1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic IR ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// DataLayout information. These functions cannot go in IR due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/Analysis/TargetLibraryInfo.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/Config/config.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GetElementPtrTypeIterator.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include <cerrno>
38#include <cmath>
39
40#ifdef HAVE_FENV_H
41#include <fenv.h>
42#endif
43
44using namespace llvm;
45
46//===----------------------------------------------------------------------===//
47// Constant Folding internal helper functions
48//===----------------------------------------------------------------------===//
49
50/// Constant fold bitcast, symbolically evaluating it with DataLayout.
51/// This always returns a non-null constant, but it may be a
52/// ConstantExpr if unfoldable.
53static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
54  // Catch the obvious splat cases.
55  if (C->isNullValue() && !DestTy->isX86_MMXTy())
56    return Constant::getNullValue(DestTy);
57  if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
58      !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
59    return Constant::getAllOnesValue(DestTy);
60
61  // Handle a vector->integer cast.
62  if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
63    VectorType *VTy = dyn_cast<VectorType>(C->getType());
64    if (!VTy)
65      return ConstantExpr::getBitCast(C, DestTy);
66
67    unsigned NumSrcElts = VTy->getNumElements();
68    Type *SrcEltTy = VTy->getElementType();
69
70    // If the vector is a vector of floating point, convert it to vector of int
71    // to simplify things.
72    if (SrcEltTy->isFloatingPointTy()) {
73      unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
74      Type *SrcIVTy =
75        VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
76      // Ask IR to do the conversion now that #elts line up.
77      C = ConstantExpr::getBitCast(C, SrcIVTy);
78    }
79
80    ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
81    if (!CDV)
82      return ConstantExpr::getBitCast(C, DestTy);
83
84    // Now that we know that the input value is a vector of integers, just shift
85    // and insert them into our result.
86    unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy);
87    APInt Result(IT->getBitWidth(), 0);
88    for (unsigned i = 0; i != NumSrcElts; ++i) {
89      Result <<= BitShift;
90      if (DL.isLittleEndian())
91        Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
92      else
93        Result |= CDV->getElementAsInteger(i);
94    }
95
96    return ConstantInt::get(IT, Result);
97  }
98
99  // The code below only handles casts to vectors currently.
100  VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
101  if (!DestVTy)
102    return ConstantExpr::getBitCast(C, DestTy);
103
104  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
105  // vector so the code below can handle it uniformly.
106  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
107    Constant *Ops = C; // don't take the address of C!
108    return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
109  }
110
111  // If this is a bitcast from constant vector -> vector, fold it.
112  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
113    return ConstantExpr::getBitCast(C, DestTy);
114
115  // If the element types match, IR can fold it.
116  unsigned NumDstElt = DestVTy->getNumElements();
117  unsigned NumSrcElt = C->getType()->getVectorNumElements();
118  if (NumDstElt == NumSrcElt)
119    return ConstantExpr::getBitCast(C, DestTy);
120
121  Type *SrcEltTy = C->getType()->getVectorElementType();
122  Type *DstEltTy = DestVTy->getElementType();
123
124  // Otherwise, we're changing the number of elements in a vector, which
125  // requires endianness information to do the right thing.  For example,
126  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
127  // folds to (little endian):
128  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
129  // and to (big endian):
130  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
131
132  // First thing is first.  We only want to think about integer here, so if
133  // we have something in FP form, recast it as integer.
134  if (DstEltTy->isFloatingPointTy()) {
135    // Fold to an vector of integers with same size as our FP type.
136    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
137    Type *DestIVTy =
138      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
139    // Recursively handle this integer conversion, if possible.
140    C = FoldBitCast(C, DestIVTy, DL);
141
142    // Finally, IR can handle this now that #elts line up.
143    return ConstantExpr::getBitCast(C, DestTy);
144  }
145
146  // Okay, we know the destination is integer, if the input is FP, convert
147  // it to integer first.
148  if (SrcEltTy->isFloatingPointTy()) {
149    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
150    Type *SrcIVTy =
151      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
152    // Ask IR to do the conversion now that #elts line up.
153    C = ConstantExpr::getBitCast(C, SrcIVTy);
154    // If IR wasn't able to fold it, bail out.
155    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
156        !isa<ConstantDataVector>(C))
157      return C;
158  }
159
160  // Now we know that the input and output vectors are both integer vectors
161  // of the same size, and that their #elements is not the same.  Do the
162  // conversion here, which depends on whether the input or output has
163  // more elements.
164  bool isLittleEndian = DL.isLittleEndian();
165
166  SmallVector<Constant*, 32> Result;
167  if (NumDstElt < NumSrcElt) {
168    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
169    Constant *Zero = Constant::getNullValue(DstEltTy);
170    unsigned Ratio = NumSrcElt/NumDstElt;
171    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
172    unsigned SrcElt = 0;
173    for (unsigned i = 0; i != NumDstElt; ++i) {
174      // Build each element of the result.
175      Constant *Elt = Zero;
176      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
177      for (unsigned j = 0; j != Ratio; ++j) {
178        Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
179        if (!Src)  // Reject constantexpr elements.
180          return ConstantExpr::getBitCast(C, DestTy);
181
182        // Zero extend the element to the right size.
183        Src = ConstantExpr::getZExt(Src, Elt->getType());
184
185        // Shift it to the right place, depending on endianness.
186        Src = ConstantExpr::getShl(Src,
187                                   ConstantInt::get(Src->getType(), ShiftAmt));
188        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
189
190        // Mix it in.
191        Elt = ConstantExpr::getOr(Elt, Src);
192      }
193      Result.push_back(Elt);
194    }
195    return ConstantVector::get(Result);
196  }
197
198  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
199  unsigned Ratio = NumDstElt/NumSrcElt;
200  unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
201
202  // Loop over each source value, expanding into multiple results.
203  for (unsigned i = 0; i != NumSrcElt; ++i) {
204    Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
205    if (!Src)  // Reject constantexpr elements.
206      return ConstantExpr::getBitCast(C, DestTy);
207
208    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
209    for (unsigned j = 0; j != Ratio; ++j) {
210      // Shift the piece of the value into the right place, depending on
211      // endianness.
212      Constant *Elt = ConstantExpr::getLShr(Src,
213                                  ConstantInt::get(Src->getType(), ShiftAmt));
214      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
215
216      // Truncate the element to an integer with the same pointer size and
217      // convert the element back to a pointer using a inttoptr.
218      if (DstEltTy->isPointerTy()) {
219        IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
220        Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
221        Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
222        continue;
223      }
224
225      // Truncate and remember this piece.
226      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
227    }
228  }
229
230  return ConstantVector::get(Result);
231}
232
233
234/// If this constant is a constant offset from a global, return the global and
235/// the constant. Because of constantexprs, this function is recursive.
236static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
237                                       APInt &Offset, const DataLayout &DL) {
238  // Trivial case, constant is the global.
239  if ((GV = dyn_cast<GlobalValue>(C))) {
240    unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
241    Offset = APInt(BitWidth, 0);
242    return true;
243  }
244
245  // Otherwise, if this isn't a constant expr, bail out.
246  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
247  if (!CE) return false;
248
249  // Look through ptr->int and ptr->ptr casts.
250  if (CE->getOpcode() == Instruction::PtrToInt ||
251      CE->getOpcode() == Instruction::BitCast)
252    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
253
254  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
255  GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
256  if (!GEP)
257    return false;
258
259  unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
260  APInt TmpOffset(BitWidth, 0);
261
262  // If the base isn't a global+constant, we aren't either.
