1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Analysis/VectorUtils.h"
28#include "llvm/IR/ConstantRange.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/GetElementPtrTypeIterator.h"
32#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/IR/PatternMatch.h"
35#include "llvm/IR/ValueHandle.h"
36#include <algorithm>
37using namespace llvm;
38using namespace llvm::PatternMatch;
39
40#define DEBUG_TYPE "instsimplify"
41
42enum { RecursionLimit = 3 };
43
44STATISTIC(NumExpand,  "Number of expansions");
45STATISTIC(NumReassoc, "Number of reassociations");
46
47namespace {
48struct Query {
49  const DataLayout &DL;
50  const TargetLibraryInfo *TLI;
51  const DominatorTree *DT;
52  AssumptionCache *AC;
53  const Instruction *CxtI;
54
55  Query(const DataLayout &DL, const TargetLibraryInfo *tli,
56        const DominatorTree *dt, AssumptionCache *ac = nullptr,
57        const Instruction *cxti = nullptr)
58      : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
59};
60} // end anonymous namespace
61
62static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
63static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
64                            unsigned);
65static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
66                              const Query &, unsigned);
67static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
68                              unsigned);
69static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
70static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
71static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
72
73/// For a boolean type, or a vector of boolean type, return false, or
74/// a vector with every element false, as appropriate for the type.
75static Constant *getFalse(Type *Ty) {
76  assert(Ty->getScalarType()->isIntegerTy(1) &&
77         "Expected i1 type or a vector of i1!");
78  return Constant::getNullValue(Ty);
79}
80
81/// For a boolean type, or a vector of boolean type, return true, or
82/// a vector with every element true, as appropriate for the type.
83static Constant *getTrue(Type *Ty) {
84  assert(Ty->getScalarType()->isIntegerTy(1) &&
85         "Expected i1 type or a vector of i1!");
86  return Constant::getAllOnesValue(Ty);
87}
88
89/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
90static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
91                          Value *RHS) {
92  CmpInst *Cmp = dyn_cast<CmpInst>(V);
93  if (!Cmp)
94    return false;
95  CmpInst::Predicate CPred = Cmp->getPredicate();
96  Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
97  if (CPred == Pred && CLHS == LHS && CRHS == RHS)
98    return true;
99  return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
100    CRHS == LHS;
101}
102
103/// Does the given value dominate the specified phi node?
104static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
105  Instruction *I = dyn_cast<Instruction>(V);
106  if (!I)
107    // Arguments and constants dominate all instructions.
108    return true;
109
110  // If we are processing instructions (and/or basic blocks) that have not been
111  // fully added to a function, the parent nodes may still be null. Simply
112  // return the conservative answer in these cases.
113  if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
114    return false;
115
116  // If we have a DominatorTree then do a precise test.
117  if (DT) {
118    if (!DT->isReachableFromEntry(P->getParent()))
119      return true;
120    if (!DT->isReachableFromEntry(I->getParent()))
121      return false;
122    return DT->dominates(I, P);
123  }
124
125  // Otherwise, if the instruction is in the entry block and is not an invoke,
126  // then it obviously dominates all phi nodes.
127  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
128      !isa<InvokeInst>(I))
129    return true;
130
131  return false;
132}
133
134/// Simplify "A op (B op' C)" by distributing op over op', turning it into
135/// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
136/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
137/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
138/// Returns the simplified value, or null if no simplification was performed.
139static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
140                          unsigned OpcToExpand, const Query &Q,
141                          unsigned MaxRecurse) {
142  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
143  // Recursion is always used, so bail out at once if we already hit the limit.
144  if (!MaxRecurse--)
145    return nullptr;
146
147  // Check whether the expression has the form "(A op' B) op C".
148  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
149    if (Op0->getOpcode() == OpcodeToExpand) {
150      // It does!  Try turning it into "(A op C) op' (B op C)".
151      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
152      // Do "A op C" and "B op C" both simplify?
153      if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
154        if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
155          // They do! Return "L op' R" if it simplifies or is already available.
156          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
157          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
158                                     && L == B && R == A)) {
159            ++NumExpand;
160            return LHS;
161          }
162          // Otherwise return "L op' R" if it simplifies.
163          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
164            ++NumExpand;
165            return V;
166          }
167        }
168    }
169
170  // Check whether the expression has the form "A op (B op' C)".
171  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
172    if (Op1->getOpcode() == OpcodeToExpand) {
173      // It does!  Try turning it into "(A op B) op' (A op C)".
174      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
175      // Do "A op B" and "A op C" both simplify?
176      if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
177        if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
178          // They do! Return "L op' R" if it simplifies or is already available.
179          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
180          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
181                                     && L == C && R == B)) {
182            ++NumExpand;
183            return RHS;
184          }
185          // Otherwise return "L op' R" if it simplifies.
186          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
187            ++NumExpand;
188            return V;
189          }
190        }
191    }
192
193  return nullptr;
194}
195
196/// Generic simplifications for associative binary operations.
197/// Returns the simpler value, or null if none was found.
198static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
199                                       const Query &Q, unsigned MaxRecurse) {
200  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
201  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
202
203  // Recursion is always used, so bail out at once if we already hit the limit.
204  if (!MaxRecurse--)
205    return nullptr;
206
207  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
208  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
209
210  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
211  if (Op0 && Op0->getOpcode() == Opcode) {
212    Value *A = Op0->getOperand(0);
213    Value *B = Op0->getOperand(1);
214    Value *C = RHS;
215
216    // Does "B op C" simplify?
217    if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
218      // It does!  Return "A op V" if it simplifies or is already available.
219      // If V equals B then "A op V" is just the LHS.
220      if (V == B) return LHS;
221      // Otherwise return "A op V" if it simplifies.
222      if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
223        ++NumReassoc;
224        return W;
225      }
226    }
227  }
228
229  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
230  if (Op1 && Op1->getOpcode() == Opcode) {
231    Value *A = LHS;
232    Value *B = Op1->getOperand(0);
233    Value *C = Op1->getOperand(1);
234
235    // Does "A op B" simplify?
236    if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
237      // It does!  Return "V op C" if it simplifies or is already available.
238      // If V equals B then "V op C" is just the RHS.
239      if (V == B) return RHS;
240      // Otherwise return "V op C" if it simplifies.
241      if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
242        ++NumReassoc;
243        return W;
244      }
245    }
246  }
247
248  // The remaining transforms require commutativity as well as associativity.
249  if (!Instruction::isCommutative(Opcode))
250    return nullptr;
251
252  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
253  if (Op0 && Op0->getOpcode() == Opcode) {
254    Value *A = Op0->getOperand(0);
255    Value *B = Op0->getOperand(1);
256    Value *C = RHS;
257
258    // Does "C op A" simplify?
259    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
260      // It does!  Return "V op B" if it simplifies or is already available.
261      // If V equals A then "V op B" is just the LHS.
262      if (V == A) return LHS;
263      // Otherwise return "V op B" if it simplifies.
264      if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
265        ++NumReassoc;
266        return W;
267      }
268    }
269  }
270
271  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
272  if (Op1 && Op1->getOpcode() == Opcode) {
273    Value *A = LHS;
274    Value *B = Op1->getOperand(0);
275    Value *C = Op1->getOperand(1);
276
277    // Does "C op A" simplify?
278    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
279      // It does!  Return "B op V" if it simplifies or is already available.
280      // If V equals C then "B op V" is just the RHS.
281      if (V == C) return RHS;
282      // Otherwise return "B op V" if it simplifies.
283      if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
284        ++NumReassoc;
285        return W;
286      }
287    }
288  }
289
290  return nullptr;
291}
292
293/// In the case of a binary operation with a select instruction as an operand,
294/// try to simplify the binop by seeing whether evaluating it on both branches
295/// of the select results in the same value. Returns the common value if so,
296/// otherwise returns null.
297static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
298                                    const Query &Q, unsigned MaxRecurse) {
299  // Recursion is always used, so bail out at once if we already hit the limit.
300  if (!MaxRecurse--)
301    return nullptr;
302
303  SelectInst *SI;
304  if (isa<SelectInst>(LHS)) {
305    SI = cast<SelectInst>(LHS);
306  } else {
307    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
308    SI = cast<SelectInst>(RHS);
309  }
310
311  // Evaluate the BinOp on the true and false branches of the select.
312  Value *TV;
313  Value *FV;
314  if (SI == LHS) {
315    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
316    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
317  } else {
318    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
319    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
320  }
321
322  // If they simplified to the same value, then return the common value.
323  // If they both failed to simplify then return null.
324  if (TV == FV)
325    return TV;
326
327  // If one branch simplified to undef, return the other one.
328  if (TV && isa<UndefValue>(TV))
329    return FV;
330  if (FV && isa<UndefValue>(FV))
331    return TV;
332
333  // If applying the operation did not change the true and false select values,
334  // then the result of the binop is the select itself.
335  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
336    return SI;
337
338  // If one branch simplified and the other did not, and the simplified
339  // value is equal to the unsimplified one, return the simplified value.
340  // For example, select (cond, X, X & Z) & Z -> X & Z.
341  if ((FV && !TV) || (TV && !FV)) {
342    // Check that the simplified value has the form "X op Y" where "op" is the
343    // same as the original operation.
344    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
345    if (Simplified && Simplified->getOpcode() == Opcode) {
346      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
347      // We already know that "op" is the same as for the simplified value.  See
348      // if the operands match too.  If so, return the simplified value.
349      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
350      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
351      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
352      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
353          Simplified->getOperand(1) == UnsimplifiedRHS)
354        return Simplified;
355      if (Simplified->isCommutative() &&
356          Simplified->getOperand(1) == UnsimplifiedLHS &&
357          Simplified->getOperand(0) == UnsimplifiedRHS)
358        return Simplified;
359    }
360  }
361
362  return nullptr;
363}
364
365/// In the case of a comparison with a select instruction, try to simplify the
366/// comparison by seeing whether both branches of the select result in the same
367/// value. Returns the common value if so, otherwise returns null.
368static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
369                                  Value *RHS, const Query &Q,
370                                  unsigned MaxRecurse) {
371  // Recursion is always used, so bail out at once if we already hit the limit.
372  if (!MaxRecurse--)
373    return nullptr;
374
375  // Make sure the select is on the LHS.
376  if (!isa<SelectInst>(LHS)) {
377    std::swap(LHS, RHS);
378    Pred = CmpInst::getSwappedPredicate(Pred);
379  }
380  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
381  SelectInst *SI = cast<SelectInst>(LHS);
382  Value *Cond = SI->getCondition();
383  Value *TV = SI->getTrueValue();
384  Value *FV = SI->getFalseValue();
385
386  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
387  // Does "cmp TV, RHS" simplify?
388  Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
389  if (TCmp == Cond) {
390    // It not only simplified, it simplified to the select condition.  Replace
391    // it with 'true'.
392    TCmp = getTrue(Cond->getType());
393  } else if (!TCmp) {
394    // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
395    // condition then we can replace it with 'true'.  Otherwise give up.
396    if (!isSameCompare(Cond, Pred, TV, RHS))
397      return nullptr;
398    TCmp = getTrue(Cond->getType());
399  }
400
401  // Does "cmp FV, RHS" simplify?
402  Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
403  if (FCmp == Cond) {
404    // It not only simplified, it simplified to the select condition.  Replace
405    // it with 'false'.
406    FCmp = getFalse(Cond->getType());
407  } else if (!FCmp) {
408    // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
409    // condition then we can replace it with 'false'.  Otherwise give up.
410    if (!isSameCompare(Cond, Pred, FV, RHS))
411      return nullptr;
412    FCmp = getFalse(Cond->getType());
413  }
414
415  // If both sides simplified to the same value, then use it as the result of
416  // the original comparison.
417  if (TCmp == FCmp)
418    return TCmp;
419
420  // The remaining cases only make sense if the select condition has the same
421  // type as the result of the comparison, so bail out if this is not so.
422  if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
423    return nullptr;
424  // If the false value simplified to false, then the result of the compare
425  // is equal to "Cond && TCmp".  This also catches the case when the false
426  // value simplified to false and the true value to true, returning "Cond".
427  if (match(FCmp, m_Zero()))
428    if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
429      return V;
430  // If the true value simplified to true, then the result of the compare
431  // is equal to "Cond || FCmp".
432  if (match(TCmp, m_One()))
433    if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
434      return V;
435  // Finally, if the false value simplified to true and the true value to
436  // false, then the result of the compare is equal to "!Cond".
437  if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
438    if (Value *V =
439        SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
440                        Q, MaxRecurse))
441      return V;
442
443  return nullptr;
444}
445
446/// In the case of a binary operation with an operand that is a PHI instruction,
447/// try to simplify the binop by seeing whether evaluating it on the incoming
448/// phi values yields the same result for every value. If so returns the common
449/// value, otherwise returns null.
450static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
451                                 const Query &Q, unsigned MaxRecurse) {
452  // Recursion is always used, so bail out at once if we already hit the limit.
453  if (!MaxRecurse--)
454    return nullptr;
455
456  PHINode *PI;
457  if (isa<PHINode>(LHS)) {
458    PI = cast<PHINode>(LHS);
459    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
460    if (!ValueDominatesPHI(RHS, PI, Q.DT))
461      return nullptr;
462  } else {
463    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
464    PI = cast<PHINode>(RHS);
465    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
466    if (!ValueDominatesPHI(LHS, PI, Q.DT))
467      return nullptr;
468  }
469
470  // Evaluate the BinOp on the incoming phi values.
471  Value *CommonValue = nullptr;
472  for (Value *Incoming : PI->incoming_values()) {
473    // If the incoming value is the phi node itself, it can safely be skipped.
474    if (Incoming == PI) continue;
475    Value *V = PI == LHS ?
476      SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
477      SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
478    // If the operation failed to simplify, or simplified to a different value
479    // to previously, then give up.
480    if (!V || (CommonValue && V != CommonValue))
481      return nullptr;
482    CommonValue = V;
483  }
484
485  return CommonValue;
486}
487
488/// In the case of a comparison with a PHI instruction, try to simplify the
489/// comparison by seeing whether comparing with all of the incoming phi values
490/// yields the same result every time. If so returns the common result,
491/// otherwise returns null.
492static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
493                               const Query &Q, unsigned MaxRecurse) {
494  // Recursion is always used, so bail out at once if we already hit the limit.
495  if (!MaxRecurse--)
496    return nullptr;
497
498  // Make sure the phi is on the LHS.
499  if (!isa<PHINode>(LHS)) {
500    std::swap(LHS, RHS);
501    Pred = CmpInst::getSwappedPredicate(Pred);
502  }
503  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
504  PHINode *PI = cast<PHINode>(LHS);
505
506  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
507  if (!ValueDominatesPHI(RHS, PI, Q.DT))
508    return nullptr;
509
510  // Evaluate the BinOp on the incoming phi values.
511  Value *CommonValue = nullptr;
512  for (Value *Incoming : PI->incoming_values()) {
513    // If the incoming value is the phi node itself, it can safely be skipped.
514    if (Incoming == PI) continue;
515    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
516    // If the operation failed to simplify, or simplified to a different value
517    // to previously, then give up.
518    if (!V || (CommonValue && V != CommonValue))
519      return nullptr;
520    CommonValue = V;
521  }
522
523  return CommonValue;
524}
525
526/// Given operands for an Add, see if we can fold the result.
527/// If not, this returns null.
528static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
529                              const Query &Q, unsigned MaxRecurse) {
530  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
531    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
532      Constant *Ops[] = { CLHS, CRHS };
533      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
534                                      Q.DL, Q.TLI);
535    }
536
537    // Canonicalize the constant to the RHS.
538    std::swap(Op0, Op1);
539  }
540
541  // X + undef -> undef
542  if (match(Op1, m_Undef()))
543    return Op1;
544
545  // X + 0 -> X
546  if (match(Op1, m_Zero()))
547    return Op0;
548
549  // X + (Y - X) -> Y
550  // (Y - X) + X -> Y
551  // Eg: X + -X -> 0
552  Value *Y = nullptr;
553  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
554      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
555    return Y;
556
557  // X + ~X -> -1   since   ~X = -X-1
558  if (match(Op0, m_Not(m_Specific(Op1))) ||
559      match(Op1, m_Not(m_Specific(Op0))))
560    return Constant::getAllOnesValue(Op0->getType());
561
562  /// i1 add -> xor.
