BasicAliasAnalysis.cpp revision 223017
1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Analysis/CaptureTracking.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include <algorithm>
38using namespace llvm;
39
40//===----------------------------------------------------------------------===//
41// Useful predicates
42//===----------------------------------------------------------------------===//
43
44/// isKnownNonNull - Return true if we know that the specified value is never
45/// null.
46static bool isKnownNonNull(const Value *V) {
47  // Alloca never returns null, malloc might.
48  if (isa<AllocaInst>(V)) return true;
49
50  // A byval argument is never null.
51  if (const Argument *A = dyn_cast<Argument>(V))
52    return A->hasByValAttr();
53
54  // Global values are not null unless extern weak.
55  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
56    return !GV->hasExternalWeakLinkage();
57  return false;
58}
59
60/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
61/// object that never escapes from the function.
62static bool isNonEscapingLocalObject(const Value *V) {
63  // If this is a local allocation, check to see if it escapes.
64  if (isa<AllocaInst>(V) || isNoAliasCall(V))
65    // Set StoreCaptures to True so that we can assume in our callers that the
66    // pointer is not the result of a load instruction. Currently
67    // PointerMayBeCaptured doesn't have any special analysis for the
68    // StoreCaptures=false case; if it did, our callers could be refined to be
69    // more precise.
70    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
71
72  // If this is an argument that corresponds to a byval or noalias argument,
73  // then it has not escaped before entering the function.  Check if it escapes
74  // inside the function.
75  if (const Argument *A = dyn_cast<Argument>(V))
76    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
77      // Don't bother analyzing arguments already known not to escape.
78      if (A->hasNoCaptureAttr())
79        return true;
80      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81    }
82  return false;
83}
84
85/// isEscapeSource - Return true if the pointer is one which would have
86/// been considered an escape by isNonEscapingLocalObject.
87static bool isEscapeSource(const Value *V) {
88  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
89    return true;
90
91  // The load case works because isNonEscapingLocalObject considers all
92  // stores to be escapes (it passes true for the StoreCaptures argument
93  // to PointerMayBeCaptured).
94  if (isa<LoadInst>(V))
95    return true;
96
97  return false;
98}
99
100/// getObjectSize - Return the size of the object specified by V, or
101/// UnknownSize if unknown.
102static uint64_t getObjectSize(const Value *V, const TargetData &TD) {
103  const Type *AccessTy;
104  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
105    if (!GV->hasDefinitiveInitializer())
106      return AliasAnalysis::UnknownSize;
107    AccessTy = GV->getType()->getElementType();
108  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
109    if (!AI->isArrayAllocation())
110      AccessTy = AI->getType()->getElementType();
111    else
112      return AliasAnalysis::UnknownSize;
113  } else if (const CallInst* CI = extractMallocCall(V)) {
114    if (!isArrayMalloc(V, &TD))
115      // The size is the argument to the malloc call.
116      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
117        return C->getZExtValue();
118    return AliasAnalysis::UnknownSize;
119  } else if (const Argument *A = dyn_cast<Argument>(V)) {
120    if (A->hasByValAttr())
121      AccessTy = cast<PointerType>(A->getType())->getElementType();
122    else
123      return AliasAnalysis::UnknownSize;
124  } else {
125    return AliasAnalysis::UnknownSize;
126  }
127
128  if (AccessTy->isSized())
129    return TD.getTypeAllocSize(AccessTy);
130  return AliasAnalysis::UnknownSize;
131}
132
133/// isObjectSmallerThan - Return true if we can prove that the object specified
134/// by V is smaller than Size.
135static bool isObjectSmallerThan(const Value *V, uint64_t Size,
136                                const TargetData &TD) {
137  uint64_t ObjectSize = getObjectSize(V, TD);
138  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
139}
140
141/// isObjectSize - Return true if we can prove that the object specified
142/// by V has size Size.
143static bool isObjectSize(const Value *V, uint64_t Size,
144                         const TargetData &TD) {
145  uint64_t ObjectSize = getObjectSize(V, TD);
146  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
147}
148
149//===----------------------------------------------------------------------===//
150// GetElementPtr Instruction Decomposition and Analysis
151//===----------------------------------------------------------------------===//
152
153namespace {
154  enum ExtensionKind {
155    EK_NotExtended,
156    EK_SignExt,
157    EK_ZeroExt
158  };
159
160  struct VariableGEPIndex {
161    const Value *V;
162    ExtensionKind Extension;
163    int64_t Scale;
164  };
165}
166
167
168/// GetLinearExpression - Analyze the specified value as a linear expression:
169/// "A*V + B", where A and B are constant integers.  Return the scale and offset
170/// values as APInts and return V as a Value*, and return whether we looked
171/// through any sign or zero extends.  The incoming Value is known to have
172/// IntegerType and it may already be sign or zero extended.