263  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
264    return false;
265
266  // Otherwise, add any offset that our operands provide.
267  if (!GEP->accumulateConstantOffset(DL, TmpOffset))
268    return false;
269
270  Offset = TmpOffset;
271  return true;
272}
273
274/// Recursive helper to read bits out of global. C is the constant being copied
275/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
276/// results into and BytesLeft is the number of bytes left in
277/// the CurPtr buffer. DL is the DataLayout.
278static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
279                               unsigned char *CurPtr, unsigned BytesLeft,
280                               const DataLayout &DL) {
281  assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
282         "Out of range access");
283
284  // If this element is zero or undefined, we can just return since *CurPtr is
285  // zero initialized.
286  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
287    return true;
288
289  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
290    if (CI->getBitWidth() > 64 ||
291        (CI->getBitWidth() & 7) != 0)
292      return false;
293
294    uint64_t Val = CI->getZExtValue();
295    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
296
297    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
298      int n = ByteOffset;
299      if (!DL.isLittleEndian())
300        n = IntBytes - n - 1;
301      CurPtr[i] = (unsigned char)(Val >> (n * 8));
302      ++ByteOffset;
303    }
304    return true;
305  }
306
307  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
308    if (CFP->getType()->isDoubleTy()) {
309      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
310      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
311    }
312    if (CFP->getType()->isFloatTy()){
313      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
314      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
315    }
316    if (CFP->getType()->isHalfTy()){
317      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
318      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
319    }
320    return false;
321  }
322
323  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
324    const StructLayout *SL = DL.getStructLayout(CS->getType());
325    unsigned Index = SL->getElementContainingOffset(ByteOffset);
326    uint64_t CurEltOffset = SL->getElementOffset(Index);
327    ByteOffset -= CurEltOffset;
328
329    while (1) {
330      // If the element access is to the element itself and not to tail padding,
331      // read the bytes from the element.
332      uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
333
334      if (ByteOffset < EltSize &&
335          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
336                              BytesLeft, DL))
337        return false;
338
339      ++Index;
340
341      // Check to see if we read from the last struct element, if so we're done.
342      if (Index == CS->getType()->getNumElements())
343        return true;
344
345      // If we read all of the bytes we needed from this element we're done.
346      uint64_t NextEltOffset = SL->getElementOffset(Index);
347
348      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
349        return true;
350
351      // Move to the next element of the struct.
352      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
353      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
354      ByteOffset = 0;
355      CurEltOffset = NextEltOffset;
356    }
357    // not reached.
358  }
359
360  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
361      isa<ConstantDataSequential>(C)) {
362    Type *EltTy = C->getType()->getSequentialElementType();
363    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
364    uint64_t Index = ByteOffset / EltSize;
365    uint64_t Offset = ByteOffset - Index * EltSize;
366    uint64_t NumElts;
367    if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
368      NumElts = AT->getNumElements();
369    else
370      NumElts = C->getType()->getVectorNumElements();
371
372    for (; Index != NumElts; ++Index) {
373      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
374                              BytesLeft, DL))
375        return false;
376
377      uint64_t BytesWritten = EltSize - Offset;
378      assert(BytesWritten <= EltSize && "Not indexing into this element?");
379      if (BytesWritten >= BytesLeft)
380        return true;
381
382      Offset = 0;
383      BytesLeft -= BytesWritten;
384      CurPtr += BytesWritten;
385    }
386    return true;
387  }
388
389  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
390    if (CE->getOpcode() == Instruction::IntToPtr &&
391        CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
392      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
393                                BytesLeft, DL);
394    }
395  }
396
397  // Otherwise, unknown initializer type.
398  return false;
399}
400
401static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
402                                                 const DataLayout &DL) {
403  PointerType *PTy = cast<PointerType>(C->getType());
404  Type *LoadTy = PTy->getElementType();
405  IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
406
407  // If this isn't an integer load we can't fold it directly.
408  if (!IntType) {
409    unsigned AS = PTy->getAddressSpace();
410
411    // If this is a float/double load, we can try folding it as an int32/64 load
412    // and then bitcast the result.  This can be useful for union cases.  Note
413    // that address spaces don't matter here since we're not going to result in
414    // an actual new load.
415    Type *MapTy;
416    if (LoadTy->isHalfTy())
417      MapTy = Type::getInt16PtrTy(C->getContext(), AS);
418    else if (LoadTy->isFloatTy())
419      MapTy = Type::getInt32PtrTy(C->getContext(), AS);
420    else if (LoadTy->isDoubleTy())
421      MapTy = Type::getInt64PtrTy(C->getContext(), AS);
422    else if (LoadTy->isVectorTy()) {
423      MapTy = PointerType::getIntNPtrTy(C->getContext(),
424                                        DL.getTypeAllocSizeInBits(LoadTy), AS);
425    } else
426      return nullptr;
427
428    C = FoldBitCast(C, MapTy, DL);
429    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL))
430      return FoldBitCast(Res, LoadTy, DL);
431    return nullptr;
432  }
433
434  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
435  if (BytesLoaded > 32 || BytesLoaded == 0)
436    return nullptr;
437
438  GlobalValue *GVal;
439  APInt Offset;
440  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL))
441    return nullptr;
442
443  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
444  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
445      !GV->getInitializer()->getType()->isSized())
446    return nullptr;
447
448  // If we're loading off the beginning of the global, some bytes may be valid,
449  // but we don't try to handle this.
450  if (Offset.isNegative())
451    return nullptr;
452
453  // If we're not accessing anything in this constant, the result is undefined.
454  if (Offset.getZExtValue() >=
455      DL.getTypeAllocSize(GV->getInitializer()->getType()))
456    return UndefValue::get(IntType);
457
458  unsigned char RawBytes[32] = {0};
459  if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
460                          BytesLoaded, DL))
461    return nullptr;
462
463  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
464  if (DL.isLittleEndian()) {
465    ResultVal = RawBytes[BytesLoaded - 1];
466    for (unsigned i = 1; i != BytesLoaded; ++i) {
467      ResultVal <<= 8;
468      ResultVal |= RawBytes[BytesLoaded - 1 - i];
469    }
470  } else {
471    ResultVal = RawBytes[0];
472    for (unsigned i = 1; i != BytesLoaded; ++i) {
473      ResultVal <<= 8;
474      ResultVal |= RawBytes[i];
475    }
476  }
477
478  return ConstantInt::get(IntType->getContext(), ResultVal);
479}
480
481static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
482                                                const DataLayout &DL) {
483  auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
484  if (!DestPtrTy)
485    return nullptr;
486  Type *DestTy = DestPtrTy->getElementType();
487
488  Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
489  if (!C)
490    return nullptr;
491
492  do {
493    Type *SrcTy = C->getType();
494
495    // If the type sizes are the same and a cast is legal, just directly
496    // cast the constant.
497    if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
498      Instruction::CastOps Cast = Instruction::BitCast;
499      // If we are going from a pointer to int or vice versa, we spell the cast
500      // differently.
501      if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
502        Cast = Instruction::IntToPtr;
503      else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
504        Cast = Instruction::PtrToInt;
505
506      if (CastInst::castIsValid(Cast, C, DestTy))
507        return ConstantExpr::getCast(Cast, C, DestTy);
508    }
509
510    // If this isn't an aggregate type, there is nothing we can do to drill down
511    // and find a bitcastable constant.
512    if (!SrcTy->isAggregateType())
513      return nullptr;
514
515    // We're simulating a load through a pointer that was bitcast to point to
516    // a different type, so we can try to walk down through the initial
517    // elements of an aggregate to see if some part of th e aggregate is
518    // castable to implement the "load" semantic model.