563  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
564    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
565      return V;
566
567  // Try some generic simplifications for associative operations.
568  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
569                                          MaxRecurse))
570    return V;
571
572  // Threading Add over selects and phi nodes is pointless, so don't bother.
573  // Threading over the select in "A + select(cond, B, C)" means evaluating
574  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
575  // only if B and C are equal.  If B and C are equal then (since we assume
576  // that operands have already been simplified) "select(cond, B, C)" should
577  // have been simplified to the common value of B and C already.  Analysing
578  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
579  // for threading over phi nodes.
580
581  return nullptr;
582}
583
584Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
585                             const DataLayout &DL, const TargetLibraryInfo *TLI,
586                             const DominatorTree *DT, AssumptionCache *AC,
587                             const Instruction *CxtI) {
588  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
589                           RecursionLimit);
590}
591
592/// \brief Compute the base pointer and cumulative constant offsets for V.
593///
594/// This strips all constant offsets off of V, leaving it the base pointer, and
595/// accumulates the total constant offset applied in the returned constant. It
596/// returns 0 if V is not a pointer, and returns the constant '0' if there are
597/// no constant offsets applied.
598///
599/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
600/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
601/// folding.
602static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
603                                                bool AllowNonInbounds = false) {
604  assert(V->getType()->getScalarType()->isPointerTy());
605
606  Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
607  APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
608
609  // Even though we don't look through PHI nodes, we could be called on an
610  // instruction in an unreachable block, which may be on a cycle.
611  SmallPtrSet<Value *, 4> Visited;
612  Visited.insert(V);
613  do {
614    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
615      if ((!AllowNonInbounds && !GEP->isInBounds()) ||
616          !GEP->accumulateConstantOffset(DL, Offset))
617        break;
618      V = GEP->getPointerOperand();
619    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
620      V = cast<Operator>(V)->getOperand(0);
621    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
622      if (GA->mayBeOverridden())
623        break;
624      V = GA->getAliasee();
625    } else {
626      break;
627    }
628    assert(V->getType()->getScalarType()->isPointerTy() &&
629           "Unexpected operand type!");
630  } while (Visited.insert(V).second);
631
632  Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
633  if (V->getType()->isVectorTy())
634    return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
635                                    OffsetIntPtr);
636  return OffsetIntPtr;
637}
638
639/// \brief Compute the constant difference between two pointer values.
640/// If the difference is not a constant, returns zero.
641static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
642                                          Value *RHS) {
643  Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
644  Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
645
646  // If LHS and RHS are not related via constant offsets to the same base
647  // value, there is nothing we can do here.
648  if (LHS != RHS)
649    return nullptr;
650
651  // Otherwise, the difference of LHS - RHS can be computed as:
652  //    LHS - RHS
653  //  = (LHSOffset + Base) - (RHSOffset + Base)
654  //  = LHSOffset - RHSOffset
655  return ConstantExpr::getSub(LHSOffset, RHSOffset);
656}
657
658/// Given operands for a Sub, see if we can fold the result.
659/// If not, this returns null.
660static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
661                              const Query &Q, unsigned MaxRecurse) {
662  if (Constant *CLHS = dyn_cast<Constant>(Op0))
663    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
664      Constant *Ops[] = { CLHS, CRHS };
665      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
666                                      Ops, Q.DL, Q.TLI);
667    }
668
669  // X - undef -> undef
670  // undef - X -> undef
671  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
672    return UndefValue::get(Op0->getType());
673
674  // X - 0 -> X
675  if (match(Op1, m_Zero()))
676    return Op0;
677
678  // X - X -> 0
679  if (Op0 == Op1)
680    return Constant::getNullValue(Op0->getType());
681
682  // 0 - X -> 0 if the sub is NUW.
683  if (isNUW && match(Op0, m_Zero()))
684    return Op0;
685
686  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
687  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
688  Value *X = nullptr, *Y = nullptr, *Z = Op1;
689  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
690    // See if "V === Y - Z" simplifies.
691    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
692      // It does!  Now see if "X + V" simplifies.
693      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
694        // It does, we successfully reassociated!
695        ++NumReassoc;
696        return W;
697      }
698    // See if "V === X - Z" simplifies.
699    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
700      // It does!  Now see if "Y + V" simplifies.
701      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
702        // It does, we successfully reassociated!
703        ++NumReassoc;
704        return W;
705      }
706  }
707
708  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
709  // For example, X - (X + 1) -> -1
710  X = Op0;
711  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
712    // See if "V === X - Y" simplifies.
713    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
714      // It does!  Now see if "V - Z" simplifies.
715      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
716        // It does, we successfully reassociated!
717        ++NumReassoc;
718        return W;
719      }
720    // See if "V === X - Z" simplifies.
721    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
722      // It does!  Now see if "V - Y" simplifies.
723      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
724        // It does, we successfully reassociated!
725        ++NumReassoc;
726        return W;
727      }
728  }
729
730  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
731  // For example, X - (X - Y) -> Y.
732  Z = Op0;
733  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
734    // See if "V === Z - X" simplifies.
735    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
736      // It does!  Now see if "V + Y" simplifies.
737      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
738        // It does, we successfully reassociated!
739        ++NumReassoc;
740        return W;
741      }
742
743  // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
744  if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
745      match(Op1, m_Trunc(m_Value(Y))))
746    if (X->getType() == Y->getType())
747      // See if "V === X - Y" simplifies.
748      if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
749        // It does!  Now see if "trunc V" simplifies.
750        if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
751          // It does, return the simplified "trunc V".
752          return W;
753
754  // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
755  if (match(Op0, m_PtrToInt(m_Value(X))) &&
756      match(Op1, m_PtrToInt(m_Value(Y))))
757    if (Constant *Result = computePointerDifference(Q.DL, X, Y))
758      return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
759
760  // i1 sub -> xor.
761  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
762    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
763      return V;
764
765  // Threading Sub over selects and phi nodes is pointless, so don't bother.
766  // Threading over the select in "A - select(cond, B, C)" means evaluating
767  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
768  // only if B and C are equal.  If B and C are equal then (since we assume
769  // that operands have already been simplified) "select(cond, B, C)" should
770  // have been simplified to the common value of B and C already.  Analysing
771  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
772  // for threading over phi nodes.
773
774  return nullptr;
775}
776
777Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
778                             const DataLayout &DL, const TargetLibraryInfo *TLI,
779                             const DominatorTree *DT, AssumptionCache *AC,
780                             const Instruction *CxtI) {
781  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
782                           RecursionLimit);
783}
784
785/// Given operands for an FAdd, see if we can fold the result.  If not, this
786/// returns null.
787static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
788                              const Query &Q, unsigned MaxRecurse) {
789  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
790    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
791      Constant *Ops[] = { CLHS, CRHS };
792      return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
793                                      Ops, Q.DL, Q.TLI);
794    }
795
796    // Canonicalize the constant to the RHS.
797    std::swap(Op0, Op1);
798  }
799
800  // fadd X, -0 ==> X
801  if (match(Op1, m_NegZero()))
802    return Op0;
803
804  // fadd X, 0 ==> X, when we know X is not -0
805  if (match(Op1, m_Zero()) &&
806      (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
807    return Op0;
808
809  // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
810  //   where nnan and ninf have to occur at least once somewhere in this
811  //   expression
812  Value *SubOp = nullptr;
813  if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
814    SubOp = Op1;
815  else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
816    SubOp = Op0;
817  if (SubOp) {
818    Instruction *FSub = cast<Instruction>(SubOp);
819    if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
820        (FMF.noInfs() || FSub->hasNoInfs()))
821      return Constant::getNullValue(Op0->getType());
822  }
823
824  return nullptr;
825}
826
827/// Given operands for an FSub, see if we can fold the result.  If not, this
828/// returns null.
829static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
830                              const Query &Q, unsigned MaxRecurse) {
831  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
832    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
833      Constant *Ops[] = { CLHS, CRHS };
834      return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
835                                      Ops, Q.DL, Q.TLI);
836    }
837  }
838
839  // fsub X, 0 ==> X
840  if (match(Op1, m_Zero()))
841    return Op0;
842
843  // fsub X, -0 ==> X, when we know X is not -0
844  if (match(Op1, m_NegZero()) &&
845      (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
846    return Op0;
847
848  // fsub 0, (fsub -0.0, X) ==> X
849  Value *X;
850  if (match(Op0, m_AnyZero())) {
851    if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
852      return X;
853    if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
854      return X;
855  }
856
857  // fsub nnan x, x ==> 0.0
858  if (FMF.noNaNs() && Op0 == Op1)
859    return Constant::getNullValue(Op0->getType());
860
861  return nullptr;
862}
863
864/// Given the operands for an FMul, see if we can fold the result
865static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
866                               FastMathFlags FMF,
867                               const Query &Q,
868                               unsigned MaxRecurse) {
869 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
870    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
871      Constant *Ops[] = { CLHS, CRHS };
872      return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
873                                      Ops, Q.DL, Q.TLI);
874    }
875
876    // Canonicalize the constant to the RHS.
877    std::swap(Op0, Op1);
878 }
879
880 // fmul X, 1.0 ==> X
881 if (match(Op1, m_FPOne()))
882   return Op0;
883
884 // fmul nnan nsz X, 0 ==> 0
885 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
886   return Op1;
887
888 return nullptr;
889}
890
891/// Given operands for a Mul, see if we can fold the result.
892/// If not, this returns null.
893static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
894                              unsigned MaxRecurse) {
895  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
896    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
897      Constant *Ops[] = { CLHS, CRHS };
898      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
899                                      Ops, Q.DL, Q.TLI);
900    }
901
902    // Canonicalize the constant to the RHS.
903    std::swap(Op0, Op1);
904  }
905
906  // X * undef -> 0
907  if (match(Op1, m_Undef()))
908    return Constant::getNullValue(Op0->getType());
909
910  // X * 0 -> 0
911  if (match(Op1, m_Zero()))
912    return Op1;
913
914  // X * 1 -> X
915  if (match(Op1, m_One()))
916    return Op0;
917
918  // (X / Y) * Y -> X if the division is exact.
919  Value *X = nullptr;
920  if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
921      match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
922    return X;
923
924  // i1 mul -> and.
925  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
926    if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
927      return V;
928
929  // Try some generic simplifications for associative operations.
930  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
931                                          MaxRecurse))
932    return V;
933
934  // Mul distributes over Add.  Try some generic simplifications based on this.
935  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
936                             Q, MaxRecurse))
937    return V;
938
939  // If the operation is with the result of a select instruction, check whether
940  // operating on either branch of the select always yields the same value.
941  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
942    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
943                                         MaxRecurse))
944      return V;
945
946  // If the operation is with the result of a phi instruction, check whether
947  // operating on all incoming values of the phi always yields the same value.
948  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
949    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
950                                      MaxRecurse))
951      return V;
952
953  return nullptr;
954}
955
956Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
957                              const DataLayout &DL,
958                              const TargetLibraryInfo *TLI,
959                              const DominatorTree *DT, AssumptionCache *AC,
960                              const Instruction *CxtI) {
961  return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
962                            RecursionLimit);
963}
964
965Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
966                              const DataLayout &DL,
967                              const TargetLibraryInfo *TLI,
968                              const DominatorTree *DT, AssumptionCache *AC,
969                              const Instruction *CxtI) {
970  return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
971                            RecursionLimit);
972}
973
974Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
975                              const DataLayout &DL,
976                              const TargetLibraryInfo *TLI,
977                              const DominatorTree *DT, AssumptionCache *AC,
978                              const Instruction *CxtI) {
979  return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
980                            RecursionLimit);
981}
982
983Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
984                             const TargetLibraryInfo *TLI,
985                             const DominatorTree *DT, AssumptionCache *AC,
986                             const Instruction *CxtI) {
987  return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
988                           RecursionLimit);
989}
990
991/// Given operands for an SDiv or UDiv, see if we can fold the result.
992/// If not, this returns null.
993static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
994                          const Query &Q, unsigned MaxRecurse) {
995  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
996    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
997      Constant *Ops[] = { C0, C1 };
998      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
999    }
1000  }
1001
1002  bool isSigned = Opcode == Instruction::SDiv;
1003
1004  // X / undef -> undef
1005  if (match(Op1, m_Undef()))
1006    return Op1;
1007
1008  // X / 0 -> undef, we don't need to preserve faults!
1009  if (match(Op1, m_Zero()))
1010    return UndefValue::get(Op1->getType());
1011
1012  // undef / X -> 0
1013  if (match(Op0, m_Undef()))
1014    return Constant::getNullValue(Op0->getType());
1015
1016  // 0 / X -> 0, we don't need to preserve faults!
1017  if (match(Op0, m_Zero()))
1018    return Op0;
1019
1020  // X / 1 -> X
1021  if (match(Op1, m_One()))
1022    return Op0;
1023
1024  if (Op0->getType()->isIntegerTy(1))
1025    // It can't be division by zero, hence it must be division by one.
1026    return Op0;
1027
1028  // X / X -> 1
1029  if (Op0 == Op1)
1030    return ConstantInt::get(Op0->getType(), 1);
1031
1032  // (X * Y) / Y -> X if the multiplication does not overflow.
1033  Value *X = nullptr, *Y = nullptr;
1034  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1035    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1036    OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1037    // If the Mul knows it does not overflow, then we are good to go.
1038    if ((isSigned && Mul->hasNoSignedWrap()) ||
1039        (!isSigned && Mul->hasNoUnsignedWrap()))
1040      return X;
1041    // If X has the form X = A / Y then X * Y cannot overflow.
1042    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1043      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1044        return X;
1045  }
1046
1047  // (X rem Y) / Y -> 0
1048  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1049      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1050    return Constant::getNullValue(Op0->getType());
1051
1052  // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1053  ConstantInt *C1, *C2;
1054  if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1055      match(Op1, m_ConstantInt(C2))) {
1056    bool Overflow;
1057    C1->getValue().umul_ov(C2->getValue(), Overflow);
1058    if (Overflow)
1059      return Constant::getNullValue(Op0->getType());
1060  }
1061
1062  // If the operation is with the result of a select instruction, check whether
1063  // operating on either branch of the select always yields the same value.
1064  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1065    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1066      return V;
1067
1068  // If the operation is with the result of a phi instruction, check whether
1069  // operating on all incoming values of the phi always yields the same value.
1070  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1071    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1072      return V;
1073
1074  return nullptr;
1075}
1076
1077/// Given operands for an SDiv, see if we can fold the result.
1078/// If not, this returns null.
1079static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1080                               unsigned MaxRecurse) {
1081  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1082    return V;
1083
1084  return nullptr;
1085}
1086
1087Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1088                              const TargetLibraryInfo *TLI,
1089                              const DominatorTree *DT, AssumptionCache *AC,
1090                              const Instruction *CxtI) {
1091  return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1092                            RecursionLimit);
1093}
1094
1095/// Given operands for a UDiv, see if we can fold the result.
1096/// If not, this returns null.
1097static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1098                               unsigned MaxRecurse) {
1099  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1100    return V;
1101
1102  return nullptr;
1103}
1104
1105Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1106                              const TargetLibraryInfo *TLI,
1107                              const DominatorTree *DT, AssumptionCache *AC,
1108                              const Instruction *CxtI) {
1109  return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1110                            RecursionLimit);
1111}
1112
1113static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1114                               const Query &Q, unsigned) {
1115  // undef / X -> undef    (the undef could be a snan).
1116  if (match(Op0, m_Undef()))
1117    return Op0;
1118
1119  // X / undef -> undef
1120  if (match(Op1, m_Undef()))
1121    return Op1;
1122
1123  // 0 / X -> 0
1124  // Requires that NaNs are off (X could be zero) and signed zeroes are
1125  // ignored (X could be positive or negative, so the output sign is unknown).
1126  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1127    return Op0;
1128
1129  if (FMF.noNaNs()) {
1130    // X / X -> 1.0 is legal when NaNs are ignored.
1131    if (Op0 == Op1)
1132      return ConstantFP::get(Op0->getType(), 1.0);
1133
1134    // -X /  X -> -1.0 and
1135    //  X / -X -> -1.0 are legal when NaNs are ignored.
