1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/BasicAliasAnalysis.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/CFG.h"
21#include "llvm/Analysis/CaptureTracking.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Analysis/AssumptionCache.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/ErrorHandling.h"
39#include <algorithm>
40using namespace llvm;
41
42/// Enable analysis of recursive PHI nodes.
43static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
44                                          cl::init(false));
45
46/// SearchLimitReached / SearchTimes shows how often the limit of
47/// to decompose GEPs is reached. It will affect the precision
48/// of basic alias analysis.
49#define DEBUG_TYPE "basicaa"
50STATISTIC(SearchLimitReached, "Number of times the limit to "
51                              "decompose GEPs is reached");
52STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
53
54/// Cutoff after which to stop analysing a set of phi nodes potentially involved
55/// in a cycle. Because we are analysing 'through' phi nodes we need to be
56/// careful with value equivalence. We use reachability to make sure a value
57/// cannot be involved in a cycle.
58const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
59
60// The max limit of the search depth in DecomposeGEPExpression() and
61// GetUnderlyingObject(), both functions need to use the same search
62// depth otherwise the algorithm in aliasGEP will assert.
63static const unsigned MaxLookupSearchDepth = 6;
64
65//===----------------------------------------------------------------------===//
66// Useful predicates
67//===----------------------------------------------------------------------===//
68
69/// Returns true if the pointer is to a function-local object that never
70/// escapes from the function.
71static bool isNonEscapingLocalObject(const Value *V) {
72  // If this is a local allocation, check to see if it escapes.
73  if (isa<AllocaInst>(V) || isNoAliasCall(V))
74    // Set StoreCaptures to True so that we can assume in our callers that the
75    // pointer is not the result of a load instruction. Currently
76    // PointerMayBeCaptured doesn't have any special analysis for the
77    // StoreCaptures=false case; if it did, our callers could be refined to be
78    // more precise.
79    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
80
81  // If this is an argument that corresponds to a byval or noalias argument,
82  // then it has not escaped before entering the function.  Check if it escapes
83  // inside the function.
84  if (const Argument *A = dyn_cast<Argument>(V))
85    if (A->hasByValAttr() || A->hasNoAliasAttr())
86      // Note even if the argument is marked nocapture we still need to check
87      // for copies made inside the function. The nocapture attribute only
88      // specifies that there are no copies made that outlive the function.
89      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
90
91  return false;
92}
93
94/// Returns true if the pointer is one which would have been considered an
95/// escape by isNonEscapingLocalObject.
96static bool isEscapeSource(const Value *V) {
97  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
98    return true;
99
100  // The load case works because isNonEscapingLocalObject considers all
101  // stores to be escapes (it passes true for the StoreCaptures argument
102  // to PointerMayBeCaptured).
103  if (isa<LoadInst>(V))
104    return true;
105
106  return false;
107}
108
109/// Returns the size of the object specified by V, or UnknownSize if unknown.
110static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
111                              const TargetLibraryInfo &TLI,
112                              bool RoundToAlign = false) {
113  uint64_t Size;
114  if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
115    return Size;
116  return MemoryLocation::UnknownSize;
117}
118
119/// Returns true if we can prove that the object specified by V is smaller than
120/// Size.
121static bool isObjectSmallerThan(const Value *V, uint64_t Size,
122                                const DataLayout &DL,
123                                const TargetLibraryInfo &TLI) {
124  // Note that the meanings of the "object" are slightly different in the
125  // following contexts:
126  //    c1: llvm::getObjectSize()
127  //    c2: llvm.objectsize() intrinsic
128  //    c3: isObjectSmallerThan()
129  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
130  // refers to the "entire object".
131  //
132  //  Consider this example:
133  //     char *p = (char*)malloc(100)
134  //     char *q = p+80;
135  //
136  //  In the context of c1 and c2, the "object" pointed by q refers to the
137  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
138  //
139  //  However, in the context of c3, the "object" refers to the chunk of memory
140  // being allocated. So, the "object" has 100 bytes, and q points to the middle
141  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
142  // parameter, before the llvm::getObjectSize() is called to get the size of
143  // entire object, we should:
144  //    - either rewind the pointer q to the base-address of the object in
145  //      question (in this case rewind to p), or
146  //    - just give up. It is up to caller to make sure the pointer is pointing
147  //      to the base address the object.
148  //
149  // We go for 2nd option for simplicity.
150  if (!isIdentifiedObject(V))
151    return false;
152
153  // This function needs to use the aligned object size because we allow
154  // reads a bit past the end given sufficient alignment.
155  uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
156
157  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
158}
159
160/// Returns true if we can prove that the object specified by V has size Size.
161static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
162                         const TargetLibraryInfo &TLI) {
163  uint64_t ObjectSize = getObjectSize(V, DL, TLI);
164  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
165}
166
167//===----------------------------------------------------------------------===//
168// GetElementPtr Instruction Decomposition and Analysis
169//===----------------------------------------------------------------------===//
170
171/// Analyzes the specified value as a linear expression: "A*V + B", where A and
172/// B are constant integers.
173///
174/// Returns the scale and offset values as APInts and return V as a Value*, and
175/// return whether we looked through any sign or zero extends.  The incoming
176/// Value is known to have IntegerType and it may already be sign or zero
177/// extended.
178///
179/// Note that this looks through extends, so the high bits may not be
180/// represented in the result.
181/*static*/ const Value *BasicAAResult::GetLinearExpression(
182    const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
183    unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
184    AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
185  assert(V->getType()->isIntegerTy() && "Not an integer value");
186
187  // Limit our recursion depth.
188  if (Depth == 6) {
189    Scale = 1;
190    Offset = 0;
191    return V;
192  }
193
194  if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
195    // if it's a constant, just convert it to an offset and remove the variable.
196    // If we've been called recursively the Offset bit width will be greater
197    // than the constant's (the Offset's always as wide as the outermost call),
198    // so we'll zext here and process any extension in the isa<SExtInst> &
199    // isa<ZExtInst> cases below.
200    Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
201    assert(Scale == 0 && "Constant values don't have a scale");
202    return V;
203  }
204
205  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
206    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
207
208      // If we've been called recursively then Offset and Scale will be wider
209      // that the BOp operands. We'll always zext it here as we'll process sign
210      // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
211      APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
212
213      switch (BOp->getOpcode()) {
214      default:
215        // We don't understand this instruction, so we can't decompose it any
216        // further.
217        Scale = 1;
218        Offset = 0;
219        return V;
220      case Instruction::Or:
221        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
222        // analyze it.