519    C = C->getAggregateElement(0u);
520  } while (C);
521
522  return nullptr;
523}
524
525/// Return the value that a load from C would produce if it is constant and
526/// determinable. If this is not determinable, return null.
527Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
528                                             const DataLayout &DL) {
529  // First, try the easy cases:
530  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
531    if (GV->isConstant() && GV->hasDefinitiveInitializer())
532      return GV->getInitializer();
533
534  if (auto *GA = dyn_cast<GlobalAlias>(C))
535    if (GA->getAliasee() && !GA->mayBeOverridden())
536      return ConstantFoldLoadFromConstPtr(GA->getAliasee(), DL);
537
538  // If the loaded value isn't a constant expr, we can't handle it.
539  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
540  if (!CE)
541    return nullptr;
542
543  if (CE->getOpcode() == Instruction::GetElementPtr) {
544    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
545      if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
546        if (Constant *V =
547             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
548          return V;
549      }
550    }
551  }
552
553  if (CE->getOpcode() == Instruction::BitCast)
554    if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL))
555      return LoadedC;
556
557  // Instead of loading constant c string, use corresponding integer value
558  // directly if string length is small enough.
559  StringRef Str;
560  if (getConstantStringInfo(CE, Str) && !Str.empty()) {
561    unsigned StrLen = Str.size();
562    Type *Ty = cast<PointerType>(CE->getType())->getElementType();
563    unsigned NumBits = Ty->getPrimitiveSizeInBits();
564    // Replace load with immediate integer if the result is an integer or fp
565    // value.
566    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
567        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
568      APInt StrVal(NumBits, 0);
569      APInt SingleChar(NumBits, 0);
570      if (DL.isLittleEndian()) {
571        for (signed i = StrLen-1; i >= 0; i--) {
572          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
573          StrVal = (StrVal << 8) | SingleChar;
574        }
575      } else {
576        for (unsigned i = 0; i < StrLen; i++) {
577          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
578          StrVal = (StrVal << 8) | SingleChar;
579        }
580        // Append NULL at the end.
581        SingleChar = 0;
582        StrVal = (StrVal << 8) | SingleChar;
583      }
584
585      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
586      if (Ty->isFloatingPointTy())
587        Res = ConstantExpr::getBitCast(Res, Ty);
588      return Res;
589    }
590  }
591
592  // If this load comes from anywhere in a constant global, and if the global
593  // is all undef or zero, we know what it loads.
594  if (GlobalVariable *GV =
595          dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
596    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
597      Type *ResTy = cast<PointerType>(C->getType())->getElementType();
598      if (GV->getInitializer()->isNullValue())
599        return Constant::getNullValue(ResTy);
600      if (isa<UndefValue>(GV->getInitializer()))
601        return UndefValue::get(ResTy);
602    }
603  }
604
605  // Try hard to fold loads from bitcasted strange and non-type-safe things.
606  return FoldReinterpretLoadFromConstPtr(CE, DL);
607}
608
609static Constant *ConstantFoldLoadInst(const LoadInst *LI,
610                                      const DataLayout &DL) {
611  if (LI->isVolatile()) return nullptr;
612
613  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
614    return ConstantFoldLoadFromConstPtr(C, DL);
615
616  return nullptr;
617}
618
619/// One of Op0/Op1 is a constant expression.
620/// Attempt to symbolically evaluate the result of a binary operator merging
621/// these together.  If target data info is available, it is provided as DL,
622/// otherwise DL is null.
623static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
624                                           Constant *Op1,
625                                           const DataLayout &DL) {
626  // SROA
627
628  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
629  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
630  // bits.
631
632  if (Opc == Instruction::And) {
633    unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
634    APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
635    APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
636    computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
637    computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
638    if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
639      // All the bits of Op0 that the 'and' could be masking are already zero.
640      return Op0;
641    }
642    if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
643      // All the bits of Op1 that the 'and' could be masking are already zero.
644      return Op1;
645    }
646
647    APInt KnownZero = KnownZero0 | KnownZero1;
648    APInt KnownOne = KnownOne0 & KnownOne1;
649    if ((KnownZero | KnownOne).isAllOnesValue()) {
650      return ConstantInt::get(Op0->getType(), KnownOne);
651    }
652  }
653
654  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
655  // constant.  This happens frequently when iterating over a global array.
656  if (Opc == Instruction::Sub) {
657    GlobalValue *GV1, *GV2;
658    APInt Offs1, Offs2;
659
660    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
661      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
662        unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
663
664        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
665        // PtrToInt may change the bitwidth so we have convert to the right size
666        // first.
667        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
668                                                Offs2.zextOrTrunc(OpSize));
669      }
670  }
671
672  return nullptr;
673}
674
675/// If array indices are not pointer-sized integers, explicitly cast them so
676/// that they aren't implicitly casted by the getelementptr.
677static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops,
678                                Type *ResultTy, const DataLayout &DL,
679                                const TargetLibraryInfo *TLI) {
680  Type *IntPtrTy = DL.getIntPtrType(ResultTy);
681
682  bool Any = false;
683  SmallVector<Constant*, 32> NewIdxs;
684  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
685    if ((i == 1 ||
686         !isa<StructType>(GetElementPtrInst::getIndexedType(
687             cast<PointerType>(Ops[0]->getType()->getScalarType())
688                 ->getElementType(),
689             Ops.slice(1, i - 1)))) &&
690        Ops[i]->getType() != IntPtrTy) {
691      Any = true;
692      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
693                                                                      true,
694                                                                      IntPtrTy,
695                                                                      true),
696                                              Ops[i], IntPtrTy));
697    } else
698      NewIdxs.push_back(Ops[i]);
699  }
700
701  if (!Any)
702    return nullptr;
703
704  Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ops[0], NewIdxs);
705  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
706    if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
707      C = Folded;
708  }
709
710  return C;
711}
712
713/// Strip the pointer casts, but preserve the address space information.
714static Constant* StripPtrCastKeepAS(Constant* Ptr) {
715  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
716  PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
717  Ptr = Ptr->stripPointerCasts();
718  PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
719
720  // Preserve the address space number of the pointer.
721  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
722    NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
723      OldPtrTy->getAddressSpace());
724    Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
725  }
726  return Ptr;
727}
728
729/// If we can symbolically evaluate the GEP constant expression, do so.
730static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops,
731                                         Type *ResultTy, const DataLayout &DL,
732                                         const TargetLibraryInfo *TLI) {
733  Constant *Ptr = Ops[0];
734  if (!Ptr->getType()->getPointerElementType()->isSized() ||
735      !Ptr->getType()->isPointerTy())
736    return nullptr;
737
738  Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
739  Type *ResultElementTy = ResultTy->getPointerElementType();
740
741  // If this is a constant expr gep that is effectively computing an
742  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
743  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
744    if (!isa<ConstantInt>(Ops[i])) {
745
746      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
747      // "inttoptr (sub (ptrtoint Ptr), V)"
748      if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
749        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
750        assert((!CE || CE->getType() == IntPtrTy) &&
751               "CastGEPIndices didn't canonicalize index types!");
752        if (CE && CE->getOpcode() == Instruction::Sub &&
753            CE->getOperand(0)->isNullValue()) {
754          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
755          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
756          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
757          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
758            Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
759          return Res;
760        }
761      }
762      return nullptr;
763    }
764
765  unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
766  APInt Offset =
767      APInt(BitWidth,
768            DL.getIndexedOffset(
769                Ptr->getType(),
770                makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
771  Ptr = StripPtrCastKeepAS(Ptr);
772
773  // If this is a GEP of a GEP, fold it all into a single GEP.