173///
174/// Note that this looks through extends, so the high bits may not be
175/// represented in the result.
176static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
177                                  ExtensionKind &Extension,
178                                  const TargetData &TD, unsigned Depth) {
179  assert(V->getType()->isIntegerTy() && "Not an integer value");
180
181  // Limit our recursion depth.
182  if (Depth == 6) {
183    Scale = 1;
184    Offset = 0;
185    return V;
186  }
187
188  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
189    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
190      switch (BOp->getOpcode()) {
191      default: break;
192      case Instruction::Or:
193        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
194        // analyze it.
195        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
196          break;
197        // FALL THROUGH.
198      case Instruction::Add:
199        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
200                                TD, Depth+1);
201        Offset += RHSC->getValue();
202        return V;
203      case Instruction::Mul:
204        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
205                                TD, Depth+1);
206        Offset *= RHSC->getValue();
207        Scale *= RHSC->getValue();
208        return V;
209      case Instruction::Shl:
210        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
211                                TD, Depth+1);
212        Offset <<= RHSC->getValue().getLimitedValue();
213        Scale <<= RHSC->getValue().getLimitedValue();
214        return V;
215      }
216    }
217  }
218
219  // Since GEP indices are sign extended anyway, we don't care about the high
220  // bits of a sign or zero extended value - just scales and offsets.  The
221  // extensions have to be consistent though.
222  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
223      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
224    Value *CastOp = cast<CastInst>(V)->getOperand(0);
225    unsigned OldWidth = Scale.getBitWidth();
226    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
227    Scale = Scale.trunc(SmallWidth);
228    Offset = Offset.trunc(SmallWidth);
229    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
230
231    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
232                                        TD, Depth+1);
233    Scale = Scale.zext(OldWidth);
234    Offset = Offset.zext(OldWidth);
235
236    return Result;
237  }
238
239  Scale = 1;
240  Offset = 0;
241  return V;
242}
243
244/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
245/// into a base pointer with a constant offset and a number of scaled symbolic
246/// offsets.
247///
248/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
249/// the VarIndices vector) are Value*'s that are known to be scaled by the
250/// specified amount, but which may have other unrepresented high bits. As such,
251/// the gep cannot necessarily be reconstructed from its decomposed form.
252///
253/// When TargetData is around, this function is capable of analyzing everything
254/// that GetUnderlyingObject can look through.  When not, it just looks
255/// through pointer casts.
256///
257static const Value *
258DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
259                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
260                       const TargetData *TD) {
261  // Limit recursion depth to limit compile time in crazy cases.
262  unsigned MaxLookup = 6;
263
264  BaseOffs = 0;
265  do {
266    // See if this is a bitcast or GEP.
267    const Operator *Op = dyn_cast<Operator>(V);
268    if (Op == 0) {
269      // The only non-operator case we can handle are GlobalAliases.
270      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
271        if (!GA->mayBeOverridden()) {
272          V = GA->getAliasee();
273          continue;
274        }
275      }
276      return V;
277    }
278
279    if (Op->getOpcode() == Instruction::BitCast) {
280      V = Op->getOperand(0);
281      continue;
282    }
283
284    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
285    if (GEPOp == 0) {
286      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
287      // can come up with something. This matches what GetUnderlyingObject does.
288      if (const Instruction *I = dyn_cast<Instruction>(V))
289        // TODO: Get a DominatorTree and use it here.
290        if (const Value *Simplified =
291              SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
292          V = Simplified;
293          continue;
294        }
295
296      return V;
297    }
298
299    // Don't attempt to analyze GEPs over unsized objects.
300    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
301        ->getElementType()->isSized())
302      return V;
303
304    // If we are lacking TargetData information, we can't compute the offets of
305    // elements computed by GEPs.  However, we can handle bitcast equivalent
306    // GEPs.
307    if (TD == 0) {
308      if (!GEPOp->hasAllZeroIndices())
309        return V;
310      V = GEPOp->getOperand(0);
311      continue;
312    }
313
314    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
315    gep_type_iterator GTI = gep_type_begin(GEPOp);
316    for (User::const_op_iterator I = GEPOp->op_begin()+1,
317         E = GEPOp->op_end(); I != E; ++I) {
318      Value *Index = *I;
319      // Compute the (potentially symbolic) offset in bytes for this index.
320      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
321        // For a struct, add the member offset.
322        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
323        if (FieldNo == 0) continue;
324
325        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
326        continue;
327      }
328
329      // For an array/pointer, add the element offset, explicitly scaled.
330      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
331        if (CIdx->isZero()) continue;
332        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
333        continue;
334      }
335
336      uint64_t Scale = TD->getTypeAllocSize(*GTI);
337      ExtensionKind Extension = EK_NotExtended;
338
339      // If the integer type is smaller than the pointer size, it is implicitly
340      // sign extended to pointer size.