223        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
224                               BOp, DT)) {
225          Scale = 1;
226          Offset = 0;
227          return V;
228        }
229      // FALL THROUGH.
230      case Instruction::Add:
231        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
232                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
233        Offset += RHS;
234        break;
235      case Instruction::Sub:
236        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
237                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
238        Offset -= RHS;
239        break;
240      case Instruction::Mul:
241        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
242                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
243        Offset *= RHS;
244        Scale *= RHS;
245        break;
246      case Instruction::Shl:
247        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
248                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
249        Offset <<= RHS.getLimitedValue();
250        Scale <<= RHS.getLimitedValue();
251        // the semantics of nsw and nuw for left shifts don't match those of
252        // multiplications, so we won't propagate them.
253        NSW = NUW = false;
254        return V;
255      }
256
257      if (isa<OverflowingBinaryOperator>(BOp)) {
258        NUW &= BOp->hasNoUnsignedWrap();
259        NSW &= BOp->hasNoSignedWrap();
260      }
261      return V;
262    }
263  }
264
265  // Since GEP indices are sign extended anyway, we don't care about the high
266  // bits of a sign or zero extended value - just scales and offsets.  The
267  // extensions have to be consistent though.
268  if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
269    Value *CastOp = cast<CastInst>(V)->getOperand(0);
270    unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
271    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
272    unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
273    const Value *Result =
274        GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
275                            Depth + 1, AC, DT, NSW, NUW);
276
277    // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
278    // by just incrementing the number of bits we've extended by.
279    unsigned ExtendedBy = NewWidth - SmallWidth;
280
281    if (isa<SExtInst>(V) && ZExtBits == 0) {
282      // sext(sext(%x, a), b) == sext(%x, a + b)
283
284      if (NSW) {
285        // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
286        // into sext(%x) + sext(c). We'll sext the Offset ourselves:
287        unsigned OldWidth = Offset.getBitWidth();
288        Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
289      } else {
290        // We may have signed-wrapped, so don't decompose sext(%x + c) into
291        // sext(%x) + sext(c)
292        Scale = 1;
293        Offset = 0;
294        Result = CastOp;
295        ZExtBits = OldZExtBits;
296        SExtBits = OldSExtBits;
297      }
298      SExtBits += ExtendedBy;
299    } else {
300      // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
301
302      if (!NUW) {
303        // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
304        // zext(%x) + zext(c)
305        Scale = 1;
306        Offset = 0;
307        Result = CastOp;
308        ZExtBits = OldZExtBits;
309        SExtBits = OldSExtBits;
310      }
311      ZExtBits += ExtendedBy;
312    }
313
314    return Result;
315  }
316
317  Scale = 1;
318  Offset = 0;
319  return V;
320}
321
322/// If V is a symbolic pointer expression, decompose it into a base pointer
323/// with a constant offset and a number of scaled symbolic offsets.
324///
325/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
326/// in the VarIndices vector) are Value*'s that are known to be scaled by the
327/// specified amount, but which may have other unrepresented high bits. As
328/// such, the gep cannot necessarily be reconstructed from its decomposed form.
329///
330/// When DataLayout is around, this function is capable of analyzing everything
331/// that GetUnderlyingObject can look through. To be able to do that
332/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
333/// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
334/// through pointer casts.
335/*static*/ const Value *BasicAAResult::DecomposeGEPExpression(
336    const Value *V, int64_t &BaseOffs,
337    SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
338    const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
339  // Limit recursion depth to limit compile time in crazy cases.
340  unsigned MaxLookup = MaxLookupSearchDepth;
341  MaxLookupReached = false;
342  SearchTimes++;
343
344  BaseOffs = 0;
345  do {
346    // See if this is a bitcast or GEP.
347    const Operator *Op = dyn_cast<Operator>(V);
348    if (!Op) {
349      // The only non-operator case we can handle are GlobalAliases.
350      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
351        if (!GA->mayBeOverridden()) {
352          V = GA->getAliasee();
353          continue;
354        }
355      }
356      return V;
357    }
358
359    if (Op->getOpcode() == Instruction::BitCast ||
360        Op->getOpcode() == Instruction::AddrSpaceCast) {
361      V = Op->getOperand(0);
362      continue;
363    }
364
365    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
366    if (!GEPOp) {
367      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
368      // can come up with something. This matches what GetUnderlyingObject does.
369      if (const Instruction *I = dyn_cast<Instruction>(V))
370        // TODO: Get a DominatorTree and AssumptionCache and use them here
371        // (these are both now available in this function, but this should be
372        // updated when GetUnderlyingObject is updated). TLI should be
373        // provided also.
374        if (const Value *Simplified =
375                SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
376          V = Simplified;
377          continue;
378        }
379
380      return V;
381    }
382
383    // Don't attempt to analyze GEPs over unsized objects.
384    if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
385      return V;
386
387    unsigned AS = GEPOp->getPointerAddressSpace();
388    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
389    gep_type_iterator GTI = gep_type_begin(GEPOp);
390    for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
391         I != E; ++I) {
392      const Value *Index = *I;
393      // Compute the (potentially symbolic) offset in bytes for this index.
394      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
395        // For a struct, add the member offset.
396        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
397        if (FieldNo == 0)
398          continue;
399
400        BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
401        continue;
402      }
403
404      // For an array/pointer, add the element offset, explicitly scaled.
405      if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
406        if (CIdx->isZero())
407          continue;
408        BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
409        continue;
410      }
411
412      uint64_t Scale = DL.getTypeAllocSize(*GTI);
413      unsigned ZExtBits = 0, SExtBits = 0;
414
415      // If the integer type is smaller than the pointer size, it is implicitly
416      // sign extended to pointer size.
417      unsigned Width = Index->getType()->getIntegerBitWidth();
418      unsigned PointerSize = DL.getPointerSizeInBits(AS);
419      if (PointerSize > Width)
420        SExtBits += PointerSize - Width;
421
422      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
423      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
424      bool NSW = true, NUW = true;
425      Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
426                                  SExtBits, DL, 0, AC, DT, NSW, NUW);
427
428      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
429      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
430      BaseOffs += IndexOffset.getSExtValue() * Scale;
431      Scale *= IndexScale.getSExtValue();
432
433      // If we already had an occurrence of this index variable, merge this
434      // scale into it.  For example, we want to handle:
435      //   A[x][x] -> x*16 + x*4 -> x*20
436      // This also ensures that 'x' only appears in the index list once.
437      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
438        if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
439            VarIndices[i].SExtBits == SExtBits) {
440          Scale += VarIndices[i].Scale;
441          VarIndices.erase(VarIndices.begin() + i);
442          break;
443        }
444      }
445
446      // Make sure that we have a scale that makes sense for this target's
447      // pointer size.
