1//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
17#include "llvm/Analysis/ScalarEvolutionExpander.h"
18#include "llvm/Analysis/TargetLibraryInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/DiagnosticInfo.h"
21#include "llvm/IR/Dominators.h"
22#include "llvm/IR/IRBuilder.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Analysis/VectorUtils.h"
26using namespace llvm;
27
28#define DEBUG_TYPE "loop-accesses"
29
30static cl::opt<unsigned, true>
31VectorizationFactor("force-vector-width", cl::Hidden,
32                    cl::desc("Sets the SIMD width. Zero is autoselect."),
33                    cl::location(VectorizerParams::VectorizationFactor));
34unsigned VectorizerParams::VectorizationFactor;
35
36static cl::opt<unsigned, true>
37VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                        cl::desc("Sets the vectorization interleave count. "
39                                 "Zero is autoselect."),
40                        cl::location(
41                            VectorizerParams::VectorizationInterleave));
42unsigned VectorizerParams::VectorizationInterleave;
43
44static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45    "runtime-memory-check-threshold", cl::Hidden,
46    cl::desc("When performing memory disambiguation checks at runtime do not "
47             "generate more than this number of comparisons (default = 8)."),
48    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50
51/// \brief The maximum iterations used to merge memory checks
52static cl::opt<unsigned> MemoryCheckMergeThreshold(
53    "memory-check-merge-threshold", cl::Hidden,
54    cl::desc("Maximum number of comparisons done when trying to merge "
55             "runtime memory checks. (default = 100)"),
56    cl::init(100));
57
58/// Maximum SIMD width.
59const unsigned VectorizerParams::MaxVectorWidth = 64;
60
61/// \brief We collect dependences up to this threshold.
62static cl::opt<unsigned>
63    MaxDependences("max-dependences", cl::Hidden,
64                   cl::desc("Maximum number of dependences collected by "
65                            "loop-access analysis (default = 100)"),
66                   cl::init(100));
67
68bool VectorizerParams::isInterleaveForced() {
69  return ::VectorizationInterleave.getNumOccurrences() > 0;
70}
71
72void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73                                    const Function *TheFunction,
74                                    const Loop *TheLoop,
75                                    const char *PassName) {
76  DebugLoc DL = TheLoop->getStartLoc();
77  if (const Instruction *I = Message.getInstr())
78    DL = I->getDebugLoc();
79  emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
80                                 *TheFunction, DL, Message.str());
81}
82
83Value *llvm::stripIntegerCast(Value *V) {
84  if (CastInst *CI = dyn_cast<CastInst>(V))
85    if (CI->getOperand(0)->getType()->isIntegerTy())
86      return CI->getOperand(0);
87  return V;
88}
89
90const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
91                                            const ValueToValueMap &PtrToStride,
92                                            Value *Ptr, Value *OrigPtr) {
93  const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
94
95  // If there is an entry in the map return the SCEV of the pointer with the
96  // symbolic stride replaced by one.
97  ValueToValueMap::const_iterator SI =
98      PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
99  if (SI != PtrToStride.end()) {
100    Value *StrideVal = SI->second;
101
102    // Strip casts.
103    StrideVal = stripIntegerCast(StrideVal);
104
105    // Replace symbolic stride by one.
106    Value *One = ConstantInt::get(StrideVal->getType(), 1);
107    ValueToValueMap RewriteMap;
108    RewriteMap[StrideVal] = One;
109
110    ScalarEvolution *SE = PSE.getSE();
111    const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
112    const auto *CT =
113        static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
114
115    PSE.addPredicate(*SE->getEqualPredicate(U, CT));
116    auto *Expr = PSE.getSCEV(Ptr);
117
118    DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
119                 << "\n");
120    return Expr;
121  }
122
123  // Otherwise, just return the SCEV of the original pointer.
124  return OrigSCEV;
125}
126
127void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
128                                    unsigned DepSetId, unsigned ASId,
129                                    const ValueToValueMap &Strides,
130                                    PredicatedScalarEvolution &PSE) {
131  // Get the stride replaced scev.
132  const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
133  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
134  assert(AR && "Invalid addrec expression");
135  ScalarEvolution *SE = PSE.getSE();
136  const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
137
138  const SCEV *ScStart = AR->getStart();
139  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
140  const SCEV *Step = AR->getStepRecurrence(*SE);
141
142  // For expressions with negative step, the upper bound is ScStart and the
143  // lower bound is ScEnd.
144  if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
145    if (CStep->getValue()->isNegative())
146      std::swap(ScStart, ScEnd);
147  } else {
148    // Fallback case: the step is not constant, but the we can still
149    // get the upper and lower bounds of the interval by using min/max
150    // expressions.
151    ScStart = SE->getUMinExpr(ScStart, ScEnd);
152    ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
153  }
154
155  Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
156}
157
158SmallVector<RuntimePointerChecking::PointerCheck, 4>
159RuntimePointerChecking::generateChecks() const {
160  SmallVector<PointerCheck, 4> Checks;
161
162  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
163    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
164      const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
165      const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
166
167      if (needsChecking(CGI, CGJ))
168        Checks.push_back(std::make_pair(&CGI, &CGJ));
169    }
170  }
171  return Checks;
172}
173
174void RuntimePointerChecking::generateChecks(
175    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
176  assert(Checks.empty() && "Checks is not empty");
177  groupChecks(DepCands, UseDependencies);
178  Checks = generateChecks();
179}
180
181bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
182                                           const CheckingPtrGroup &N) const {
183  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
184    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
185      if (needsChecking(M.Members[I], N.Members[J]))
186        return true;
187  return false;
188}
189
190/// Compare \p I and \p J and return the minimum.
191/// Return nullptr in case we couldn't find an answer.
192static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
193                                   ScalarEvolution *SE) {
194  const SCEV *Diff = SE->getMinusSCEV(J, I);
195  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
196
197  if (!C)
198    return nullptr;
199  if (C->getValue()->isNegative())
200    return J;
201  return I;
202}
203
204bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
205  const SCEV *Start = RtCheck.Pointers[Index].Start;
206  const SCEV *End = RtCheck.Pointers[Index].End;
207
208  // Compare the starts and ends with the known minimum and maximum
209  // of this set. We need to know how we compare against the min/max
210  // of the set in order to be able to emit memchecks.
211  const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
212  if (!Min0)
213    return false;
214
215  const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
216  if (!Min1)
217    return false;
218
219  // Update the low bound  expression if we've found a new min value.
220  if (Min0 == Start)
221    Low = Start;
222
223  // Update the high bound expression if we've found a new max value.
224  if (Min1 != End)
225    High = End;
226
227  Members.push_back(Index);
228  return true;
229}
230
231void RuntimePointerChecking::groupChecks(
232    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
233  // We build the groups from dependency candidates equivalence classes
234  // because:
235  //    - We know that pointers in the same equivalence class share
236  //      the same underlying object and therefore there is a chance
237  //      that we can compare pointers
238  //    - We wouldn't be able to merge two pointers for which we need
239  //      to emit a memcheck. The classes in DepCands are already
240  //      conveniently built such that no two pointers in the same
241  //      class need checking against each other.
242
243  // We use the following (greedy) algorithm to construct the groups
244  // For every pointer in the equivalence class:
245  //   For each existing group:
246  //   - if the difference between this pointer and the min/max bounds
247  //     of the group is a constant, then make the pointer part of the
248  //     group and update the min/max bounds of that group as required.
