i386.h revision 97912
1/* Definitions of target machine for GNU compiler for IA-32.
2   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002 Free Software Foundation, Inc.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37
38/* $FreeBSD: head/contrib/gcc/config/i386/i386.h 97912 2002-06-06 03:39:03Z obrien $ */
39
40
41/* Stubs for half-pic support if not OSF/1 reference platform.  */
42
43#ifndef HALF_PIC_P
44#define HALF_PIC_P() 0
45#define HALF_PIC_NUMBER_PTRS 0
46#define HALF_PIC_NUMBER_REFS 0
47#define HALF_PIC_ENCODE(DECL)
48#define HALF_PIC_DECLARE(NAME)
49#define HALF_PIC_INIT()	error ("half-pic init called on systems that don't support it")
50#define HALF_PIC_ADDRESS_P(X) 0
51#define HALF_PIC_PTR(X) (X)
52#define HALF_PIC_FINISH(STREAM)
53#endif
54
55/* Define the specific costs for a given cpu */
56
57struct processor_costs {
58  const int add;		/* cost of an add instruction */
59  const int lea;		/* cost of a lea instruction */
60  const int shift_var;		/* variable shift costs */
61  const int shift_const;	/* constant shift costs */
62  const int mult_init;		/* cost of starting a multiply */
63  const int mult_bit;		/* cost of multiply per each bit set */
64  const int divide;		/* cost of a divide/mod */
65  int movsx;			/* The cost of movsx operation.  */
66  int movzx;			/* The cost of movzx operation.  */
67  const int large_insn;		/* insns larger than this cost more */
68  const int move_ratio;		/* The threshold of number of scalar
69				   memory-to-memory move insns.  */
70  const int movzbl_load;	/* cost of loading using movzbl */
71  const int int_load[3];	/* cost of loading integer registers
72				   in QImode, HImode and SImode relative
73				   to reg-reg move (2).  */
74  const int int_store[3];	/* cost of storing integer register
75				   in QImode, HImode and SImode */
76  const int fp_move;		/* cost of reg,reg fld/fst */
77  const int fp_load[3];		/* cost of loading FP register
78				   in SFmode, DFmode and XFmode */
79  const int fp_store[3];	/* cost of storing FP register
80				   in SFmode, DFmode and XFmode */
81  const int mmx_move;		/* cost of moving MMX register.  */
82  const int mmx_load[2];	/* cost of loading MMX register
83				   in SImode and DImode */
84  const int mmx_store[2];	/* cost of storing MMX register
85				   in SImode and DImode */
86  const int sse_move;		/* cost of moving SSE register.  */
87  const int sse_load[3];	/* cost of loading SSE register
88				   in SImode, DImode and TImode*/
89  const int sse_store[3];	/* cost of storing SSE register
90				   in SImode, DImode and TImode*/
91  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
92				   integer and vice versa.  */
93  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
94  const int simultaneous_prefetches; /* number of parallel prefetch
95				   operations.  */
96};
97
98extern const struct processor_costs *ix86_cost;
99
100/* Run-time compilation parameters selecting different hardware subsets.  */
101
102extern int target_flags;
103
104/* Macros used in the machine description to test the flags.  */
105
106/* configure can arrange to make this 2, to force a 486.  */
107
108#ifndef TARGET_CPU_DEFAULT
109#define TARGET_CPU_DEFAULT 0
110#endif
111
112/* Masks for the -m switches */
113#define MASK_80387		0x00000001	/* Hardware floating point */
114#define MASK_RTD		0x00000002	/* Use ret that pops args */
115#define MASK_ALIGN_DOUBLE	0x00000004	/* align doubles to 2 word boundary */
116#define MASK_SVR3_SHLIB		0x00000008	/* Uninit locals into bss */
117#define MASK_IEEE_FP		0x00000010	/* IEEE fp comparisons */
118#define MASK_FLOAT_RETURNS	0x00000020	/* Return float in st(0) */
119#define MASK_NO_FANCY_MATH_387	0x00000040	/* Disable sin, cos, sqrt */
120#define MASK_OMIT_LEAF_FRAME_POINTER 0x080      /* omit leaf frame pointers */
121#define MASK_STACK_PROBE	0x00000100	/* Enable stack probing */
122#define MASK_NO_ALIGN_STROPS	0x00000200	/* Enable aligning of string ops.  */
123#define MASK_INLINE_ALL_STROPS	0x00000400	/* Inline stringops in all cases */
124#define MASK_NO_PUSH_ARGS	0x00000800	/* Use push instructions */
125#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
126#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
127#define MASK_MMX		0x00004000	/* Support MMX regs/builtins */
128#define MASK_MMX_SET		0x00008000
129#define MASK_SSE		0x00010000	/* Support SSE regs/builtins */
130#define MASK_SSE_SET		0x00020000
131#define MASK_SSE2		0x00040000	/* Support SSE2 regs/builtins */
132#define MASK_SSE2_SET		0x00080000
133#define MASK_3DNOW		0x00100000	/* Support 3Dnow builtins */
134#define MASK_3DNOW_SET		0x00200000
135#define MASK_3DNOW_A		0x00400000	/* Support Athlon 3Dnow builtins */
136#define MASK_3DNOW_A_SET	0x00800000
137#define MASK_128BIT_LONG_DOUBLE 0x01000000	/* long double size is 128bit */