1136    // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1137    if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1138         BinaryOperator::getFNegArgument(Op0) == Op1) ||
1139        (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1140         BinaryOperator::getFNegArgument(Op1) == Op0))
1141      return ConstantFP::get(Op0->getType(), -1.0);
1142  }
1143
1144  return nullptr;
1145}
1146
1147Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1148                              const DataLayout &DL,
1149                              const TargetLibraryInfo *TLI,
1150                              const DominatorTree *DT, AssumptionCache *AC,
1151                              const Instruction *CxtI) {
1152  return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1153                            RecursionLimit);
1154}
1155
1156/// Given operands for an SRem or URem, see if we can fold the result.
1157/// If not, this returns null.
1158static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1159                          const Query &Q, unsigned MaxRecurse) {
1160  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1161    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1162      Constant *Ops[] = { C0, C1 };
1163      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
1164    }
1165  }
1166
1167  // X % undef -> undef
1168  if (match(Op1, m_Undef()))
1169    return Op1;
1170
1171  // undef % X -> 0
1172  if (match(Op0, m_Undef()))
1173    return Constant::getNullValue(Op0->getType());
1174
1175  // 0 % X -> 0, we don't need to preserve faults!
1176  if (match(Op0, m_Zero()))
1177    return Op0;
1178
1179  // X % 0 -> undef, we don't need to preserve faults!
1180  if (match(Op1, m_Zero()))
1181    return UndefValue::get(Op0->getType());
1182
1183  // X % 1 -> 0
1184  if (match(Op1, m_One()))
1185    return Constant::getNullValue(Op0->getType());
1186
1187  if (Op0->getType()->isIntegerTy(1))
1188    // It can't be remainder by zero, hence it must be remainder by one.
1189    return Constant::getNullValue(Op0->getType());
1190
1191  // X % X -> 0
1192  if (Op0 == Op1)
1193    return Constant::getNullValue(Op0->getType());
1194
1195  // (X % Y) % Y -> X % Y
1196  if ((Opcode == Instruction::SRem &&
1197       match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1198      (Opcode == Instruction::URem &&
1199       match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1200    return Op0;
1201
1202  // If the operation is with the result of a select instruction, check whether
1203  // operating on either branch of the select always yields the same value.
1204  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1205    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1206      return V;
1207
1208  // If the operation is with the result of a phi instruction, check whether
1209  // operating on all incoming values of the phi always yields the same value.
1210  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1211    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1212      return V;
1213
1214  return nullptr;
1215}
1216
1217/// Given operands for an SRem, see if we can fold the result.
1218/// If not, this returns null.
1219static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1220                               unsigned MaxRecurse) {
1221  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1222    return V;
1223
1224  return nullptr;
1225}
1226
1227Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1228                              const TargetLibraryInfo *TLI,
1229                              const DominatorTree *DT, AssumptionCache *AC,
1230                              const Instruction *CxtI) {
1231  return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1232                            RecursionLimit);
1233}
1234
1235/// Given operands for a URem, see if we can fold the result.
1236/// If not, this returns null.
1237static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1238                               unsigned MaxRecurse) {
1239  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1240    return V;
1241
1242  return nullptr;
1243}
1244
1245Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1246                              const TargetLibraryInfo *TLI,
1247                              const DominatorTree *DT, AssumptionCache *AC,
1248                              const Instruction *CxtI) {
1249  return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1250                            RecursionLimit);
1251}
1252
1253static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1254                               const Query &, unsigned) {
1255  // undef % X -> undef    (the undef could be a snan).
1256  if (match(Op0, m_Undef()))
1257    return Op0;
1258
1259  // X % undef -> undef
1260  if (match(Op1, m_Undef()))
1261    return Op1;
1262
1263  // 0 % X -> 0
1264  // Requires that NaNs are off (X could be zero) and signed zeroes are
1265  // ignored (X could be positive or negative, so the output sign is unknown).
1266  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1267    return Op0;
1268
1269  return nullptr;
1270}
1271
1272Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1273                              const DataLayout &DL,
1274                              const TargetLibraryInfo *TLI,
1275                              const DominatorTree *DT, AssumptionCache *AC,
1276                              const Instruction *CxtI) {
1277  return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1278                            RecursionLimit);
1279}
1280
1281/// Returns true if a shift by \c Amount always yields undef.
1282static bool isUndefShift(Value *Amount) {
1283  Constant *C = dyn_cast<Constant>(Amount);
1284  if (!C)
1285    return false;
1286
1287  // X shift by undef -> undef because it may shift by the bitwidth.
1288  if (isa<UndefValue>(C))
1289    return true;
1290
1291  // Shifting by the bitwidth or more is undefined.
1292  if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1293    if (CI->getValue().getLimitedValue() >=
1294        CI->getType()->getScalarSizeInBits())
1295      return true;
1296
1297  // If all lanes of a vector shift are undefined the whole shift is.
1298  if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1299    for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1300      if (!isUndefShift(C->getAggregateElement(I)))
1301        return false;
1302    return true;
1303  }
1304
1305  return false;
1306}
1307
1308/// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1309/// If not, this returns null.
1310static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1311                            const Query &Q, unsigned MaxRecurse) {
1312  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1313    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1314      Constant *Ops[] = { C0, C1 };
1315      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
1316    }
1317  }
1318
1319  // 0 shift by X -> 0
1320  if (match(Op0, m_Zero()))
1321    return Op0;
1322
1323  // X shift by 0 -> X
1324  if (match(Op1, m_Zero()))
1325    return Op0;
1326
1327  // Fold undefined shifts.
1328  if (isUndefShift(Op1))
1329    return UndefValue::get(Op0->getType());
1330
1331  // If the operation is with the result of a select instruction, check whether
1332  // operating on either branch of the select always yields the same value.
1333  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1334    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1335      return V;
1336
1337  // If the operation is with the result of a phi instruction, check whether
1338  // operating on all incoming values of the phi always yields the same value.
1339  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1340    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1341      return V;
1342
1343  return nullptr;
1344}
1345
1346/// \brief Given operands for an Shl, LShr or AShr, see if we can
1347/// fold the result.  If not, this returns null.
1348static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
1349                                 bool isExact, const Query &Q,
1350                                 unsigned MaxRecurse) {
1351  if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1352    return V;
1353
1354  // X >> X -> 0
1355  if (Op0 == Op1)
1356    return Constant::getNullValue(Op0->getType());
1357
1358  // undef >> X -> 0
1359  // undef >> X -> undef (if it's exact)
1360  if (match(Op0, m_Undef()))
1361    return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1362
1363  // The low bit cannot be shifted out of an exact shift if it is set.
1364  if (isExact) {
1365    unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1366    APInt Op0KnownZero(BitWidth, 0);
1367    APInt Op0KnownOne(BitWidth, 0);
1368    computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1369                     Q.CxtI, Q.DT);
1370    if (Op0KnownOne[0])
1371      return Op0;
1372  }
1373
1374  return nullptr;
1375}
1376
1377/// Given operands for an Shl, see if we can fold the result.
1378/// If not, this returns null.
1379static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1380                              const Query &Q, unsigned MaxRecurse) {
1381  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1382    return V;
1383
1384  // undef << X -> 0
1385  // undef << X -> undef if (if it's NSW/NUW)
1386  if (match(Op0, m_Undef()))
1387    return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1388
1389  // (X >> A) << A -> X
1390  Value *X;
1391  if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1392    return X;
1393  return nullptr;
1394}
1395
1396Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1397                             const DataLayout &DL, const TargetLibraryInfo *TLI,
1398                             const DominatorTree *DT, AssumptionCache *AC,
1399                             const Instruction *CxtI) {
1400  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1401                           RecursionLimit);
1402}
1403
1404/// Given operands for an LShr, see if we can fold the result.
1405/// If not, this returns null.
1406static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1407                               const Query &Q, unsigned MaxRecurse) {
1408  if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1409                                    MaxRecurse))
1410      return V;
1411
1412  // (X << A) >> A -> X
1413  Value *X;
1414  if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1415    return X;
1416
1417  return nullptr;
1418}
1419
1420Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1421                              const DataLayout &DL,
1422                              const TargetLibraryInfo *TLI,
1423                              const DominatorTree *DT, AssumptionCache *AC,
1424                              const Instruction *CxtI) {
1425  return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1426                            RecursionLimit);
1427}
1428
1429/// Given operands for an AShr, see if we can fold the result.
1430/// If not, this returns null.
1431static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1432                               const Query &Q, unsigned MaxRecurse) {
1433  if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1434                                    MaxRecurse))
1435    return V;
1436
1437  // all ones >>a X -> all ones
1438  if (match(Op0, m_AllOnes()))
1439    return Op0;
1440
1441  // (X << A) >> A -> X
1442  Value *X;
1443  if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1444    return X;
1445
1446  // Arithmetic shifting an all-sign-bit value is a no-op.
1447  unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1448  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1449    return Op0;
1450
1451  return nullptr;
1452}
1453
1454Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1455                              const DataLayout &DL,
1456                              const TargetLibraryInfo *TLI,
1457                              const DominatorTree *DT, AssumptionCache *AC,
1458                              const Instruction *CxtI) {
1459  return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1460                            RecursionLimit);
1461}
1462
1463static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1464                                         ICmpInst *UnsignedICmp, bool IsAnd) {
1465  Value *X, *Y;
1466
1467  ICmpInst::Predicate EqPred;
1468  if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1469      !ICmpInst::isEquality(EqPred))
1470    return nullptr;
1471
1472  ICmpInst::Predicate UnsignedPred;
1473  if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1474      ICmpInst::isUnsigned(UnsignedPred))
1475    ;
1476  else if (match(UnsignedICmp,
1477                 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1478           ICmpInst::isUnsigned(UnsignedPred))
1479    UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1480  else
1481    return nullptr;
1482
1483  // X < Y && Y != 0  -->  X < Y
1484  // X < Y || Y != 0  -->  Y != 0
1485  if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1486    return IsAnd ? UnsignedICmp : ZeroICmp;
1487
1488  // X >= Y || Y != 0  -->  true
1489  // X >= Y || Y == 0  -->  X >= Y
1490  if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1491    if (EqPred == ICmpInst::ICMP_NE)
1492      return getTrue(UnsignedICmp->getType());
1493    return UnsignedICmp;
1494  }
1495
1496  // X < Y && Y == 0  -->  false
1497  if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1498      IsAnd)
1499    return getFalse(UnsignedICmp->getType());
1500
1501  return nullptr;
1502}
1503
1504/// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
1505/// of possible values cannot be satisfied.
1506static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1507  ICmpInst::Predicate Pred0, Pred1;
1508  ConstantInt *CI1, *CI2;
1509  Value *V;
1510
1511  if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1512    return X;
1513
1514  if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
1515                         m_ConstantInt(CI2))))
1516   return nullptr;
1517
1518  if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
1519    return nullptr;
1520
1521  Type *ITy = Op0->getType();
1522
1523  auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1524  bool isNSW = AddInst->hasNoSignedWrap();
1525  bool isNUW = AddInst->hasNoUnsignedWrap();
1526
1527  const APInt &CI1V = CI1->getValue();
1528  const APInt &CI2V = CI2->getValue();
1529  const APInt Delta = CI2V - CI1V;
1530  if (CI1V.isStrictlyPositive()) {
1531    if (Delta == 2) {
1532      if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1533        return getFalse(ITy);
1534      if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1535        return getFalse(ITy);
1536    }
1537    if (Delta == 1) {
1538      if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1539        return getFalse(ITy);
1540      if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1541        return getFalse(ITy);
1542    }
1543  }
1544  if (CI1V.getBoolValue() && isNUW) {
1545    if (Delta == 2)
1546      if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1547        return getFalse(ITy);
1548    if (Delta == 1)
1549      if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1550        return getFalse(ITy);
1551  }
1552
1553  return nullptr;
1554}
1555
1556/// Given operands for an And, see if we can fold the result.
1557/// If not, this returns null.
1558static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1559                              unsigned MaxRecurse) {
1560  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1561    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1562      Constant *Ops[] = { CLHS, CRHS };
1563      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1564                                      Ops, Q.DL, Q.TLI);
1565    }
1566
1567    // Canonicalize the constant to the RHS.
1568    std::swap(Op0, Op1);
1569  }
1570
1571  // X & undef -> 0
1572  if (match(Op1, m_Undef()))
1573    return Constant::getNullValue(Op0->getType());
1574
1575  // X & X = X
1576  if (Op0 == Op1)
1577    return Op0;
1578
1579  // X & 0 = 0
1580  if (match(Op1, m_Zero()))
1581    return Op1;
1582
1583  // X & -1 = X
1584  if (match(Op1, m_AllOnes()))
1585    return Op0;
1586
1587  // A & ~A  =  ~A & A  =  0
1588  if (match(Op0, m_Not(m_Specific(Op1))) ||
1589      match(Op1, m_Not(m_Specific(Op0))))
1590    return Constant::getNullValue(Op0->getType());
1591
1592  // (A | ?) & A = A
1593  Value *A = nullptr, *B = nullptr;
1594  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1595      (A == Op1 || B == Op1))
1596    return Op1;
1597
1598  // A & (A | ?) = A
1599  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1600      (A == Op0 || B == Op0))
1601    return Op0;
1602
1603  // A & (-A) = A if A is a power of two or zero.
1604  if (match(Op0, m_Neg(m_Specific(Op1))) ||
1605      match(Op1, m_Neg(m_Specific(Op0)))) {
1606    if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1607                               Q.DT))
1608      return Op0;
1609    if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1610                               Q.DT))
1611      return Op1;
1612  }
1613
1614  if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1615    if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1616      if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1617        return V;
1618      if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1619        return V;
1620    }
1621  }
1622
1623  // Try some generic simplifications for associative operations.
1624  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1625                                          MaxRecurse))
1626    return V;
1627
1628  // And distributes over Or.  Try some generic simplifications based on this.
1629  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1630                             Q, MaxRecurse))
1631    return V;
1632
1633  // And distributes over Xor.  Try some generic simplifications based on this.
1634  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1635                             Q, MaxRecurse))
1636    return V;
1637
1638  // If the operation is with the result of a select instruction, check whether
1639  // operating on either branch of the select always yields the same value.
1640  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1641    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1642                                         MaxRecurse))
1643      return V;
1644
1645  // If the operation is with the result of a phi instruction, check whether
1646  // operating on all incoming values of the phi always yields the same value.
1647  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1648    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1649                                      MaxRecurse))
1650      return V;
1651
1652  return nullptr;
1653}
1654
1655Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1656                             const TargetLibraryInfo *TLI,
1657                             const DominatorTree *DT, AssumptionCache *AC,
1658                             const Instruction *CxtI) {
1659  return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1660                           RecursionLimit);
1661}
1662
1663/// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
1664/// contains all possible values.
1665static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1666  ICmpInst::Predicate Pred0, Pred1;
1667  ConstantInt *CI1, *CI2;
1668  Value *V;
1669
1670  if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1671    return X;
1672
1673  if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
1674                         m_ConstantInt(CI2))))
1675   return nullptr;
1676
1677  if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
1678    return nullptr;
1679
1680  Type *ITy = Op0->getType();
1681
1682  auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1683  bool isNSW = AddInst->hasNoSignedWrap();
1684  bool isNUW = AddInst->hasNoUnsignedWrap();
1685
1686  const APInt &CI1V = CI1->getValue();
1687  const APInt &CI2V = CI2->getValue();
1688  const APInt Delta = CI2V - CI1V;
1689  if (CI1V.isStrictlyPositive()) {
1690    if (Delta == 2) {
1691      if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1692        return getTrue(ITy);
1693      if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1694        return getTrue(ITy);
1695    }
1696    if (Delta == 1) {
1697      if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1698        return getTrue(ITy);
1699      if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1700        return getTrue(ITy);
1701    }
1702  }
1703  if (CI1V.getBoolValue() && isNUW) {
1704    if (Delta == 2)
1705      if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1706        return getTrue(ITy);
1707    if (Delta == 1)
1708      if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1709        return getTrue(ITy);
1710  }
1711
1712  return nullptr;
1713}
1714
1715/// Given operands for an Or, see if we can fold the result.
1716/// If not, this returns null.
1717static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1718                             unsigned MaxRecurse) {
1719  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1720    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1721      Constant *Ops[] = { CLHS, CRHS };
1722      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1723                                      Ops, Q.DL, Q.TLI);
1724    }
1725
1726    // Canonicalize the constant to the RHS.