341      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
342      if (TD->getPointerSizeInBits() > Width)
343        Extension = EK_SignExt;
344
345      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
346      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
347      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
348                                  *TD, 0);
349
350      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
351      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
352      BaseOffs += IndexOffset.getSExtValue()*Scale;
353      Scale *= IndexScale.getSExtValue();
354
355
356      // If we already had an occurrence of this index variable, merge this
357      // scale into it.  For example, we want to handle:
358      //   A[x][x] -> x*16 + x*4 -> x*20
359      // This also ensures that 'x' only appears in the index list once.
360      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
361        if (VarIndices[i].V == Index &&
362            VarIndices[i].Extension == Extension) {
363          Scale += VarIndices[i].Scale;
364          VarIndices.erase(VarIndices.begin()+i);
365          break;
366        }
367      }
368
369      // Make sure that we have a scale that makes sense for this target's
370      // pointer size.
371      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
372        Scale <<= ShiftBits;
373        Scale = (int64_t)Scale >> ShiftBits;
374      }
375
376      if (Scale) {
377        VariableGEPIndex Entry = {Index, Extension, Scale};
378        VarIndices.push_back(Entry);
379      }
380    }
381
382    // Analyze the base pointer next.
383    V = GEPOp->getOperand(0);
384  } while (--MaxLookup);
385
386  // If the chain of expressions is too deep, just return early.
387  return V;
388}
389
390/// GetIndexDifference - Dest and Src are the variable indices from two
391/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
392/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
393/// difference between the two pointers.
394static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
395                               const SmallVectorImpl<VariableGEPIndex> &Src) {
396  if (Src.empty()) return;
397
398  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
399    const Value *V = Src[i].V;
400    ExtensionKind Extension = Src[i].Extension;
401    int64_t Scale = Src[i].Scale;
402
403    // Find V in Dest.  This is N^2, but pointer indices almost never have more
404    // than a few variable indexes.
405    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
406      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
407
408      // If we found it, subtract off Scale V's from the entry in Dest.  If it
409      // goes to zero, remove the entry.
410      if (Dest[j].Scale != Scale)
411        Dest[j].Scale -= Scale;
412      else
413        Dest.erase(Dest.begin()+j);
414      Scale = 0;
415      break;
416    }
417
418    // If we didn't consume this entry, add it to the end of the Dest list.
419    if (Scale) {
420      VariableGEPIndex Entry = { V, Extension, -Scale };
421      Dest.push_back(Entry);
422    }
423  }
424}
425
426//===----------------------------------------------------------------------===//
427// BasicAliasAnalysis Pass
428//===----------------------------------------------------------------------===//
429
430#ifndef NDEBUG
431static const Function *getParent(const Value *V) {
432  if (const Instruction *inst = dyn_cast<Instruction>(V))
433    return inst->getParent()->getParent();
434
435  if (const Argument *arg = dyn_cast<Argument>(V))
436    return arg->getParent();
437
438  return NULL;
439}
440
441static bool notDifferentParent(const Value *O1, const Value *O2) {
442
443  const Function *F1 = getParent(O1);
444  const Function *F2 = getParent(O2);
445
446  return !F1 || !F2 || F1 == F2;
447}
448#endif
449
450namespace {
451  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
452  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
453    static char ID; // Class identification, replacement for typeinfo
454    BasicAliasAnalysis() : ImmutablePass(ID),
455                           // AliasCache rarely has more than 1 or 2 elements,
456                           // so start it off fairly small so that clear()
457                           // doesn't have to tromp through 64 (the default)
458                           // elements on each alias query. This really wants
459                           // something like a SmallDenseMap.
460                           AliasCache(8) {
461      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
462    }
463
464    virtual void initializePass() {
465      InitializeAliasAnalysis(this);
466    }
467
468    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
469      AU.addRequired<AliasAnalysis>();
470    }
471
472    virtual AliasResult alias(const Location &LocA,
473                              const Location &LocB) {
474      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
475      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
476             "BasicAliasAnalysis doesn't support interprocedural queries.");
477      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
478                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
479      AliasCache.clear();
480      return Alias;
481    }
482
483    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
484                                       const Location &Loc);
485
486    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
487                                       ImmutableCallSite CS2) {
488      // The AliasAnalysis base class has some smarts, lets use them.
489      return AliasAnalysis::getModRefInfo(CS1, CS2);
490    }
491
492    /// pointsToConstantMemory - Chase pointers until we find a (constant
493    /// global) or not.
494    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
495
496    /// getModRefBehavior - Return the behavior when calling the given
497    /// call site.
498    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
499
500    /// getModRefBehavior - Return the behavior when calling the given function.