249
250  CheckingGroups.clear();
251
252  // If we need to check two pointers to the same underlying object
253  // with a non-constant difference, we shouldn't perform any pointer
254  // grouping with those pointers. This is because we can easily get
255  // into cases where the resulting check would return false, even when
256  // the accesses are safe.
257  //
258  // The following example shows this:
259  // for (i = 0; i < 1000; ++i)
260  //   a[5000 + i * m] = a[i] + a[i + 9000]
261  //
262  // Here grouping gives a check of (5000, 5000 + 1000 * m) against
263  // (0, 10000) which is always false. However, if m is 1, there is no
264  // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
265  // us to perform an accurate check in this case.
266  //
267  // The above case requires that we have an UnknownDependence between
268  // accesses to the same underlying object. This cannot happen unless
269  // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
270  // is also false. In this case we will use the fallback path and create
271  // separate checking groups for all pointers.
272
273  // If we don't have the dependency partitions, construct a new
274  // checking pointer group for each pointer. This is also required
275  // for correctness, because in this case we can have checking between
276  // pointers to the same underlying object.
277  if (!UseDependencies) {
278    for (unsigned I = 0; I < Pointers.size(); ++I)
279      CheckingGroups.push_back(CheckingPtrGroup(I, *this));
280    return;
281  }
282
283  unsigned TotalComparisons = 0;
284
285  DenseMap<Value *, unsigned> PositionMap;
286  for (unsigned Index = 0; Index < Pointers.size(); ++Index)
287    PositionMap[Pointers[Index].PointerValue] = Index;
288
289  // We need to keep track of what pointers we've already seen so we
290  // don't process them twice.
291  SmallSet<unsigned, 2> Seen;
292
293  // Go through all equivalence classes, get the "pointer check groups"
294  // and add them to the overall solution. We use the order in which accesses
295  // appear in 'Pointers' to enforce determinism.
296  for (unsigned I = 0; I < Pointers.size(); ++I) {
297    // We've seen this pointer before, and therefore already processed
298    // its equivalence class.
299    if (Seen.count(I))
300      continue;
301
302    MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
303                                           Pointers[I].IsWritePtr);
304
305    SmallVector<CheckingPtrGroup, 2> Groups;
306    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
307
308    // Because DepCands is constructed by visiting accesses in the order in
309    // which they appear in alias sets (which is deterministic) and the
310    // iteration order within an equivalence class member is only dependent on
311    // the order in which unions and insertions are performed on the
312    // equivalence class, the iteration order is deterministic.
313    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
314         MI != ME; ++MI) {
315      unsigned Pointer = PositionMap[MI->getPointer()];
316      bool Merged = false;
317      // Mark this pointer as seen.
318      Seen.insert(Pointer);
319
320      // Go through all the existing sets and see if we can find one
321      // which can include this pointer.
322      for (CheckingPtrGroup &Group : Groups) {
323        // Don't perform more than a certain amount of comparisons.
324        // This should limit the cost of grouping the pointers to something
325        // reasonable.  If we do end up hitting this threshold, the algorithm
326        // will create separate groups for all remaining pointers.
327        if (TotalComparisons > MemoryCheckMergeThreshold)
328          break;
329
330        TotalComparisons++;
331
332        if (Group.addPointer(Pointer)) {
333          Merged = true;
334          break;
335        }
336      }
337
338      if (!Merged)
339        // We couldn't add this pointer to any existing set or the threshold
340        // for the number of comparisons has been reached. Create a new group
341        // to hold the current pointer.
342        Groups.push_back(CheckingPtrGroup(Pointer, *this));
343    }
344
345    // We've computed the grouped checks for this partition.
346    // Save the results and continue with the next one.
347    std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
348  }
349}
350
351bool RuntimePointerChecking::arePointersInSamePartition(
352    const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
353    unsigned PtrIdx2) {
354  return (PtrToPartition[PtrIdx1] != -1 &&
355          PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
356}
357
358bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
359  const PointerInfo &PointerI = Pointers[I];
360  const PointerInfo &PointerJ = Pointers[J];
361
362  // No need to check if two readonly pointers intersect.
363  if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
364    return false;
365
366  // Only need to check pointers between two different dependency sets.
367  if (PointerI.DependencySetId == PointerJ.DependencySetId)
368    return false;
369
370  // Only need to check pointers in the same alias set.
371  if (PointerI.AliasSetId != PointerJ.AliasSetId)
372    return false;
373
374  return true;
375}
376
377void RuntimePointerChecking::printChecks(
378    raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
379    unsigned Depth) const {
380  unsigned N = 0;
381  for (const auto &Check : Checks) {
382    const auto &First = Check.first->Members, &Second = Check.second->Members;
383
384    OS.indent(Depth) << "Check " << N++ << ":\n";
385
386    OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
387    for (unsigned K = 0; K < First.size(); ++K)
388      OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
389
390    OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
391    for (unsigned K = 0; K < Second.size(); ++K)
392      OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
393  }
394}
395
396void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
397
398  OS.indent(Depth) << "Run-time memory checks:\n";
399  printChecks(OS, Checks, Depth);
400
401  OS.indent(Depth) << "Grouped accesses:\n";
402  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
403    const auto &CG = CheckingGroups[I];
404
405    OS.indent(Depth + 2) << "Group " << &CG << ":\n";
406    OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
407                         << ")\n";
408    for (unsigned J = 0; J < CG.Members.size(); ++J) {
409      OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
410                           << "\n";
411    }
412  }
413}
414
415namespace {
416/// \brief Analyses memory accesses in a loop.
417///
418/// Checks whether run time pointer checks are needed and builds sets for data
419/// dependence checking.
420class AccessAnalysis {
421public:
422  /// \brief Read or write access location.
423  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
424  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
425
426  AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
427                 MemoryDepChecker::DepCandidates &DA,
428                 PredicatedScalarEvolution &PSE)
429      : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
430        PSE(PSE) {}
431
432  /// \brief Register a load  and whether it is only read from.
433  void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
434    Value *Ptr = const_cast<Value*>(Loc.Ptr);
435    AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
436    Accesses.insert(MemAccessInfo(Ptr, false));
437    if (IsReadOnly)
438      ReadOnlyPtr.insert(Ptr);
439  }
440
441  /// \brief Register a store.
442  void addStore(MemoryLocation &Loc) {
443    Value *Ptr = const_cast<Value*>(Loc.Ptr);
444    AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
445    Accesses.insert(MemAccessInfo(Ptr, true));
446  }
447
448  /// \brief Check whether we can check the pointers at runtime for
449  /// non-intersection.
450  ///
451  /// Returns true if we need no check or if we do and we can generate them
452  /// (i.e. the pointers have computable bounds).
453  bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
454                       Loop *TheLoop, const ValueToValueMap &Strides,
455                       bool ShouldCheckStride = false);
456
457  /// \brief Goes over all memory accesses, checks whether a RT check is needed
458  /// and builds sets of dependent accesses.
459  void buildDependenceSets() {
460    processMemAccesses();
461  }
462
463  /// \brief Initial processing of memory accesses determined that we need to
464  /// perform dependency checking.
465  ///
466  /// Note that this can later be cleared if we retry memcheck analysis without
467  /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
468  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
469
470  /// We decided that no dependence analysis would be used.  Reset the state.