448      if (unsigned ShiftBits = 64 - PointerSize) {
449        Scale <<= ShiftBits;
450        Scale = (int64_t)Scale >> ShiftBits;
451      }
452
453      if (Scale) {
454        VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
455                                  static_cast<int64_t>(Scale)};
456        VarIndices.push_back(Entry);
457      }
458    }
459
460    // Analyze the base pointer next.
461    V = GEPOp->getOperand(0);
462  } while (--MaxLookup);
463
464  // If the chain of expressions is too deep, just return early.
465  MaxLookupReached = true;
466  SearchLimitReached++;
467  return V;
468}
469
470/// Returns whether the given pointer value points to memory that is local to
471/// the function, with global constants being considered local to all
472/// functions.
473bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
474                                           bool OrLocal) {
475  assert(Visited.empty() && "Visited must be cleared after use!");
476
477  unsigned MaxLookup = 8;
478  SmallVector<const Value *, 16> Worklist;
479  Worklist.push_back(Loc.Ptr);
480  do {
481    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
482    if (!Visited.insert(V).second) {
483      Visited.clear();
484      return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
485    }
486
487    // An alloca instruction defines local memory.
488    if (OrLocal && isa<AllocaInst>(V))
489      continue;
490
491    // A global constant counts as local memory for our purposes.
492    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
493      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
494      // global to be marked constant in some modules and non-constant in
495      // others.  GV may even be a declaration, not a definition.
496      if (!GV->isConstant()) {
497        Visited.clear();
498        return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
499      }
500      continue;
501    }
502
503    // If both select values point to local memory, then so does the select.
504    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
505      Worklist.push_back(SI->getTrueValue());
506      Worklist.push_back(SI->getFalseValue());
507      continue;
508    }
509
510    // If all values incoming to a phi node point to local memory, then so does
511    // the phi.
512    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
513      // Don't bother inspecting phi nodes with many operands.
514      if (PN->getNumIncomingValues() > MaxLookup) {
515        Visited.clear();
516        return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
517      }
518      for (Value *IncValue : PN->incoming_values())
519        Worklist.push_back(IncValue);
520      continue;
521    }
522
523    // Otherwise be conservative.
524    Visited.clear();
525    return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
526
527  } while (!Worklist.empty() && --MaxLookup);
528
529  Visited.clear();
530  return Worklist.empty();
531}
532
533// FIXME: This code is duplicated with MemoryLocation and should be hoisted to
534// some common utility location.
535static bool isMemsetPattern16(const Function *MS,
536                              const TargetLibraryInfo &TLI) {
537  if (TLI.has(LibFunc::memset_pattern16) &&
538      MS->getName() == "memset_pattern16") {
539    FunctionType *MemsetType = MS->getFunctionType();
540    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
541        isa<PointerType>(MemsetType->getParamType(0)) &&
542        isa<PointerType>(MemsetType->getParamType(1)) &&
543        isa<IntegerType>(MemsetType->getParamType(2)))
544      return true;
545  }
546  return false;
547}
548
549/// Returns the behavior when calling the given call site.
550FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
551  if (CS.doesNotAccessMemory())
552    // Can't do better than this.
553    return FMRB_DoesNotAccessMemory;
554
555  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
556
557  // If the callsite knows it only reads memory, don't return worse
558  // than that.
559  if (CS.onlyReadsMemory())
560    Min = FMRB_OnlyReadsMemory;
561
562  if (CS.onlyAccessesArgMemory())
563    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
564
565  // The AAResultBase base class has some smarts, lets use them.
566  return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
567}
568
569/// Returns the behavior when calling the given function. For use when the call
570/// site is not known.
571FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
572  // If the function declares it doesn't access memory, we can't do better.
573  if (F->doesNotAccessMemory())
574    return FMRB_DoesNotAccessMemory;
575
576  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
577
578  // If the function declares it only reads memory, go with that.
579  if (F->onlyReadsMemory())
580    Min = FMRB_OnlyReadsMemory;
581
582  if (F->onlyAccessesArgMemory())
583    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
584
585  // Otherwise be conservative.
586  return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
587}
588
589/// Returns true if this is a writeonly (i.e Mod only) parameter.  Currently,
590/// we don't have a writeonly attribute, so this only knows about builtin
591/// intrinsics and target library functions.  We could consider adding a
592/// writeonly attribute in the future and moving all of these facts to either
593/// Intrinsics.td or InferFunctionAttr.cpp
594static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
595                             const TargetLibraryInfo &TLI) {
596  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
597    switch (II->getIntrinsicID()) {
598    default:
599      break;
600    case Intrinsic::memset:
601    case Intrinsic::memcpy:
602    case Intrinsic::memmove:
603      // We don't currently have a writeonly attribute.  All other properties
604      // of these intrinsics are nicely described via attributes in
605      // Intrinsics.td and handled generically.
606      if (ArgIdx == 0)
607        return true;
608    }
609
610  // We can bound the aliasing properties of memset_pattern16 just as we can
611  // for memcpy/memset.  This is particularly important because the
612  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
613  // whenever possible.  Note that all but the missing writeonly attribute are
614  // handled via InferFunctionAttr.
615  if (CS.getCalledFunction() && isMemsetPattern16(CS.getCalledFunction(), TLI))
616    if (ArgIdx == 0)
617      return true;
618
619  // TODO: memset_pattern4, memset_pattern8
620  // TODO: _chk variants
621  // TODO: strcmp, strcpy
622
623  return false;
624}
625
626ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
627                                           unsigned ArgIdx) {
628
629  // Emulate the missing writeonly attribute by checking for known builtin
630  // intrinsics and target library functions.
631  if (isWriteOnlyParam(CS, ArgIdx, TLI))
632    return MRI_Mod;
633
634  if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
635    return MRI_Ref;
636
637  if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
638    return MRI_NoModRef;
639
640  return AAResultBase::getArgModRefInfo(CS, ArgIdx);
641}
642
643static bool isAssumeIntrinsic(ImmutableCallSite CS) {
644  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
645  return II && II->getIntrinsicID() == Intrinsic::assume;
646}
647
648#ifndef NDEBUG
649static const Function *getParent(const Value *V) {
650  if (const Instruction *inst = dyn_cast<Instruction>(V))
651    return inst->getParent()->getParent();
652
653  if (const Argument *arg = dyn_cast<Argument>(V))
654    return arg->getParent();
655
656  return nullptr;
657}
658
659static bool notDifferentParent(const Value *O1, const Value *O2) {
660
661  const Function *F1 = getParent(O1);
662  const Function *F2 = getParent(O2);
663
664  return !F1 || !F2 || F1 == F2;
665}
666#endif
667
668AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
669                                 const MemoryLocation &LocB) {
670  assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
671         "BasicAliasAnalysis doesn't support interprocedural queries.");
672
673  // If we have a directly cached entry for these locations, we have recursed
674  // through this once, so just return the cached results. Notably, when this
675  // happens, we don't clear the cache.