774  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
775    SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
776
777    // Do not try the incorporate the sub-GEP if some index is not a number.
778    bool AllConstantInt = true;
779    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
780      if (!isa<ConstantInt>(NestedOps[i])) {
781        AllConstantInt = false;
782        break;
783      }
784    if (!AllConstantInt)
785      break;
786
787    Ptr = cast<Constant>(GEP->getOperand(0));
788    Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps));
789    Ptr = StripPtrCastKeepAS(Ptr);
790  }
791
792  // If the base value for this address is a literal integer value, fold the
793  // getelementptr to the resulting integer value casted to the pointer type.
794  APInt BasePtr(BitWidth, 0);
795  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
796    if (CE->getOpcode() == Instruction::IntToPtr) {
797      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
798        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
799    }
800  }
801
802  if (Ptr->isNullValue() || BasePtr != 0) {
803    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
804    return ConstantExpr::getIntToPtr(C, ResultTy);
805  }
806
807  // Otherwise form a regular getelementptr. Recompute the indices so that
808  // we eliminate over-indexing of the notional static type array bounds.
809  // This makes it easy to determine if the getelementptr is "inbounds".
810  // Also, this helps GlobalOpt do SROA on GlobalVariables.
811  Type *Ty = Ptr->getType();
812  assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
813  SmallVector<Constant *, 32> NewIdxs;
814
815  do {
816    if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
817      if (ATy->isPointerTy()) {
818        // The only pointer indexing we'll do is on the first index of the GEP.
819        if (!NewIdxs.empty())
820          break;
821
822        // Only handle pointers to sized types, not pointers to functions.
823        if (!ATy->getElementType()->isSized())
824          return nullptr;
825      }
826
827      // Determine which element of the array the offset points into.
828      APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType()));
829      if (ElemSize == 0)
830        // The element size is 0. This may be [0 x Ty]*, so just use a zero
831        // index for this level and proceed to the next level to see if it can
832        // accommodate the offset.
833        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
834      else {
835        // The element size is non-zero divide the offset by the element
836        // size (rounding down), to compute the index at this level.
837        APInt NewIdx = Offset.udiv(ElemSize);
838        Offset -= NewIdx * ElemSize;
839        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
840      }
841      Ty = ATy->getElementType();
842    } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
843      // If we end up with an offset that isn't valid for this struct type, we
844      // can't re-form this GEP in a regular form, so bail out. The pointer
845      // operand likely went through casts that are necessary to make the GEP
846      // sensible.
847      const StructLayout &SL = *DL.getStructLayout(STy);
848      if (Offset.uge(SL.getSizeInBytes()))
849        break;
850
851      // Determine which field of the struct the offset points into. The
852      // getZExtValue is fine as we've already ensured that the offset is
853      // within the range representable by the StructLayout API.
854      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
855      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
856                                         ElIdx));
857      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
858      Ty = STy->getTypeAtIndex(ElIdx);
859    } else {
860      // We've reached some non-indexable type.
861      break;
862    }
863  } while (Ty != ResultElementTy);
864
865  // If we haven't used up the entire offset by descending the static
866  // type, then the offset is pointing into the middle of an indivisible
867  // member, so we can't simplify it.
868  if (Offset != 0)
869    return nullptr;
870
871  // Create a GEP.
872  Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ptr, NewIdxs);
873  assert(C->getType()->getPointerElementType() == Ty &&
874         "Computed GetElementPtr has unexpected type!");
875
876  // If we ended up indexing a member with a type that doesn't match
877  // the type of what the original indices indexed, add a cast.
878  if (Ty != ResultElementTy)
879    C = FoldBitCast(C, ResultTy, DL);
880
881  return C;
882}
883
884
885
886//===----------------------------------------------------------------------===//
887// Constant Folding public APIs
888//===----------------------------------------------------------------------===//
889
890/// Try to constant fold the specified instruction.
891/// If successful, the constant result is returned, if not, null is returned.
892/// Note that this fails if not all of the operands are constant.  Otherwise,
893/// this function can only fail when attempting to fold instructions like loads
894/// and stores, which have no constant expression form.
895Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
896                                        const TargetLibraryInfo *TLI) {
897  // Handle PHI nodes quickly here...
898  if (PHINode *PN = dyn_cast<PHINode>(I)) {
899    Constant *CommonValue = nullptr;
900
901    for (Value *Incoming : PN->incoming_values()) {
902      // If the incoming value is undef then skip it.  Note that while we could
903      // skip the value if it is equal to the phi node itself we choose not to
904      // because that would break the rule that constant folding only applies if
905      // all operands are constants.
906      if (isa<UndefValue>(Incoming))
907        continue;
908      // If the incoming value is not a constant, then give up.
909      Constant *C = dyn_cast<Constant>(Incoming);
910      if (!C)
911        return nullptr;
912      // Fold the PHI's operands.
913      if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
914        C = ConstantFoldConstantExpression(NewC, DL, TLI);
915      // If the incoming value is a different constant to
916      // the one we saw previously, then give up.
917      if (CommonValue && C != CommonValue)
918        return nullptr;
919      CommonValue = C;
920    }
921
922
923    // If we reach here, all incoming values are the same constant or undef.
924    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
925  }
926
927  // Scan the operand list, checking to see if they are all constants, if so,
928  // hand off to ConstantFoldInstOperands.
929  SmallVector<Constant*, 8> Ops;
930  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
931    Constant *Op = dyn_cast<Constant>(*i);
932    if (!Op)
933      return nullptr;  // All operands not constant!
934
935    // Fold the Instruction's operands.
936    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
937      Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
938
939    Ops.push_back(Op);
940  }
941
942  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
943    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
944                                           DL, TLI);
945
946  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
947    return ConstantFoldLoadInst(LI, DL);
948
949  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
950    return ConstantExpr::getInsertValue(
951                                cast<Constant>(IVI->getAggregateOperand()),
952                                cast<Constant>(IVI->getInsertedValueOperand()),
953                                IVI->getIndices());
954  }
955
956  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
957    return ConstantExpr::getExtractValue(
958                                    cast<Constant>(EVI->getAggregateOperand()),
959                                    EVI->getIndices());
960  }
961
962  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI);
963}
964
965static Constant *
966ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
967                                   const TargetLibraryInfo *TLI,
968                                   SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
969  SmallVector<Constant *, 8> Ops;
970  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
971       ++i) {
972    Constant *NewC = cast<Constant>(*i);
973    // Recursively fold the ConstantExpr's operands. If we have already folded
974    // a ConstantExpr, we don't have to process it again.
975    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
976      if (FoldedOps.insert(NewCE).second)
977        NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
978    }
979    Ops.push_back(NewC);
980  }
981
982  if (CE->isCompare())
983    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
984                                           DL, TLI);
985  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI);
986}
987
988/// Attempt to fold the constant expression
989/// using the specified DataLayout.  If successful, the constant result is
990/// result is returned, if not, null is returned.
991Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
992                                               const DataLayout &DL,
993                                               const TargetLibraryInfo *TLI) {
994  SmallPtrSet<ConstantExpr *, 4> FoldedOps;
995  return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
996}
997
998/// Attempt to constant fold an instruction with the
999/// specified opcode and operands.  If successful, the constant result is
1000/// returned, if not, null is returned.  Note that this function can fail when
1001/// attempting to fold instructions like loads and stores, which have no
1002/// constant expression form.