138#define MASK_64BIT		0x02000000	/* Produce 64bit code */
139/* ... overlap with subtarget options starts by 0x04000000.  */
140#define MASK_NO_RED_ZONE	0x04000000	/* Do not use red zone */
141#define MASK_NO_ALIGN_LONG_STRINGS 0x08000000	/* Do not align long strings specially */
142
143/* Use the floating point instructions */
144#define TARGET_80387 (target_flags & MASK_80387)
145
146/* Compile using ret insn that pops args.
147   This will not work unless you use prototypes at least
148   for all functions that can take varying numbers of args.  */
149#define TARGET_RTD (target_flags & MASK_RTD)
150
151/* Align doubles to a two word boundary.  This breaks compatibility with
152   the published ABI's for structures containing doubles, but produces
153   faster code on the pentium.  */
154#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
155
156/* Use push instructions to save outgoing args.  */
157#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
158
159/* Accumulate stack adjustments to prologue/epilogue.  */
160#define TARGET_ACCUMULATE_OUTGOING_ARGS \
161 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
162
163/* Put uninitialized locals into bss, not data.
164   Meaningful only on svr3.  */
165#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
166
167/* Use IEEE floating point comparisons.  These handle correctly the cases
168   where the result of a comparison is unordered.  Normally SIGFPE is
169   generated in such cases, in which case this isn't needed.  */
170#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
171
172/* Functions that return a floating point value may return that value
173   in the 387 FPU or in 386 integer registers.  If set, this flag causes
174   the 387 to be used, which is compatible with most calling conventions.  */
175#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
176
177/* Long double is 128bit instead of 96bit, even when only 80bits are used.
178   This mode wastes cache, but avoid misaligned data accesses and simplifies
179   address calculations.  */
180#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
181
182/* Disable generation of FP sin, cos and sqrt operations for 387.
183   This is because FreeBSD lacks these in the math-emulator-code */
184#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
185
186/* Don't create frame pointers for leaf functions */
187#define TARGET_OMIT_LEAF_FRAME_POINTER \
188  (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
189
190/* Debug GO_IF_LEGITIMATE_ADDRESS */
191#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
192
193/* Debug FUNCTION_ARG macros */
194#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
195
196/* 64bit Sledgehammer mode */
197#ifdef TARGET_BI_ARCH
198#define TARGET_64BIT (target_flags & MASK_64BIT)
199#else
200#ifdef TARGET_64BIT_DEFAULT
201#define TARGET_64BIT 1
202#else
203#define TARGET_64BIT 0
204#endif
205#endif
206
207#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
208#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
209#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
210#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
211#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
212#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
213#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
214
215#define CPUMASK (1 << ix86_cpu)
216extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
217extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
218extern const int x86_branch_hints, x86_unroll_strlen;
219extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
220extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
221extern const int x86_use_cltd, x86_read_modify_write;
222extern const int x86_read_modify, x86_split_long_moves;
223extern const int x86_promote_QImode, x86_single_stringop;
224extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
225extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
226extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
227extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
228extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
229extern const int x86_epilogue_using_move, x86_decompose_lea;
230extern const int x86_arch_always_fancy_math_387;
231extern int x86_prefetch_sse;
232
233#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
234#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
235#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
236#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
237#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
238/* For sane SSE instruction set generation we need fcomi instruction.  It is
239   safe to enable all CMOVE instructions.  */
240#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