676  auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
677  if (CacheIt != AliasCache.end())
678    return CacheIt->second;
679
680  AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
681                                 LocB.Size, LocB.AATags);
682  // AliasCache rarely has more than 1 or 2 elements, always use
683  // shrink_and_clear so it quickly returns to the inline capacity of the
684  // SmallDenseMap if it ever grows larger.
685  // FIXME: This should really be shrink_to_inline_capacity_and_clear().
686  AliasCache.shrink_and_clear();
687  VisitedPhiBBs.clear();
688  return Alias;
689}
690
691/// Checks to see if the specified callsite can clobber the specified memory
692/// object.
693///
694/// Since we only look at local properties of this function, we really can't
695/// say much about this query.  We do, however, use simple "address taken"
696/// analysis on local objects.
697ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
698                                        const MemoryLocation &Loc) {
699  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
700         "AliasAnalysis query involving multiple functions!");
701
702  const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
703
704  // If this is a tail call and Loc.Ptr points to a stack location, we know that
705  // the tail call cannot access or modify the local stack.
706  // We cannot exclude byval arguments here; these belong to the caller of
707  // the current function not to the current function, and a tail callee
708  // may reference them.
709  if (isa<AllocaInst>(Object))
710    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
711      if (CI->isTailCall())
712        return MRI_NoModRef;
713
714  // If the pointer is to a locally allocated object that does not escape,
715  // then the call can not mod/ref the pointer unless the call takes the pointer
716  // as an argument, and itself doesn't capture it.
717  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
718      isNonEscapingLocalObject(Object)) {
719    bool PassedAsArg = false;
720    unsigned ArgNo = 0;
721    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
722         CI != CE; ++CI, ++ArgNo) {
723      // Only look at the no-capture or byval pointer arguments.  If this
724      // pointer were passed to arguments that were neither of these, then it
725      // couldn't be no-capture.
726      if (!(*CI)->getType()->isPointerTy() ||
727          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
728        continue;
729
730      // If this is a no-capture pointer argument, see if we can tell that it
731      // is impossible to alias the pointer we're checking.  If not, we have to
732      // assume that the call could touch the pointer, even though it doesn't
733      // escape.
734      AliasResult AR =
735          getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
736      if (AR) {
737        PassedAsArg = true;
738        break;
739      }
740    }
741
742    if (!PassedAsArg)
743      return MRI_NoModRef;
744  }
745
746  // While the assume intrinsic is marked as arbitrarily writing so that
747  // proper control dependencies will be maintained, it never aliases any
748  // particular memory location.
749  if (isAssumeIntrinsic(CS))
750    return MRI_NoModRef;
751
752  // The AAResultBase base class has some smarts, lets use them.
753  return AAResultBase::getModRefInfo(CS, Loc);
754}
755
756ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
757                                        ImmutableCallSite CS2) {
758  // While the assume intrinsic is marked as arbitrarily writing so that
759  // proper control dependencies will be maintained, it never aliases any
760  // particular memory location.
761  if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
762    return MRI_NoModRef;
763
764  // The AAResultBase base class has some smarts, lets use them.
765  return AAResultBase::getModRefInfo(CS1, CS2);
766}
767
768/// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
769/// both having the exact same pointer operand.
770static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
771                                            uint64_t V1Size,
772                                            const GEPOperator *GEP2,
773                                            uint64_t V2Size,
774                                            const DataLayout &DL) {
775
776  assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
777         "Expected GEPs with the same pointer operand");
778
779  // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
780  // such that the struct field accesses provably cannot alias.
781  // We also need at least two indices (the pointer, and the struct field).
782  if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
783      GEP1->getNumIndices() < 2)
784    return MayAlias;
785
786  // If we don't know the size of the accesses through both GEPs, we can't
787  // determine whether the struct fields accessed can't alias.
788  if (V1Size == MemoryLocation::UnknownSize ||
789      V2Size == MemoryLocation::UnknownSize)
790    return MayAlias;
791
792  ConstantInt *C1 =
793      dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
794  ConstantInt *C2 =
795      dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
796
797  // If the last (struct) indices are constants and are equal, the other indices
798  // might be also be dynamically equal, so the GEPs can alias.
799  if (C1 && C2 && C1 == C2)
800    return MayAlias;
801
802  // Find the last-indexed type of the GEP, i.e., the type you'd get if
803  // you stripped the last index.
804  // On the way, look at each indexed type.  If there's something other
805  // than an array, different indices can lead to different final types.
806  SmallVector<Value *, 8> IntermediateIndices;
807
808  // Insert the first index; we don't need to check the type indexed
809  // through it as it only drops the pointer indirection.
810  assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
811  IntermediateIndices.push_back(GEP1->getOperand(1));
812
813  // Insert all the remaining indices but the last one.
814  // Also, check that they all index through arrays.
815  for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
816    if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
817            GEP1->getSourceElementType(), IntermediateIndices)))
818      return MayAlias;
819    IntermediateIndices.push_back(GEP1->getOperand(i + 1));
820  }
821
822  auto *Ty = GetElementPtrInst::getIndexedType(
823    GEP1->getSourceElementType(), IntermediateIndices);
824  StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
825
826  if (isa<SequentialType>(Ty)) {
827    // We know that:
828    // - both GEPs begin indexing from the exact same pointer;
829    // - the last indices in both GEPs are constants, indexing into a sequential
830    //   type (array or pointer);
831    // - both GEPs only index through arrays prior to that.
832    //
833    // Because array indices greater than the number of elements are valid in
834    // GEPs, unless we know the intermediate indices are identical between
835    // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
836    // partially overlap. We also need to check that the loaded size matches
837    // the element size, otherwise we could still have overlap.
838    const uint64_t ElementSize =
839        DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
840    if (V1Size != ElementSize || V2Size != ElementSize)
841      return MayAlias;
842
843    for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
844      if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
845        return MayAlias;
846
847    // Now we know that the array/pointer that GEP1 indexes into and that
848    // that GEP2 indexes into must either precisely overlap or be disjoint.