471  void resetDepChecks(MemoryDepChecker &DepChecker) {
472    CheckDeps.clear();
473    DepChecker.clearDependences();
474  }
475
476  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
477
478private:
479  typedef SetVector<MemAccessInfo> PtrAccessSet;
480
481  /// \brief Go over all memory access and check whether runtime pointer checks
482  /// are needed and build sets of dependency check candidates.
483  void processMemAccesses();
484
485  /// Set of all accesses.
486  PtrAccessSet Accesses;
487
488  const DataLayout &DL;
489
490  /// Set of accesses that need a further dependence check.
491  MemAccessInfoSet CheckDeps;
492
493  /// Set of pointers that are read only.
494  SmallPtrSet<Value*, 16> ReadOnlyPtr;
495
496  /// An alias set tracker to partition the access set by underlying object and
497  //intrinsic property (such as TBAA metadata).
498  AliasSetTracker AST;
499
500  LoopInfo *LI;
501
502  /// Sets of potentially dependent accesses - members of one set share an
503  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
504  /// dependence check.
505  MemoryDepChecker::DepCandidates &DepCands;
506
507  /// \brief Initial processing of memory accesses determined that we may need
508  /// to add memchecks.  Perform the analysis to determine the necessary checks.
509  ///
510  /// Note that, this is different from isDependencyCheckNeeded.  When we retry
511  /// memcheck analysis without dependency checking
512  /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
513  /// while this remains set if we have potentially dependent accesses.
514  bool IsRTCheckAnalysisNeeded;
515
516  /// The SCEV predicate containing all the SCEV-related assumptions.
517  PredicatedScalarEvolution &PSE;
518};
519
520} // end anonymous namespace
521
522/// \brief Check whether a pointer can participate in a runtime bounds check.
523static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
524                                const ValueToValueMap &Strides, Value *Ptr,
525                                Loop *L) {
526  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
527  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
528  if (!AR)
529    return false;
530
531  return AR->isAffine();
532}
533
534bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
535                                     ScalarEvolution *SE, Loop *TheLoop,
536                                     const ValueToValueMap &StridesMap,
537                                     bool ShouldCheckStride) {
538  // Find pointers with computable bounds. We are going to use this information
539  // to place a runtime bound check.
540  bool CanDoRT = true;
541
542  bool NeedRTCheck = false;
543  if (!IsRTCheckAnalysisNeeded) return true;
544
545  bool IsDepCheckNeeded = isDependencyCheckNeeded();
546
547  // We assign a consecutive id to access from different alias sets.
548  // Accesses between different groups doesn't need to be checked.
549  unsigned ASId = 1;
550  for (auto &AS : AST) {
551    int NumReadPtrChecks = 0;
552    int NumWritePtrChecks = 0;
553
554    // We assign consecutive id to access from different dependence sets.
555    // Accesses within the same set don't need a runtime check.
556    unsigned RunningDepId = 1;
557    DenseMap<Value *, unsigned> DepSetId;
558
559    for (auto A : AS) {
560      Value *Ptr = A.getValue();
561      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
562      MemAccessInfo Access(Ptr, IsWrite);
563
564      if (IsWrite)
565        ++NumWritePtrChecks;
566      else
567        ++NumReadPtrChecks;
568
569      if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
570          // When we run after a failing dependency check we have to make sure
571          // we don't have wrapping pointers.
572          (!ShouldCheckStride ||
573           isStridedPtr(PSE, Ptr, TheLoop, StridesMap) == 1)) {
574        // The id of the dependence set.
575        unsigned DepId;
576
577        if (IsDepCheckNeeded) {
578          Value *Leader = DepCands.getLeaderValue(Access).getPointer();
579          unsigned &LeaderId = DepSetId[Leader];
580          if (!LeaderId)
581            LeaderId = RunningDepId++;
582          DepId = LeaderId;
583        } else
584          // Each access has its own dependence set.
585          DepId = RunningDepId++;
586
587        RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
588
589        DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
590      } else {
591        DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
592        CanDoRT = false;
593      }
594    }
595
596    // If we have at least two writes or one write and a read then we need to
597    // check them.  But there is no need to checks if there is only one
598    // dependence set for this alias set.
599    //
600    // Note that this function computes CanDoRT and NeedRTCheck independently.
601    // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
602    // for which we couldn't find the bounds but we don't actually need to emit
603    // any checks so it does not matter.
604    if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
605      NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
606                                                 NumWritePtrChecks >= 1));
607
608    ++ASId;
609  }
610
611  // If the pointers that we would use for the bounds comparison have different
612  // address spaces, assume the values aren't directly comparable, so we can't
613  // use them for the runtime check. We also have to assume they could
614  // overlap. In the future there should be metadata for whether address spaces
615  // are disjoint.
616  unsigned NumPointers = RtCheck.Pointers.size();
617  for (unsigned i = 0; i < NumPointers; ++i) {
618    for (unsigned j = i + 1; j < NumPointers; ++j) {
619      // Only need to check pointers between two different dependency sets.
620      if (RtCheck.Pointers[i].DependencySetId ==
621          RtCheck.Pointers[j].DependencySetId)
622       continue;
623      // Only need to check pointers in the same alias set.
624      if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
625        continue;
626
627      Value *PtrI = RtCheck.Pointers[i].PointerValue;
628      Value *PtrJ = RtCheck.Pointers[j].PointerValue;
629
630      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
631      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
632      if (ASi != ASj) {
633        DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
634                       " different address spaces\n");
635        return false;
636      }
637    }
638  }
639
640  if (NeedRTCheck && CanDoRT)
641    RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
642
643  DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
644               << " pointer comparisons.\n");
645
646  RtCheck.Need = NeedRTCheck;
647
648  bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
649  if (!CanDoRTIfNeeded)
650    RtCheck.reset();
651  return CanDoRTIfNeeded;
652}
653
654void AccessAnalysis::processMemAccesses() {
655  // We process the set twice: first we process read-write pointers, last we
656  // process read-only pointers. This allows us to skip dependence tests for
657  // read-only pointers.
658
659  DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
660  DEBUG(dbgs() << "  AST: "; AST.dump());
661  DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
662  DEBUG({
663    for (auto A : Accesses)
664      dbgs() << "\t" << *A.getPointer() << " (" <<
665                (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
666                                         "read-only" : "read")) << ")\n";
667  });
668
669  // The AliasSetTracker has nicely partitioned our pointers by metadata
670  // compatibility and potential for underlying-object overlap. As a result, we
671  // only need to check for potential pointer dependencies within each alias
672  // set.
673  for (auto &AS : AST) {
674    // Note that both the alias-set tracker and the alias sets themselves used
675    // linked lists internally and so the iteration order here is deterministic
676    // (matching the original instruction order within each set).
677
678    bool SetHasWrite = false;
679
680    // Map of pointers to last access encountered.
681    typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
682    UnderlyingObjToAccessMap ObjToLastAccess;
683
684    // Set of access to check after all writes have been processed.
685    PtrAccessSet DeferredAccesses;
686
687    // Iterate over each alias set twice, once to process read/write pointers,
688    // and then to process read-only pointers.
689    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
690      bool UseDeferred = SetIteration > 0;
691      PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
692
693      for (auto AV : AS) {
694        Value *Ptr = AV.getValue();
695
696        // For a single memory access in AliasSetTracker, Accesses may contain
697        // both read and write, and they both need to be handled for CheckDeps.
698        for (auto AC : S) {
699          if (AC.getPointer() != Ptr)
700            continue;
701
702          bool IsWrite = AC.getInt();
703
704          // If we're using the deferred access set, then it contains only
705          // reads.
