1//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic AliasAnalysis interface which is used as the
11// common interface used by all clients and implementations of alias analysis.
12//
13// This file also implements the default version of the AliasAnalysis interface
14// that is to be used when no other implementation is specified.  This does some
15// simple tests that detect obvious cases: two different global pointers cannot
16// alias, a global cannot alias a malloc, two different mallocs cannot alias,
17// etc.
18//
19// This alias analysis implementation really isn't very good for anything, but
20// it is very fast, and makes a nice clean default implementation.  Because it
21// handles lots of little corner cases, other, more complex, alias analysis
22// implementations may choose to rely on this pass to resolve these simple and
23// easy cases.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/BasicAliasAnalysis.h"
29#include "llvm/Analysis/CFG.h"
30#include "llvm/Analysis/CFLAliasAnalysis.h"
31#include "llvm/Analysis/CaptureTracking.h"
32#include "llvm/Analysis/GlobalsModRef.h"
33#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35#include "llvm/Analysis/ScopedNoAliasAA.h"
36#include "llvm/Analysis/TargetLibraryInfo.h"
37#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38#include "llvm/Analysis/ValueTracking.h"
39#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/Dominators.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Type.h"
47#include "llvm/Pass.h"
48using namespace llvm;
49
50/// Allow disabling BasicAA from the AA results. This is particularly useful
51/// when testing to isolate a single AA implementation.
52static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
53                                    cl::init(false));
54
55AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) {
56  for (auto &AA : AAs)
57    AA->setAAResults(this);
58}
59
60AAResults &AAResults::operator=(AAResults &&Arg) {
61  AAs = std::move(Arg.AAs);
62  for (auto &AA : AAs)
63    AA->setAAResults(this);
64  return *this;
65}
66
67AAResults::~AAResults() {
68// FIXME; It would be nice to at least clear out the pointers back to this
69// aggregation here, but we end up with non-nesting lifetimes in the legacy
70// pass manager that prevent this from working. In the legacy pass manager
71// we'll end up with dangling references here in some cases.
72#if 0
73  for (auto &AA : AAs)
74    AA->setAAResults(nullptr);
75#endif
76}
77
78//===----------------------------------------------------------------------===//
79// Default chaining methods
80//===----------------------------------------------------------------------===//
81
82AliasResult AAResults::alias(const MemoryLocation &LocA,
83                             const MemoryLocation &LocB) {
84  for (const auto &AA : AAs) {
85    auto Result = AA->alias(LocA, LocB);
86    if (Result != MayAlias)
87      return Result;
88  }
89  return MayAlias;
90}
91
92bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
93                                       bool OrLocal) {
94  for (const auto &AA : AAs)
95    if (AA->pointsToConstantMemory(Loc, OrLocal))
96      return true;
97
98  return false;
99}
100
101ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
102  ModRefInfo Result = MRI_ModRef;
103
104  for (const auto &AA : AAs) {
105    Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));
106
107    // Early-exit the moment we reach the bottom of the lattice.
108    if (Result == MRI_NoModRef)
109      return Result;
110  }
111
112  return Result;
113}
114
115ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
116  // We may have two calls
117  if (auto CS = ImmutableCallSite(I)) {
118    // Check if the two calls modify the same memory
119    return getModRefInfo(Call, CS);
120  } else {
121    // Otherwise, check if the call modifies or references the
122    // location this memory access defines.  The best we can say
123    // is that if the call references what this instruction
124    // defines, it must be clobbered by this location.
125    const MemoryLocation DefLoc = MemoryLocation::get(I);
126    if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
127      return MRI_ModRef;
128  }
129  return MRI_NoModRef;
130}
131
132ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
133                                    const MemoryLocation &Loc) {
134  ModRefInfo Result = MRI_ModRef;
135
136  for (const auto &AA : AAs) {
137    Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));
138
139    // Early-exit the moment we reach the bottom of the lattice.
140    if (Result == MRI_NoModRef)
141      return Result;
142  }
143
144  return Result;
145}
146
147ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
148                                    ImmutableCallSite CS2) {
149  ModRefInfo Result = MRI_ModRef;
150
151  for (const auto &AA : AAs) {
152    Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));
153
154    // Early-exit the moment we reach the bottom of the lattice.
155    if (Result == MRI_NoModRef)
156      return Result;
157  }
158
159  return Result;
160}
161
162FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
163  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
164
165  for (const auto &AA : AAs) {
166    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
167
168    // Early-exit the moment we reach the bottom of the lattice.