849    // Because they cannot partially overlap and because fields in an array
850    // cannot overlap, if we can prove the final indices are different between
851    // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
852
853    // If the last indices are constants, we've already checked they don't
854    // equal each other so we can exit early.
855    if (C1 && C2)
856      return NoAlias;
857    if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
858                        GEP2->getOperand(GEP2->getNumOperands() - 1),
859                        DL))
860      return NoAlias;
861    return MayAlias;
862  } else if (!LastIndexedStruct || !C1 || !C2) {
863    return MayAlias;
864  }
865
866  // We know that:
867  // - both GEPs begin indexing from the exact same pointer;
868  // - the last indices in both GEPs are constants, indexing into a struct;
869  // - said indices are different, hence, the pointed-to fields are different;
870  // - both GEPs only index through arrays prior to that.
871  //
872  // This lets us determine that the struct that GEP1 indexes into and the
873  // struct that GEP2 indexes into must either precisely overlap or be
874  // completely disjoint.  Because they cannot partially overlap, indexing into
875  // different non-overlapping fields of the struct will never alias.
876
877  // Therefore, the only remaining thing needed to show that both GEPs can't
878  // alias is that the fields are not overlapping.
879  const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
880  const uint64_t StructSize = SL->getSizeInBytes();
881  const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
882  const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
883
884  auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
885                                      uint64_t V2Off, uint64_t V2Size) {
886    return V1Off < V2Off && V1Off + V1Size <= V2Off &&
887           ((V2Off + V2Size <= StructSize) ||
888            (V2Off + V2Size - StructSize <= V1Off));
889  };
890
891  if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
892      EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
893    return NoAlias;
894
895  return MayAlias;
896}
897
898/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
899/// another pointer.
900///
901/// We know that V1 is a GEP, but we don't know anything about V2.
902/// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
903/// V2.
904AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
905                                    const AAMDNodes &V1AAInfo, const Value *V2,
906                                    uint64_t V2Size, const AAMDNodes &V2AAInfo,
907                                    const Value *UnderlyingV1,
908                                    const Value *UnderlyingV2) {
909  int64_t GEP1BaseOffset;
910  bool GEP1MaxLookupReached;
911  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
912
913  // If we have two gep instructions with must-alias or not-alias'ing base
914  // pointers, figure out if the indexes to the GEP tell us anything about the
915  // derived pointer.
916  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
917    // Do the base pointers alias?
918    AliasResult BaseAlias =
919        aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
920                   UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
921
922    // Check for geps of non-aliasing underlying pointers where the offsets are
923    // identical.
924    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
925      // Do the base pointers alias assuming type and size.
926      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
927                                                UnderlyingV2, V2Size, V2AAInfo);
928      if (PreciseBaseAlias == NoAlias) {
929        // See if the computed offset from the common pointer tells us about the
930        // relation of the resulting pointer.
931        int64_t GEP2BaseOffset;
932        bool GEP2MaxLookupReached;
933        SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
934        const Value *GEP2BasePtr =
935            DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
936                                   GEP2MaxLookupReached, DL, &AC, DT);
937        const Value *GEP1BasePtr =
938            DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
939                                   GEP1MaxLookupReached, DL, &AC, DT);
940        // DecomposeGEPExpression and GetUnderlyingObject should return the
941        // same result except when DecomposeGEPExpression has no DataLayout.
942        // FIXME: They always have a DataLayout so this should become an
943        // assert.
944        if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
945          return MayAlias;
946        }
947        // If the max search depth is reached the result is undefined
948        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
949          return MayAlias;
950
951        // Same offsets.
952        if (GEP1BaseOffset == GEP2BaseOffset &&
953            GEP1VariableIndices == GEP2VariableIndices)
954          return NoAlias;
955        GEP1VariableIndices.clear();
956      }
957    }
958
959    // If we get a No or May, then return it immediately, no amount of analysis
960    // will improve this situation.
961    if (BaseAlias != MustAlias)
962      return BaseAlias;
963
964    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
965    // exactly, see if the computed offset from the common pointer tells us
966    // about the relation of the resulting pointer.
967    const Value *GEP1BasePtr =
968        DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
969                               GEP1MaxLookupReached, DL, &AC, DT);
970
971    int64_t GEP2BaseOffset;
972    bool GEP2MaxLookupReached;
973    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
974    const Value *GEP2BasePtr =
975        DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
976                               GEP2MaxLookupReached, DL, &AC, DT);
977
978    // DecomposeGEPExpression and GetUnderlyingObject should return the
979    // same result except when DecomposeGEPExpression has no DataLayout.
980    // FIXME: They always have a DataLayout so this should become an assert.
981    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
982      return MayAlias;
983    }
984
985    // If we know the two GEPs are based off of the exact same pointer (and not
986    // just the same underlying object), see if that tells us anything about
987    // the resulting pointers.
988    if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
989      AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
990      // If we couldn't find anything interesting, don't abandon just yet.
991      if (R != MayAlias)
992        return R;
993    }
994
995    // If the max search depth is reached the result is undefined
996    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
997      return MayAlias;
998
999    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1000    // symbolic difference.
1001    GEP1BaseOffset -= GEP2BaseOffset;
1002    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
1003
1004  } else {
1005    // Check to see if these two pointers are related by the getelementptr
1006    // instruction.  If one pointer is a GEP with a non-zero index of the other
1007    // pointer, we know they cannot alias.
1008
1009    // If both accesses are unknown size, we can't do anything useful here.
1010    if (V1Size == MemoryLocation::UnknownSize &&
1011        V2Size == MemoryLocation::UnknownSize)
1012      return MayAlias;
1013
1014    AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1015                               AAMDNodes(), V2, V2Size, V2AAInfo);
1016    if (R != MustAlias)
1017      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1018      // If V2 is known not to alias GEP base pointer, then the two values
1019      // cannot alias per GEP semantics: "A pointer value formed from a
1020      // getelementptr instruction is associated with the addresses associated
1021      // with the first operand of the getelementptr".
1022      return R;
1023
1024    const Value *GEP1BasePtr =
1025        DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1026                               GEP1MaxLookupReached, DL, &AC, DT);
1027
1028    // DecomposeGEPExpression and GetUnderlyingObject should return the
1029    // same result except when DecomposeGEPExpression has no DataLayout.
1030    // FIXME: They always have a DataLayout so this should become an assert.
1031    if (GEP1BasePtr != UnderlyingV1) {
1032      return MayAlias;
1033    }
1034    // If the max search depth is reached the result is undefined
1035    if (GEP1MaxLookupReached)
1036      return MayAlias;
1037  }
1038
1039  // In the two GEP Case, if there is no difference in the offsets of the
1040  // computed pointers, the resultant pointers are a must alias.  This
1041  // hapens when we have two lexically identical GEP's (for example).