706          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
707          if (UseDeferred && !IsReadOnlyPtr)
708            continue;
709          // Otherwise, the pointer must be in the PtrAccessSet, either as a
710          // read or a write.
711          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
712                  S.count(MemAccessInfo(Ptr, false))) &&
713                 "Alias-set pointer not in the access set?");
714
715          MemAccessInfo Access(Ptr, IsWrite);
716          DepCands.insert(Access);
717
718          // Memorize read-only pointers for later processing and skip them in
719          // the first round (they need to be checked after we have seen all
720          // write pointers). Note: we also mark pointer that are not
721          // consecutive as "read-only" pointers (so that we check
722          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
723          if (!UseDeferred && IsReadOnlyPtr) {
724            DeferredAccesses.insert(Access);
725            continue;
726          }
727
728          // If this is a write - check other reads and writes for conflicts. If
729          // this is a read only check other writes for conflicts (but only if
730          // there is no other write to the ptr - this is an optimization to
731          // catch "a[i] = a[i] + " without having to do a dependence check).
732          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
733            CheckDeps.insert(Access);
734            IsRTCheckAnalysisNeeded = true;
735          }
736
737          if (IsWrite)
738            SetHasWrite = true;
739
740          // Create sets of pointers connected by a shared alias set and
741          // underlying object.
742          typedef SmallVector<Value *, 16> ValueVector;
743          ValueVector TempObjects;
744
745          GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
746          DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
747          for (Value *UnderlyingObj : TempObjects) {
748            // nullptr never alias, don't join sets for pointer that have "null"
749            // in their UnderlyingObjects list.
750            if (isa<ConstantPointerNull>(UnderlyingObj))
751              continue;
752
753            UnderlyingObjToAccessMap::iterator Prev =
754                ObjToLastAccess.find(UnderlyingObj);
755            if (Prev != ObjToLastAccess.end())
756              DepCands.unionSets(Access, Prev->second);
757
758            ObjToLastAccess[UnderlyingObj] = Access;
759            DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
760          }
761        }
762      }
763    }
764  }
765}
766
767static bool isInBoundsGep(Value *Ptr) {
768  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
769    return GEP->isInBounds();
770  return false;
771}
772
773/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
774/// i.e. monotonically increasing/decreasing.
775static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
776                           ScalarEvolution *SE, const Loop *L) {
777  // FIXME: This should probably only return true for NUW.
778  if (AR->getNoWrapFlags(SCEV::NoWrapMask))
779    return true;
780
781  // Scalar evolution does not propagate the non-wrapping flags to values that
782  // are derived from a non-wrapping induction variable because non-wrapping
783  // could be flow-sensitive.
784  //
785  // Look through the potentially overflowing instruction to try to prove
786  // non-wrapping for the *specific* value of Ptr.
787
788  // The arithmetic implied by an inbounds GEP can't overflow.
789  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
790  if (!GEP || !GEP->isInBounds())
791    return false;
792
793  // Make sure there is only one non-const index and analyze that.
794  Value *NonConstIndex = nullptr;
795  for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
796    if (!isa<ConstantInt>(*Index)) {
797      if (NonConstIndex)
798        return false;
799      NonConstIndex = *Index;
800    }
801  if (!NonConstIndex)
802    // The recurrence is on the pointer, ignore for now.
803    return false;
804
805  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
806  // AddRec using a NSW operation.
807  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
808    if (OBO->hasNoSignedWrap() &&
809        // Assume constant for other the operand so that the AddRec can be
810        // easily found.
811        isa<ConstantInt>(OBO->getOperand(1))) {
812      auto *OpScev = SE->getSCEV(OBO->getOperand(0));
813
814      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
815        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
816    }
817
818  return false;
819}
820
821/// \brief Check whether the access through \p Ptr has a constant stride.
822int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr,
823                       const Loop *Lp, const ValueToValueMap &StridesMap) {
824  Type *Ty = Ptr->getType();
825  assert(Ty->isPointerTy() && "Unexpected non-ptr");
826
827  // Make sure that the pointer does not point to aggregate types.
828  auto *PtrTy = cast<PointerType>(Ty);
829  if (PtrTy->getElementType()->isAggregateType()) {
830    DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
831          << *Ptr << "\n");
832    return 0;
833  }
834
835  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
836
837  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
838  if (!AR) {
839    DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
840          << *Ptr << " SCEV: " << *PtrScev << "\n");
841    return 0;
842  }
843
844  // The accesss function must stride over the innermost loop.
845  if (Lp != AR->getLoop()) {
846    DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
847          *Ptr << " SCEV: " << *PtrScev << "\n");
848    return 0;
849  }
850
851  // The address calculation must not wrap. Otherwise, a dependence could be
852  // inverted.
853  // An inbounds getelementptr that is a AddRec with a unit stride
854  // cannot wrap per definition. The unit stride requirement is checked later.
855  // An getelementptr without an inbounds attribute and unit stride would have
856  // to access the pointer value "0" which is undefined behavior in address
857  // space 0, therefore we can also vectorize this case.
858  bool IsInBoundsGEP = isInBoundsGep(Ptr);
859  bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, PSE.getSE(), Lp);
860  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
861  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
862    DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
863                 << *Ptr << " SCEV: " << *PtrScev << "\n");
864    return 0;
865  }
866
867  // Check the step is constant.
868  const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
869
870  // Calculate the pointer stride and check if it is constant.
871  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
872  if (!C) {
873    DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
874          " SCEV: " << *PtrScev << "\n");
875    return 0;
876  }
877
878  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
879  int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
880  const APInt &APStepVal = C->getAPInt();
881
882  // Huge step value - give up.
883  if (APStepVal.getBitWidth() > 64)
884    return 0;
885
886  int64_t StepVal = APStepVal.getSExtValue();
887
888  // Strided access.
889  int64_t Stride = StepVal / Size;
890  int64_t Rem = StepVal % Size;
891  if (Rem)
892    return 0;
893
894  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
895  // know we can't "wrap around the address space". In case of address space
896  // zero we know that this won't happen without triggering undefined behavior.
897  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
898      Stride != 1 && Stride != -1)
899    return 0;
900
901  return Stride;
902}
903
904bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
905  switch (Type) {
906  case NoDep:
907  case Forward:
908  case BackwardVectorizable:
909    return true;
910
911  case Unknown:
912  case ForwardButPreventsForwarding:
913  case Backward:
914  case BackwardVectorizableButPreventsForwarding:
915    return false;
916  }
917  llvm_unreachable("unexpected DepType!");
918}
919
920bool MemoryDepChecker::Dependence::isBackward() const {
921  switch (Type) {
922  case NoDep:
923  case Forward:
924  case ForwardButPreventsForwarding:
925  case Unknown:
926    return false;
927
928  case BackwardVectorizable:
929  case Backward:
930  case BackwardVectorizableButPreventsForwarding:
931    return true;
932  }
933  llvm_unreachable("unexpected DepType!");
934}
935
936bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
937  return isBackward() || Type == Unknown;
938}
939
940bool MemoryDepChecker::Dependence::isForward() const {
941  switch (Type) {
942  case Forward:
943  case ForwardButPreventsForwarding:
944    return true;
945
946  case NoDep:
947  case Unknown:
948  case BackwardVectorizable:
949  case Backward:
950  case BackwardVectorizableButPreventsForwarding:
951    return false;
952  }
953  llvm_unreachable("unexpected DepType!");
954}
955
956bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
957                                                    unsigned TypeByteSize) {
958  // If loads occur at a distance that is not a multiple of a feasible vector
959  // factor store-load forwarding does not take place.