169    if (Result == FMRB_DoesNotAccessMemory)
170      return Result;
171  }
172
173  return Result;
174}
175
176FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
177  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
178
179  for (const auto &AA : AAs) {
180    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
181
182    // Early-exit the moment we reach the bottom of the lattice.
183    if (Result == FMRB_DoesNotAccessMemory)
184      return Result;
185  }
186
187  return Result;
188}
189
190//===----------------------------------------------------------------------===//
191// Helper method implementation
192//===----------------------------------------------------------------------===//
193
194ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
195                                    const MemoryLocation &Loc) {
196  // Be conservative in the face of volatile/atomic.
197  if (!L->isUnordered())
198    return MRI_ModRef;
199
200  // If the load address doesn't alias the given address, it doesn't read
201  // or write the specified memory.
202  if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
203    return MRI_NoModRef;
204
205  // Otherwise, a load just reads.
206  return MRI_Ref;
207}
208
209ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
210                                    const MemoryLocation &Loc) {
211  // Be conservative in the face of volatile/atomic.
212  if (!S->isUnordered())
213    return MRI_ModRef;
214
215  if (Loc.Ptr) {
216    // If the store address cannot alias the pointer in question, then the
217    // specified memory cannot be modified by the store.
218    if (!alias(MemoryLocation::get(S), Loc))
219      return MRI_NoModRef;
220
221    // If the pointer is a pointer to constant memory, then it could not have
222    // been modified by this store.
223    if (pointsToConstantMemory(Loc))
224      return MRI_NoModRef;
225  }
226
227  // Otherwise, a store just writes.
228  return MRI_Mod;
229}
230
231ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
232                                    const MemoryLocation &Loc) {
233
234  if (Loc.Ptr) {
235    // If the va_arg address cannot alias the pointer in question, then the
236    // specified memory cannot be accessed by the va_arg.
237    if (!alias(MemoryLocation::get(V), Loc))
238      return MRI_NoModRef;
239
240    // If the pointer is a pointer to constant memory, then it could not have
241    // been modified by this va_arg.
242    if (pointsToConstantMemory(Loc))
243      return MRI_NoModRef;
244  }
245
246  // Otherwise, a va_arg reads and writes.
247  return MRI_ModRef;
248}
249
250ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
251                                    const MemoryLocation &Loc) {
252  if (Loc.Ptr) {
253    // If the pointer is a pointer to constant memory,
254    // then it could not have been modified by this catchpad.
255    if (pointsToConstantMemory(Loc))
256      return MRI_NoModRef;
257  }
258
259  // Otherwise, a catchpad reads and writes.
260  return MRI_ModRef;
261}
262
263ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
264                                    const MemoryLocation &Loc) {
265  if (Loc.Ptr) {
266    // If the pointer is a pointer to constant memory,
267    // then it could not have been modified by this catchpad.
268    if (pointsToConstantMemory(Loc))
269      return MRI_NoModRef;
270  }
271
272  // Otherwise, a catchret reads and writes.
273  return MRI_ModRef;
274}
275
276ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
277                                    const MemoryLocation &Loc) {
278  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
279  if (CX->getSuccessOrdering() > Monotonic)
280    return MRI_ModRef;
281
282  // If the cmpxchg address does not alias the location, it does not access it.
283  if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
284    return MRI_NoModRef;
285
286  return MRI_ModRef;
287}
288
289ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
290                                    const MemoryLocation &Loc) {
291  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
292  if (RMW->getOrdering() > Monotonic)
293    return MRI_ModRef;
294
295  // If the atomicrmw address does not alias the location, it does not access it.
296  if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
297    return MRI_NoModRef;
298
299  return MRI_ModRef;
300}
301
302/// \brief Return information about whether a particular call site modifies
303/// or reads the specified memory location \p MemLoc before instruction \p I
304/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
305/// instruction-ordering queries inside the BasicBlock containing \p I.
306/// FIXME: this is really just shoring-up a deficiency in alias analysis.
307/// BasicAA isn't willing to spend linear time determining whether an alloca
308/// was captured before or after this particular call, while we are. However,
309/// with a smarter AA in place, this test is just wasting compile time.
310ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
311                                         const MemoryLocation &MemLoc,
312                                         DominatorTree *DT,
313                                         OrderedBasicBlock *OBB) {
314  if (!DT)
315    return MRI_ModRef;
316
317  const Value *Object =
318      GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
319  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
320      isa<Constant>(Object))
321    return MRI_ModRef;
322
323  ImmutableCallSite CS(I);
324  if (!CS.getInstruction() || CS.getInstruction() == Object)
325    return MRI_ModRef;
326
327  if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
328                                       /* StoreCaptures */ true, I, DT,
329                                       /* include Object */ true,
330                                       /* OrderedBasicBlock */ OBB))
331    return MRI_ModRef;
332
333  unsigned ArgNo = 0;
334  ModRefInfo R = MRI_NoModRef;
335  for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
336       CI != CE; ++CI, ++ArgNo) {
337    // Only look at the no-capture or byval pointer arguments.  If this
338    // pointer were passed to arguments that were neither of these, then it
339    // couldn't be no-capture.
340    if (!(*CI)->getType()->isPointerTy() ||
341        (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
342      continue;
343
344    // If this is a no-capture pointer argument, see if we can tell that it
345    // is impossible to alias the pointer we're checking.  If not, we have to
346    // assume that the call could touch the pointer, even though it doesn't
347    // escape.
348    if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
349      continue;
350    if (CS.doesNotAccessMemory(ArgNo))
351      continue;
352    if (CS.onlyReadsMemory(ArgNo)) {
353      R = MRI_Ref;
354      continue;
355    }
356    return MRI_ModRef;
357  }
358  return R;
359}
360
361/// canBasicBlockModify - Return true if it is possible for execution of the
362/// specified basic block to modify the location Loc.
363///
364bool AAResults::canBasicBlockModify(const BasicBlock &BB,
365                                    const MemoryLocation &Loc) {
366  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
367}
368
369/// canInstructionRangeModRef - Return true if it is possible for the
370/// execution of the specified instructions to mod\ref (according to the
371/// mode) the location Loc. The instructions to consider are all
372/// of the instructions in the range of [I1,I2] INCLUSIVE.
373/// I1 and I2 must be in the same basic block.
374bool AAResults::canInstructionRangeModRef(const Instruction &I1,
375                                          const Instruction &I2,
376                                          const MemoryLocation &Loc,
377                                          const ModRefInfo Mode) {
378  assert(I1.getParent() == I2.getParent() &&
379         "Instructions not in same basic block!");
380  BasicBlock::const_iterator I = I1.getIterator();
381  BasicBlock::const_iterator E = I2.getIterator();
382  ++E;  // Convert from inclusive to exclusive range.
383
384  for (; I != E; ++I) // Check every instruction in range
385    if (getModRefInfo(&*I, Loc) & Mode)
386      return true;
387  return false;
388}
389
390// Provide a definition for the root virtual destructor.
391AAResults::Concept::~Concept() {}
392
393namespace {
394/// A wrapper pass for external alias analyses. This just squirrels away the
395/// callback used to run any analyses and register their results.
396struct ExternalAAWrapperPass : ImmutablePass {
397  typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT;
398
399  CallbackT CB;
400
401  static char ID;
402
403  ExternalAAWrapperPass() : ImmutablePass(ID) {
404    initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
405  }
406  explicit ExternalAAWrapperPass(CallbackT CB)
407      : ImmutablePass(ID), CB(std::move(CB)) {
408    initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
409  }
410
411  void getAnalysisUsage(AnalysisUsage &AU) const override {
412    AU.setPreservesAll();
413  }
414};
415}
416
417char ExternalAAWrapperPass::ID = 0;
418INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
419                false, true)
420
421ImmutablePass *
422llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
423  return new ExternalAAWrapperPass(std::move(Callback));
424}
425
426AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
427  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
428}
429
430char AAResultsWrapperPass::ID = 0;
431
432INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
433                      "Function Alias Analysis Results", false, true)
434INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
435INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass)
436INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
437INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
438INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
439INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
440INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
441INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
442INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
443                    "Function Alias Analysis Results", false, true)
444
445FunctionPass *llvm::createAAResultsWrapperPass() {
446  return new AAResultsWrapperPass();
447}
448
449/// Run the wrapper pass to rebuild an aggregation over known AA passes.
450///
451/// This is the legacy pass manager's interface to the new-style AA results
452/// aggregation object. Because this is somewhat shoe-horned into the legacy
453/// pass manager, we hard code all the specific alias analyses available into
454/// it. While the particular set enabled is configured via commandline flags,
455/// adding a new alias analysis to LLVM will require adding support for it to
456/// this list.