1727    std::swap(Op0, Op1);
1728  }
1729
1730  // X | undef -> -1
1731  if (match(Op1, m_Undef()))
1732    return Constant::getAllOnesValue(Op0->getType());
1733
1734  // X | X = X
1735  if (Op0 == Op1)
1736    return Op0;
1737
1738  // X | 0 = X
1739  if (match(Op1, m_Zero()))
1740    return Op0;
1741
1742  // X | -1 = -1
1743  if (match(Op1, m_AllOnes()))
1744    return Op1;
1745
1746  // A | ~A  =  ~A | A  =  -1
1747  if (match(Op0, m_Not(m_Specific(Op1))) ||
1748      match(Op1, m_Not(m_Specific(Op0))))
1749    return Constant::getAllOnesValue(Op0->getType());
1750
1751  // (A & ?) | A = A
1752  Value *A = nullptr, *B = nullptr;
1753  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1754      (A == Op1 || B == Op1))
1755    return Op1;
1756
1757  // A | (A & ?) = A
1758  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1759      (A == Op0 || B == Op0))
1760    return Op0;
1761
1762  // ~(A & ?) | A = -1
1763  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1764      (A == Op1 || B == Op1))
1765    return Constant::getAllOnesValue(Op1->getType());
1766
1767  // A | ~(A & ?) = -1
1768  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1769      (A == Op0 || B == Op0))
1770    return Constant::getAllOnesValue(Op0->getType());
1771
1772  if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1773    if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1774      if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1775        return V;
1776      if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1777        return V;
1778    }
1779  }
1780
1781  // Try some generic simplifications for associative operations.
1782  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1783                                          MaxRecurse))
1784    return V;
1785
1786  // Or distributes over And.  Try some generic simplifications based on this.
1787  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1788                             MaxRecurse))
1789    return V;
1790
1791  // If the operation is with the result of a select instruction, check whether
1792  // operating on either branch of the select always yields the same value.
1793  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1794    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1795                                         MaxRecurse))
1796      return V;
1797
1798  // (A & C)|(B & D)
1799  Value *C = nullptr, *D = nullptr;
1800  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1801      match(Op1, m_And(m_Value(B), m_Value(D)))) {
1802    ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1803    ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1804    if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1805      // (A & C1)|(B & C2)
1806      // If we have: ((V + N) & C1) | (V & C2)
1807      // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1808      // replace with V+N.
1809      Value *V1, *V2;
1810      if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1811          match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1812        // Add commutes, try both ways.
1813        if (V1 == B &&
1814            MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1815          return A;
1816        if (V2 == B &&
1817            MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1818          return A;
1819      }
1820      // Or commutes, try both ways.
1821      if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1822          match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1823        // Add commutes, try both ways.
1824        if (V1 == A &&
1825            MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1826          return B;
1827        if (V2 == A &&
1828            MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1829          return B;
1830      }
1831    }
1832  }
1833
1834  // If the operation is with the result of a phi instruction, check whether
1835  // operating on all incoming values of the phi always yields the same value.
1836  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1837    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1838      return V;
1839
1840  return nullptr;
1841}
1842
1843Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1844                            const TargetLibraryInfo *TLI,
1845                            const DominatorTree *DT, AssumptionCache *AC,
1846                            const Instruction *CxtI) {
1847  return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1848                          RecursionLimit);
1849}
1850
1851/// Given operands for a Xor, see if we can fold the result.
1852/// If not, this returns null.
1853static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1854                              unsigned MaxRecurse) {
1855  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1856    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1857      Constant *Ops[] = { CLHS, CRHS };
1858      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1859                                      Ops, Q.DL, Q.TLI);
1860    }
1861
1862    // Canonicalize the constant to the RHS.
1863    std::swap(Op0, Op1);
1864  }
1865
1866  // A ^ undef -> undef
1867  if (match(Op1, m_Undef()))
1868    return Op1;
1869
1870  // A ^ 0 = A
1871  if (match(Op1, m_Zero()))
1872    return Op0;
1873
1874  // A ^ A = 0
1875  if (Op0 == Op1)
1876    return Constant::getNullValue(Op0->getType());
1877
1878  // A ^ ~A  =  ~A ^ A  =  -1
1879  if (match(Op0, m_Not(m_Specific(Op1))) ||
1880      match(Op1, m_Not(m_Specific(Op0))))
1881    return Constant::getAllOnesValue(Op0->getType());
1882
1883  // Try some generic simplifications for associative operations.
1884  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1885                                          MaxRecurse))
1886    return V;
1887
1888  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1889  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1890  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1891  // only if B and C are equal.  If B and C are equal then (since we assume
1892  // that operands have already been simplified) "select(cond, B, C)" should
1893  // have been simplified to the common value of B and C already.  Analysing
1894  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1895  // for threading over phi nodes.
1896
1897  return nullptr;
1898}
1899
1900Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
1901                             const TargetLibraryInfo *TLI,
1902                             const DominatorTree *DT, AssumptionCache *AC,
1903                             const Instruction *CxtI) {
1904  return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1905                           RecursionLimit);
1906}
1907
1908static Type *GetCompareTy(Value *Op) {
1909  return CmpInst::makeCmpResultType(Op->getType());
1910}
1911
1912/// Rummage around inside V looking for something equivalent to the comparison
1913/// "LHS Pred RHS". Return such a value if found, otherwise return null.
1914/// Helper function for analyzing max/min idioms.
1915static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1916                                         Value *LHS, Value *RHS) {
1917  SelectInst *SI = dyn_cast<SelectInst>(V);
1918  if (!SI)
1919    return nullptr;
1920  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1921  if (!Cmp)
1922    return nullptr;
1923  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1924  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1925    return Cmp;
1926  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1927      LHS == CmpRHS && RHS == CmpLHS)
1928    return Cmp;
1929  return nullptr;
1930}
1931
1932// A significant optimization not implemented here is assuming that alloca
1933// addresses are not equal to incoming argument values. They don't *alias*,
1934// as we say, but that doesn't mean they aren't equal, so we take a
1935// conservative approach.
1936//
1937// This is inspired in part by C++11 5.10p1:
1938//   "Two pointers of the same type compare equal if and only if they are both
1939//    null, both point to the same function, or both represent the same
1940//    address."
1941//
1942// This is pretty permissive.
1943//
1944// It's also partly due to C11 6.5.9p6:
1945//   "Two pointers compare equal if and only if both are null pointers, both are
1946//    pointers to the same object (including a pointer to an object and a
1947//    subobject at its beginning) or function, both are pointers to one past the
1948//    last element of the same array object, or one is a pointer to one past the
1949//    end of one array object and the other is a pointer to the start of a
1950//    different array object that happens to immediately follow the first array
1951//    object in the address space.)
1952//
1953// C11's version is more restrictive, however there's no reason why an argument
1954// couldn't be a one-past-the-end value for a stack object in the caller and be
1955// equal to the beginning of a stack object in the callee.
1956//
1957// If the C and C++ standards are ever made sufficiently restrictive in this
1958// area, it may be possible to update LLVM's semantics accordingly and reinstate
1959// this optimization.
1960static Constant *computePointerICmp(const DataLayout &DL,
1961                                    const TargetLibraryInfo *TLI,
1962                                    CmpInst::Predicate Pred, Value *LHS,
1963                                    Value *RHS) {
1964  // First, skip past any trivial no-ops.
1965  LHS = LHS->stripPointerCasts();
1966  RHS = RHS->stripPointerCasts();
1967
1968  // A non-null pointer is not equal to a null pointer.
1969  if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
1970      (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1971    return ConstantInt::get(GetCompareTy(LHS),
1972                            !CmpInst::isTrueWhenEqual(Pred));
1973
1974  // We can only fold certain predicates on pointer comparisons.
1975  switch (Pred) {
1976  default:
1977    return nullptr;
1978
1979    // Equality comaprisons are easy to fold.
1980  case CmpInst::ICMP_EQ:
1981  case CmpInst::ICMP_NE:
1982    break;
1983
1984    // We can only handle unsigned relational comparisons because 'inbounds' on
1985    // a GEP only protects against unsigned wrapping.
1986  case CmpInst::ICMP_UGT:
1987  case CmpInst::ICMP_UGE:
1988  case CmpInst::ICMP_ULT:
1989  case CmpInst::ICMP_ULE:
1990    // However, we have to switch them to their signed variants to handle
1991    // negative indices from the base pointer.
1992    Pred = ICmpInst::getSignedPredicate(Pred);
1993    break;
1994  }
1995
1996  // Strip off any constant offsets so that we can reason about them.
1997  // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1998  // here and compare base addresses like AliasAnalysis does, however there are
1999  // numerous hazards. AliasAnalysis and its utilities rely on special rules
2000  // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2001  // doesn't need to guarantee pointer inequality when it says NoAlias.
2002  Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2003  Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2004
2005  // If LHS and RHS are related via constant offsets to the same base
2006  // value, we can replace it with an icmp which just compares the offsets.
2007  if (LHS == RHS)
2008    return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2009
2010  // Various optimizations for (in)equality comparisons.
2011  if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2012    // Different non-empty allocations that exist at the same time have
2013    // different addresses (if the program can tell). Global variables always
2014    // exist, so they always exist during the lifetime of each other and all
2015    // allocas. Two different allocas usually have different addresses...
2016    //
2017    // However, if there's an @llvm.stackrestore dynamically in between two
2018    // allocas, they may have the same address. It's tempting to reduce the
2019    // scope of the problem by only looking at *static* allocas here. That would
2020    // cover the majority of allocas while significantly reducing the likelihood
2021    // of having an @llvm.stackrestore pop up in the middle. However, it's not
2022    // actually impossible for an @llvm.stackrestore to pop up in the middle of
2023    // an entry block. Also, if we have a block that's not attached to a
2024    // function, we can't tell if it's "static" under the current definition.
2025    // Theoretically, this problem could be fixed by creating a new kind of
2026    // instruction kind specifically for static allocas. Such a new instruction
2027    // could be required to be at the top of the entry block, thus preventing it
2028    // from being subject to a @llvm.stackrestore. Instcombine could even
2029    // convert regular allocas into these special allocas. It'd be nifty.
2030    // However, until then, this problem remains open.
2031    //
2032    // So, we'll assume that two non-empty allocas have different addresses
2033    // for now.
2034    //
2035    // With all that, if the offsets are within the bounds of their allocations
2036    // (and not one-past-the-end! so we can't use inbounds!), and their
2037    // allocations aren't the same, the pointers are not equal.
2038    //
2039    // Note that it's not necessary to check for LHS being a global variable
2040    // address, due to canonicalization and constant folding.
2041    if (isa<AllocaInst>(LHS) &&
2042        (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2043      ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2044      ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2045      uint64_t LHSSize, RHSSize;
2046      if (LHSOffsetCI && RHSOffsetCI &&
2047          getObjectSize(LHS, LHSSize, DL, TLI) &&
2048          getObjectSize(RHS, RHSSize, DL, TLI)) {
2049        const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2050        const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2051        if (!LHSOffsetValue.isNegative() &&
2052            !RHSOffsetValue.isNegative() &&
2053            LHSOffsetValue.ult(LHSSize) &&
2054            RHSOffsetValue.ult(RHSSize)) {
2055          return ConstantInt::get(GetCompareTy(LHS),
2056                                  !CmpInst::isTrueWhenEqual(Pred));
2057        }
2058      }
2059
2060      // Repeat the above check but this time without depending on DataLayout
2061      // or being able to compute a precise size.
2062      if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2063          !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2064          LHSOffset->isNullValue() &&
2065          RHSOffset->isNullValue())
2066        return ConstantInt::get(GetCompareTy(LHS),
2067                                !CmpInst::isTrueWhenEqual(Pred));
2068    }
2069
2070    // Even if an non-inbounds GEP occurs along the path we can still optimize
2071    // equality comparisons concerning the result. We avoid walking the whole
2072    // chain again by starting where the last calls to
2073    // stripAndComputeConstantOffsets left off and accumulate the offsets.
2074    Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2075    Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2076    if (LHS == RHS)
2077      return ConstantExpr::getICmp(Pred,
2078                                   ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2079                                   ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2080
2081    // If one side of the equality comparison must come from a noalias call
2082    // (meaning a system memory allocation function), and the other side must
2083    // come from a pointer that cannot overlap with dynamically-allocated
2084    // memory within the lifetime of the current function (allocas, byval
2085    // arguments, globals), then determine the comparison result here.
2086    SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2087    GetUnderlyingObjects(LHS, LHSUObjs, DL);
2088    GetUnderlyingObjects(RHS, RHSUObjs, DL);
2089
2090    // Is the set of underlying objects all noalias calls?
2091    auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
2092      return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall);
2093    };
2094
2095    // Is the set of underlying objects all things which must be disjoint from
2096    // noalias calls. For allocas, we consider only static ones (dynamic
2097    // allocas might be transformed into calls to malloc not simultaneously
2098    // live with the compared-to allocation). For globals, we exclude symbols
2099    // that might be resolve lazily to symbols in another dynamically-loaded
2100    // library (and, thus, could be malloc'ed by the implementation).
2101    auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
2102      return std::all_of(Objects.begin(), Objects.end(), [](Value *V) {
2103        if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2104          return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2105        if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2106          return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2107                  GV->hasProtectedVisibility() || GV->hasUnnamedAddr()) &&
2108                 !GV->isThreadLocal();
2109        if (const Argument *A = dyn_cast<Argument>(V))
2110          return A->hasByValAttr();
2111        return false;
2112      });
2113    };
2114
2115    if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2116        (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2117        return ConstantInt::get(GetCompareTy(LHS),
2118                                !CmpInst::isTrueWhenEqual(Pred));
2119  }
2120
2121  // Otherwise, fail.
2122  return nullptr;
2123}
2124
2125/// Given operands for an ICmpInst, see if we can fold the result.
2126/// If not, this returns null.
2127static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2128                               const Query &Q, unsigned MaxRecurse) {
2129  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2130  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
2131
2132  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2133    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2134      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
2135
2136    // If we have a constant, make sure it is on the RHS.
2137    std::swap(LHS, RHS);
2138    Pred = CmpInst::getSwappedPredicate(Pred);
2139  }
2140
2141  Type *ITy = GetCompareTy(LHS); // The return type.
2142  Type *OpTy = LHS->getType();   // The operand type.
2143
2144  // icmp X, X -> true/false
2145  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
2146  // because X could be 0.
2147  if (LHS == RHS || isa<UndefValue>(RHS))
2148    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
2149
2150  // Special case logic when the operands have i1 type.
2151  if (OpTy->getScalarType()->isIntegerTy(1)) {
2152    switch (Pred) {
2153    default: break;
2154    case ICmpInst::ICMP_EQ:
2155      // X == 1 -> X
2156      if (match(RHS, m_One()))
2157        return LHS;
2158      break;
2159    case ICmpInst::ICMP_NE:
2160      // X != 0 -> X
2161      if (match(RHS, m_Zero()))
2162        return LHS;
2163      break;
2164    case ICmpInst::ICMP_UGT:
2165      // X >u 0 -> X
2166      if (match(RHS, m_Zero()))
2167        return LHS;
2168      break;
2169    case ICmpInst::ICMP_UGE:
2170      // X >=u 1 -> X
2171      if (match(RHS, m_One()))
2172        return LHS;
2173      if (isImpliedCondition(RHS, LHS, Q.DL))
2174        return getTrue(ITy);
2175      break;
2176    case ICmpInst::ICMP_SGE:
2177      /// For signed comparison, the values for an i1 are 0 and -1
2178      /// respectively. This maps into a truth table of:
2179      /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2180      ///  0  |  0  |  1 (0 >= 0)   |  1
2181      ///  0  |  1  |  1 (0 >= -1)  |  1
2182      ///  1  |  0  |  0 (-1 >= 0)  |  0
2183      ///  1  |  1  |  1 (-1 >= -1) |  1
2184      if (isImpliedCondition(LHS, RHS, Q.DL))
2185        return getTrue(ITy);
2186      break;
2187    case ICmpInst::ICMP_SLT:
2188      // X <s 0 -> X
2189      if (match(RHS, m_Zero()))
2190        return LHS;
2191      break;
2192    case ICmpInst::ICMP_SLE:
2193      // X <=s -1 -> X
2194      if (match(RHS, m_One()))
2195        return LHS;
2196      break;
2197    case ICmpInst::ICMP_ULE:
2198      if (isImpliedCondition(LHS, RHS, Q.DL))
2199        return getTrue(ITy);
2200      break;
2201    }
2202  }
2203
2204  // If we are comparing with zero then try hard since this is a common case.