960  // Positive dependences might cause troubles because vectorizing them might
961  // prevent store-load forwarding making vectorized code run a lot slower.
962  //   a[i] = a[i-3] ^ a[i-8];
963  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
964  //   hence on your typical architecture store-load forwarding does not take
965  //   place. Vectorizing in such cases does not make sense.
966  // Store-load forwarding distance.
967  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
968  // Maximum vector factor.
969  unsigned MaxVFWithoutSLForwardIssues =
970    VectorizerParams::MaxVectorWidth * TypeByteSize;
971  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
972    MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
973
974  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
975       vf *= 2) {
976    if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
977      MaxVFWithoutSLForwardIssues = (vf >>=1);
978      break;
979    }
980  }
981
982  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
983    DEBUG(dbgs() << "LAA: Distance " << Distance <<
984          " that could cause a store-load forwarding conflict\n");
985    return true;
986  }
987
988  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
989      MaxVFWithoutSLForwardIssues !=
990      VectorizerParams::MaxVectorWidth * TypeByteSize)
991    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
992  return false;
993}
994
995/// \brief Check the dependence for two accesses with the same stride \p Stride.
996/// \p Distance is the positive distance and \p TypeByteSize is type size in
997/// bytes.
998///
999/// \returns true if they are independent.
1000static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1001                                          unsigned TypeByteSize) {
1002  assert(Stride > 1 && "The stride must be greater than 1");
1003  assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1004  assert(Distance > 0 && "The distance must be non-zero");
1005
1006  // Skip if the distance is not multiple of type byte size.
1007  if (Distance % TypeByteSize)
1008    return false;
1009
1010  unsigned ScaledDist = Distance / TypeByteSize;
1011
1012  // No dependence if the scaled distance is not multiple of the stride.
1013  // E.g.
1014  //      for (i = 0; i < 1024 ; i += 4)
1015  //        A[i+2] = A[i] + 1;
1016  //
1017  // Two accesses in memory (scaled distance is 2, stride is 4):
1018  //     | A[0] |      |      |      | A[4] |      |      |      |
1019  //     |      |      | A[2] |      |      |      | A[6] |      |
1020  //
1021  // E.g.
1022  //      for (i = 0; i < 1024 ; i += 3)
1023  //        A[i+4] = A[i] + 1;
1024  //
1025  // Two accesses in memory (scaled distance is 4, stride is 3):
1026  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1027  //     |      |      |      |      | A[4] |      |      | A[7] |      |
1028  return ScaledDist % Stride;
1029}
1030
1031MemoryDepChecker::Dependence::DepType
1032MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1033                              const MemAccessInfo &B, unsigned BIdx,
1034                              const ValueToValueMap &Strides) {
1035  assert (AIdx < BIdx && "Must pass arguments in program order");
1036
1037  Value *APtr = A.getPointer();
1038  Value *BPtr = B.getPointer();
1039  bool AIsWrite = A.getInt();
1040  bool BIsWrite = B.getInt();
1041
1042  // Two reads are independent.
1043  if (!AIsWrite && !BIsWrite)
1044    return Dependence::NoDep;
1045
1046  // We cannot check pointers in different address spaces.
1047  if (APtr->getType()->getPointerAddressSpace() !=
1048      BPtr->getType()->getPointerAddressSpace())
1049    return Dependence::Unknown;
1050
1051  const SCEV *AScev = replaceSymbolicStrideSCEV(PSE, Strides, APtr);
1052  const SCEV *BScev = replaceSymbolicStrideSCEV(PSE, Strides, BPtr);
1053
1054  int StrideAPtr = isStridedPtr(PSE, APtr, InnermostLoop, Strides);
1055  int StrideBPtr = isStridedPtr(PSE, BPtr, InnermostLoop, Strides);
1056
1057  const SCEV *Src = AScev;
1058  const SCEV *Sink = BScev;
1059
1060  // If the induction step is negative we have to invert source and sink of the
1061  // dependence.
1062  if (StrideAPtr < 0) {
1063    //Src = BScev;
1064    //Sink = AScev;
1065    std::swap(APtr, BPtr);
1066    std::swap(Src, Sink);
1067    std::swap(AIsWrite, BIsWrite);
1068    std::swap(AIdx, BIdx);
1069    std::swap(StrideAPtr, StrideBPtr);
1070  }
1071
1072  const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1073
1074  DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1075               << "(Induction step: " << StrideAPtr << ")\n");
1076  DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1077               << *InstMap[BIdx] << ": " << *Dist << "\n");
1078
1079  // Need accesses with constant stride. We don't want to vectorize
1080  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1081  // the address space.
1082  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1083    DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1084    return Dependence::Unknown;
1085  }
1086
1087  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1088  if (!C) {
1089    DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1090    ShouldRetryWithRuntimeCheck = true;
1091    return Dependence::Unknown;
1092  }
1093
1094  Type *ATy = APtr->getType()->getPointerElementType();
1095  Type *BTy = BPtr->getType()->getPointerElementType();
1096  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1097  unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1098
1099  // Negative distances are not plausible dependencies.
1100  const APInt &Val = C->getAPInt();
1101  if (Val.isNegative()) {
1102    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1103    if (IsTrueDataDependence &&
1104        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1105         ATy != BTy))
1106      return Dependence::ForwardButPreventsForwarding;
1107
1108    DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
1109    return Dependence::Forward;
1110  }
1111
1112  // Write to the same location with the same size.
1113  // Could be improved to assert type sizes are the same (i32 == float, etc).
1114  if (Val == 0) {
1115    if (ATy == BTy)
1116      return Dependence::Forward;
1117    DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1118    return Dependence::Unknown;
1119  }
1120
1121  assert(Val.isStrictlyPositive() && "Expect a positive value");
1122
1123  if (ATy != BTy) {
1124    DEBUG(dbgs() <<
1125          "LAA: ReadWrite-Write positive dependency with different types\n");
1126    return Dependence::Unknown;
1127  }
1128
1129  unsigned Distance = (unsigned) Val.getZExtValue();
1130
1131  unsigned Stride = std::abs(StrideAPtr);
1132  if (Stride > 1 &&
1133      areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1134    DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1135    return Dependence::NoDep;
1136  }
1137
1138  // Bail out early if passed-in parameters make vectorization not feasible.
1139  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1140                           VectorizerParams::VectorizationFactor : 1);
1141  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1142                           VectorizerParams::VectorizationInterleave : 1);
1143  // The minimum number of iterations for a vectorized/unrolled version.
1144  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1145
1146  // It's not vectorizable if the distance is smaller than the minimum distance
1147  // needed for a vectroized/unrolled version. Vectorizing one iteration in
1148  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1149  // TypeByteSize (No need to plus the last gap distance).
1150  //
1151  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1152  //      foo(int *A) {
1153  //        int *B = (int *)((char *)A + 14);
1154  //        for (i = 0 ; i < 1024 ; i += 2)
1155  //          B[i] = A[i] + 1;
1156  //      }
1157  //
1158  // Two accesses in memory (stride is 2):
1159  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1160  //                              | B[0] |      | B[2] |      | B[4] |
1161  //
1162  // Distance needs for vectorizing iterations except the last iteration:
1163  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1164  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1165  //
1166  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1167  // 12, which is less than distance.