1042  //
1043  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1044  // must aliases the GEP, the end result is a must alias also.
1045  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
1046    return MustAlias;
1047
1048  // If there is a constant difference between the pointers, but the difference
1049  // is less than the size of the associated memory object, then we know
1050  // that the objects are partially overlapping.  If the difference is
1051  // greater, we know they do not overlap.
1052  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1053    if (GEP1BaseOffset >= 0) {
1054      if (V2Size != MemoryLocation::UnknownSize) {
1055        if ((uint64_t)GEP1BaseOffset < V2Size)
1056          return PartialAlias;
1057        return NoAlias;
1058      }
1059    } else {
1060      // We have the situation where:
1061      // +                +
1062      // | BaseOffset     |
1063      // ---------------->|
1064      // |-->V1Size       |-------> V2Size
1065      // GEP1             V2
1066      // We need to know that V2Size is not unknown, otherwise we might have
1067      // stripped a gep with negative index ('gep <ptr>, -1, ...).
1068      if (V1Size != MemoryLocation::UnknownSize &&
1069          V2Size != MemoryLocation::UnknownSize) {
1070        if (-(uint64_t)GEP1BaseOffset < V1Size)
1071          return PartialAlias;
1072        return NoAlias;
1073      }
1074    }
1075  }
1076
1077  if (!GEP1VariableIndices.empty()) {
1078    uint64_t Modulo = 0;
1079    bool AllPositive = true;
1080    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
1081
1082      // Try to distinguish something like &A[i][1] against &A[42][0].
1083      // Grab the least significant bit set in any of the scales. We
1084      // don't need std::abs here (even if the scale's negative) as we'll
1085      // be ^'ing Modulo with itself later.
1086      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1087
1088      if (AllPositive) {
1089        // If the Value could change between cycles, then any reasoning about
1090        // the Value this cycle may not hold in the next cycle. We'll just
1091        // give up if we can't determine conditions that hold for every cycle:
1092        const Value *V = GEP1VariableIndices[i].V;
1093
1094        bool SignKnownZero, SignKnownOne;
1095        ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
1096                       0, &AC, nullptr, DT);
1097
1098        // Zero-extension widens the variable, and so forces the sign
1099        // bit to zero.
1100        bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1101        SignKnownZero |= IsZExt;
1102        SignKnownOne &= !IsZExt;
1103
1104        // If the variable begins with a zero then we know it's
1105        // positive, regardless of whether the value is signed or
1106        // unsigned.
1107        int64_t Scale = GEP1VariableIndices[i].Scale;
1108        AllPositive =
1109            (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1110      }
1111    }
1112
1113    Modulo = Modulo ^ (Modulo & (Modulo - 1));
1114
1115    // We can compute the difference between the two addresses
1116    // mod Modulo. Check whether that difference guarantees that the
1117    // two locations do not alias.
1118    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1119    if (V1Size != MemoryLocation::UnknownSize &&
1120        V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1121        V1Size <= Modulo - ModOffset)
1122      return NoAlias;
1123
1124    // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1125    // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1126    // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1127    if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1128      return NoAlias;
1129
1130    if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size,
1131                                GEP1BaseOffset, &AC, DT))
1132      return NoAlias;
1133  }
1134
1135  // Statically, we can see that the base objects are the same, but the
1136  // pointers have dynamic offsets which we can't resolve. And none of our
1137  // little tricks above worked.
1138  //
1139  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1140  // practical effect of this is protecting TBAA in the case of dynamic
1141  // indices into arrays of unions or malloc'd memory.
1142  return PartialAlias;
1143}
1144
1145static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1146  // If the results agree, take it.
1147  if (A == B)
1148    return A;
1149  // A mix of PartialAlias and MustAlias is PartialAlias.
1150  if ((A == PartialAlias && B == MustAlias) ||
1151      (B == PartialAlias && A == MustAlias))
1152    return PartialAlias;
1153  // Otherwise, we don't know anything.
1154  return MayAlias;
1155}
1156
1157/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1158/// against another.
1159AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1160                                       const AAMDNodes &SIAAInfo,
1161                                       const Value *V2, uint64_t V2Size,
1162                                       const AAMDNodes &V2AAInfo) {
1163  // If the values are Selects with the same condition, we can do a more precise
1164  // check: just check for aliases between the values on corresponding arms.
1165  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1166    if (SI->getCondition() == SI2->getCondition()) {
1167      AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1168                                     SI2->getTrueValue(), V2Size, V2AAInfo);
1169      if (Alias == MayAlias)
1170        return MayAlias;
1171      AliasResult ThisAlias =
1172          aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1173                     SI2->getFalseValue(), V2Size, V2AAInfo);
1174      return MergeAliasResults(ThisAlias, Alias);
1175    }
1176
1177  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1178  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1179  AliasResult Alias =
1180      aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1181  if (Alias == MayAlias)
1182    return MayAlias;
1183
1184  AliasResult ThisAlias =
1185      aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1186  return MergeAliasResults(ThisAlias, Alias);
1187}
1188
1189/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1190/// another.
1191AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1192                                    const AAMDNodes &PNAAInfo, const Value *V2,
1193                                    uint64_t V2Size,
1194                                    const AAMDNodes &V2AAInfo) {
1195  // Track phi nodes we have visited. We use this information when we determine
1196  // value equivalence.
1197  VisitedPhiBBs.insert(PN->getParent());
1198
1199  // If the values are PHIs in the same block, we can do a more precise
1200  // as well as efficient check: just check for aliases between the values
1201  // on corresponding edges.
1202  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1203    if (PN2->getParent() == PN->getParent()) {
1204      LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1205                   MemoryLocation(V2, V2Size, V2AAInfo));
1206      if (PN > V2)
1207        std::swap(Locs.first, Locs.second);
1208      // Analyse the PHIs' inputs under the assumption that the PHIs are
1209      // NoAlias.
1210      // If the PHIs are May/MustAlias there must be (recursively) an input
1211      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1212      // there must be an operation on the PHIs within the PHIs' value cycle
1213      // that causes a MayAlias.
1214      // Pretend the phis do not alias.