457bool AAResultsWrapperPass::runOnFunction(Function &F) {
458  // NB! This *must* be reset before adding new AA results to the new
459  // AAResults object because in the legacy pass manager, each instance
460  // of these will refer to the *same* immutable analyses, registering and
461  // unregistering themselves with them. We need to carefully tear down the
462  // previous object first, in this case replacing it with an empty one, before
463  // registering new results.
464  AAR.reset(new AAResults());
465
466  // BasicAA is always available for function analyses. Also, we add it first
467  // so that it can trump TBAA results when it proves MustAlias.
468  // FIXME: TBAA should have an explicit mode to support this and then we
469  // should reconsider the ordering here.
470  if (!DisableBasicAA)
471    AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
472
473  // Populate the results with the currently available AAs.
474  if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
475    AAR->addAAResult(WrapperPass->getResult());
476  if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
477    AAR->addAAResult(WrapperPass->getResult());
478  if (auto *WrapperPass =
479          getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
480    AAR->addAAResult(WrapperPass->getResult());
481  if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
482    AAR->addAAResult(WrapperPass->getResult());
483  if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
484    AAR->addAAResult(WrapperPass->getResult());
485  if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>())
486    AAR->addAAResult(WrapperPass->getResult());
487
488  // If available, run an external AA providing callback over the results as
489  // well.
490  if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
491    if (WrapperPass->CB)
492      WrapperPass->CB(*this, F, *AAR);
493
494  // Analyses don't mutate the IR, so return false.
495  return false;
496}
497
498void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
499  AU.setPreservesAll();
500  AU.addRequired<BasicAAWrapperPass>();
501
502  // We also need to mark all the alias analysis passes we will potentially
503  // probe in runOnFunction as used here to ensure the legacy pass manager
504  // preserves them. This hard coding of lists of alias analyses is specific to
505  // the legacy pass manager.
506  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
507  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
508  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
509  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
510  AU.addUsedIfAvailable<SCEVAAWrapperPass>();
511  AU.addUsedIfAvailable<CFLAAWrapperPass>();
512}
513
514AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
515                                        BasicAAResult &BAR) {
516  AAResults AAR;
517
518  // Add in our explicitly constructed BasicAA results.
519  if (!DisableBasicAA)
520    AAR.addAAResult(BAR);
521
522  // Populate the results with the other currently available AAs.
523  if (auto *WrapperPass =
524          P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
525    AAR.addAAResult(WrapperPass->getResult());
526  if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
527    AAR.addAAResult(WrapperPass->getResult());
528  if (auto *WrapperPass =
529          P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
530    AAR.addAAResult(WrapperPass->getResult());
531  if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
532    AAR.addAAResult(WrapperPass->getResult());
533  if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>())
534    AAR.addAAResult(WrapperPass->getResult());
535  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>())
536    AAR.addAAResult(WrapperPass->getResult());
537
538  return AAR;
539}
540
541/// isNoAliasCall - Return true if this pointer is returned by a noalias
542/// function.
543bool llvm::isNoAliasCall(const Value *V) {
544  if (auto CS = ImmutableCallSite(V))
545    return CS.paramHasAttr(0, Attribute::NoAlias);
546  return false;
547}
548
549/// isNoAliasArgument - Return true if this is an argument with the noalias
550/// attribute.
551bool llvm::isNoAliasArgument(const Value *V)
552{
553  if (const Argument *A = dyn_cast<Argument>(V))
554    return A->hasNoAliasAttr();
555  return false;
556}
557
558/// isIdentifiedObject - Return true if this pointer refers to a distinct and
559/// identifiable object.  This returns true for:
560///    Global Variables and Functions (but not Global Aliases)
561///    Allocas and Mallocs
562///    ByVal and NoAlias Arguments
563///    NoAlias returns
564///
565bool llvm::isIdentifiedObject(const Value *V) {
566  if (isa<AllocaInst>(V))
567    return true;
568  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
569    return true;
570  if (isNoAliasCall(V))
571    return true;
572  if (const Argument *A = dyn_cast<Argument>(V))
573    return A->hasNoAliasAttr() || A->hasByValAttr();
574  return false;
575}
576
577/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
578/// at the function-level. Different IdentifiedFunctionLocals can't alias.
579/// Further, an IdentifiedFunctionLocal can not alias with any function
580/// arguments other than itself, which is not necessarily true for
581/// IdentifiedObjects.
582bool llvm::isIdentifiedFunctionLocal(const Value *V)
583{
584  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
585}
586