501    /// For use when the call site is not known.
502    virtual ModRefBehavior getModRefBehavior(const Function *F);
503
504    /// getAdjustedAnalysisPointer - This method is used when a pass implements
505    /// an analysis interface through multiple inheritance.  If needed, it
506    /// should override this to adjust the this pointer as needed for the
507    /// specified pass info.
508    virtual void *getAdjustedAnalysisPointer(const void *ID) {
509      if (ID == &AliasAnalysis::ID)
510        return (AliasAnalysis*)this;
511      return this;
512    }
513
514  private:
515    // AliasCache - Track alias queries to guard against recursion.
516    typedef std::pair<Location, Location> LocPair;
517    typedef DenseMap<LocPair, AliasResult> AliasCacheTy;
518    AliasCacheTy AliasCache;
519
520    // Visited - Track instructions visited by pointsToConstantMemory.
521    SmallPtrSet<const Value*, 16> Visited;
522
523    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
524    // instruction against another.
525    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
526                         const Value *V2, uint64_t V2Size,
527                         const MDNode *V2TBAAInfo,
528                         const Value *UnderlyingV1, const Value *UnderlyingV2);
529
530    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
531    // instruction against another.
532    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
533                         const MDNode *PNTBAAInfo,
534                         const Value *V2, uint64_t V2Size,
535                         const MDNode *V2TBAAInfo);
536
537    /// aliasSelect - Disambiguate a Select instruction against another value.
538    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
539                            const MDNode *SITBAAInfo,
540                            const Value *V2, uint64_t V2Size,
541                            const MDNode *V2TBAAInfo);
542
543    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
544                           const MDNode *V1TBAATag,
545                           const Value *V2, uint64_t V2Size,
546                           const MDNode *V2TBAATag);
547  };
548}  // End of anonymous namespace
549
550// Register this pass...
551char BasicAliasAnalysis::ID = 0;
552INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
553                   "Basic Alias Analysis (stateless AA impl)",
554                   false, true, false)
555
556ImmutablePass *llvm::createBasicAliasAnalysisPass() {
557  return new BasicAliasAnalysis();
558}
559
560/// pointsToConstantMemory - Returns whether the given pointer value
561/// points to memory that is local to the function, with global constants being
562/// considered local to all functions.
563bool
564BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
565  assert(Visited.empty() && "Visited must be cleared after use!");
566
567  unsigned MaxLookup = 8;
568  SmallVector<const Value *, 16> Worklist;
569  Worklist.push_back(Loc.Ptr);
570  do {
571    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
572    if (!Visited.insert(V)) {
573      Visited.clear();
574      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
575    }
576
577    // An alloca instruction defines local memory.
578    if (OrLocal && isa<AllocaInst>(V))
579      continue;
580
581    // A global constant counts as local memory for our purposes.
582    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
583      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
584      // global to be marked constant in some modules and non-constant in
585      // others.  GV may even be a declaration, not a definition.
586      if (!GV->isConstant()) {
587        Visited.clear();
588        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
589      }
590      continue;
591    }
592
593    // If both select values point to local memory, then so does the select.
594    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
595      Worklist.push_back(SI->getTrueValue());
596      Worklist.push_back(SI->getFalseValue());
597      continue;
598    }
599
600    // If all values incoming to a phi node point to local memory, then so does
601    // the phi.
602    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
603      // Don't bother inspecting phi nodes with many operands.
604      if (PN->getNumIncomingValues() > MaxLookup) {
605        Visited.clear();
606        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
607      }
608      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
609        Worklist.push_back(PN->getIncomingValue(i));
610      continue;
611    }
612
613    // Otherwise be conservative.
614    Visited.clear();
615    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
616
617  } while (!Worklist.empty() && --MaxLookup);
618
619  Visited.clear();
620  return Worklist.empty();
621}
622
623/// getModRefBehavior - Return the behavior when calling the given call site.
624AliasAnalysis::ModRefBehavior
625BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
626  if (CS.doesNotAccessMemory())
627    // Can't do better than this.
628    return DoesNotAccessMemory;
629
630  ModRefBehavior Min = UnknownModRefBehavior;
631
632  // If the callsite knows it only reads memory, don't return worse
633  // than that.
634  if (CS.onlyReadsMemory())
635    Min = OnlyReadsMemory;
636
637  // The AliasAnalysis base class has some smarts, lets use them.
638  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
639}
640
641/// getModRefBehavior - Return the behavior when calling the given function.
642/// For use when the call site is not known.
643AliasAnalysis::ModRefBehavior
644BasicAliasAnalysis::getModRefBehavior(const Function *F) {
645  // If the function declares it doesn't access memory, we can't do better.
646  if (F->doesNotAccessMemory())
647    return DoesNotAccessMemory;
648
649  // For intrinsics, we can check the table.