2205  if (match(RHS, m_Zero())) {
2206    bool LHSKnownNonNegative, LHSKnownNegative;
2207    switch (Pred) {
2208    default: llvm_unreachable("Unknown ICmp predicate!");
2209    case ICmpInst::ICMP_ULT:
2210      return getFalse(ITy);
2211    case ICmpInst::ICMP_UGE:
2212      return getTrue(ITy);
2213    case ICmpInst::ICMP_EQ:
2214    case ICmpInst::ICMP_ULE:
2215      if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2216        return getFalse(ITy);
2217      break;
2218    case ICmpInst::ICMP_NE:
2219    case ICmpInst::ICMP_UGT:
2220      if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2221        return getTrue(ITy);
2222      break;
2223    case ICmpInst::ICMP_SLT:
2224      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2225                     Q.CxtI, Q.DT);
2226      if (LHSKnownNegative)
2227        return getTrue(ITy);
2228      if (LHSKnownNonNegative)
2229        return getFalse(ITy);
2230      break;
2231    case ICmpInst::ICMP_SLE:
2232      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2233                     Q.CxtI, Q.DT);
2234      if (LHSKnownNegative)
2235        return getTrue(ITy);
2236      if (LHSKnownNonNegative &&
2237          isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2238        return getFalse(ITy);
2239      break;
2240    case ICmpInst::ICMP_SGE:
2241      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2242                     Q.CxtI, Q.DT);
2243      if (LHSKnownNegative)
2244        return getFalse(ITy);
2245      if (LHSKnownNonNegative)
2246        return getTrue(ITy);
2247      break;
2248    case ICmpInst::ICMP_SGT:
2249      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2250                     Q.CxtI, Q.DT);
2251      if (LHSKnownNegative)
2252        return getFalse(ITy);
2253      if (LHSKnownNonNegative &&
2254          isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2255        return getTrue(ITy);
2256      break;
2257    }
2258  }
2259
2260  // See if we are doing a comparison with a constant integer.
2261  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2262    // Rule out tautological comparisons (eg., ult 0 or uge 0).
2263    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
2264    if (RHS_CR.isEmptySet())
2265      return ConstantInt::getFalse(CI->getContext());
2266    if (RHS_CR.isFullSet())
2267      return ConstantInt::getTrue(CI->getContext());
2268
2269    // Many binary operators with constant RHS have easy to compute constant
2270    // range.  Use them to check whether the comparison is a tautology.
2271    unsigned Width = CI->getBitWidth();
2272    APInt Lower = APInt(Width, 0);
2273    APInt Upper = APInt(Width, 0);
2274    ConstantInt *CI2;
2275    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
2276      // 'urem x, CI2' produces [0, CI2).
2277      Upper = CI2->getValue();
2278    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
2279      // 'srem x, CI2' produces (-|CI2|, |CI2|).
2280      Upper = CI2->getValue().abs();
2281      Lower = (-Upper) + 1;
2282    } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
2283      // 'udiv CI2, x' produces [0, CI2].
2284      Upper = CI2->getValue() + 1;
2285    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
2286      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
2287      APInt NegOne = APInt::getAllOnesValue(Width);
2288      if (!CI2->isZero())
2289        Upper = NegOne.udiv(CI2->getValue()) + 1;
2290    } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
2291      if (CI2->isMinSignedValue()) {
2292        // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2293        Lower = CI2->getValue();
2294        Upper = Lower.lshr(1) + 1;
2295      } else {
2296        // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
2297        Upper = CI2->getValue().abs() + 1;
2298        Lower = (-Upper) + 1;
2299      }
2300    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
2301      APInt IntMin = APInt::getSignedMinValue(Width);
2302      APInt IntMax = APInt::getSignedMaxValue(Width);
2303      APInt Val = CI2->getValue();
2304      if (Val.isAllOnesValue()) {
2305        // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2306        //    where CI2 != -1 and CI2 != 0 and CI2 != 1
2307        Lower = IntMin + 1;
2308        Upper = IntMax + 1;
2309      } else if (Val.countLeadingZeros() < Width - 1) {
2310        // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
2311        //    where CI2 != -1 and CI2 != 0 and CI2 != 1
2312        Lower = IntMin.sdiv(Val);
2313        Upper = IntMax.sdiv(Val);
2314        if (Lower.sgt(Upper))
2315          std::swap(Lower, Upper);
2316        Upper = Upper + 1;
2317        assert(Upper != Lower && "Upper part of range has wrapped!");
2318      }
2319    } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
2320      // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
2321      Lower = CI2->getValue();
2322      Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2323    } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
2324      if (CI2->isNegative()) {
2325        // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
2326        unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
2327        Lower = CI2->getValue().shl(ShiftAmount);
2328        Upper = CI2->getValue() + 1;
2329      } else {
2330        // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
2331        unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
2332        Lower = CI2->getValue();
2333        Upper = CI2->getValue().shl(ShiftAmount) + 1;
2334      }
2335    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
2336      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
2337      APInt NegOne = APInt::getAllOnesValue(Width);
2338      if (CI2->getValue().ult(Width))
2339        Upper = NegOne.lshr(CI2->getValue()) + 1;
2340    } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
2341      // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
2342      unsigned ShiftAmount = Width - 1;
2343      if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
2344        ShiftAmount = CI2->getValue().countTrailingZeros();
2345      Lower = CI2->getValue().lshr(ShiftAmount);
2346      Upper = CI2->getValue() + 1;
2347    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
2348      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
2349      APInt IntMin = APInt::getSignedMinValue(Width);
2350      APInt IntMax = APInt::getSignedMaxValue(Width);
2351      if (CI2->getValue().ult(Width)) {
2352        Lower = IntMin.ashr(CI2->getValue());
2353        Upper = IntMax.ashr(CI2->getValue()) + 1;
2354      }
2355    } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
2356      unsigned ShiftAmount = Width - 1;
2357      if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
2358        ShiftAmount = CI2->getValue().countTrailingZeros();
2359      if (CI2->isNegative()) {
2360        // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
2361        Lower = CI2->getValue();
2362        Upper = CI2->getValue().ashr(ShiftAmount) + 1;
2363      } else {
2364        // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
2365        Lower = CI2->getValue().ashr(ShiftAmount);
2366        Upper = CI2->getValue() + 1;
2367      }
2368    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2369      // 'or x, CI2' produces [CI2, UINT_MAX].
2370      Lower = CI2->getValue();
2371    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2372      // 'and x, CI2' produces [0, CI2].
2373      Upper = CI2->getValue() + 1;
2374    } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) {
2375      // 'add nuw x, CI2' produces [CI2, UINT_MAX].
2376      Lower = CI2->getValue();
2377    }
2378
2379    ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper)
2380                                          : ConstantRange(Width, true);
2381
2382    if (auto *I = dyn_cast<Instruction>(LHS))
2383      if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2384        LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2385
2386    if (!LHS_CR.isFullSet()) {
2387      if (RHS_CR.contains(LHS_CR))
2388        return ConstantInt::getTrue(RHS->getContext());
2389      if (RHS_CR.inverse().contains(LHS_CR))
2390        return ConstantInt::getFalse(RHS->getContext());
2391    }
2392  }
2393
2394  // If both operands have range metadata, use the metadata
2395  // to simplify the comparison.
2396  if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
2397    auto RHS_Instr = dyn_cast<Instruction>(RHS);
2398    auto LHS_Instr = dyn_cast<Instruction>(LHS);
2399
2400    if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
2401        LHS_Instr->getMetadata(LLVMContext::MD_range)) {
2402      auto RHS_CR = getConstantRangeFromMetadata(
2403          *RHS_Instr->getMetadata(LLVMContext::MD_range));
2404      auto LHS_CR = getConstantRangeFromMetadata(
2405          *LHS_Instr->getMetadata(LLVMContext::MD_range));
2406
2407      auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
2408      if (Satisfied_CR.contains(LHS_CR))
2409        return ConstantInt::getTrue(RHS->getContext());
2410
2411      auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
2412                CmpInst::getInversePredicate(Pred), RHS_CR);
2413      if (InversedSatisfied_CR.contains(LHS_CR))
2414        return ConstantInt::getFalse(RHS->getContext());
2415    }
2416  }
2417
2418  // Compare of cast, for example (zext X) != 0 -> X != 0
2419  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2420    Instruction *LI = cast<CastInst>(LHS);
2421    Value *SrcOp = LI->getOperand(0);
2422    Type *SrcTy = SrcOp->getType();
2423    Type *DstTy = LI->getType();
2424
2425    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2426    // if the integer type is the same size as the pointer type.
2427    if (MaxRecurse && isa<PtrToIntInst>(LI) &&
2428        Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
2429      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2430        // Transfer the cast to the constant.
2431        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2432                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
2433                                        Q, MaxRecurse-1))
2434          return V;
2435      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2436        if (RI->getOperand(0)->getType() == SrcTy)
2437          // Compare without the cast.
2438          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2439                                          Q, MaxRecurse-1))
2440            return V;
2441      }
2442    }
2443
2444    if (isa<ZExtInst>(LHS)) {
2445      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2446      // same type.
2447      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2448        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2449          // Compare X and Y.  Note that signed predicates become unsigned.
2450          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2451                                          SrcOp, RI->getOperand(0), Q,
2452                                          MaxRecurse-1))
2453            return V;
2454      }
2455      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2456      // too.  If not, then try to deduce the result of the comparison.
2457      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2458        // Compute the constant that would happen if we truncated to SrcTy then
2459        // reextended to DstTy.
2460        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2461        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2462
2463        // If the re-extended constant didn't change then this is effectively
2464        // also a case of comparing two zero-extended values.
2465        if (RExt == CI && MaxRecurse)
2466          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2467                                        SrcOp, Trunc, Q, MaxRecurse-1))
2468            return V;
2469
2470        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2471        // there.  Use this to work out the result of the comparison.
2472        if (RExt != CI) {
2473          switch (Pred) {
2474          default: llvm_unreachable("Unknown ICmp predicate!");
2475          // LHS <u RHS.
2476          case ICmpInst::ICMP_EQ:
2477          case ICmpInst::ICMP_UGT:
2478          case ICmpInst::ICMP_UGE:
2479            return ConstantInt::getFalse(CI->getContext());
2480
2481          case ICmpInst::ICMP_NE:
2482          case ICmpInst::ICMP_ULT:
2483          case ICmpInst::ICMP_ULE:
2484            return ConstantInt::getTrue(CI->getContext());
2485
2486          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
2487          // is non-negative then LHS <s RHS.
2488          case ICmpInst::ICMP_SGT:
2489          case ICmpInst::ICMP_SGE:
2490            return CI->getValue().isNegative() ?
2491              ConstantInt::getTrue(CI->getContext()) :
2492              ConstantInt::getFalse(CI->getContext());
2493
2494          case ICmpInst::ICMP_SLT:
2495          case ICmpInst::ICMP_SLE:
2496            return CI->getValue().isNegative() ?
2497              ConstantInt::getFalse(CI->getContext()) :
2498              ConstantInt::getTrue(CI->getContext());
2499          }
2500        }
2501      }
2502    }
2503
2504    if (isa<SExtInst>(LHS)) {
2505      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2506      // same type.
2507      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2508        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2509          // Compare X and Y.  Note that the predicate does not change.
2510          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2511                                          Q, MaxRecurse-1))
2512            return V;
2513      }
2514      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2515      // too.  If not, then try to deduce the result of the comparison.
2516      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2517        // Compute the constant that would happen if we truncated to SrcTy then
2518        // reextended to DstTy.
2519        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2520        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2521
2522        // If the re-extended constant didn't change then this is effectively
2523        // also a case of comparing two sign-extended values.
2524        if (RExt == CI && MaxRecurse)
2525          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2526            return V;
2527
2528        // Otherwise the upper bits of LHS are all equal, while RHS has varying
2529        // bits there.  Use this to work out the result of the comparison.
2530        if (RExt != CI) {
2531          switch (Pred) {
2532          default: llvm_unreachable("Unknown ICmp predicate!");
2533          case ICmpInst::ICMP_EQ:
2534            return ConstantInt::getFalse(CI->getContext());
2535          case ICmpInst::ICMP_NE:
2536            return ConstantInt::getTrue(CI->getContext());
2537
2538          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
2539          // LHS >s RHS.
2540          case ICmpInst::ICMP_SGT:
2541          case ICmpInst::ICMP_SGE:
2542            return CI->getValue().isNegative() ?
2543              ConstantInt::getTrue(CI->getContext()) :
2544              ConstantInt::getFalse(CI->getContext());
2545          case ICmpInst::ICMP_SLT:
2546          case ICmpInst::ICMP_SLE:
2547            return CI->getValue().isNegative() ?
2548              ConstantInt::getFalse(CI->getContext()) :
2549              ConstantInt::getTrue(CI->getContext());
2550
2551          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
2552          // LHS >u RHS.
2553          case ICmpInst::ICMP_UGT:
2554          case ICmpInst::ICMP_UGE:
2555            // Comparison is true iff the LHS <s 0.
2556            if (MaxRecurse)
2557              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2558                                              Constant::getNullValue(SrcTy),
2559                                              Q, MaxRecurse-1))
2560                return V;
2561            break;
2562          case ICmpInst::ICMP_ULT:
2563          case ICmpInst::ICMP_ULE:
2564            // Comparison is true iff the LHS >=s 0.
2565            if (MaxRecurse)
2566              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2567                                              Constant::getNullValue(SrcTy),
2568                                              Q, MaxRecurse-1))
2569                return V;
2570            break;
2571          }
2572        }
2573      }
2574    }
2575  }
2576
2577  // icmp eq|ne X, Y -> false|true if X != Y
2578  if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2579      isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
2580    LLVMContext &Ctx = LHS->getType()->getContext();
2581    return Pred == ICmpInst::ICMP_NE ?
2582      ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
2583  }
2584
2585  // Special logic for binary operators.
2586  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2587  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2588  if (MaxRecurse && (LBO || RBO)) {
2589    // Analyze the case when either LHS or RHS is an add instruction.