241#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
242#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
243#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
244#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
245#define TARGET_MOVX (x86_movx & CPUMASK)
246#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
247#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
248#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
249#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
250#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
251#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
252#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
253#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
254#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
255#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
256#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
257#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
258#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
259#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
260#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
261#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
262#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
263#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
264#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
265#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
266#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
267#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
268#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
269#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
270#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
271
272#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
273
274#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
275#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
276
277#define ASSEMBLER_DIALECT (ix86_asm_dialect)
278
279#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
280#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
281#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
282#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
283			     && (ix86_fpmath & FPMATH_387))
284#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
285#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
286#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
287
288#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
289
290#define TARGET_NO_ALIGN_LONG_STRINGS (target_flags & MASK_NO_ALIGN_LONG_STRINGS)
291
292/* WARNING: Do not mark empty strings for translation, as calling
293            gettext on an empty string does NOT return an empty
294            string. */
295
296
297#define TARGET_SWITCHES							      \
298{ { "80387",			 MASK_80387, N_("Use hardware fp") },	      \
299  { "no-80387",			-MASK_80387, N_("Do not use hardware fp") },  \
300  { "hard-float",		 MASK_80387, N_("Use hardware fp") },	      \
301  { "soft-float",		-MASK_80387, N_("Do not use hardware fp") },  \
302  { "no-soft-float",		 MASK_80387, N_("Use hardware fp") },	      \
303  { "386",			 0, "" /*Deprecated.*/},		      \
304  { "486",			 0, "" /*Deprecated.*/},		      \
305  { "pentium",			 0, "" /*Deprecated.*/},		      \
306  { "pentiumpro",		 0, "" /*Deprecated.*/},		      \
307  { "intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
308  { "no-intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
309  { "rtd",			 MASK_RTD,				      \
310    N_("Alternate calling convention") },				      \
311  { "no-rtd",			-MASK_RTD,				      \
312    N_("Use normal calling convention") },				      \
313  { "align-double",		 MASK_ALIGN_DOUBLE,			      \
314    N_("Align some doubles on dword boundary") },			      \
315  { "no-align-double",		-MASK_ALIGN_DOUBLE,			      \
316    N_("Align doubles on word boundary") },				      \
317  { "svr3-shlib",		 MASK_SVR3_SHLIB,			      \
318    N_("Uninitialized locals in .bss")  },				      \
319  { "no-svr3-shlib",		-MASK_SVR3_SHLIB,			      \
320    N_("Uninitialized locals in .data") },				      \
321  { "ieee-fp",			 MASK_IEEE_FP,				      \
322    N_("Use IEEE math for fp comparisons") },				      \
323  { "no-ieee-fp",		-MASK_IEEE_FP,				      \
324    N_("Do not use IEEE math for fp comparisons") },			      \
325  { "fp-ret-in-387",		 MASK_FLOAT_RETURNS,			      \
326    N_("Return values of functions in FPU registers") },		      \
327  { "no-fp-ret-in-387",		-MASK_FLOAT_RETURNS ,			      \
328    N_("Do not return values of functions in FPU registers")},		      \
329  { "no-fancy-math-387",	 MASK_NO_FANCY_MATH_387,		      \
330    N_("Do not generate sin, cos, sqrt for FPU") },			      \
331  { "fancy-math-387",		-MASK_NO_FANCY_MATH_387,		      \
332     N_("Generate sin, cos, sqrt for FPU")},				      \