650  if (unsigned iid = F->getIntrinsicID()) {
651#define GET_INTRINSIC_MODREF_BEHAVIOR
652#include "llvm/Intrinsics.gen"
653#undef GET_INTRINSIC_MODREF_BEHAVIOR
654  }
655
656  ModRefBehavior Min = UnknownModRefBehavior;
657
658  // If the function declares it only reads memory, go with that.
659  if (F->onlyReadsMemory())
660    Min = OnlyReadsMemory;
661
662  // Otherwise be conservative.
663  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
664}
665
666/// getModRefInfo - Check to see if the specified callsite can clobber the
667/// specified memory object.  Since we only look at local properties of this
668/// function, we really can't say much about this query.  We do, however, use
669/// simple "address taken" analysis on local objects.
670AliasAnalysis::ModRefResult
671BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
672                                  const Location &Loc) {
673  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
674         "AliasAnalysis query involving multiple functions!");
675
676  const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
677
678  // If this is a tail call and Loc.Ptr points to a stack location, we know that
679  // the tail call cannot access or modify the local stack.
680  // We cannot exclude byval arguments here; these belong to the caller of
681  // the current function not to the current function, and a tail callee
682  // may reference them.
683  if (isa<AllocaInst>(Object))
684    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
685      if (CI->isTailCall())
686        return NoModRef;
687
688  // If the pointer is to a locally allocated object that does not escape,
689  // then the call can not mod/ref the pointer unless the call takes the pointer
690  // as an argument, and itself doesn't capture it.
691  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
692      isNonEscapingLocalObject(Object)) {
693    bool PassedAsArg = false;
694    unsigned ArgNo = 0;
695    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
696         CI != CE; ++CI, ++ArgNo) {
697      // Only look at the no-capture or byval pointer arguments.  If this
698      // pointer were passed to arguments that were neither of these, then it
699      // couldn't be no-capture.
700      if (!(*CI)->getType()->isPointerTy() ||
701          (!CS.paramHasAttr(ArgNo+1, Attribute::NoCapture) &&
702           !CS.paramHasAttr(ArgNo+1, Attribute::ByVal)))
703        continue;
704
705      // If this is a no-capture pointer argument, see if we can tell that it
706      // is impossible to alias the pointer we're checking.  If not, we have to
707      // assume that the call could touch the pointer, even though it doesn't
708      // escape.
709      if (!isNoAlias(Location(cast<Value>(CI)), Loc)) {
710        PassedAsArg = true;
711        break;
712      }
713    }
714
715    if (!PassedAsArg)
716      return NoModRef;
717  }
718
719  ModRefResult Min = ModRef;
720
721  // Finally, handle specific knowledge of intrinsics.
722  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
723  if (II != 0)
724    switch (II->getIntrinsicID()) {
725    default: break;
726    case Intrinsic::memcpy:
727    case Intrinsic::memmove: {
728      uint64_t Len = UnknownSize;
729      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
730        Len = LenCI->getZExtValue();
731      Value *Dest = II->getArgOperand(0);
732      Value *Src = II->getArgOperand(1);
733      // If it can't overlap the source dest, then it doesn't modref the loc.
734      if (isNoAlias(Location(Dest, Len), Loc)) {
735        if (isNoAlias(Location(Src, Len), Loc))
736          return NoModRef;
737        // If it can't overlap the dest, then worst case it reads the loc.
738        Min = Ref;
739      } else if (isNoAlias(Location(Src, Len), Loc)) {
740        // If it can't overlap the source, then worst case it mutates the loc.
741        Min = Mod;
742      }
743      break;
744    }
745    case Intrinsic::memset:
746      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
747      // will handle it for the variable length case.
748      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
749        uint64_t Len = LenCI->getZExtValue();
750        Value *Dest = II->getArgOperand(0);
751        if (isNoAlias(Location(Dest, Len), Loc))
752          return NoModRef;
753      }
754      // We know that memset doesn't load anything.