2590    Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2591    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2592    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2593    if (LBO && LBO->getOpcode() == Instruction::Add) {
2594      A = LBO->getOperand(0); B = LBO->getOperand(1);
2595      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2596        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2597        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2598    }
2599    if (RBO && RBO->getOpcode() == Instruction::Add) {
2600      C = RBO->getOperand(0); D = RBO->getOperand(1);
2601      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2602        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2603        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2604    }
2605
2606    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2607    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2608      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2609                                      Constant::getNullValue(RHS->getType()),
2610                                      Q, MaxRecurse-1))
2611        return V;
2612
2613    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2614    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2615      if (Value *V = SimplifyICmpInst(Pred,
2616                                      Constant::getNullValue(LHS->getType()),
2617                                      C == LHS ? D : C, Q, MaxRecurse-1))
2618        return V;
2619
2620    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2621    if (A && C && (A == C || A == D || B == C || B == D) &&
2622        NoLHSWrapProblem && NoRHSWrapProblem) {
2623      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2624      Value *Y, *Z;
2625      if (A == C) {
2626        // C + B == C + D  ->  B == D
2627        Y = B;
2628        Z = D;
2629      } else if (A == D) {
2630        // D + B == C + D  ->  B == C
2631        Y = B;
2632        Z = C;
2633      } else if (B == C) {
2634        // A + C == C + D  ->  A == D
2635        Y = A;
2636        Z = D;
2637      } else {
2638        assert(B == D);
2639        // A + D == C + D  ->  A == C
2640        Y = A;
2641        Z = C;
2642      }
2643      if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2644        return V;
2645    }
2646  }
2647
2648  // icmp pred (or X, Y), X
2649  if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
2650                                    m_Or(m_Specific(RHS), m_Value())))) {
2651    if (Pred == ICmpInst::ICMP_ULT)
2652      return getFalse(ITy);
2653    if (Pred == ICmpInst::ICMP_UGE)
2654      return getTrue(ITy);
2655  }
2656  // icmp pred X, (or X, Y)
2657  if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
2658                                    m_Or(m_Specific(LHS), m_Value())))) {
2659    if (Pred == ICmpInst::ICMP_ULE)
2660      return getTrue(ITy);
2661    if (Pred == ICmpInst::ICMP_UGT)
2662      return getFalse(ITy);
2663  }
2664
2665  // icmp pred (and X, Y), X
2666  if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2667                                    m_And(m_Specific(RHS), m_Value())))) {
2668    if (Pred == ICmpInst::ICMP_UGT)
2669      return getFalse(ITy);
2670    if (Pred == ICmpInst::ICMP_ULE)
2671      return getTrue(ITy);
2672  }
2673  // icmp pred X, (and X, Y)
2674  if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2675                                    m_And(m_Specific(LHS), m_Value())))) {
2676    if (Pred == ICmpInst::ICMP_UGE)
2677      return getTrue(ITy);
2678    if (Pred == ICmpInst::ICMP_ULT)
2679      return getFalse(ITy);
2680  }
2681
2682  // 0 - (zext X) pred C
2683  if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2684    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2685      if (RHSC->getValue().isStrictlyPositive()) {
2686        if (Pred == ICmpInst::ICMP_SLT)
2687          return ConstantInt::getTrue(RHSC->getContext());
2688        if (Pred == ICmpInst::ICMP_SGE)
2689          return ConstantInt::getFalse(RHSC->getContext());
2690        if (Pred == ICmpInst::ICMP_EQ)
2691          return ConstantInt::getFalse(RHSC->getContext());
2692        if (Pred == ICmpInst::ICMP_NE)
2693          return ConstantInt::getTrue(RHSC->getContext());
2694      }
2695      if (RHSC->getValue().isNonNegative()) {
2696        if (Pred == ICmpInst::ICMP_SLE)
2697          return ConstantInt::getTrue(RHSC->getContext());
2698        if (Pred == ICmpInst::ICMP_SGT)
2699          return ConstantInt::getFalse(RHSC->getContext());
2700      }
2701    }
2702  }
2703
2704  // icmp pred (urem X, Y), Y
2705  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2706    bool KnownNonNegative, KnownNegative;
2707    switch (Pred) {
2708    default:
2709      break;
2710    case ICmpInst::ICMP_SGT:
2711    case ICmpInst::ICMP_SGE:
2712      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2713                     Q.CxtI, Q.DT);
2714      if (!KnownNonNegative)
2715        break;
2716      // fall-through
2717    case ICmpInst::ICMP_EQ:
2718    case ICmpInst::ICMP_UGT:
2719    case ICmpInst::ICMP_UGE:
2720      return getFalse(ITy);
2721    case ICmpInst::ICMP_SLT:
2722    case ICmpInst::ICMP_SLE:
2723      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2724                     Q.CxtI, Q.DT);
2725      if (!KnownNonNegative)
2726        break;
2727      // fall-through
2728    case ICmpInst::ICMP_NE:
2729    case ICmpInst::ICMP_ULT:
2730    case ICmpInst::ICMP_ULE:
2731      return getTrue(ITy);
2732    }
2733  }
2734
2735  // icmp pred X, (urem Y, X)
2736  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2737    bool KnownNonNegative, KnownNegative;
2738    switch (Pred) {
2739    default:
2740      break;
2741    case ICmpInst::ICMP_SGT:
2742    case ICmpInst::ICMP_SGE:
2743      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2744                     Q.CxtI, Q.DT);
2745      if (!KnownNonNegative)
2746        break;
2747      // fall-through
2748    case ICmpInst::ICMP_NE:
2749    case ICmpInst::ICMP_UGT:
2750    case ICmpInst::ICMP_UGE:
2751      return getTrue(ITy);
2752    case ICmpInst::ICMP_SLT:
2753    case ICmpInst::ICMP_SLE:
2754      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2755                     Q.CxtI, Q.DT);
2756      if (!KnownNonNegative)
2757        break;
2758      // fall-through
2759    case ICmpInst::ICMP_EQ:
2760    case ICmpInst::ICMP_ULT:
2761    case ICmpInst::ICMP_ULE:
2762      return getFalse(ITy);
2763    }
2764  }
2765
2766  // x udiv y <=u x.
2767  if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2768    // icmp pred (X /u Y), X
2769    if (Pred == ICmpInst::ICMP_UGT)
2770      return getFalse(ITy);
2771    if (Pred == ICmpInst::ICMP_ULE)
2772      return getTrue(ITy);
2773  }
2774
2775  // handle:
2776  //   CI2 << X == CI
2777  //   CI2 << X != CI
2778  //
2779  //   where CI2 is a power of 2 and CI isn't
2780  if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2781    const APInt *CI2Val, *CIVal = &CI->getValue();
2782    if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2783        CI2Val->isPowerOf2()) {
2784      if (!CIVal->isPowerOf2()) {
2785        // CI2 << X can equal zero in some circumstances,
2786        // this simplification is unsafe if CI is zero.
2787        //
2788        // We know it is safe if:
2789        // - The shift is nsw, we can't shift out the one bit.
2790        // - The shift is nuw, we can't shift out the one bit.
2791        // - CI2 is one
2792        // - CI isn't zero
2793        if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2794            *CI2Val == 1 || !CI->isZero()) {
2795          if (Pred == ICmpInst::ICMP_EQ)
2796            return ConstantInt::getFalse(RHS->getContext());
2797          if (Pred == ICmpInst::ICMP_NE)
2798            return ConstantInt::getTrue(RHS->getContext());
2799        }
2800      }
2801      if (CIVal->isSignBit() && *CI2Val == 1) {
2802        if (Pred == ICmpInst::ICMP_UGT)
2803          return ConstantInt::getFalse(RHS->getContext());
2804        if (Pred == ICmpInst::ICMP_ULE)
2805          return ConstantInt::getTrue(RHS->getContext());
2806      }
2807    }
2808  }
2809
2810  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2811      LBO->getOperand(1) == RBO->getOperand(1)) {
2812    switch (LBO->getOpcode()) {
2813    default: break;
2814    case Instruction::UDiv:
2815    case Instruction::LShr:
2816      if (ICmpInst::isSigned(Pred))
2817        break;
2818      // fall-through
2819    case Instruction::SDiv:
2820    case Instruction::AShr:
2821      if (!LBO->isExact() || !RBO->isExact())
2822        break;
2823      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2824                                      RBO->getOperand(0), Q, MaxRecurse-1))
2825        return V;
2826      break;
2827    case Instruction::Shl: {
2828      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2829      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2830      if (!NUW && !NSW)
2831        break;
2832      if (!NSW && ICmpInst::isSigned(Pred))
2833        break;
2834      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2835                                      RBO->getOperand(0), Q, MaxRecurse-1))
2836        return V;
2837      break;
2838    }
2839    }
2840  }
2841
2842  // Simplify comparisons involving max/min.
2843  Value *A, *B;
2844  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2845  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2846
2847  // Signed variants on "max(a,b)>=a -> true".
2848  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2849    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2850    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2851    // We analyze this as smax(A, B) pred A.
2852    P = Pred;
2853  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2854             (A == LHS || B == LHS)) {
2855    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2856    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2857    // We analyze this as smax(A, B) swapped-pred A.
2858    P = CmpInst::getSwappedPredicate(Pred);
2859  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2860             (A == RHS || B == RHS)) {
2861    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2862    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2863    // We analyze this as smax(-A, -B) swapped-pred -A.
2864    // Note that we do not need to actually form -A or -B thanks to EqP.
2865    P = CmpInst::getSwappedPredicate(Pred);
2866  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2867             (A == LHS || B == LHS)) {
2868    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2869    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2870    // We analyze this as smax(-A, -B) pred -A.
2871    // Note that we do not need to actually form -A or -B thanks to EqP.
2872    P = Pred;
2873  }
2874  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2875    // Cases correspond to "max(A, B) p A".
2876    switch (P) {
2877    default:
2878      break;
2879    case CmpInst::ICMP_EQ:
2880    case CmpInst::ICMP_SLE:
2881      // Equivalent to "A EqP B".  This may be the same as the condition tested
2882      // in the max/min; if so, we can just return that.
2883      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2884        return V;
2885      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2886        return V;
2887      // Otherwise, see if "A EqP B" simplifies.
2888      if (MaxRecurse)
2889        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2890          return V;
2891      break;
2892    case CmpInst::ICMP_NE:
2893    case CmpInst::ICMP_SGT: {
2894      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2895      // Equivalent to "A InvEqP B".  This may be the same as the condition
2896      // tested in the max/min; if so, we can just return that.
2897      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2898        return V;
2899      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2900        return V;
2901      // Otherwise, see if "A InvEqP B" simplifies.
2902      if (MaxRecurse)
2903        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2904          return V;
2905      break;
2906    }
2907    case CmpInst::ICMP_SGE:
2908      // Always true.
2909      return getTrue(ITy);
2910    case CmpInst::ICMP_SLT:
2911      // Always false.
2912      return getFalse(ITy);
2913    }
2914  }
2915
2916  // Unsigned variants on "max(a,b)>=a -> true".
2917  P = CmpInst::BAD_ICMP_PREDICATE;
2918  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2919    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2920    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2921    // We analyze this as umax(A, B) pred A.
2922    P = Pred;
2923  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2924             (A == LHS || B == LHS)) {
2925    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2926    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2927    // We analyze this as umax(A, B) swapped-pred A.
2928    P = CmpInst::getSwappedPredicate(Pred);
2929  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2930             (A == RHS || B == RHS)) {
2931    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2932    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2933    // We analyze this as umax(-A, -B) swapped-pred -A.
2934    // Note that we do not need to actually form -A or -B thanks to EqP.
2935    P = CmpInst::getSwappedPredicate(Pred);
2936  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2937             (A == LHS || B == LHS)) {
2938    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2939    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2940    // We analyze this as umax(-A, -B) pred -A.
2941    // Note that we do not need to actually form -A or -B thanks to EqP.
2942    P = Pred;
2943  }
2944  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2945    // Cases correspond to "max(A, B) p A".
2946    switch (P) {
2947    default:
2948      break;
2949    case CmpInst::ICMP_EQ:
2950    case CmpInst::ICMP_ULE:
2951      // Equivalent to "A EqP B".  This may be the same as the condition tested
2952      // in the max/min; if so, we can just return that.
2953      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2954        return V;
2955      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2956        return V;
2957      // Otherwise, see if "A EqP B" simplifies.
2958      if (MaxRecurse)
2959        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2960          return V;
2961      break;
2962    case CmpInst::ICMP_NE:
2963    case CmpInst::ICMP_UGT: {
2964      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2965      // Equivalent to "A InvEqP B".  This may be the same as the condition
2966      // tested in the max/min; if so, we can just return that.
2967      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2968        return V;
2969      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2970        return V;
2971      // Otherwise, see if "A InvEqP B" simplifies.
2972      if (MaxRecurse)
2973        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2974          return V;
2975      break;
2976    }
2977    case CmpInst::ICMP_UGE:
2978      // Always true.
2979      return getTrue(ITy);
2980    case CmpInst::ICMP_ULT:
2981      // Always false.
2982      return getFalse(ITy);
2983    }
2984  }
2985
2986  // Variants on "max(x,y) >= min(x,z)".
2987  Value *C, *D;
2988  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2989      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2990      (A == C || A == D || B == C || B == D)) {
2991    // max(x, ?) pred min(x, ?).
2992    if (Pred == CmpInst::ICMP_SGE)
2993      // Always true.
2994      return getTrue(ITy);
2995    if (Pred == CmpInst::ICMP_SLT)
2996      // Always false.
2997      return getFalse(ITy);
2998  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2999             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3000             (A == C || A == D || B == C || B == D)) {
3001    // min(x, ?) pred max(x, ?).
3002    if (Pred == CmpInst::ICMP_SLE)
3003      // Always true.
3004      return getTrue(ITy);
3005    if (Pred == CmpInst::ICMP_SGT)
3006      // Always false.
3007      return getFalse(ITy);
3008  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3009             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3010             (A == C || A == D || B == C || B == D)) {
3011    // max(x, ?) pred min(x, ?).
3012    if (Pred == CmpInst::ICMP_UGE)
3013      // Always true.
3014      return getTrue(ITy);
3015    if (Pred == CmpInst::ICMP_ULT)
3016      // Always false.
3017      return getFalse(ITy);
3018  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3019             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3020             (A == C || A == D || B == C || B == D)) {
3021    // min(x, ?) pred max(x, ?).
3022    if (Pred == CmpInst::ICMP_ULE)
3023      // Always true.
3024      return getTrue(ITy);
3025    if (Pred == CmpInst::ICMP_UGT)
3026      // Always false.
3027      return getFalse(ITy);
3028  }
3029
3030  // Simplify comparisons of related pointers using a powerful, recursive
3031  // GEP-walk when we have target data available..
3032  if (LHS->getType()->isPointerTy())
3033    if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
3034      return C;
3035
3036  if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3037    if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3038      if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3039          GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3040          (ICmpInst::isEquality(Pred) ||
3041           (GLHS->isInBounds() && GRHS->isInBounds() &&
3042            Pred == ICmpInst::getSignedPredicate(Pred)))) {
3043        // The bases are equal and the indices are constant.  Build a constant
3044        // expression GEP with the same indices and a null base pointer to see
3045        // what constant folding can make out of it.
3046        Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3047        SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3048        Constant *NewLHS = ConstantExpr::getGetElementPtr(
3049            GLHS->getSourceElementType(), Null, IndicesLHS);
3050
3051        SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3052        Constant *NewRHS = ConstantExpr::getGetElementPtr(
3053            GLHS->getSourceElementType(), Null, IndicesRHS);
3054        return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3055      }
3056    }
3057  }
3058
3059  // If a bit is known to be zero for A and known to be one for B,
3060  // then A and B cannot be equal.
3061  if (ICmpInst::isEquality(Pred)) {
3062    if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3063      uint32_t BitWidth = CI->getBitWidth();
3064      APInt LHSKnownZero(BitWidth, 0);
3065      APInt LHSKnownOne(BitWidth, 0);
3066      computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3067                       Q.CxtI, Q.DT);
3068      const APInt &RHSVal = CI->getValue();
3069      if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
3070        return Pred == ICmpInst::ICMP_EQ
3071                   ? ConstantInt::getFalse(CI->getContext())
3072                   : ConstantInt::getTrue(CI->getContext());
3073    }
3074  }
3075
3076  // If the comparison is with the result of a select instruction, check whether
3077  // comparing with either branch of the select always yields the same value.
3078  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3079    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3080      return V;
3081
3082  // If the comparison is with the result of a phi instruction, check whether
3083  // doing the compare with each incoming phi value yields a common result.
3084  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3085    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3086      return V;
3087
3088  return nullptr;
3089}
3090
3091Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3092                              const DataLayout &DL,
3093                              const TargetLibraryInfo *TLI,
3094                              const DominatorTree *DT, AssumptionCache *AC,
3095                              const Instruction *CxtI) {
3096  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3097                            RecursionLimit);
3098}
3099
3100/// Given operands for an FCmpInst, see if we can fold the result.
3101/// If not, this returns null.
3102static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3103                               FastMathFlags FMF, const Query &Q,
3104                               unsigned MaxRecurse) {
3105  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3106  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3107
3108  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3109    if (Constant *CRHS = dyn_cast<Constant>(RHS))
3110      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3111
3112    // If we have a constant, make sure it is on the RHS.
3113    std::swap(LHS, RHS);
3114    Pred = CmpInst::getSwappedPredicate(Pred);
3115  }
3116
3117  // Fold trivial predicates.
3118  if (Pred == FCmpInst::FCMP_FALSE)
3119    return ConstantInt::get(GetCompareTy(LHS), 0);
3120  if (Pred == FCmpInst::FCMP_TRUE)
3121    return ConstantInt::get(GetCompareTy(LHS), 1);
3122
3123  // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3124  if (FMF.noNaNs()) {
3125    if (Pred == FCmpInst::FCMP_UNO)
3126      return ConstantInt::get(GetCompareTy(LHS), 0);
3127    if (Pred == FCmpInst::FCMP_ORD)
3128      return ConstantInt::get(GetCompareTy(LHS), 1);
3129  }
3130
3131  // fcmp pred x, undef  and  fcmp pred undef, x
3132  // fold to true if unordered, false if ordered
3133  if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3134    // Choosing NaN for the undef will always make unordered comparison succeed
3135    // and ordered comparison fail.