1168  //
1169  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1170  // the minimum distance needed is 28, which is greater than distance. It is
1171  // not safe to do vectorization.
1172  unsigned MinDistanceNeeded =
1173      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1174  if (MinDistanceNeeded > Distance) {
1175    DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1176                 << '\n');
1177    return Dependence::Backward;
1178  }
1179
1180  // Unsafe if the minimum distance needed is greater than max safe distance.
1181  if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1182    DEBUG(dbgs() << "LAA: Failure because it needs at least "
1183                 << MinDistanceNeeded << " size in bytes");
1184    return Dependence::Backward;
1185  }
1186
1187  // Positive distance bigger than max vectorization factor.
1188  // FIXME: Should use max factor instead of max distance in bytes, which could
1189  // not handle different types.
1190  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1191  //      void foo (int *A, char *B) {
1192  //        for (unsigned i = 0; i < 1024; i++) {
1193  //          A[i+2] = A[i] + 1;
1194  //          B[i+2] = B[i] + 1;
1195  //        }
1196  //      }
1197  //
1198  // This case is currently unsafe according to the max safe distance. If we
1199  // analyze the two accesses on array B, the max safe dependence distance
1200  // is 2. Then we analyze the accesses on array A, the minimum distance needed
1201  // is 8, which is less than 2 and forbidden vectorization, But actually
1202  // both A and B could be vectorized by 2 iterations.
1203  MaxSafeDepDistBytes =
1204      Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1205
1206  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1207  if (IsTrueDataDependence &&
1208      couldPreventStoreLoadForward(Distance, TypeByteSize))
1209    return Dependence::BackwardVectorizableButPreventsForwarding;
1210
1211  DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1212               << " with max VF = "
1213               << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1214
1215  return Dependence::BackwardVectorizable;
1216}
1217
1218bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1219                                   MemAccessInfoSet &CheckDeps,
1220                                   const ValueToValueMap &Strides) {
1221
1222  MaxSafeDepDistBytes = -1U;
1223  while (!CheckDeps.empty()) {
1224    MemAccessInfo CurAccess = *CheckDeps.begin();
1225
1226    // Get the relevant memory access set.
1227    EquivalenceClasses<MemAccessInfo>::iterator I =
1228      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1229
1230    // Check accesses within this set.
1231    EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
1232    AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
1233
1234    // Check every access pair.
1235    while (AI != AE) {
1236      CheckDeps.erase(*AI);
1237      EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1238      while (OI != AE) {
1239        // Check every accessing instruction pair in program order.
1240        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1241             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1242          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1243               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1244            auto A = std::make_pair(&*AI, *I1);
1245            auto B = std::make_pair(&*OI, *I2);
1246
1247            assert(*I1 != *I2);
1248            if (*I1 > *I2)
1249              std::swap(A, B);
1250
1251            Dependence::DepType Type =
1252                isDependent(*A.first, A.second, *B.first, B.second, Strides);
1253            SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1254
1255            // Gather dependences unless we accumulated MaxDependences
1256            // dependences.  In that case return as soon as we find the first
1257            // unsafe dependence.  This puts a limit on this quadratic
1258            // algorithm.
1259            if (RecordDependences) {
1260              if (Type != Dependence::NoDep)
1261                Dependences.push_back(Dependence(A.second, B.second, Type));
1262
1263              if (Dependences.size() >= MaxDependences) {
1264                RecordDependences = false;
1265                Dependences.clear();
1266                DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1267              }
1268            }
1269            if (!RecordDependences && !SafeForVectorization)
1270              return false;
1271          }
1272        ++OI;
1273      }
1274      AI++;
1275    }
1276  }
1277
1278  DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1279  return SafeForVectorization;
1280}
1281
1282SmallVector<Instruction *, 4>
1283MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1284  MemAccessInfo Access(Ptr, isWrite);
1285  auto &IndexVector = Accesses.find(Access)->second;
1286
1287  SmallVector<Instruction *, 4> Insts;
1288  std::transform(IndexVector.begin(), IndexVector.end(),
1289                 std::back_inserter(Insts),
1290                 [&](unsigned Idx) { return this->InstMap[Idx]; });
1291  return Insts;
1292}
1293
1294const char *MemoryDepChecker::Dependence::DepName[] = {
1295    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1296    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1297
1298void MemoryDepChecker::Dependence::print(
1299    raw_ostream &OS, unsigned Depth,
1300    const SmallVectorImpl<Instruction *> &Instrs) const {
1301  OS.indent(Depth) << DepName[Type] << ":\n";
1302  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1303  OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1304}
1305
1306bool LoopAccessInfo::canAnalyzeLoop() {
1307  // We need to have a loop header.
1308  DEBUG(dbgs() << "LAA: Found a loop: " <<
1309        TheLoop->getHeader()->getName() << '\n');
1310
1311    // We can only analyze innermost loops.
1312  if (!TheLoop->empty()) {
1313    DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1314    emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1315    return false;
1316  }
1317
1318  // We must have a single backedge.
1319  if (TheLoop->getNumBackEdges() != 1) {
1320    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1321    emitAnalysis(
1322        LoopAccessReport() <<
1323        "loop control flow is not understood by analyzer");
1324    return false;
1325  }
1326
1327  // We must have a single exiting block.
1328  if (!TheLoop->getExitingBlock()) {
1329    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1330    emitAnalysis(
1331        LoopAccessReport() <<
1332        "loop control flow is not understood by analyzer");
1333    return false;
1334  }
1335
1336  // We only handle bottom-tested loops, i.e. loop in which the condition is
1337  // checked at the end of each iteration. With that we can assume that all
1338  // instructions in the loop are executed the same number of times.
1339  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1340    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1341    emitAnalysis(
1342        LoopAccessReport() <<
1343        "loop control flow is not understood by analyzer");
1344    return false;
1345  }
1346
1347  // ScalarEvolution needs to be able to find the exit count.
1348  const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop);
1349  if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1350    emitAnalysis(LoopAccessReport()
1351                 << "could not determine number of loop iterations");
1352    DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1353    return false;
1354  }
1355
1356  return true;
1357}
1358
1359void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1360
1361  typedef SmallVector<Value*, 16> ValueVector;
1362  typedef SmallPtrSet<Value*, 16> ValueSet;
1363
1364  // Holds the Load and Store *instructions*.
1365  ValueVector Loads;
1366  ValueVector Stores;
1367
1368  // Holds all the different accesses in the loop.
1369  unsigned NumReads = 0;
1370  unsigned NumReadWrites = 0;
1371
1372  PtrRtChecking.Pointers.clear();
1373  PtrRtChecking.Need = false;
1374
1375  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1376
1377  // For each block.
1378  for (Loop::block_iterator bb = TheLoop->block_begin(),
1379       be = TheLoop->block_end(); bb != be; ++bb) {
1380
1381    // Scan the BB and collect legal loads and stores.
1382    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1383         ++it) {
1384
1385      // If this is a load, save it. If this instruction can read from memory
1386      // but is not a load, then we quit. Notice that we don't handle function
1387      // calls that read or write.
1388      if (it->mayReadFromMemory()) {
1389        // Many math library functions read the rounding mode. We will only
1390        // vectorize a loop if it contains known function calls that don't set
1391        // the flag. Therefore, it is safe to ignore this read from memory.