755      Min = Mod;
756      break;
757    case Intrinsic::atomic_cmp_swap:
758    case Intrinsic::atomic_swap:
759    case Intrinsic::atomic_load_add:
760    case Intrinsic::atomic_load_sub:
761    case Intrinsic::atomic_load_and:
762    case Intrinsic::atomic_load_nand:
763    case Intrinsic::atomic_load_or:
764    case Intrinsic::atomic_load_xor:
765    case Intrinsic::atomic_load_max:
766    case Intrinsic::atomic_load_min:
767    case Intrinsic::atomic_load_umax:
768    case Intrinsic::atomic_load_umin:
769      if (TD) {
770        Value *Op1 = II->getArgOperand(0);
771        uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType());
772        MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa);
773        if (isNoAlias(Location(Op1, Op1Size, Tag), Loc))
774          return NoModRef;
775      }
776      break;
777    case Intrinsic::lifetime_start:
778    case Intrinsic::lifetime_end:
779    case Intrinsic::invariant_start: {
780      uint64_t PtrSize =
781        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
782      if (isNoAlias(Location(II->getArgOperand(1),
783                             PtrSize,
784                             II->getMetadata(LLVMContext::MD_tbaa)),
785                    Loc))
786        return NoModRef;
787      break;
788    }
789    case Intrinsic::invariant_end: {
790      uint64_t PtrSize =
791        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
792      if (isNoAlias(Location(II->getArgOperand(2),
793                             PtrSize,
794                             II->getMetadata(LLVMContext::MD_tbaa)),
795                    Loc))
796        return NoModRef;
797      break;
798    }
799    case Intrinsic::arm_neon_vld1: {
800      // LLVM's vld1 and vst1 intrinsics currently only support a single
801      // vector register.
802      uint64_t Size =
803        TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
804      if (isNoAlias(Location(II->getArgOperand(0), Size,
805                             II->getMetadata(LLVMContext::MD_tbaa)),
806                    Loc))
807        return NoModRef;
808      break;
809    }
810    case Intrinsic::arm_neon_vst1: {
811      uint64_t Size =
812        TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
813      if (isNoAlias(Location(II->getArgOperand(0), Size,
814                             II->getMetadata(LLVMContext::MD_tbaa)),
815                    Loc))
816        return NoModRef;
817      break;
818    }
819    }
820
821  // The AliasAnalysis base class has some smarts, lets use them.
822  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
823}
824
825/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
826/// against another pointer.  We know that V1 is a GEP, but we don't know
827/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
828/// UnderlyingV2 is the same for V2.
829///
830AliasAnalysis::AliasResult
831BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
832                             const Value *V2, uint64_t V2Size,
833                             const MDNode *V2TBAAInfo,
834                             const Value *UnderlyingV1,
835                             const Value *UnderlyingV2) {
836  int64_t GEP1BaseOffset;
837  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
838
839  // If we have two gep instructions with must-alias'ing base pointers, figure
840  // out if the indexes to the GEP tell us anything about the derived pointer.
841  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
842    // Do the base pointers alias?
843    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
844                                       UnderlyingV2, UnknownSize, 0);
845
846    // If we get a No or May, then return it immediately, no amount of analysis
847    // will improve this situation.
848    if (BaseAlias != MustAlias) return BaseAlias;
849
850    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
851    // exactly, see if the computed offset from the common pointer tells us
852    // about the relation of the resulting pointer.
853    const Value *GEP1BasePtr =
854      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
855
856    int64_t GEP2BaseOffset;
857    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
858    const Value *GEP2BasePtr =
859      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
860
861    // If DecomposeGEPExpression isn't able to look all the way through the
862    // addressing operation, we must not have TD and this is too complex for us
863    // to handle without it.
864    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
865      assert(TD == 0 &&
866             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
867      return MayAlias;
868    }
869
870    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
871    // symbolic difference.
872    GEP1BaseOffset -= GEP2BaseOffset;
873    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
874
875  } else {
876    // Check to see if these two pointers are related by the getelementptr
877    // instruction.  If one pointer is a GEP with a non-zero index of the other
878    // pointer, we know they cannot alias.
879
880    // If both accesses are unknown size, we can't do anything useful here.
881    if (V1Size == UnknownSize && V2Size == UnknownSize)
882      return MayAlias;
883
884    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
885                               V2, V2Size, V2TBAAInfo);
886    if (R != MustAlias)
887      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
888      // If V2 is known not to alias GEP base pointer, then the two values
889      // cannot alias per GEP semantics: "A pointer value formed from a
890      // getelementptr instruction is associated with the addresses associated
891      // with the first operand of the getelementptr".
892      return R;
893
894    const Value *GEP1BasePtr =
895      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
896
897    // If DecomposeGEPExpression isn't able to look all the way through the
898    // addressing operation, we must not have TD and this is too complex for us
899    // to handle without it.
900    if (GEP1BasePtr != UnderlyingV1) {
901      assert(TD == 0 &&
902             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
903      return MayAlias;
904    }
905  }
906
907  // In the two GEP Case, if there is no difference in the offsets of the
908  // computed pointers, the resultant pointers are a must alias.  This
909  // hapens when we have two lexically identical GEP's (for example).
910  //
911  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
912  // must aliases the GEP, the end result is a must alias also.
913  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
914    return MustAlias;
915
916  // If there is a difference between the pointers, but the difference is
917  // less than the size of the associated memory object, then we know
918  // that the objects are partially overlapping.
919  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
920    if (GEP1BaseOffset >= 0 ?