1003///
1004/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
1005/// information, due to only being passed an opcode and operands. Constant
1006/// folding using this function strips this information.
1007///
1008Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
1009                                         ArrayRef<Constant *> Ops,
1010                                         const DataLayout &DL,
1011                                         const TargetLibraryInfo *TLI) {
1012  // Handle easy binops first.
1013  if (Instruction::isBinaryOp(Opcode)) {
1014    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
1015      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL))
1016        return C;
1017    }
1018
1019    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
1020  }
1021
1022  switch (Opcode) {
1023  default: return nullptr;
1024  case Instruction::ICmp:
1025  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1026  case Instruction::Call:
1027    if (Function *F = dyn_cast<Function>(Ops.back()))
1028      if (canConstantFoldCallTo(F))
1029        return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
1030    return nullptr;
1031  case Instruction::PtrToInt:
1032    // If the input is a inttoptr, eliminate the pair.  This requires knowing
1033    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1034    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1035      if (CE->getOpcode() == Instruction::IntToPtr) {
1036        Constant *Input = CE->getOperand(0);
1037        unsigned InWidth = Input->getType()->getScalarSizeInBits();
1038        unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1039        if (PtrWidth < InWidth) {
1040          Constant *Mask =
1041            ConstantInt::get(CE->getContext(),
1042                             APInt::getLowBitsSet(InWidth, PtrWidth));
1043          Input = ConstantExpr::getAnd(Input, Mask);
1044        }
1045        // Do a zext or trunc to get to the dest size.
1046        return ConstantExpr::getIntegerCast(Input, DestTy, false);
1047      }
1048    }
1049    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1050  case Instruction::IntToPtr:
1051    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1052    // the int size is >= the ptr size and the address spaces are the same.
1053    // This requires knowing the width of a pointer, so it can't be done in
1054    // ConstantExpr::getCast.
1055    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1056      if (CE->getOpcode() == Instruction::PtrToInt) {
1057        Constant *SrcPtr = CE->getOperand(0);
1058        unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1059        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1060
1061        if (MidIntSize >= SrcPtrSize) {
1062          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1063          if (SrcAS == DestTy->getPointerAddressSpace())
1064            return FoldBitCast(CE->getOperand(0), DestTy, DL);
1065        }
1066      }
1067    }
1068
1069    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1070  case Instruction::Trunc:
1071  case Instruction::ZExt:
1072  case Instruction::SExt:
1073  case Instruction::FPTrunc:
1074  case Instruction::FPExt:
1075  case Instruction::UIToFP:
1076  case Instruction::SIToFP:
1077  case Instruction::FPToUI:
1078  case Instruction::FPToSI:
1079  case Instruction::AddrSpaceCast:
1080      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1081  case Instruction::BitCast:
1082    return FoldBitCast(Ops[0], DestTy, DL);
1083  case Instruction::Select:
1084    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1085  case Instruction::ExtractElement:
1086    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1087  case Instruction::InsertElement:
1088    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1089  case Instruction::ShuffleVector:
1090    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1091  case Instruction::GetElementPtr: {
1092    Type *SrcTy = nullptr;
1093    if (Constant *C = CastGEPIndices(SrcTy, Ops, DestTy, DL, TLI))
1094      return C;
1095    if (Constant *C = SymbolicallyEvaluateGEP(SrcTy, Ops, DestTy, DL, TLI))
1096      return C;
1097
1098    return ConstantExpr::getGetElementPtr(SrcTy, Ops[0], Ops.slice(1));
1099  }
1100  }
1101}
1102
1103/// Attempt to constant fold a compare
1104/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1105/// returns a constant expression of the specified operands.
1106Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1107                                                Constant *Ops0, Constant *Ops1,
1108                                                const DataLayout &DL,
1109                                                const TargetLibraryInfo *TLI) {
1110  // fold: icmp (inttoptr x), null         -> icmp x, 0
1111  // fold: icmp (ptrtoint x), 0            -> icmp x, null
1112  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1113  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1114  //
1115  // FIXME: The following comment is out of data and the DataLayout is here now.
1116  // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1117  // around to know if bit truncation is happening.
1118  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1119    if (Ops1->isNullValue()) {
1120      if (CE0->getOpcode() == Instruction::IntToPtr) {
1121        Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1122        // Convert the integer value to the right size to ensure we get the
1123        // proper extension or truncation.
1124        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1125                                                   IntPtrTy, false);
1126        Constant *Null = Constant::getNullValue(C->getType());
1127        return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1128      }
1129
1130      // Only do this transformation if the int is intptrty in size, otherwise
1131      // there is a truncation or extension that we aren't modeling.
1132      if (CE0->getOpcode() == Instruction::PtrToInt) {
1133        Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1134        if (CE0->getType() == IntPtrTy) {
1135          Constant *C = CE0->getOperand(0);
1136          Constant *Null = Constant::getNullValue(C->getType());
1137          return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1138        }
1139      }
1140    }
1141
1142    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1143      if (CE0->getOpcode() == CE1->getOpcode()) {
1144        if (CE0->getOpcode() == Instruction::IntToPtr) {
1145          Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1146
1147          // Convert the integer value to the right size to ensure we get the
1148          // proper extension or truncation.
1149          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1150                                                      IntPtrTy, false);
1151          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1152                                                      IntPtrTy, false);
1153          return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1154        }
1155
1156        // Only do this transformation if the int is intptrty in size, otherwise
1157        // there is a truncation or extension that we aren't modeling.
1158        if (CE0->getOpcode() == Instruction::PtrToInt) {
1159          Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1160          if (CE0->getType() == IntPtrTy &&
1161              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1162            return ConstantFoldCompareInstOperands(
1163                Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1164          }
1165        }
1166      }
1167    }
1168
1169    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1170    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1171    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1172        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1173      Constant *LHS = ConstantFoldCompareInstOperands(
1174          Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1175      Constant *RHS = ConstantFoldCompareInstOperands(
1176          Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1177      unsigned OpC =
1178        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1179      Constant *Ops[] = { LHS, RHS };
1180      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI);
1181    }
1182  }
1183
1184  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1185}
1186
1187
1188/// Given a constant and a getelementptr constantexpr, return the constant value
1189/// being addressed by the constant expression, or null if something is funny
1190/// and we can't decide.
1191Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1192                                                       ConstantExpr *CE) {
1193  if (!CE->getOperand(1)->isNullValue())
1194    return nullptr;  // Do not allow stepping over the value!
1195
1196  // Loop over all of the operands, tracking down which value we are
1197  // addressing.
1198  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1199    C = C->getAggregateElement(CE->getOperand(i));
1200    if (!C)
1201      return nullptr;
1202  }
1203  return C;
1204}
1205
1206/// Given a constant and getelementptr indices (with an *implied* zero pointer
1207/// index that is not in the list), return the constant value being addressed by
1208/// a virtual load, or null if something is funny and we can't decide.
1209Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1210                                                  ArrayRef<Constant*> Indices) {
1211  // Loop over all of the operands, tracking down which value we are
1212  // addressing.
1213  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1214    C = C->getAggregateElement(Indices[i]);
1215    if (!C)
1216      return nullptr;
1217  }
1218  return C;
1219}
1220
1221
1222//===----------------------------------------------------------------------===//
1223//  Constant Folding for Calls
1224//
1225
1226/// Return true if it's even possible to fold a call to the specified function.