333  { "omit-leaf-frame-pointer",	 MASK_OMIT_LEAF_FRAME_POINTER,		      \
334    N_("Omit the frame pointer in leaf functions") },			      \
335  { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" },	      \
336  { "stack-arg-probe",		 MASK_STACK_PROBE,			      \
337    N_("Enable stack probing") },					      \
338  { "no-stack-arg-probe",	-MASK_STACK_PROBE, "" },		      \
339  { "windows",			0, 0 /* undocumented */ },		      \
340  { "dll",			0,  0 /* undocumented */ },		      \
341  { "align-stringops",		-MASK_NO_ALIGN_STROPS,			      \
342    N_("Align destination of the string operations") },			      \
343  { "no-align-stringops",	 MASK_NO_ALIGN_STROPS,			      \
344    N_("Do not align destination of the string operations") },		      \
345  { "inline-all-stringops",	 MASK_INLINE_ALL_STROPS,		      \
346    N_("Inline all known string operations") },				      \
347  { "no-inline-all-stringops",	-MASK_INLINE_ALL_STROPS,		      \
348    N_("Do not inline all known string operations") },			      \
349  { "push-args",		-MASK_NO_PUSH_ARGS,			      \
350    N_("Use push instructions to save outgoing arguments") },		      \
351  { "no-push-args",		MASK_NO_PUSH_ARGS,			      \
352    N_("Do not use push instructions to save outgoing arguments") },	      \
353  { "accumulate-outgoing-args",	(MASK_ACCUMULATE_OUTGOING_ARGS		      \
354				 | MASK_ACCUMULATE_OUTGOING_ARGS_SET),	      \
355    N_("Use push instructions to save outgoing arguments") },		      \
356  { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET,	      \
357    N_("Do not use push instructions to save outgoing arguments") },	      \
358  { "mmx",			 MASK_MMX | MASK_MMX_SET,		      \
359    N_("Support MMX built-in functions") },				      \
360  { "no-mmx",			 -MASK_MMX,				      \
361    N_("Do not support MMX built-in functions") },			      \
362  { "no-mmx",			 MASK_MMX_SET, "" },			      \
363  { "3dnow",                     MASK_3DNOW | MASK_3DNOW_SET,		      \
364    N_("Support 3DNow! built-in functions") },				      \
365  { "no-3dnow",                  -MASK_3DNOW, "" },			      \
366  { "no-3dnow",                  MASK_3DNOW_SET,			      \
367    N_("Do not support 3DNow! built-in functions") },			      \
368  { "sse",			 MASK_SSE | MASK_SSE_SET,		      \
369    N_("Support MMX and SSE built-in functions and code generation") },	      \
370  { "no-sse",			 -MASK_SSE, "" },	 		      \
371  { "no-sse",			 MASK_SSE_SET,				      \
372    N_("Do not support MMX and SSE built-in functions and code generation") },\
373  { "sse2",			 MASK_SSE2 | MASK_SSE2_SET,		      \
374    N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
375  { "no-sse2",			 -MASK_SSE2, "" },			      \
376  { "no-sse2",			 MASK_SSE2_SET,				      \
377    N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") },    \
378  { "128bit-long-double",	 MASK_128BIT_LONG_DOUBLE,		      \
379    N_("sizeof(long double) is 16") },					      \
380  { "96bit-long-double",	-MASK_128BIT_LONG_DOUBLE,		      \
381    N_("sizeof(long double) is 12") },					      \
382  { "64",			MASK_64BIT,				      \
383    N_("Generate 64bit x86-64 code") },					      \
384  { "32",			-MASK_64BIT,				      \
385    N_("Generate 32bit i386 code") },					      \
386  { "red-zone",			-MASK_NO_RED_ZONE,			      \
387    N_("Use red-zone in the x86-64 code") },				      \
388  { "no-red-zone",		MASK_NO_RED_ZONE,			      \
389    N_("Do not use red-zone in the x86-64 code") },			      \
390  { "no-align-long-strings",	 MASK_NO_ALIGN_LONG_STRINGS,		      \
391    N_("Do not align long strings specially") },			      \
392  { "align-long-strings",	-MASK_NO_ALIGN_LONG_STRINGS,		      \
393    N_("Align strings longer than 30 on a 32-byte boundary") },		      \
394  SUBTARGET_SWITCHES							      \
395  { "", TARGET_DEFAULT, 0 }}
396
397#ifdef TARGET_64BIT_DEFAULT
398#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
399#else
400#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
401#endif
402
403/* Which processor to schedule for. The cpu attribute defines a list that
404   mirrors this list, so changes to i386.md must be made at the same time.  */
405
406enum processor_type
407{
408  PROCESSOR_I386,			/* 80386 */
409  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
410  PROCESSOR_PENTIUM,
411  PROCESSOR_PENTIUMPRO,
412  PROCESSOR_K6,
413  PROCESSOR_ATHLON,
414  PROCESSOR_PENTIUM4,
415  PROCESSOR_max
416};
417enum fpmath_unit
418{
419  FPMATH_387 = 1,
420  FPMATH_SSE = 2
421};
422
423extern enum processor_type ix86_cpu;
424extern enum fpmath_unit ix86_fpmath;
425
426extern int ix86_arch;
427
428/* This macro is similar to `TARGET_SWITCHES' but defines names of
429   command options that have values.  Its definition is an
430   initializer with a subgrouping for each command option.