921        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset < V2Size) :
922        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset < V1Size &&
923         GEP1BaseOffset != INT64_MIN))
924      return PartialAlias;
925  }
926
927  // If we have a known constant offset, see if this offset is larger than the
928  // access size being queried.  If so, and if no variable indices can remove
929  // pieces of this constant, then we know we have a no-alias.  For example,
930  //   &A[100] != &A.
931
932  // In order to handle cases like &A[100][i] where i is an out of range
933  // subscript, we have to ignore all constant offset pieces that are a multiple
934  // of a scaled index.  Do this by removing constant offsets that are a
935  // multiple of any of our variable indices.  This allows us to transform
936  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
937  // provides an offset of 4 bytes (assuming a <= 4 byte access).
938  for (unsigned i = 0, e = GEP1VariableIndices.size();
939       i != e && GEP1BaseOffset;++i)
940    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale)
941      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale;
942
943  // If our known offset is bigger than the access size, we know we don't have
944  // an alias.
945  if (GEP1BaseOffset) {
946    if (GEP1BaseOffset >= 0 ?
947        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) :
948        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size &&
949         GEP1BaseOffset != INT64_MIN))
950      return NoAlias;
951  }
952
953  // Statically, we can see that the base objects are the same, but the
954  // pointers have dynamic offsets which we can't resolve. And none of our
955  // little tricks above worked.
956  //
957  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
958  // practical effect of this is protecting TBAA in the case of dynamic
959  // indices into arrays of unions. An alternative way to solve this would
960  // be to have clang emit extra metadata for unions and/or union accesses.
961  // A union-specific solution wouldn't handle the problem for malloc'd
962  // memory however.
963  return PartialAlias;
964}
965
966static AliasAnalysis::AliasResult
967MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
968  // If the results agree, take it.
969  if (A == B)
970    return A;
971  // A mix of PartialAlias and MustAlias is PartialAlias.
972  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
973      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
974    return AliasAnalysis::PartialAlias;
975  // Otherwise, we don't know anything.
976  return AliasAnalysis::MayAlias;
977}
978
979/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
980/// instruction against another.
981AliasAnalysis::AliasResult
982BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
983                                const MDNode *SITBAAInfo,
984                                const Value *V2, uint64_t V2Size,
985                                const MDNode *V2TBAAInfo) {
986  // If the values are Selects with the same condition, we can do a more precise
987  // check: just check for aliases between the values on corresponding arms.
988  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
989    if (SI->getCondition() == SI2->getCondition()) {
990      AliasResult Alias =
991        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
992                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
993      if (Alias == MayAlias)
994        return MayAlias;
995      AliasResult ThisAlias =
996        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
997                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
998      return MergeAliasResults(ThisAlias, Alias);
999    }
1000
1001  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1002  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1003  AliasResult Alias =
1004    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1005  if (Alias == MayAlias)
1006    return MayAlias;
1007
1008  AliasResult ThisAlias =
1009    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1010  return MergeAliasResults(ThisAlias, Alias);
1011}
1012
1013// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1014// against another.
1015AliasAnalysis::AliasResult
1016BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1017                             const MDNode *PNTBAAInfo,
1018                             const Value *V2, uint64_t V2Size,
1019                             const MDNode *V2TBAAInfo) {
1020  // If the values are PHIs in the same block, we can do a more precise
1021  // as well as efficient check: just check for aliases between the values
1022  // on corresponding edges.
1023  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1024    if (PN2->getParent() == PN->getParent()) {
1025      AliasResult Alias =
1026        aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
1027                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
1028                   V2Size, V2TBAAInfo);
1029      if (Alias == MayAlias)
1030        return MayAlias;
1031      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1032        AliasResult ThisAlias =
1033          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1034                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1035                     V2Size, V2TBAAInfo);
1036        Alias = MergeAliasResults(ThisAlias, Alias);
1037        if (Alias == MayAlias)
1038          break;
1039      }
1040      return Alias;
1041    }
1042
1043  SmallPtrSet<Value*, 4> UniqueSrc;
1044  SmallVector<Value*, 4> V1Srcs;
1045  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1046    Value *PV1 = PN->getIncomingValue(i);
1047    if (isa<PHINode>(PV1))
1048      // If any of the source itself is a PHI, return MayAlias conservatively
1049      // to avoid compile time explosion. The worst possible case is if both
1050      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1051      // and 'n' are the number of PHI sources.
1052      return MayAlias;
1053    if (UniqueSrc.insert(PV1))
1054      V1Srcs.push_back(PV1);
1055  }
1056
1057  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1058                                 V1Srcs[0], PNSize, PNTBAAInfo);
1059  // Early exit if the check of the first PHI source against V2 is MayAlias.
1060  // Other results are not possible.