1227bool llvm::canConstantFoldCallTo(const Function *F) {
1228  switch (F->getIntrinsicID()) {
1229  case Intrinsic::fabs:
1230  case Intrinsic::minnum:
1231  case Intrinsic::maxnum:
1232  case Intrinsic::log:
1233  case Intrinsic::log2:
1234  case Intrinsic::log10:
1235  case Intrinsic::exp:
1236  case Intrinsic::exp2:
1237  case Intrinsic::floor:
1238  case Intrinsic::ceil:
1239  case Intrinsic::sqrt:
1240  case Intrinsic::sin:
1241  case Intrinsic::cos:
1242  case Intrinsic::trunc:
1243  case Intrinsic::rint:
1244  case Intrinsic::nearbyint:
1245  case Intrinsic::pow:
1246  case Intrinsic::powi:
1247  case Intrinsic::bswap:
1248  case Intrinsic::ctpop:
1249  case Intrinsic::ctlz:
1250  case Intrinsic::cttz:
1251  case Intrinsic::fma:
1252  case Intrinsic::fmuladd:
1253  case Intrinsic::copysign:
1254  case Intrinsic::round:
1255  case Intrinsic::sadd_with_overflow:
1256  case Intrinsic::uadd_with_overflow:
1257  case Intrinsic::ssub_with_overflow:
1258  case Intrinsic::usub_with_overflow:
1259  case Intrinsic::smul_with_overflow:
1260  case Intrinsic::umul_with_overflow:
1261  case Intrinsic::convert_from_fp16:
1262  case Intrinsic::convert_to_fp16:
1263  case Intrinsic::x86_sse_cvtss2si:
1264  case Intrinsic::x86_sse_cvtss2si64:
1265  case Intrinsic::x86_sse_cvttss2si:
1266  case Intrinsic::x86_sse_cvttss2si64:
1267  case Intrinsic::x86_sse2_cvtsd2si:
1268  case Intrinsic::x86_sse2_cvtsd2si64:
1269  case Intrinsic::x86_sse2_cvttsd2si:
1270  case Intrinsic::x86_sse2_cvttsd2si64:
1271    return true;
1272  default:
1273    return false;
1274  case 0: break;
1275  }
1276
1277  if (!F->hasName())
1278    return false;
1279  StringRef Name = F->getName();
1280
1281  // In these cases, the check of the length is required.  We don't want to
1282  // return true for a name like "cos\0blah" which strcmp would return equal to
1283  // "cos", but has length 8.
1284  switch (Name[0]) {
1285  default:
1286    return false;
1287  case 'a':
1288    return Name == "acos" || Name == "asin" || Name == "atan" ||
1289           Name == "atan2" || Name == "acosf" || Name == "asinf" ||
1290           Name == "atanf" || Name == "atan2f";
1291  case 'c':
1292    return Name == "ceil" || Name == "cos" || Name == "cosh" ||
1293           Name == "ceilf" || Name == "cosf" || Name == "coshf";
1294  case 'e':
1295    return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
1296  case 'f':
1297    return Name == "fabs" || Name == "floor" || Name == "fmod" ||
1298           Name == "fabsf" || Name == "floorf" || Name == "fmodf";
1299  case 'l':
1300    return Name == "log" || Name == "log10" || Name == "logf" ||
1301           Name == "log10f";
1302  case 'p':
1303    return Name == "pow" || Name == "powf";
1304  case 's':
1305    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1306           Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
1307  case 't':
1308    return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
1309  }
1310}
1311
1312static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1313  if (Ty->isHalfTy()) {
1314    APFloat APF(V);
1315    bool unused;
1316    APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1317    return ConstantFP::get(Ty->getContext(), APF);
1318  }
1319  if (Ty->isFloatTy())
1320    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1321  if (Ty->isDoubleTy())
1322    return ConstantFP::get(Ty->getContext(), APFloat(V));
1323  llvm_unreachable("Can only constant fold half/float/double");
1324
1325}
1326
1327namespace {
1328/// Clear the floating-point exception state.
1329static inline void llvm_fenv_clearexcept() {
1330#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1331  feclearexcept(FE_ALL_EXCEPT);
1332#endif
1333  errno = 0;
1334}
1335
1336/// Test if a floating-point exception was raised.
1337static inline bool llvm_fenv_testexcept() {
1338  int errno_val = errno;
1339  if (errno_val == ERANGE || errno_val == EDOM)
1340    return true;
1341#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1342  if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1343    return true;
1344#endif
1345  return false;
1346}
1347} // End namespace
1348
1349static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1350                                Type *Ty) {
1351  llvm_fenv_clearexcept();
1352  V = NativeFP(V);
1353  if (llvm_fenv_testexcept()) {
1354    llvm_fenv_clearexcept();
1355    return nullptr;
1356  }
1357
1358  return GetConstantFoldFPValue(V, Ty);
1359}
1360
1361static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1362                                      double V, double W, Type *Ty) {
1363  llvm_fenv_clearexcept();
1364  V = NativeFP(V, W);
1365  if (llvm_fenv_testexcept()) {
1366    llvm_fenv_clearexcept();
1367    return nullptr;
1368  }
1369
1370  return GetConstantFoldFPValue(V, Ty);
1371}
1372
1373/// Attempt to fold an SSE floating point to integer conversion of a constant
1374/// floating point. If roundTowardZero is false, the default IEEE rounding is
1375/// used (toward nearest, ties to even). This matches the behavior of the
1376/// non-truncating SSE instructions in the default rounding mode. The desired
1377/// integer type Ty is used to select how many bits are available for the
1378/// result. Returns null if the conversion cannot be performed, otherwise
1379/// returns the Constant value resulting from the conversion.
1380static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1381                                          bool roundTowardZero, Type *Ty) {
1382  // All of these conversion intrinsics form an integer of at most 64bits.
1383  unsigned ResultWidth = Ty->getIntegerBitWidth();
1384  assert(ResultWidth <= 64 &&
1385         "Can only constant fold conversions to 64 and 32 bit ints");
1386
1387  uint64_t UIntVal;
1388  bool isExact = false;
1389  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1390                                              : APFloat::rmNearestTiesToEven;
1391  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1392                                                  /*isSigned=*/true, mode,
1393                                                  &isExact);
1394  if (status != APFloat::opOK && status != APFloat::opInexact)
1395    return nullptr;
1396  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1397}
1398
1399static double getValueAsDouble(ConstantFP *Op) {
1400  Type *Ty = Op->getType();
1401
1402  if (Ty->isFloatTy())
1403    return Op->getValueAPF().convertToFloat();
1404
1405  if (Ty->isDoubleTy())
1406    return Op->getValueAPF().convertToDouble();
1407
1408  bool unused;
1409  APFloat APF = Op->getValueAPF();
1410  APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1411  return APF.convertToDouble();
1412}
1413
1414static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
1415                                        Type *Ty, ArrayRef<Constant *> Operands,
1416                                        const TargetLibraryInfo *TLI) {
1417  if (Operands.size() == 1) {
1418    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1419      if (IntrinsicID == Intrinsic::convert_to_fp16) {
1420        APFloat Val(Op->getValueAPF());
1421
1422        bool lost = false;
1423        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1424
1425        return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1426      }
1427
1428      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1429        return nullptr;
1430
1431      if (IntrinsicID == Intrinsic::round) {
1432        APFloat V = Op->getValueAPF();
1433        V.roundToIntegral(APFloat::rmNearestTiesToAway);
1434        return ConstantFP::get(Ty->getContext(), V);
1435      }
1436
1437      if (IntrinsicID == Intrinsic::floor) {
1438        APFloat V = Op->getValueAPF();
1439        V.roundToIntegral(APFloat::rmTowardNegative);
1440        return ConstantFP::get(Ty->getContext(), V);
1441      }
1442
1443      if (IntrinsicID == Intrinsic::ceil) {
1444        APFloat V = Op->getValueAPF();
1445        V.roundToIntegral(APFloat::rmTowardPositive);
1446        return ConstantFP::get(Ty->getContext(), V);
1447      }
1448
1449      if (IntrinsicID == Intrinsic::trunc) {
1450        APFloat V = Op->getValueAPF();
1451        V.roundToIntegral(APFloat::rmTowardZero);
1452        return ConstantFP::get(Ty->getContext(), V);
1453      }
1454
1455      if (IntrinsicID == Intrinsic::rint) {
1456        APFloat V = Op->getValueAPF();
1457        V.roundToIntegral(APFloat::rmNearestTiesToEven);
1458        return ConstantFP::get(Ty->getContext(), V);
1459      }
1460
1461      if (IntrinsicID == Intrinsic::nearbyint) {
1462        APFloat V = Op->getValueAPF();
1463        V.roundToIntegral(APFloat::rmNearestTiesToEven);
1464        return ConstantFP::get(Ty->getContext(), V);
1465      }
1466
1467      /// We only fold functions with finite arguments. Folding NaN and inf is
1468      /// likely to be aborted with an exception anyway, and some host libms
1469      /// have known errors raising exceptions.