1215      AliasResult Alias = NoAlias;
1216      assert(AliasCache.count(Locs) &&
1217             "There must exist an entry for the phi node");
1218      AliasResult OrigAliasResult = AliasCache[Locs];
1219      AliasCache[Locs] = NoAlias;
1220
1221      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1222        AliasResult ThisAlias =
1223            aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1224                       PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1225                       V2Size, V2AAInfo);
1226        Alias = MergeAliasResults(ThisAlias, Alias);
1227        if (Alias == MayAlias)
1228          break;
1229      }
1230
1231      // Reset if speculation failed.
1232      if (Alias != NoAlias)
1233        AliasCache[Locs] = OrigAliasResult;
1234
1235      return Alias;
1236    }
1237
1238  SmallPtrSet<Value *, 4> UniqueSrc;
1239  SmallVector<Value *, 4> V1Srcs;
1240  bool isRecursive = false;
1241  for (Value *PV1 : PN->incoming_values()) {
1242    if (isa<PHINode>(PV1))
1243      // If any of the source itself is a PHI, return MayAlias conservatively
1244      // to avoid compile time explosion. The worst possible case is if both
1245      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1246      // and 'n' are the number of PHI sources.
1247      return MayAlias;
1248
1249    if (EnableRecPhiAnalysis)
1250      if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1251        // Check whether the incoming value is a GEP that advances the pointer
1252        // result of this PHI node (e.g. in a loop). If this is the case, we
1253        // would recurse and always get a MayAlias. Handle this case specially
1254        // below.
1255        if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1256            isa<ConstantInt>(PV1GEP->idx_begin())) {
1257          isRecursive = true;
1258          continue;
1259        }
1260      }
1261
1262    if (UniqueSrc.insert(PV1).second)
1263      V1Srcs.push_back(PV1);
1264  }
1265
1266  // If this PHI node is recursive, set the size of the accessed memory to
1267  // unknown to represent all the possible values the GEP could advance the
1268  // pointer to.
1269  if (isRecursive)
1270    PNSize = MemoryLocation::UnknownSize;
1271
1272  AliasResult Alias =
1273      aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
1274
1275  // Early exit if the check of the first PHI source against V2 is MayAlias.
1276  // Other results are not possible.
1277  if (Alias == MayAlias)
1278    return MayAlias;
1279
1280  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1281  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1282  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1283    Value *V = V1Srcs[i];
1284
1285    AliasResult ThisAlias =
1286        aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
1287    Alias = MergeAliasResults(ThisAlias, Alias);
1288    if (Alias == MayAlias)
1289      break;
1290  }
1291
1292  return Alias;
1293}
1294
1295/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1296/// array references.
1297AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1298                                      AAMDNodes V1AAInfo, const Value *V2,
1299                                      uint64_t V2Size, AAMDNodes V2AAInfo) {
1300  // If either of the memory references is empty, it doesn't matter what the
1301  // pointer values are.
1302  if (V1Size == 0 || V2Size == 0)
1303    return NoAlias;
1304
1305  // Strip off any casts if they exist.
1306  V1 = V1->stripPointerCasts();
1307  V2 = V2->stripPointerCasts();
1308
1309  // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1310  // value for undef that aliases nothing in the program.
1311  if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1312    return NoAlias;
1313
1314  // Are we checking for alias of the same value?
1315  // Because we look 'through' phi nodes we could look at "Value" pointers from
1316  // different iterations. We must therefore make sure that this is not the
1317  // case. The function isValueEqualInPotentialCycles ensures that this cannot
1318  // happen by looking at the visited phi nodes and making sure they cannot
1319  // reach the value.
1320  if (isValueEqualInPotentialCycles(V1, V2))
1321    return MustAlias;
1322
1323  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1324    return NoAlias; // Scalars cannot alias each other
1325
1326  // Figure out what objects these things are pointing to if we can.
1327  const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1328  const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1329
1330  // Null values in the default address space don't point to any object, so they
1331  // don't alias any other pointer.
1332  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1333    if (CPN->getType()->getAddressSpace() == 0)
1334      return NoAlias;
1335  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1336    if (CPN->getType()->getAddressSpace() == 0)
1337      return NoAlias;
1338
1339  if (O1 != O2) {
1340    // If V1/V2 point to two different objects we know that we have no alias.
1341    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1342      return NoAlias;
1343
1344    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1345    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1346        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1347      return NoAlias;
1348
1349    // Function arguments can't alias with things that are known to be
1350    // unambigously identified at the function level.
1351    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1352        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1353      return NoAlias;
1354
1355    // Most objects can't alias null.
1356    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1357        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1358      return NoAlias;
1359
1360    // If one pointer is the result of a call/invoke or load and the other is a
1361    // non-escaping local object within the same function, then we know the
1362    // object couldn't escape to a point where the call could return it.
1363    //
1364    // Note that if the pointers are in different functions, there are a
1365    // variety of complications. A call with a nocapture argument may still
1366    // temporary store the nocapture argument's value in a temporary memory
1367    // location if that memory location doesn't escape. Or it may pass a
1368    // nocapture value to other functions as long as they don't capture it.
1369    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1370      return NoAlias;
1371    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1372      return NoAlias;
1373  }
1374
1375  // If the size of one access is larger than the entire object on the other
1376  // side, then we know such behavior is undefined and can assume no alias.
1377  if ((V1Size != MemoryLocation::UnknownSize &&
1378       isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1379      (V2Size != MemoryLocation::UnknownSize &&
1380       isObjectSmallerThan(O1, V2Size, DL, TLI)))
1381    return NoAlias;
1382
1383  // Check the cache before climbing up use-def chains. This also terminates
1384  // otherwise infinitely recursive queries.
1385  LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1386               MemoryLocation(V2, V2Size, V2AAInfo));
1387  if (V1 > V2)
1388    std::swap(Locs.first, Locs.second);
1389  std::pair<AliasCacheTy::iterator, bool> Pair =
1390      AliasCache.insert(std::make_pair(Locs, MayAlias));
1391  if (!Pair.second)
1392    return Pair.first->second;
1393
1394  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1395  // GEP can't simplify, we don't even look at the PHI cases.
1396  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1397    std::swap(V1, V2);
1398    std::swap(V1Size, V2Size);
1399    std::swap(O1, O2);
1400    std::swap(V1AAInfo, V2AAInfo);
1401  }
1402  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1403    AliasResult Result =
1404        aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1405    if (Result != MayAlias)
1406      return AliasCache[Locs] = Result;
1407  }
1408
1409  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1410    std::swap(V1, V2);
1411    std::swap(V1Size, V2Size);
1412    std::swap(V1AAInfo, V2AAInfo);
1413  }
1414  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1415    AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1416    if (Result != MayAlias)
1417      return AliasCache[Locs] = Result;
1418  }
1419
1420  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1421    std::swap(V1, V2);
1422    std::swap(V1Size, V2Size);
1423    std::swap(V1AAInfo, V2AAInfo);
1424  }
1425  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1426    AliasResult Result =
1427        aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1428    if (Result != MayAlias)
1429      return AliasCache[Locs] = Result;
1430  }
1431
1432  // If both pointers are pointing into the same object and one of them
1433  // accesses is accessing the entire object, then the accesses must
1434  // overlap in some way.