1061  if (Alias == MayAlias)
1062    return MayAlias;
1063
1064  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1065  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1066  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1067    Value *V = V1Srcs[i];
1068
1069    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1070                                       V, PNSize, PNTBAAInfo);
1071    Alias = MergeAliasResults(ThisAlias, Alias);
1072    if (Alias == MayAlias)
1073      break;
1074  }
1075
1076  return Alias;
1077}
1078
1079// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1080// such as array references.
1081//
1082AliasAnalysis::AliasResult
1083BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1084                               const MDNode *V1TBAAInfo,
1085                               const Value *V2, uint64_t V2Size,
1086                               const MDNode *V2TBAAInfo) {
1087  // If either of the memory references is empty, it doesn't matter what the
1088  // pointer values are.
1089  if (V1Size == 0 || V2Size == 0)
1090    return NoAlias;
1091
1092  // Strip off any casts if they exist.
1093  V1 = V1->stripPointerCasts();
1094  V2 = V2->stripPointerCasts();
1095
1096  // Are we checking for alias of the same value?
1097  if (V1 == V2) return MustAlias;
1098
1099  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1100    return NoAlias;  // Scalars cannot alias each other
1101
1102  // Figure out what objects these things are pointing to if we can.
1103  const Value *O1 = GetUnderlyingObject(V1, TD);
1104  const Value *O2 = GetUnderlyingObject(V2, TD);
1105
1106  // Null values in the default address space don't point to any object, so they
1107  // don't alias any other pointer.
1108  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1109    if (CPN->getType()->getAddressSpace() == 0)
1110      return NoAlias;
1111  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1112    if (CPN->getType()->getAddressSpace() == 0)
1113      return NoAlias;
1114
1115  if (O1 != O2) {
1116    // If V1/V2 point to two different objects we know that we have no alias.
1117    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1118      return NoAlias;
1119
1120    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1121    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1122        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1123      return NoAlias;
1124
1125    // Arguments can't alias with local allocations or noalias calls
1126    // in the same function.
1127    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
1128         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
1129      return NoAlias;
1130
1131    // Most objects can't alias null.
1132    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1133        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1134      return NoAlias;
1135
1136    // If one pointer is the result of a call/invoke or load and the other is a
1137    // non-escaping local object within the same function, then we know the
1138    // object couldn't escape to a point where the call could return it.
1139    //
1140    // Note that if the pointers are in different functions, there are a
1141    // variety of complications. A call with a nocapture argument may still
1142    // temporary store the nocapture argument's value in a temporary memory
1143    // location if that memory location doesn't escape. Or it may pass a
1144    // nocapture value to other functions as long as they don't capture it.
1145    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1146      return NoAlias;
1147    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1148      return NoAlias;
1149  }
1150
1151  // If the size of one access is larger than the entire object on the other
1152  // side, then we know such behavior is undefined and can assume no alias.
1153  if (TD)
1154    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
1155        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
1156      return NoAlias;
1157
1158  // Check the cache before climbing up use-def chains. This also terminates
1159  // otherwise infinitely recursive queries.
1160  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1161               Location(V2, V2Size, V2TBAAInfo));
1162  if (V1 > V2)
1163    std::swap(Locs.first, Locs.second);
1164  std::pair<AliasCacheTy::iterator, bool> Pair =
1165    AliasCache.insert(std::make_pair(Locs, MayAlias));
1166  if (!Pair.second)
1167    return Pair.first->second;
1168
1169  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1170  // GEP can't simplify, we don't even look at the PHI cases.
1171  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1172    std::swap(V1, V2);
1173    std::swap(V1Size, V2Size);
1174    std::swap(O1, O2);
1175  }
1176  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1177    AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
1178    if (Result != MayAlias) return AliasCache[Locs] = Result;
1179  }
1180
1181  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1182    std::swap(V1, V2);
1183    std::swap(V1Size, V2Size);
1184  }
1185  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1186    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1187                                  V2, V2Size, V2TBAAInfo);
1188    if (Result != MayAlias) return AliasCache[Locs] = Result;
1189  }
1190
1191  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1192    std::swap(V1, V2);
1193    std::swap(V1Size, V2Size);
1194  }
1195  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1196    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1197                                     V2, V2Size, V2TBAAInfo);
1198    if (Result != MayAlias) return AliasCache[Locs] = Result;
1199  }
1200
1201  // If both pointers are pointing into the same object and one of them
1202  // accesses is accessing the entire object, then the accesses must
1203  // overlap in some way.
1204  if (TD && O1 == O2)
1205    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) ||
1206        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD)))
1207      return AliasCache[Locs] = PartialAlias;
1208
1209  AliasResult Result =
1210    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1211                         Location(V2, V2Size, V2TBAAInfo));
1212  return AliasCache[Locs] = Result;
1213}
1214