1470      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1471        return nullptr;
1472
1473      /// Currently APFloat versions of these functions do not exist, so we use
1474      /// the host native double versions.  Float versions are not called
1475      /// directly but for all these it is true (float)(f((double)arg)) ==
1476      /// f(arg).  Long double not supported yet.
1477      double V = getValueAsDouble(Op);
1478
1479      switch (IntrinsicID) {
1480        default: break;
1481        case Intrinsic::fabs:
1482          return ConstantFoldFP(fabs, V, Ty);
1483        case Intrinsic::log2:
1484          return ConstantFoldFP(Log2, V, Ty);
1485        case Intrinsic::log:
1486          return ConstantFoldFP(log, V, Ty);
1487        case Intrinsic::log10:
1488          return ConstantFoldFP(log10, V, Ty);
1489        case Intrinsic::exp:
1490          return ConstantFoldFP(exp, V, Ty);
1491        case Intrinsic::exp2:
1492          return ConstantFoldFP(exp2, V, Ty);
1493        case Intrinsic::sin:
1494          return ConstantFoldFP(sin, V, Ty);
1495        case Intrinsic::cos:
1496          return ConstantFoldFP(cos, V, Ty);
1497      }
1498
1499      if (!TLI)
1500        return nullptr;
1501
1502      switch (Name[0]) {
1503      case 'a':
1504        if ((Name == "acos" && TLI->has(LibFunc::acos)) ||
1505            (Name == "acosf" && TLI->has(LibFunc::acosf)))
1506          return ConstantFoldFP(acos, V, Ty);
1507        else if ((Name == "asin" && TLI->has(LibFunc::asin)) ||
1508                 (Name == "asinf" && TLI->has(LibFunc::asinf)))
1509          return ConstantFoldFP(asin, V, Ty);
1510        else if ((Name == "atan" && TLI->has(LibFunc::atan)) ||
1511                 (Name == "atanf" && TLI->has(LibFunc::atanf)))
1512          return ConstantFoldFP(atan, V, Ty);
1513        break;
1514      case 'c':
1515        if ((Name == "ceil" && TLI->has(LibFunc::ceil)) ||
1516            (Name == "ceilf" && TLI->has(LibFunc::ceilf)))
1517          return ConstantFoldFP(ceil, V, Ty);
1518        else if ((Name == "cos" && TLI->has(LibFunc::cos)) ||
1519                 (Name == "cosf" && TLI->has(LibFunc::cosf)))
1520          return ConstantFoldFP(cos, V, Ty);
1521        else if ((Name == "cosh" && TLI->has(LibFunc::cosh)) ||
1522                 (Name == "coshf" && TLI->has(LibFunc::coshf)))
1523          return ConstantFoldFP(cosh, V, Ty);
1524        break;
1525      case 'e':
1526        if ((Name == "exp" && TLI->has(LibFunc::exp)) ||
1527            (Name == "expf" && TLI->has(LibFunc::expf)))
1528          return ConstantFoldFP(exp, V, Ty);
1529        if ((Name == "exp2" && TLI->has(LibFunc::exp2)) ||
1530            (Name == "exp2f" && TLI->has(LibFunc::exp2f)))
1531          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1532          // C99 library.
1533          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1534        break;
1535      case 'f':
1536        if ((Name == "fabs" && TLI->has(LibFunc::fabs)) ||
1537            (Name == "fabsf" && TLI->has(LibFunc::fabsf)))
1538          return ConstantFoldFP(fabs, V, Ty);
1539        else if ((Name == "floor" && TLI->has(LibFunc::floor)) ||
1540                 (Name == "floorf" && TLI->has(LibFunc::floorf)))
1541          return ConstantFoldFP(floor, V, Ty);
1542        break;
1543      case 'l':
1544        if ((Name == "log" && V > 0 && TLI->has(LibFunc::log)) ||
1545            (Name == "logf" && V > 0 && TLI->has(LibFunc::logf)))
1546          return ConstantFoldFP(log, V, Ty);
1547        else if ((Name == "log10" && V > 0 && TLI->has(LibFunc::log10)) ||
1548                 (Name == "log10f" && V > 0 && TLI->has(LibFunc::log10f)))
1549          return ConstantFoldFP(log10, V, Ty);
1550        else if (IntrinsicID == Intrinsic::sqrt &&
1551                 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1552          if (V >= -0.0)
1553            return ConstantFoldFP(sqrt, V, Ty);
1554          else {
1555            // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
1556            // all guarantee or favor returning NaN - the square root of a
1557            // negative number is not defined for the LLVM sqrt intrinsic.
1558            // This is because the intrinsic should only be emitted in place of
1559            // libm's sqrt function when using "no-nans-fp-math".
1560            return UndefValue::get(Ty);
1561          }
1562        }
1563        break;
1564      case 's':
1565        if ((Name == "sin" && TLI->has(LibFunc::sin)) ||
1566            (Name == "sinf" && TLI->has(LibFunc::sinf)))
1567          return ConstantFoldFP(sin, V, Ty);
1568        else if ((Name == "sinh" && TLI->has(LibFunc::sinh)) ||
1569                 (Name == "sinhf" && TLI->has(LibFunc::sinhf)))
1570          return ConstantFoldFP(sinh, V, Ty);
1571        else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt)) ||
1572                 (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf)))
1573          return ConstantFoldFP(sqrt, V, Ty);
1574        break;
1575      case 't':
1576        if ((Name == "tan" && TLI->has(LibFunc::tan)) ||
1577            (Name == "tanf" && TLI->has(LibFunc::tanf)))
1578          return ConstantFoldFP(tan, V, Ty);
1579        else if ((Name == "tanh" && TLI->has(LibFunc::tanh)) ||
1580                 (Name == "tanhf" && TLI->has(LibFunc::tanhf)))
1581          return ConstantFoldFP(tanh, V, Ty);
1582        break;
1583      default:
1584        break;
1585      }
1586      return nullptr;
1587    }
1588
1589    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1590      switch (IntrinsicID) {
1591      case Intrinsic::bswap:
1592        return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1593      case Intrinsic::ctpop:
1594        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1595      case Intrinsic::convert_from_fp16: {
1596        APFloat Val(APFloat::IEEEhalf, Op->getValue());
1597
1598        bool lost = false;
1599        APFloat::opStatus status = Val.convert(
1600            Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
1601
1602        // Conversion is always precise.