3136    return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred));
3137  }
3138
3139  // fcmp x,x -> true/false.  Not all compares are foldable.
3140  if (LHS == RHS) {
3141    if (CmpInst::isTrueWhenEqual(Pred))
3142      return ConstantInt::get(GetCompareTy(LHS), 1);
3143    if (CmpInst::isFalseWhenEqual(Pred))
3144      return ConstantInt::get(GetCompareTy(LHS), 0);
3145  }
3146
3147  // Handle fcmp with constant RHS
3148  if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
3149    // If the constant is a nan, see if we can fold the comparison based on it.
3150    if (CFP->getValueAPF().isNaN()) {
3151      if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3152        return ConstantInt::getFalse(CFP->getContext());
3153      assert(FCmpInst::isUnordered(Pred) &&
3154             "Comparison must be either ordered or unordered!");
3155      // True if unordered.
3156      return ConstantInt::getTrue(CFP->getContext());
3157    }
3158    // Check whether the constant is an infinity.
3159    if (CFP->getValueAPF().isInfinity()) {
3160      if (CFP->getValueAPF().isNegative()) {
3161        switch (Pred) {
3162        case FCmpInst::FCMP_OLT:
3163          // No value is ordered and less than negative infinity.
3164          return ConstantInt::getFalse(CFP->getContext());
3165        case FCmpInst::FCMP_UGE:
3166          // All values are unordered with or at least negative infinity.
3167          return ConstantInt::getTrue(CFP->getContext());
3168        default:
3169          break;
3170        }
3171      } else {
3172        switch (Pred) {
3173        case FCmpInst::FCMP_OGT:
3174          // No value is ordered and greater than infinity.
3175          return ConstantInt::getFalse(CFP->getContext());
3176        case FCmpInst::FCMP_ULE:
3177          // All values are unordered with and at most infinity.
3178          return ConstantInt::getTrue(CFP->getContext());
3179        default:
3180          break;
3181        }
3182      }
3183    }
3184    if (CFP->getValueAPF().isZero()) {
3185      switch (Pred) {
3186      case FCmpInst::FCMP_UGE:
3187        if (CannotBeOrderedLessThanZero(LHS))
3188          return ConstantInt::getTrue(CFP->getContext());
3189        break;
3190      case FCmpInst::FCMP_OLT:
3191        // X < 0
3192        if (CannotBeOrderedLessThanZero(LHS))
3193          return ConstantInt::getFalse(CFP->getContext());
3194        break;
3195      default:
3196        break;
3197      }
3198    }
3199  }
3200
3201  // If the comparison is with the result of a select instruction, check whether
3202  // comparing with either branch of the select always yields the same value.
3203  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3204    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3205      return V;
3206
3207  // If the comparison is with the result of a phi instruction, check whether
3208  // doing the compare with each incoming phi value yields a common result.
3209  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3210    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3211      return V;
3212
3213  return nullptr;
3214}
3215
3216Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3217                              FastMathFlags FMF, const DataLayout &DL,
3218                              const TargetLibraryInfo *TLI,
3219                              const DominatorTree *DT, AssumptionCache *AC,
3220                              const Instruction *CxtI) {
3221  return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3222                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3223}
3224
3225/// See if V simplifies when its operand Op is replaced with RepOp.
3226static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3227                                           const Query &Q,
3228                                           unsigned MaxRecurse) {
3229  // Trivial replacement.
3230  if (V == Op)
3231    return RepOp;
3232
3233  auto *I = dyn_cast<Instruction>(V);
3234  if (!I)
3235    return nullptr;
3236
3237  // If this is a binary operator, try to simplify it with the replaced op.
3238  if (auto *B = dyn_cast<BinaryOperator>(I)) {
3239    // Consider:
3240    //   %cmp = icmp eq i32 %x, 2147483647
3241    //   %add = add nsw i32 %x, 1
3242    //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3243    //
3244    // We can't replace %sel with %add unless we strip away the flags.
3245    if (isa<OverflowingBinaryOperator>(B))
3246      if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3247        return nullptr;
3248    if (isa<PossiblyExactOperator>(B))
3249      if (B->isExact())
3250        return nullptr;
3251
3252    if (MaxRecurse) {
3253      if (B->getOperand(0) == Op)
3254        return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3255                             MaxRecurse - 1);
3256      if (B->getOperand(1) == Op)
3257        return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3258                             MaxRecurse - 1);
3259    }
3260  }
3261
3262  // Same for CmpInsts.
3263  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3264    if (MaxRecurse) {
3265      if (C->getOperand(0) == Op)
3266        return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3267                               MaxRecurse - 1);
3268      if (C->getOperand(1) == Op)
3269        return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3270                               MaxRecurse - 1);
3271    }
3272  }
3273
3274  // TODO: We could hand off more cases to instsimplify here.
3275
3276  // If all operands are constant after substituting Op for RepOp then we can
3277  // constant fold the instruction.
3278  if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3279    // Build a list of all constant operands.
3280    SmallVector<Constant *, 8> ConstOps;
3281    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3282      if (I->getOperand(i) == Op)
3283        ConstOps.push_back(CRepOp);
3284      else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3285        ConstOps.push_back(COp);
3286      else
3287        break;
3288    }
3289
3290    // All operands were constants, fold it.
3291    if (ConstOps.size() == I->getNumOperands()) {
3292      if (CmpInst *C = dyn_cast<CmpInst>(I))
3293        return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3294                                               ConstOps[1], Q.DL, Q.TLI);
3295
3296      if (LoadInst *LI = dyn_cast<LoadInst>(I))
3297        if (!LI->isVolatile())
3298          return ConstantFoldLoadFromConstPtr(ConstOps[0], Q.DL);
3299
3300      return ConstantFoldInstOperands(I->getOpcode(), I->getType(), ConstOps,
3301                                      Q.DL, Q.TLI);
3302    }
3303  }
3304
3305  return nullptr;
3306}
3307
3308/// Given operands for a SelectInst, see if we can fold the result.
3309/// If not, this returns null.
3310static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3311                                 Value *FalseVal, const Query &Q,
3312                                 unsigned MaxRecurse) {
3313  // select true, X, Y  -> X
3314  // select false, X, Y -> Y
3315  if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3316    if (CB->isAllOnesValue())
3317      return TrueVal;
3318    if (CB->isNullValue())
3319      return FalseVal;
3320  }
3321
3322  // select C, X, X -> X
3323  if (TrueVal == FalseVal)
3324    return TrueVal;
3325
3326  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3327    if (isa<Constant>(TrueVal))
3328      return TrueVal;
3329    return FalseVal;
3330  }
3331  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3332    return FalseVal;
3333  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3334    return TrueVal;
3335
3336  if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) {
3337    unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType());
3338    ICmpInst::Predicate Pred = ICI->getPredicate();
3339    Value *CmpLHS = ICI->getOperand(0);
3340    Value *CmpRHS = ICI->getOperand(1);
3341    APInt MinSignedValue = APInt::getSignBit(BitWidth);
3342    Value *X;
3343    const APInt *Y;
3344    bool TrueWhenUnset;
3345    bool IsBitTest = false;
3346    if (ICmpInst::isEquality(Pred) &&
3347        match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) &&
3348        match(CmpRHS, m_Zero())) {
3349      IsBitTest = true;
3350      TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
3351    } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3352      X = CmpLHS;
3353      Y = &MinSignedValue;
3354      IsBitTest = true;
3355      TrueWhenUnset = false;
3356    } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3357      X = CmpLHS;
3358      Y = &MinSignedValue;
3359      IsBitTest = true;
3360      TrueWhenUnset = true;
3361    }
3362    if (IsBitTest) {
3363      const APInt *C;
3364      // (X & Y) == 0 ? X & ~Y : X  --> X
3365      // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3366      if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3367          *Y == ~*C)
3368        return TrueWhenUnset ? FalseVal : TrueVal;
3369      // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3370      // (X & Y) != 0 ? X : X & ~Y  --> X
3371      if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3372          *Y == ~*C)
3373        return TrueWhenUnset ? FalseVal : TrueVal;
3374
3375      if (Y->isPowerOf2()) {
3376        // (X & Y) == 0 ? X | Y : X  --> X | Y
3377        // (X & Y) != 0 ? X | Y : X  --> X
3378        if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3379            *Y == *C)
3380          return TrueWhenUnset ? TrueVal : FalseVal;
3381        // (X & Y) == 0 ? X : X | Y  --> X
3382        // (X & Y) != 0 ? X : X | Y  --> X | Y
3383        if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3384            *Y == *C)
3385          return TrueWhenUnset ? TrueVal : FalseVal;
3386      }
3387    }
3388    if (ICI->hasOneUse()) {
3389      const APInt *C;
3390      if (match(CmpRHS, m_APInt(C))) {
3391        // X < MIN ? T : F  -->  F
3392        if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3393          return FalseVal;
3394        // X < MIN ? T : F  -->  F
3395        if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3396          return FalseVal;
3397        // X > MAX ? T : F  -->  F
3398        if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3399          return FalseVal;
3400        // X > MAX ? T : F  -->  F
3401        if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3402          return FalseVal;
3403      }
3404    }
3405
3406    // If we have an equality comparison then we know the value in one of the
3407    // arms of the select. See if substituting this value into the arm and
3408    // simplifying the result yields the same value as the other arm.
3409    if (Pred == ICmpInst::ICMP_EQ) {
3410      if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3411              TrueVal ||
3412          SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3413              TrueVal)
3414        return FalseVal;
3415      if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3416              FalseVal ||
3417          SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3418              FalseVal)
3419        return FalseVal;
3420    } else if (Pred == ICmpInst::ICMP_NE) {
3421      if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3422              FalseVal ||
3423          SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3424              FalseVal)
3425        return TrueVal;
3426      if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3427              TrueVal ||
3428          SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3429              TrueVal)
3430        return TrueVal;
3431    }
3432  }
3433
3434  return nullptr;
3435}
3436
3437Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3438                                const DataLayout &DL,
3439                                const TargetLibraryInfo *TLI,
3440                                const DominatorTree *DT, AssumptionCache *AC,
3441                                const Instruction *CxtI) {
3442  return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3443                              Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3444}
3445
3446/// Given operands for an GetElementPtrInst, see if we can fold the result.
3447/// If not, this returns null.
3448static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3449                              const Query &Q, unsigned) {
3450  // The type of the GEP pointer operand.
3451  unsigned AS =
3452      cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3453
3454  // getelementptr P -> P.
3455  if (Ops.size() == 1)
3456    return Ops[0];
3457
3458  // Compute the (pointer) type returned by the GEP instruction.
3459  Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3460  Type *GEPTy = PointerType::get(LastType, AS);
3461  if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3462    GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3463
3464  if (isa<UndefValue>(Ops[0]))
3465    return UndefValue::get(GEPTy);
3466
3467  if (Ops.size() == 2) {
3468    // getelementptr P, 0 -> P.
3469    if (match(Ops[1], m_Zero()))
3470      return Ops[0];
3471
3472    Type *Ty = SrcTy;
3473    if (Ty->isSized()) {
3474      Value *P;
3475      uint64_t C;
3476      uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3477      // getelementptr P, N -> P if P points to a type of zero size.
3478      if (TyAllocSize == 0)
3479        return Ops[0];
3480
3481      // The following transforms are only safe if the ptrtoint cast
3482      // doesn't truncate the pointers.
3483      if (Ops[1]->getType()->getScalarSizeInBits() ==
3484          Q.DL.getPointerSizeInBits(AS)) {
3485        auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3486          if (match(P, m_Zero()))
3487            return Constant::getNullValue(GEPTy);
3488          Value *Temp;
3489          if (match(P, m_PtrToInt(m_Value(Temp))))
3490            if (Temp->getType() == GEPTy)
3491              return Temp;
3492          return nullptr;
3493        };
3494
3495        // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3496        if (TyAllocSize == 1 &&
3497            match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3498          if (Value *R = PtrToIntOrZero(P))
3499            return R;
3500
3501        // getelementptr V, (ashr (sub P, V), C) -> Q
3502        // if P points to a type of size 1 << C.
3503        if (match(Ops[1],
3504                  m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3505                         m_ConstantInt(C))) &&
3506            TyAllocSize == 1ULL << C)
3507          if (Value *R = PtrToIntOrZero(P))
3508            return R;
3509
3510        // getelementptr V, (sdiv (sub P, V), C) -> Q
3511        // if P points to a type of size C.
3512        if (match(Ops[1],
3513                  m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3514                         m_SpecificInt(TyAllocSize))))
3515          if (Value *R = PtrToIntOrZero(P))
3516            return R;
3517      }
3518    }
3519  }
3520
3521  // Check to see if this is constant foldable.
3522  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3523    if (!isa<Constant>(Ops[i]))
3524      return nullptr;
3525
3526  return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3527                                        Ops.slice(1));
3528}
3529
3530Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout &DL,
3531                             const TargetLibraryInfo *TLI,
3532                             const DominatorTree *DT, AssumptionCache *AC,
3533                             const Instruction *CxtI) {
3534  return ::SimplifyGEPInst(
3535      cast<PointerType>(Ops[0]->getType()->getScalarType())->getElementType(),
3536      Ops, Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3537}
3538
3539/// Given operands for an InsertValueInst, see if we can fold the result.
3540/// If not, this returns null.
3541static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3542                                      ArrayRef<unsigned> Idxs, const Query &Q,
3543                                      unsigned) {
3544  if (Constant *CAgg = dyn_cast<Constant>(Agg))
3545    if (Constant *CVal = dyn_cast<Constant>(Val))
3546      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3547
3548  // insertvalue x, undef, n -> x
3549  if (match(Val, m_Undef()))
3550    return Agg;
3551
3552  // insertvalue x, (extractvalue y, n), n
3553  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3554    if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3555        EV->getIndices() == Idxs) {
3556      // insertvalue undef, (extractvalue y, n), n -> y
3557      if (match(Agg, m_Undef()))
3558        return EV->getAggregateOperand();
3559
3560      // insertvalue y, (extractvalue y, n), n -> y
3561      if (Agg == EV->getAggregateOperand())
3562        return Agg;
3563    }
3564
3565  return nullptr;
3566}
3567
3568Value *llvm::SimplifyInsertValueInst(
3569    Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3570    const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3571    const Instruction *CxtI) {
3572  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3573                                   RecursionLimit);
3574}
3575
3576/// Given operands for an ExtractValueInst, see if we can fold the result.
3577/// If not, this returns null.
3578static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3579                                       const Query &, unsigned) {
3580  if (auto *CAgg = dyn_cast<Constant>(Agg))
3581    return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3582
3583  // extractvalue x, (insertvalue y, elt, n), n -> elt
3584  unsigned NumIdxs = Idxs.size();
3585  for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3586       IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3587    ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3588    unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3589    unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3590    if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3591        Idxs.slice(0, NumCommonIdxs)) {
3592      if (NumIdxs == NumInsertValueIdxs)
3593        return IVI->getInsertedValueOperand();
3594      break;
3595    }
3596  }
3597
3598  return nullptr;
3599}
3600
3601Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3602                                      const DataLayout &DL,
3603                                      const TargetLibraryInfo *TLI,
3604                                      const DominatorTree *DT,
3605                                      AssumptionCache *AC,
3606                                      const Instruction *CxtI) {
3607  return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3608                                    RecursionLimit);
3609}
3610
3611/// Given operands for an ExtractElementInst, see if we can fold the result.
3612/// If not, this returns null.
3613static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3614                                         unsigned) {
3615  if (auto *CVec = dyn_cast<Constant>(Vec)) {
3616    if (auto *CIdx = dyn_cast<Constant>(Idx))
3617      return ConstantFoldExtractElementInstruction(CVec, CIdx);
3618
3619    // The index is not relevant if our vector is a splat.
3620    if (auto *Splat = CVec->getSplatValue())
3621      return Splat;
3622
3623    if (isa<UndefValue>(Vec))
3624      return UndefValue::get(Vec->getType()->getVectorElementType());
3625  }
3626
3627  // If extracting a specified index from the vector, see if we can recursively
3628  // find a previously computed scalar that was inserted into the vector.
3629  if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3630    if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3631      return Elt;
3632
3633  return nullptr;
3634}
3635
3636Value *llvm::SimplifyExtractElementInst(
3637    Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
3638    const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
3639  return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
3640                                      RecursionLimit);
3641}
3642
3643/// See if we can fold the given phi. If not, returns null.