1392        CallInst *Call = dyn_cast<CallInst>(it);
1393        if (Call && getIntrinsicIDForCall(Call, TLI))
1394          continue;
1395
1396        // If the function has an explicit vectorized counterpart, we can safely
1397        // assume that it can be vectorized.
1398        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1399            TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1400          continue;
1401
1402        LoadInst *Ld = dyn_cast<LoadInst>(it);
1403        if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1404          emitAnalysis(LoopAccessReport(Ld)
1405                       << "read with atomic ordering or volatile read");
1406          DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1407          CanVecMem = false;
1408          return;
1409        }
1410        NumLoads++;
1411        Loads.push_back(Ld);
1412        DepChecker.addAccess(Ld);
1413        continue;
1414      }
1415
1416      // Save 'store' instructions. Abort if other instructions write to memory.
1417      if (it->mayWriteToMemory()) {
1418        StoreInst *St = dyn_cast<StoreInst>(it);
1419        if (!St) {
1420          emitAnalysis(LoopAccessReport(&*it) <<
1421                       "instruction cannot be vectorized");
1422          CanVecMem = false;
1423          return;
1424        }
1425        if (!St->isSimple() && !IsAnnotatedParallel) {
1426          emitAnalysis(LoopAccessReport(St)
1427                       << "write with atomic ordering or volatile write");
1428          DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1429          CanVecMem = false;
1430          return;
1431        }
1432        NumStores++;
1433        Stores.push_back(St);
1434        DepChecker.addAccess(St);
1435      }
1436    } // Next instr.
1437  } // Next block.
1438
1439  // Now we have two lists that hold the loads and the stores.
1440  // Next, we find the pointers that they use.
1441
1442  // Check if we see any stores. If there are no stores, then we don't
1443  // care if the pointers are *restrict*.
1444  if (!Stores.size()) {
1445    DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1446    CanVecMem = true;
1447    return;
1448  }
1449
1450  MemoryDepChecker::DepCandidates DependentAccesses;
1451  AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1452                          AA, LI, DependentAccesses, PSE);
1453
1454  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1455  // multiple times on the same object. If the ptr is accessed twice, once
1456  // for read and once for write, it will only appear once (on the write
1457  // list). This is okay, since we are going to check for conflicts between
1458  // writes and between reads and writes, but not between reads and reads.
1459  ValueSet Seen;
1460
1461  ValueVector::iterator I, IE;
1462  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1463    StoreInst *ST = cast<StoreInst>(*I);
1464    Value* Ptr = ST->getPointerOperand();
1465    // Check for store to loop invariant address.
1466    StoreToLoopInvariantAddress |= isUniform(Ptr);
1467    // If we did *not* see this pointer before, insert it to  the read-write
1468    // list. At this phase it is only a 'write' list.
1469    if (Seen.insert(Ptr).second) {
1470      ++NumReadWrites;
1471
1472      MemoryLocation Loc = MemoryLocation::get(ST);
1473      // The TBAA metadata could have a control dependency on the predication
1474      // condition, so we cannot rely on it when determining whether or not we
1475      // need runtime pointer checks.
1476      if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1477        Loc.AATags.TBAA = nullptr;
1478
1479      Accesses.addStore(Loc);
1480    }
1481  }
1482
1483  if (IsAnnotatedParallel) {
1484    DEBUG(dbgs()
1485          << "LAA: A loop annotated parallel, ignore memory dependency "
1486          << "checks.\n");
1487    CanVecMem = true;
1488    return;
1489  }
1490
1491  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1492    LoadInst *LD = cast<LoadInst>(*I);
1493    Value* Ptr = LD->getPointerOperand();
1494    // If we did *not* see this pointer before, insert it to the
1495    // read list. If we *did* see it before, then it is already in
1496    // the read-write list. This allows us to vectorize expressions
1497    // such as A[i] += x;  Because the address of A[i] is a read-write
1498    // pointer. This only works if the index of A[i] is consecutive.
1499    // If the address of i is unknown (for example A[B[i]]) then we may
1500    // read a few words, modify, and write a few words, and some of the
1501    // words may be written to the same address.
1502    bool IsReadOnlyPtr = false;
1503    if (Seen.insert(Ptr).second || !isStridedPtr(PSE, Ptr, TheLoop, Strides)) {
1504      ++NumReads;
1505      IsReadOnlyPtr = true;
1506    }
1507
1508    MemoryLocation Loc = MemoryLocation::get(LD);
1509    // The TBAA metadata could have a control dependency on the predication
1510    // condition, so we cannot rely on it when determining whether or not we
1511    // need runtime pointer checks.
1512    if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1513      Loc.AATags.TBAA = nullptr;
1514
1515    Accesses.addLoad(Loc, IsReadOnlyPtr);
1516  }
1517
1518  // If we write (or read-write) to a single destination and there are no
1519  // other reads in this loop then is it safe to vectorize.
1520  if (NumReadWrites == 1 && NumReads == 0) {
1521    DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1522    CanVecMem = true;
1523    return;
1524  }
1525
1526  // Build dependence sets and check whether we need a runtime pointer bounds
1527  // check.
1528  Accesses.buildDependenceSets();
1529
1530  // Find pointers with computable bounds. We are going to use this information
1531  // to place a runtime bound check.
1532  bool CanDoRTIfNeeded =
1533      Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
1534  if (!CanDoRTIfNeeded) {
1535    emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1536    DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1537                 << "the array bounds.\n");
1538    CanVecMem = false;
1539    return;
1540  }
1541
1542  DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1543
1544  CanVecMem = true;
1545  if (Accesses.isDependencyCheckNeeded()) {
1546    DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1547    CanVecMem = DepChecker.areDepsSafe(
1548        DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1549    MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1550
1551    if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1552      DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1553
1554      // Clear the dependency checks. We assume they are not needed.
1555      Accesses.resetDepChecks(DepChecker);
1556
1557      PtrRtChecking.reset();
1558      PtrRtChecking.Need = true;
1559
1560      auto *SE = PSE.getSE();
1561      CanDoRTIfNeeded =
1562          Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
1563
1564      // Check that we found the bounds for the pointer.
1565      if (!CanDoRTIfNeeded) {
1566        emitAnalysis(LoopAccessReport()
1567                     << "cannot check memory dependencies at runtime");
1568        DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1569        CanVecMem = false;
1570        return;
1571      }
1572
1573      CanVecMem = true;
1574    }
1575  }
1576
1577  if (CanVecMem)
1578    DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1579                 << (PtrRtChecking.Need ? "" : " don't")
1580                 << " need runtime memory checks.\n");
1581  else {
1582    emitAnalysis(LoopAccessReport() <<
1583                 "unsafe dependent memory operations in loop");
1584    DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1585  }
1586}
1587
1588bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1589                                           DominatorTree *DT)  {
1590  assert(TheLoop->contains(BB) && "Unknown block used");
1591
1592  // Blocks that do not dominate the latch need predication.
1593  BasicBlock* Latch = TheLoop->getLoopLatch();
1594  return !DT->dominates(BB, Latch);
1595}
1596
1597void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1598  assert(!Report && "Multiple reports generated");
1599  Report = Message;
1600}
1601
1602bool LoopAccessInfo::isUniform(Value *V) const {
1603  return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
1604}
1605
1606// FIXME: this function is currently a duplicate of the one in
1607// LoopVectorize.cpp.