1603        (void)status;
1604        assert(status == APFloat::opOK && !lost &&
1605               "Precision lost during fp16 constfolding");
1606
1607        return ConstantFP::get(Ty->getContext(), Val);
1608      }
1609      default:
1610        return nullptr;
1611      }
1612    }
1613
1614    // Support ConstantVector in case we have an Undef in the top.
1615    if (isa<ConstantVector>(Operands[0]) ||
1616        isa<ConstantDataVector>(Operands[0])) {
1617      Constant *Op = cast<Constant>(Operands[0]);
1618      switch (IntrinsicID) {
1619      default: break;
1620      case Intrinsic::x86_sse_cvtss2si:
1621      case Intrinsic::x86_sse_cvtss2si64:
1622      case Intrinsic::x86_sse2_cvtsd2si:
1623      case Intrinsic::x86_sse2_cvtsd2si64:
1624        if (ConstantFP *FPOp =
1625              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1626          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1627                                          /*roundTowardZero=*/false, Ty);
1628      case Intrinsic::x86_sse_cvttss2si:
1629      case Intrinsic::x86_sse_cvttss2si64:
1630      case Intrinsic::x86_sse2_cvttsd2si:
1631      case Intrinsic::x86_sse2_cvttsd2si64:
1632        if (ConstantFP *FPOp =
1633              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1634          return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1635                                          /*roundTowardZero=*/true, Ty);
1636      }
1637    }
1638
1639    if (isa<UndefValue>(Operands[0])) {
1640      if (IntrinsicID == Intrinsic::bswap)
1641        return Operands[0];
1642      return nullptr;
1643    }
1644
1645    return nullptr;
1646  }
1647
1648  if (Operands.size() == 2) {
1649    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1650      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1651        return nullptr;
1652      double Op1V = getValueAsDouble(Op1);
1653
1654      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1655        if (Op2->getType() != Op1->getType())
1656          return nullptr;
1657
1658        double Op2V = getValueAsDouble(Op2);
1659        if (IntrinsicID == Intrinsic::pow) {
1660          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1661        }
1662        if (IntrinsicID == Intrinsic::copysign) {
1663          APFloat V1 = Op1->getValueAPF();
1664          APFloat V2 = Op2->getValueAPF();
1665          V1.copySign(V2);
1666          return ConstantFP::get(Ty->getContext(), V1);
1667        }
1668
1669        if (IntrinsicID == Intrinsic::minnum) {
1670          const APFloat &C1 = Op1->getValueAPF();
1671          const APFloat &C2 = Op2->getValueAPF();
1672          return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
1673        }
1674
1675        if (IntrinsicID == Intrinsic::maxnum) {
1676          const APFloat &C1 = Op1->getValueAPF();
1677          const APFloat &C2 = Op2->getValueAPF();
1678          return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
1679        }
1680
1681        if (!TLI)
1682          return nullptr;
1683        if ((Name == "pow" && TLI->has(LibFunc::pow)) ||
1684            (Name == "powf" && TLI->has(LibFunc::powf)))
1685          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1686        if ((Name == "fmod" && TLI->has(LibFunc::fmod)) ||
1687            (Name == "fmodf" && TLI->has(LibFunc::fmodf)))
1688          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1689        if ((Name == "atan2" && TLI->has(LibFunc::atan2)) ||
1690            (Name == "atan2f" && TLI->has(LibFunc::atan2f)))
1691          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1692      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1693        if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1694          return ConstantFP::get(Ty->getContext(),
1695                                 APFloat((float)std::pow((float)Op1V,
1696                                                 (int)Op2C->getZExtValue())));
1697        if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1698          return ConstantFP::get(Ty->getContext(),
1699                                 APFloat((float)std::pow((float)Op1V,
1700                                                 (int)Op2C->getZExtValue())));
1701        if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1702          return ConstantFP::get(Ty->getContext(),
1703                                 APFloat((double)std::pow((double)Op1V,
1704                                                   (int)Op2C->getZExtValue())));
1705      }
1706      return nullptr;
1707    }
1708
1709    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1710      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1711        switch (IntrinsicID) {
1712        default: break;
1713        case Intrinsic::sadd_with_overflow:
1714        case Intrinsic::uadd_with_overflow:
1715        case Intrinsic::ssub_with_overflow:
1716        case Intrinsic::usub_with_overflow:
1717        case Intrinsic::smul_with_overflow:
1718        case Intrinsic::umul_with_overflow: {
1719          APInt Res;
1720          bool Overflow;
1721          switch (IntrinsicID) {
1722          default: llvm_unreachable("Invalid case");
1723          case Intrinsic::sadd_with_overflow:
1724            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1725            break;
1726          case Intrinsic::uadd_with_overflow:
1727            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1728            break;
1729          case Intrinsic::ssub_with_overflow:
1730            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1731            break;
1732          case Intrinsic::usub_with_overflow:
1733            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1734            break;
1735          case Intrinsic::smul_with_overflow:
1736            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1737            break;
1738          case Intrinsic::umul_with_overflow:
1739            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1740            break;
1741          }
1742          Constant *Ops[] = {
1743            ConstantInt::get(Ty->getContext(), Res),
1744            ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1745          };
1746          return ConstantStruct::get(cast<StructType>(Ty), Ops);
1747        }
1748        case Intrinsic::cttz:
1749          if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1750            return UndefValue::get(Ty);
1751          return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1752        case Intrinsic::ctlz:
1753          if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1754            return UndefValue::get(Ty);
1755          return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1756        }
1757      }
1758
1759      return nullptr;
1760    }
1761    return nullptr;
1762  }
1763
1764  if (Operands.size() != 3)
1765    return nullptr;
1766
1767  if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1768    if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1769      if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1770        switch (IntrinsicID) {
1771        default: break;
1772        case Intrinsic::fma:
1773        case Intrinsic::fmuladd: {
1774          APFloat V = Op1->getValueAPF();
1775          APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1776                                                   Op3->getValueAPF(),
1777                                                   APFloat::rmNearestTiesToEven);
1778          if (s != APFloat::opInvalidOp)
1779            return ConstantFP::get(Ty->getContext(), V);
1780
1781          return nullptr;
1782        }
1783        }
1784      }
1785    }
1786  }
1787
1788  return nullptr;
1789}
1790
1791static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1792                                        VectorType *VTy,
1793                                        ArrayRef<Constant *> Operands,
1794                                        const TargetLibraryInfo *TLI) {
1795  SmallVector<Constant *, 4> Result(VTy->getNumElements());
1796  SmallVector<Constant *, 4> Lane(Operands.size());
1797  Type *Ty = VTy->getElementType();
1798
1799  for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1800    // Gather a column of constants.
1801    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1802      Constant *Agg = Operands[J]->getAggregateElement(I);
1803      if (!Agg)
1804        return nullptr;
1805
1806      Lane[J] = Agg;
1807    }
1808
1809    // Use the regular scalar folding to simplify this column.
1810    Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1811    if (!Folded)
1812      return nullptr;
1813    Result[I] = Folded;
1814  }
1815
1816  return ConstantVector::get(Result);
1817}
1818
1819/// Attempt to constant fold a call to the specified function
1820/// with the specified arguments, returning null if unsuccessful.
1821Constant *
1822llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1823                       const TargetLibraryInfo *TLI) {
1824  if (!F->hasName())
1825    return nullptr;
1826  StringRef Name = F->getName();
1827
1828  Type *Ty = F->getReturnType();
1829
1830  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1831    return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
1832
1833  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1834}
1835