3644static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
3645  // If all of the PHI's incoming values are the same then replace the PHI node
3646  // with the common value.
3647  Value *CommonValue = nullptr;
3648  bool HasUndefInput = false;
3649  for (Value *Incoming : PN->incoming_values()) {
3650    // If the incoming value is the phi node itself, it can safely be skipped.
3651    if (Incoming == PN) continue;
3652    if (isa<UndefValue>(Incoming)) {
3653      // Remember that we saw an undef value, but otherwise ignore them.
3654      HasUndefInput = true;
3655      continue;
3656    }
3657    if (CommonValue && Incoming != CommonValue)
3658      return nullptr;  // Not the same, bail out.
3659    CommonValue = Incoming;
3660  }
3661
3662  // If CommonValue is null then all of the incoming values were either undef or
3663  // equal to the phi node itself.
3664  if (!CommonValue)
3665    return UndefValue::get(PN->getType());
3666
3667  // If we have a PHI node like phi(X, undef, X), where X is defined by some
3668  // instruction, we cannot return X as the result of the PHI node unless it
3669  // dominates the PHI block.
3670  if (HasUndefInput)
3671    return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3672
3673  return CommonValue;
3674}
3675
3676static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
3677  if (Constant *C = dyn_cast<Constant>(Op))
3678    return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
3679
3680  return nullptr;
3681}
3682
3683Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL,
3684                               const TargetLibraryInfo *TLI,
3685                               const DominatorTree *DT, AssumptionCache *AC,
3686                               const Instruction *CxtI) {
3687  return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI),
3688                             RecursionLimit);
3689}
3690
3691//=== Helper functions for higher up the class hierarchy.
3692
3693/// Given operands for a BinaryOperator, see if we can fold the result.
3694/// If not, this returns null.
3695static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3696                            const Query &Q, unsigned MaxRecurse) {
3697  switch (Opcode) {
3698  case Instruction::Add:
3699    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3700                           Q, MaxRecurse);
3701  case Instruction::FAdd:
3702    return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3703
3704  case Instruction::Sub:
3705    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3706                           Q, MaxRecurse);
3707  case Instruction::FSub:
3708    return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3709
3710  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
3711  case Instruction::FMul:
3712    return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3713  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
3714  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
3715  case Instruction::FDiv:
3716      return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3717  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
3718  case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
3719  case Instruction::FRem:
3720      return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3721  case Instruction::Shl:
3722    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3723                           Q, MaxRecurse);
3724  case Instruction::LShr:
3725    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3726  case Instruction::AShr:
3727    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3728  case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
3729  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
3730  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
3731  default:
3732    if (Constant *CLHS = dyn_cast<Constant>(LHS))
3733      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
3734        Constant *COps[] = {CLHS, CRHS};
3735        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
3736                                        Q.TLI);
3737      }
3738
3739    // If the operation is associative, try some generic simplifications.
3740    if (Instruction::isAssociative(Opcode))
3741      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
3742        return V;
3743
3744    // If the operation is with the result of a select instruction check whether
3745    // operating on either branch of the select always yields the same value.
3746    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3747      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
3748        return V;
3749
3750    // If the operation is with the result of a phi instruction, check whether
3751    // operating on all incoming values of the phi always yields the same value.
3752    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3753      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
3754        return V;
3755
3756    return nullptr;
3757  }
3758}
3759
3760/// Given operands for a BinaryOperator, see if we can fold the result.
3761/// If not, this returns null.
3762/// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
3763/// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
3764static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3765                              const FastMathFlags &FMF, const Query &Q,
3766                              unsigned MaxRecurse) {
3767  switch (Opcode) {
3768  case Instruction::FAdd:
3769    return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
3770  case Instruction::FSub:
3771    return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
3772  case Instruction::FMul:
3773    return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
3774  default:
3775    return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
3776  }
3777}
3778
3779Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3780                           const DataLayout &DL, const TargetLibraryInfo *TLI,
3781                           const DominatorTree *DT, AssumptionCache *AC,
3782                           const Instruction *CxtI) {
3783  return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3784                         RecursionLimit);
3785}
3786
3787Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3788                             const FastMathFlags &FMF, const DataLayout &DL,
3789                             const TargetLibraryInfo *TLI,
3790                             const DominatorTree *DT, AssumptionCache *AC,
3791                             const Instruction *CxtI) {
3792  return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
3793                           RecursionLimit);
3794}
3795
3796/// Given operands for a CmpInst, see if we can fold the result.
3797static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3798                              const Query &Q, unsigned MaxRecurse) {
3799  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
3800    return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
3801  return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3802}
3803
3804Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3805                             const DataLayout &DL, const TargetLibraryInfo *TLI,
3806                             const DominatorTree *DT, AssumptionCache *AC,
3807                             const Instruction *CxtI) {
3808  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3809                           RecursionLimit);
3810}
3811
3812static bool IsIdempotent(Intrinsic::ID ID) {
3813  switch (ID) {
3814  default: return false;
3815
3816  // Unary idempotent: f(f(x)) = f(x)
3817  case Intrinsic::fabs:
3818  case Intrinsic::floor:
3819  case Intrinsic::ceil:
3820  case Intrinsic::trunc:
3821  case Intrinsic::rint:
3822  case Intrinsic::nearbyint:
3823  case Intrinsic::round:
3824    return true;
3825  }
3826}
3827
3828template <typename IterTy>
3829static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
3830                                const Query &Q, unsigned MaxRecurse) {
3831  Intrinsic::ID IID = F->getIntrinsicID();
3832  unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
3833  Type *ReturnType = F->getReturnType();
3834
3835  // Binary Ops
3836  if (NumOperands == 2) {
3837    Value *LHS = *ArgBegin;
3838    Value *RHS = *(ArgBegin + 1);
3839    if (IID == Intrinsic::usub_with_overflow ||
3840        IID == Intrinsic::ssub_with_overflow) {
3841      // X - X -> { 0, false }
3842      if (LHS == RHS)
3843        return Constant::getNullValue(ReturnType);
3844
3845      // X - undef -> undef
3846      // undef - X -> undef
3847      if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
3848        return UndefValue::get(ReturnType);
3849    }
3850
3851    if (IID == Intrinsic::uadd_with_overflow ||
3852        IID == Intrinsic::sadd_with_overflow) {
3853      // X + undef -> undef
3854      if (isa<UndefValue>(RHS))
3855        return UndefValue::get(ReturnType);
3856    }
3857
3858    if (IID == Intrinsic::umul_with_overflow ||
3859        IID == Intrinsic::smul_with_overflow) {
3860      // X * 0 -> { 0, false }
3861      if (match(RHS, m_Zero()))
3862        return Constant::getNullValue(ReturnType);
3863
3864      // X * undef -> { 0, false }
3865      if (match(RHS, m_Undef()))
3866        return Constant::getNullValue(ReturnType);
3867    }
3868  }
3869
3870  // Perform idempotent optimizations
3871  if (!IsIdempotent(IID))
3872    return nullptr;
3873
3874  // Unary Ops
3875  if (NumOperands == 1)
3876    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
3877      if (II->getIntrinsicID() == IID)
3878        return II;
3879
3880  return nullptr;
3881}
3882
3883template <typename IterTy>
3884static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
3885                           const Query &Q, unsigned MaxRecurse) {
3886  Type *Ty = V->getType();
3887  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
3888    Ty = PTy->getElementType();
3889  FunctionType *FTy = cast<FunctionType>(Ty);
3890
3891  // call undef -> undef
3892  if (isa<UndefValue>(V))
3893    return UndefValue::get(FTy->getReturnType());
3894
3895  Function *F = dyn_cast<Function>(V);
3896  if (!F)
3897    return nullptr;
3898
3899  if (F->isIntrinsic())
3900    if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
3901      return Ret;
3902
3903  if (!canConstantFoldCallTo(F))
3904    return nullptr;
3905
3906  SmallVector<Constant *, 4> ConstantArgs;
3907  ConstantArgs.reserve(ArgEnd - ArgBegin);
3908  for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
3909    Constant *C = dyn_cast<Constant>(*I);
3910    if (!C)
3911      return nullptr;
3912    ConstantArgs.push_back(C);
3913  }
3914
3915  return ConstantFoldCall(F, ConstantArgs, Q.TLI);
3916}
3917
3918Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
3919                          User::op_iterator ArgEnd, const DataLayout &DL,
3920                          const TargetLibraryInfo *TLI, const DominatorTree *DT,
3921                          AssumptionCache *AC, const Instruction *CxtI) {
3922  return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
3923                        RecursionLimit);
3924}
3925
3926Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
3927                          const DataLayout &DL, const TargetLibraryInfo *TLI,
3928                          const DominatorTree *DT, AssumptionCache *AC,
3929                          const Instruction *CxtI) {
3930  return ::SimplifyCall(V, Args.begin(), Args.end(),
3931                        Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3932}
3933
3934/// See if we can compute a simplified version of this instruction.
3935/// If not, this returns null.
3936Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
3937                                 const TargetLibraryInfo *TLI,
3938                                 const DominatorTree *DT, AssumptionCache *AC) {
3939  Value *Result;
3940
3941  switch (I->getOpcode()) {
3942  default:
3943    Result = ConstantFoldInstruction(I, DL, TLI);
3944    break;
3945  case Instruction::FAdd:
3946    Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
3947                              I->getFastMathFlags(), DL, TLI, DT, AC, I);
3948    break;
3949  case Instruction::Add:
3950    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
3951                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
3952                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
3953                             TLI, DT, AC, I);
3954    break;
3955  case Instruction::FSub:
3956    Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
3957                              I->getFastMathFlags(), DL, TLI, DT, AC, I);
3958    break;
3959  case Instruction::Sub:
3960    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
3961                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
3962                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
3963                             TLI, DT, AC, I);
3964    break;
3965  case Instruction::FMul:
3966    Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
3967                              I->getFastMathFlags(), DL, TLI, DT, AC, I);
3968    break;
3969  case Instruction::Mul:
3970    Result =
3971        SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
3972    break;
3973  case Instruction::SDiv:
3974    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
3975                              AC, I);
3976    break;
3977  case Instruction::UDiv:
3978    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
3979                              AC, I);
3980    break;
3981  case Instruction::FDiv:
3982    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
3983                              I->getFastMathFlags(), DL, TLI, DT, AC, I);
3984    break;
3985  case Instruction::SRem:
3986    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
3987                              AC, I);
3988    break;
3989  case Instruction::URem:
3990    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
3991                              AC, I);
3992    break;
3993  case Instruction::FRem:
3994    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
3995                              I->getFastMathFlags(), DL, TLI, DT, AC, I);
3996    break;
3997  case Instruction::Shl:
3998    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
3999                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
4000                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4001                             TLI, DT, AC, I);
4002    break;
4003  case Instruction::LShr:
4004    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4005                              cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4006                              AC, I);
4007    break;
4008  case Instruction::AShr:
4009    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4010                              cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4011                              AC, I);
4012    break;
4013  case Instruction::And:
4014    Result =
4015        SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4016    break;
4017  case Instruction::Or:
4018    Result =
4019        SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4020    break;
4021  case Instruction::Xor:
4022    Result =
4023        SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4024    break;
4025  case Instruction::ICmp:
4026    Result =
4027        SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
4028                         I->getOperand(1), DL, TLI, DT, AC, I);
4029    break;
4030  case Instruction::FCmp:
4031    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
4032                              I->getOperand(0), I->getOperand(1),
4033                              I->getFastMathFlags(), DL, TLI, DT, AC, I);
4034    break;
4035  case Instruction::Select:
4036    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4037                                I->getOperand(2), DL, TLI, DT, AC, I);
4038    break;
4039  case Instruction::GetElementPtr: {
4040    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4041    Result = SimplifyGEPInst(Ops, DL, TLI, DT, AC, I);
4042    break;
4043  }
4044  case Instruction::InsertValue: {
4045    InsertValueInst *IV = cast<InsertValueInst>(I);
4046    Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4047                                     IV->getInsertedValueOperand(),
4048                                     IV->getIndices(), DL, TLI, DT, AC, I);
4049    break;
4050  }
4051  case Instruction::ExtractValue: {
4052    auto *EVI = cast<ExtractValueInst>(I);
4053    Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4054                                      EVI->getIndices(), DL, TLI, DT, AC, I);
4055    break;
4056  }
4057  case Instruction::ExtractElement: {
4058    auto *EEI = cast<ExtractElementInst>(I);
4059    Result = SimplifyExtractElementInst(
4060        EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4061    break;
4062  }
4063  case Instruction::PHI:
4064    Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4065    break;
4066  case Instruction::Call: {
4067    CallSite CS(cast<CallInst>(I));
4068    Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4069                          TLI, DT, AC, I);
4070    break;
4071  }
4072  case Instruction::Trunc:
4073    Result =
4074        SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I);
4075    break;
4076  }
4077
4078  // In general, it is possible for computeKnownBits to determine all bits in a
4079  // value even when the operands are not all constants.
4080  if (!Result && I->getType()->isIntegerTy()) {
4081    unsigned BitWidth = I->getType()->getScalarSizeInBits();
4082    APInt KnownZero(BitWidth, 0);
4083    APInt KnownOne(BitWidth, 0);
4084    computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT);
4085    if ((KnownZero | KnownOne).isAllOnesValue())
4086      Result = ConstantInt::get(I->getContext(), KnownOne);
4087  }
4088
4089  /// If called on unreachable code, the above logic may report that the
4090  /// instruction simplified to itself.  Make life easier for users by
4091  /// detecting that case here, returning a safe value instead.
4092  return Result == I ? UndefValue::get(I->getType()) : Result;
4093}
4094
4095/// \brief Implementation of recursive simplification through an instructions
4096/// uses.
4097///
4098/// This is the common implementation of the recursive simplification routines.
4099/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4100/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4101/// instructions to process and attempt to simplify it using
4102/// InstructionSimplify.
4103///
4104/// This routine returns 'true' only when *it* simplifies something. The passed
4105/// in simplified value does not count toward this.
4106static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4107                                              const TargetLibraryInfo *TLI,
4108                                              const DominatorTree *DT,
4109                                              AssumptionCache *AC) {
4110  bool Simplified = false;
4111  SmallSetVector<Instruction *, 8> Worklist;
4112  const DataLayout &DL = I->getModule()->getDataLayout();
4113
4114  // If we have an explicit value to collapse to, do that round of the
4115  // simplification loop by hand initially.
4116  if (SimpleV) {
4117    for (User *U : I->users())
4118      if (U != I)
4119        Worklist.insert(cast<Instruction>(U));
4120
4121    // Replace the instruction with its simplified value.
4122    I->replaceAllUsesWith(SimpleV);
4123
4124    // Gracefully handle edge cases where the instruction is not wired into any
4125    // parent block.
4126    if (I->getParent())
4127      I->eraseFromParent();
4128  } else {
4129    Worklist.insert(I);
4130  }
4131
4132  // Note that we must test the size on each iteration, the worklist can grow.
4133  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4134    I = Worklist[Idx];
4135
4136    // See if this instruction simplifies.
4137    SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4138    if (!SimpleV)
4139      continue;
4140
4141    Simplified = true;
4142
4143    // Stash away all the uses of the old instruction so we can check them for
4144    // recursive simplifications after a RAUW. This is cheaper than checking all
4145    // uses of To on the recursive step in most cases.
4146    for (User *U : I->users())
4147      Worklist.insert(cast<Instruction>(U));
4148
4149    // Replace the instruction with its simplified value.
4150    I->replaceAllUsesWith(SimpleV);
4151
4152    // Gracefully handle edge cases where the instruction is not wired into any
4153    // parent block.
4154    if (I->getParent())
4155      I->eraseFromParent();
4156  }
4157  return Simplified;
4158}
4159
4160bool llvm::recursivelySimplifyInstruction(Instruction *I,
4161                                          const TargetLibraryInfo *TLI,
4162                                          const DominatorTree *DT,
4163                                          AssumptionCache *AC) {
4164  return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4165}
4166
4167bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4168                                         const TargetLibraryInfo *TLI,
4169                                         const DominatorTree *DT,
4170                                         AssumptionCache *AC) {
4171  assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4172  assert(SimpleV && "Must provide a simplified value.");
4173  return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4174}
4175