev(Unloop->end()));
557
558    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
559    if (Loop *Parent = SubloopParents[Subloop])
560      Parent->addChildLoop(Subloop);
561    else
562      LI->addTopLevelLoop(Subloop);
563  }
564}
565
566/// getNearestLoop - Return the nearest parent loop among this block's
567/// successors. If a successor is a subloop header, consider its parent to be
568/// the nearest parent of the subloop's exits.
569///
570/// For subloop blocks, simply update SubloopParents and return NULL.
571Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
572
573  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
574  // is considered uninitialized.
575  Loop *NearLoop = BBLoop;
576
577  Loop *Subloop = nullptr;
578  if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
579    Subloop = NearLoop;
580    // Find the subloop ancestor that is directly contained within Unloop.
581    while (Subloop->getParentLoop() != Unloop) {
582      Subloop = Subloop->getParentLoop();
583      assert(Subloop && "subloop is not an ancestor of the original loop");
584    }
585    // Get the current nearest parent of the Subloop exits, initially Unloop.
586    NearLoop =
587      SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
588  }
589
590  succ_iterator I = succ_begin(BB), E = succ_end(BB);
591  if (I == E) {
592    assert(!Subloop && "subloop blocks must have a successor");
593    NearLoop = nullptr; // unloop blocks may now exit the function.
594  }
595  for (; I != E; ++I) {
596    if (*I == BB)
597      continue; // self loops are uninteresting
598
599    Loop *L = LI->getLoopFor(*I);
600    if (L == Unloop) {
601      // This successor has not been processed. This path must lead to an
602      // irreducible backedge.
603      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
604      FoundIB = true;
605    }
606    if (L != Unloop && Unloop->contains(L)) {
607      // Successor is in a subloop.
608      if (Subloop)
609        continue; // Branching within subloops. Ignore it.
610
611      // BB branches from the original into a subloop header.
612      assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
613
614      // Get the current nearest parent of the Subloop's exits.
615      L = SubloopParents[L];
616      // L could be Unloop if the only exit was an irreducible backedge.
617    }
618    if (L == Unloop) {
619      continue;
620    }
621    // Handle critical edges from Unloop into a sibling loop.
622    if (L && !L->contains(Unloop)) {
623      L = L->getParentLoop();
624    }
625    // Remember the nearest parent loop among successors or subloop exits.
626    if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
627      NearLoop = L;
628  }
629  if (Subloop) {
630    SubloopParents[Subloop] = NearLoop;
631    return BBLoop;
632  }
633  return NearLoop;
634}
635
636LoopInfo::LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree) {
637  analyze(DomTree);
638}
639
640void LoopInfo::markAsRemoved(Loop *Unloop) {
641  assert(!Unloop->isInvalid() && "Loop has already been removed");
642  Unloop->invalidate();
643  RemovedLoops.push_back(Unloop);
644
645  // First handle the special case of no parent loop to simplify the algorithm.
646  if (!Unloop->getParentLoop()) {
647    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
648    for (Loop::block_iterator I = Unloop->block_begin(),
649                              E = Unloop->block_end();
650         I != E; ++I) {
651
652      // Don't reparent blocks in subloops.
653      if (getLoopFor(*I) != Unloop)
654        continue;
655
656      // Blocks no longer have a parent but are still referenced by Unloop until
657      // the Unloop object is deleted.
658      changeLoopFor(*I, nullptr);
659    }
660
661    // Remove the loop from the top-level LoopInfo object.
662    for (iterator I = begin();; ++I) {
663      assert(I != end() && "Couldn't find loop");
664      if (*I == Unloop) {
665        removeLoop(I);
666        break;
667      }
668    }
669
670    // Move all of the subloops to the top-level.
671    while (!Unloop->empty())
672      addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
673
674    return;
675  }
676
677  // Update the parent loop for all blocks within the loop. Blocks within
678  // subloops will not change parents.
679  UnloopUpdater Updater(Unloop, this);
680  Updater.updateBlockParents();
681
682  // Remove blocks from former ancestor loops.
683  Updater.removeBlocksFromAncestors();
684
685  // Add direct subloops as children in their new parent loop.
686  Updater.updateSubloopParents();
687
688  // Remove unloop from its parent loop.
689  Loop *ParentLoop = Unloop->getParentLoop();
690  for (Loop::iterator I = ParentLoop->begin();; ++I) {
691    assert(I != ParentLoop->end() && "Couldn't find loop");
692    if (*I == Unloop) {
693      ParentLoop->removeChildLoop(I);
694      break;
695    }
696  }
697}
698
699char LoopAnalysis::PassID;
700
701LoopInfo LoopAnalysis::run(Function &F, AnalysisManager<Function> *AM) {
702  // FIXME: Currently we create a LoopInfo from scratch for every function.
703  // This may prove to be too wasteful due to deallocating and re-allocating
704  // memory each time for the underlying map and vector datastructures. At some
705  // point it may prove worthwhile to use a freelist and recycle LoopInfo
706  // objects. I don't want to add that kind of complexity until the scope of
707  // the problem is better understood.
708  LoopInfo LI;
709  LI.analyze(AM->getResult<DominatorTreeAnalysis>(F));
710  return LI;
711}
712
713PreservedAnalyses LoopPrinterPass::run(Function &F,
714                                       AnalysisManager<Function> *AM) {
715  AM->getResult<LoopAnalysis>(F).print(OS);
716  return PreservedAnalyses::all();
717}
718
719PrintLoopPass::PrintLoopPass() : OS(dbgs()) {}
720PrintLoopPass::PrintLoopPass(raw_ostream &OS, const std::string &Banner)
721    : OS(OS), Banner(Banner) {}
722
723PreservedAnalyses PrintLoopPass::run(Loop &L) {
724  OS << Banner;
725  for (auto *Block : L.blocks())
726    if (Block)
727      Block->print(OS);
728    else
729      OS << "Printing <null> block";
730  return PreservedAnalyses::all();
731}
732
733//===----------------------------------------------------------------------===//
734// LoopInfo implementation
735//
736
737char LoopInfoWrapperPass::ID = 0;
738INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
739                      true, true)
740INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
741INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
742                    true, true)
743
744bool LoopInfoWrapperPass::runOnFunction(Function &) {
745  releaseMemory();
746  LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
747  return false;
748}
749
750void LoopInfoWrapperPass::verifyAnalysis() const {
751  // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
752  // function each time verifyAnalysis is called is very expensive. The
753  // -verify-loop-info option can enable this. In order to perform some
754  // checking by default, LoopPass has been taught to call verifyLoop manually
755  // during loop pass sequences.
756  if (VerifyLoopInfo)
757    LI.verify();
758}
759
760void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
761  AU.setPreservesAll();
762  AU.addRequired<DominatorTreeWrapperPass>();
763}
764
765void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
766  LI.print(OS);
767}
768
769//===----------------------------------------------------------------------===//
770// LoopBlocksDFS implementation
771//
772
773/// Traverse the loop blocks and store the DFS result.
774/// Useful for clients that just want the final DFS result and don't need to
775/// visit blocks during the initial traversal.
776void LoopBlocksDFS::perform(LoopInfo *LI) {
777  LoopBlocksTraversal Traversal(*this, LI);
778  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
779         POE = Traversal.end(); POI != POE; ++POI) ;
780}
781