1435  if (O1 == O2)
1436    if ((V1Size != MemoryLocation::UnknownSize &&
1437         isObjectSize(O1, V1Size, DL, TLI)) ||
1438        (V2Size != MemoryLocation::UnknownSize &&
1439         isObjectSize(O2, V2Size, DL, TLI)))
1440      return AliasCache[Locs] = PartialAlias;
1441
1442  // Recurse back into the best AA results we have, potentially with refined
1443  // memory locations. We have already ensured that BasicAA has a MayAlias
1444  // cache result for these, so any recursion back into BasicAA won't loop.
1445  AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1446  return AliasCache[Locs] = Result;
1447}
1448
1449/// Check whether two Values can be considered equivalent.
1450///
1451/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1452/// they can not be part of a cycle in the value graph by looking at all
1453/// visited phi nodes an making sure that the phis cannot reach the value. We
1454/// have to do this because we are looking through phi nodes (That is we say
1455/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1456bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1457                                                  const Value *V2) {
1458  if (V != V2)
1459    return false;
1460
1461  const Instruction *Inst = dyn_cast<Instruction>(V);
1462  if (!Inst)
1463    return true;
1464
1465  if (VisitedPhiBBs.empty())
1466    return true;
1467
1468  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1469    return false;
1470
1471  // Make sure that the visited phis cannot reach the Value. This ensures that
1472  // the Values cannot come from different iterations of a potential cycle the
1473  // phi nodes could be involved in.
1474  for (auto *P : VisitedPhiBBs)
1475    if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1476      return false;
1477
1478  return true;
1479}
1480
1481/// Computes the symbolic difference between two de-composed GEPs.
1482///
1483/// Dest and Src are the variable indices from two decomposed GetElementPtr
1484/// instructions GEP1 and GEP2 which have common base pointers.
1485void BasicAAResult::GetIndexDifference(
1486    SmallVectorImpl<VariableGEPIndex> &Dest,
1487    const SmallVectorImpl<VariableGEPIndex> &Src) {
1488  if (Src.empty())
1489    return;
1490
1491  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1492    const Value *V = Src[i].V;
1493    unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1494    int64_t Scale = Src[i].Scale;
1495
1496    // Find V in Dest.  This is N^2, but pointer indices almost never have more
1497    // than a few variable indexes.
1498    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1499      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1500          Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1501        continue;
1502
1503      // If we found it, subtract off Scale V's from the entry in Dest.  If it
1504      // goes to zero, remove the entry.
1505      if (Dest[j].Scale != Scale)
1506        Dest[j].Scale -= Scale;
1507      else
1508        Dest.erase(Dest.begin() + j);
1509      Scale = 0;
1510      break;
1511    }
1512
1513    // If we didn't consume this entry, add it to the end of the Dest list.
1514    if (Scale) {
1515      VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1516      Dest.push_back(Entry);
1517    }
1518  }
1519}
1520
1521bool BasicAAResult::constantOffsetHeuristic(
1522    const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1523    uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1524    DominatorTree *DT) {
1525  if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1526      V2Size == MemoryLocation::UnknownSize)
1527    return false;
1528
1529  const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1530
1531  if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1532      Var0.Scale != -Var1.Scale)
1533    return false;
1534
1535  unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1536
1537  // We'll strip off the Extensions of Var0 and Var1 and do another round
1538  // of GetLinearExpression decomposition. In the example above, if Var0
1539  // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1540
1541  APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1542      V1Offset(Width, 0);
1543  bool NSW = true, NUW = true;
1544  unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1545  const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1546                                        V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1547  NSW = true, NUW = true;
1548  const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1549                                        V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1550
1551  if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1552      V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1553    return false;
1554
1555  // We have a hit - Var0 and Var1 only differ by a constant offset!
1556
1557  // If we've been sext'ed then zext'd the maximum difference between Var0 and
1558  // Var1 is possible to calculate, but we're just interested in the absolute
1559  // minimum difference between the two. The minimum distance may occur due to
1560  // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1561  // the minimum distance between %i and %i + 5 is 3.
1562  APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1563  MinDiff = APIntOps::umin(MinDiff, Wrapped);
1564  uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1565
1566  // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1567  // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1568  // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1569  // V2Size can fit in the MinDiffBytes gap.
1570  return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1571         V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1572}
1573
1574//===----------------------------------------------------------------------===//
1575// BasicAliasAnalysis Pass
1576//===----------------------------------------------------------------------===//
1577
1578char BasicAA::PassID;
1579
1580BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) {
1581  return BasicAAResult(F.getParent()->getDataLayout(),
1582                       AM->getResult<TargetLibraryAnalysis>(F),
1583                       AM->getResult<AssumptionAnalysis>(F),
1584                       AM->getCachedResult<DominatorTreeAnalysis>(F),
1585                       AM->getCachedResult<LoopAnalysis>(F));
1586}
1587
1588BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1589    initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1590}
1591
1592char BasicAAWrapperPass::ID = 0;
1593void BasicAAWrapperPass::anchor() {}
1594
1595INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1596                      "Basic Alias Analysis (stateless AA impl)", true, true)
1597INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1598INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1599INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1600                    "Basic Alias Analysis (stateless AA impl)", true, true)
1601
1602FunctionPass *llvm::createBasicAAWrapperPass() {
1603  return new BasicAAWrapperPass();
1604}
1605
1606bool BasicAAWrapperPass::runOnFunction(Function &F) {
1607  auto &ACT = getAnalysis<AssumptionCacheTracker>();
1608  auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1609  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1610  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1611
1612  Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1613                                 ACT.getAssumptionCache(F),
1614                                 DTWP ? &DTWP->getDomTree() : nullptr,
1615                                 LIWP ? &LIWP->getLoopInfo() : nullptr));
1616
1617  return false;
1618}
1619
1620void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1621  AU.setPreservesAll();
1622  AU.addRequired<AssumptionCacheTracker>();
1623  AU.addRequired<TargetLibraryInfoWrapperPass>();
1624}
1625
1626BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1627  return BasicAAResult(
1628      F.getParent()->getDataLayout(),
1629      P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1630      P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1631}
1632