1608static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1609                                 Instruction *Loc) {
1610  if (FirstInst)
1611    return FirstInst;
1612  if (Instruction *I = dyn_cast<Instruction>(V))
1613    return I->getParent() == Loc->getParent() ? I : nullptr;
1614  return nullptr;
1615}
1616
1617namespace {
1618/// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1619/// need to use value-handles because SCEV expansion can invalidate previously
1620/// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1621/// a previous one.
1622struct PointerBounds {
1623  TrackingVH<Value> Start;
1624  TrackingVH<Value> End;
1625};
1626} // end anonymous namespace
1627
1628/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1629/// in \p TheLoop.  \return the values for the bounds.
1630static PointerBounds
1631expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1632             Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1633             const RuntimePointerChecking &PtrRtChecking) {
1634  Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1635  const SCEV *Sc = SE->getSCEV(Ptr);
1636
1637  if (SE->isLoopInvariant(Sc, TheLoop)) {
1638    DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1639                 << "\n");
1640    return {Ptr, Ptr};
1641  } else {
1642    unsigned AS = Ptr->getType()->getPointerAddressSpace();
1643    LLVMContext &Ctx = Loc->getContext();
1644
1645    // Use this type for pointer arithmetic.
1646    Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1647    Value *Start = nullptr, *End = nullptr;
1648
1649    DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1650    Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1651    End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1652    DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1653    return {Start, End};
1654  }
1655}
1656
1657/// \brief Turns a collection of checks into a collection of expanded upper and
1658/// lower bounds for both pointers in the check.
1659static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1660    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1661    Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1662    const RuntimePointerChecking &PtrRtChecking) {
1663  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1664
1665  // Here we're relying on the SCEV Expander's cache to only emit code for the
1666  // same bounds once.
1667  std::transform(
1668      PointerChecks.begin(), PointerChecks.end(),
1669      std::back_inserter(ChecksWithBounds),
1670      [&](const RuntimePointerChecking::PointerCheck &Check) {
1671        PointerBounds
1672          First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1673          Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1674        return std::make_pair(First, Second);
1675      });
1676
1677  return ChecksWithBounds;
1678}
1679
1680std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1681    Instruction *Loc,
1682    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1683    const {
1684  auto *SE = PSE.getSE();
1685  SCEVExpander Exp(*SE, DL, "induction");
1686  auto ExpandedChecks =
1687      expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1688
1689  LLVMContext &Ctx = Loc->getContext();
1690  Instruction *FirstInst = nullptr;
1691  IRBuilder<> ChkBuilder(Loc);
1692  // Our instructions might fold to a constant.
1693  Value *MemoryRuntimeCheck = nullptr;
1694
1695  for (const auto &Check : ExpandedChecks) {
1696    const PointerBounds &A = Check.first, &B = Check.second;
1697    // Check if two pointers (A and B) conflict where conflict is computed as:
1698    // start(A) <= end(B) && start(B) <= end(A)
1699    unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1700    unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1701
1702    assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1703           (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1704           "Trying to bounds check pointers with different address spaces");
1705
1706    Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1707    Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1708
1709    Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1710    Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1711    Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1712    Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1713
1714    Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1715    FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1716    Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1717    FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1718    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1719    FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1720    if (MemoryRuntimeCheck) {
1721      IsConflict =
1722          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1723      FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1724    }
1725    MemoryRuntimeCheck = IsConflict;
1726  }
1727
1728  if (!MemoryRuntimeCheck)
1729    return std::make_pair(nullptr, nullptr);
1730
1731  // We have to do this trickery because the IRBuilder might fold the check to a
1732  // constant expression in which case there is no Instruction anchored in a
1733  // the block.
1734  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1735                                                 ConstantInt::getTrue(Ctx));
1736  ChkBuilder.Insert(Check, "memcheck.conflict");
1737  FirstInst = getFirstInst(FirstInst, Check, Loc);
1738  return std::make_pair(FirstInst, Check);
1739}
1740
1741std::pair<Instruction *, Instruction *>
1742LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1743  if (!PtrRtChecking.Need)
1744    return std::make_pair(nullptr, nullptr);
1745
1746  return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1747}
1748
1749LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1750                               const DataLayout &DL,
1751                               const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1752                               DominatorTree *DT, LoopInfo *LI,
1753                               const ValueToValueMap &Strides)
1754    : PSE(*SE), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
1755      TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1756      MaxSafeDepDistBytes(-1U), CanVecMem(false),
1757      StoreToLoopInvariantAddress(false) {
1758  if (canAnalyzeLoop())
1759    analyzeLoop(Strides);
1760}
1761
1762void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1763  if (CanVecMem) {
1764    if (PtrRtChecking.Need)
1765      OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1766    else
1767      OS.indent(Depth) << "Memory dependences are safe\n";
1768  }
1769
1770  if (Report)
1771    OS.indent(Depth) << "Report: " << Report->str() << "\n";
1772
1773  if (auto *Dependences = DepChecker.getDependences()) {
1774    OS.indent(Depth) << "Dependences:\n";
1775    for (auto &Dep : *Dependences) {
1776      Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1777      OS << "\n";
1778    }
1779  } else
1780    OS.indent(Depth) << "Too many dependences, not recorded\n";
1781
1782  // List the pair of accesses need run-time checks to prove independence.
1783  PtrRtChecking.print(OS, Depth);
1784  OS << "\n";
1785
1786  OS.indent(Depth) << "Store to invariant address was "
1787                   << (StoreToLoopInvariantAddress ? "" : "not ")
1788                   << "found in loop.\n";
1789
1790  OS.indent(Depth) << "SCEV assumptions:\n";
1791  PSE.getUnionPredicate().print(OS, Depth);
1792}
1793
1794const LoopAccessInfo &
1795LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1796  auto &LAI = LoopAccessInfoMap[L];
1797
1798#ifndef NDEBUG
1799  assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1800         "Symbolic strides changed for loop");
1801#endif
1802
1803  if (!LAI) {
1804    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1805    LAI =
1806        llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
1807#ifndef NDEBUG
1808    LAI->NumSymbolicStrides = Strides.size();
1809#endif
1810  }
1811  return *LAI.get();
1812}
1813
1814void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1815  LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1816
1817  ValueToValueMap NoSymbolicStrides;
1818
1819  for (Loop *TopLevelLoop : *LI)
1820    for (Loop *L : depth_first(TopLevelLoop)) {
1821      OS.indent(2) << L->getHeader()->getName() << ":\n";
1822      auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1823      LAI.print(OS, 4);
1824    }
1825}
1826
1827bool LoopAccessAnalysis::runOnFunction(Function &F) {
1828  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1829  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1830  TLI = TLIP ? &TLIP->getTLI() : nullptr;
1831  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1832  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1833  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1834
1835  return false;
1836}
1837
1838void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1839    AU.addRequired<ScalarEvolutionWrapperPass>();
1840    AU.addRequired<AAResultsWrapperPass>();
1841    AU.addRequired<DominatorTreeWrapperPass>();
1842    AU.addRequired<LoopInfoWrapperPass>();
1843
1844    AU.setPreservesAll();
1845}
1846
1847char LoopAccessAnalysis::ID = 0;
1848static const char laa_name[] = "Loop Access Analysis";
1849#define LAA_NAME "loop-accesses"
1850
1851INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1852INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1853INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1854INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1855INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1856INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1857
1858namespace llvm {
1859  Pass *createLAAPass() {
1860    return new LoopAccessAnalysis();
1861  }
1862}
1863