431
432   Each subgrouping contains a string constant, that defines the
433   fixed part of the option name, and the address of a variable.  The
434   variable, type `char *', is set to the variable part of the given
435   option if the fixed part matches.  The actual option name is made
436   by appending `-m' to the specified name.  */
437#define TARGET_OPTIONS						\
438{ { "cpu=",		&ix86_cpu_string,			\
439    N_("Schedule code for given CPU")},				\
440  { "fpmath=",		&ix86_fpmath_string,			\
441    N_("Generate floating point mathematics using given instruction set")},\
442  { "arch=",		&ix86_arch_string,			\
443    N_("Generate code for given CPU")},				\
444  { "regparm=",		&ix86_regparm_string,			\
445    N_("Number of registers used to pass integer arguments") },	\
446  { "align-loops=",	&ix86_align_loops_string,		\
447    N_("Loop code aligned to this power of 2") },		\
448  { "align-jumps=",	&ix86_align_jumps_string,		\
449    N_("Jump targets are aligned to this power of 2") },	\
450  { "align-functions=",	&ix86_align_funcs_string,		\
451    N_("Function starts are aligned to this power of 2") },	\
452  { "preferred-stack-boundary=",				\
453    &ix86_preferred_stack_boundary_string,			\
454    N_("Attempt to keep stack aligned to this power of 2") },	\
455  { "branch-cost=",	&ix86_branch_cost_string,		\
456    N_("Branches are this expensive (1-5, arbitrary units)") },	\
457  { "cmodel=", &ix86_cmodel_string,				\
458    N_("Use given x86-64 code model") },			\
459  { "debug-arg", &ix86_debug_arg_string,			\
460    "" /* Undocumented. */ },					\
461  { "debug-addr", &ix86_debug_addr_string,			\
462    "" /* Undocumented. */ },					\
463  { "asm=", &ix86_asm_string,					\
464    N_("Use given assembler dialect") },			\
465  SUBTARGET_OPTIONS						\
466}
467
468/* Sometimes certain combinations of command options do not make
469   sense on a particular target machine.  You can define a macro
470   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
471   defined, is executed once just after all the command options have
472   been parsed.
473
474   Don't use this macro to turn on various extra optimizations for
475   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
476
477#define OVERRIDE_OPTIONS override_options ()
478
479/* These are meant to be redefined in the host dependent files */
480#define SUBTARGET_SWITCHES
481#define SUBTARGET_OPTIONS
482
483/* Define this to change the optimizations performed by default.  */
484#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
485  optimization_options ((LEVEL), (SIZE))
486
487/* Specs for the compiler proper */
488
489#ifndef CC1_CPU_SPEC
490#define CC1_CPU_SPEC "\
491%{!mcpu*: \
492%{m386:-mcpu=i386 \
493%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
494%{m486:-mcpu=i486 \
495%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
496%{mpentium:-mcpu=pentium \
497%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
498%{mpentiumpro:-mcpu=pentiumpro \
499%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
500%{mintel-syntax:-masm=intel \
501%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
502%{mno-intel-syntax:-masm=att \
503%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
504#endif
505
506#define TARGET_CPU_DEFAULT_i386 0
507#define TARGET_CPU_DEFAULT_i486 1
508#define TARGET_CPU_DEFAULT_pentium 2
509#define TARGET_CPU_DEFAULT_pentium_mmx 3
510#define TARGET_CPU_DEFAULT_pentiumpro 4
511#define TARGET_CPU_DEFAULT_pentium2 5
512#define TARGET_CPU_DEFAULT_pentium3 6
513#define TARGET_CPU_DEFAULT_pentium4 7
514#define TARGET_CPU_DEFAULT_k6 8
515#define TARGET_CPU_DEFAULT_k6_2 9
516#define TARGET_CPU_DEFAULT_k6_3 10
517#define TARGET_CPU_DEFAULT_athlon 11
518#define TARGET_CPU_DEFAULT_athlon_sse 12
519
520#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
521				  "pentiumpro", "pentium2", "pentium3", \
522				  "pentium4", "k6", "k6-2", "k6-3",\
523				  "athlon", "athlon-4"}
524#ifndef CPP_CPU_DEFAULT_SPEC
525#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
526#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
527#endif
528#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
529#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
530#endif
531#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
532#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
533#endif
534#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
535#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
536#endif
537#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
538#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
539-D__tune_pentium2__"
540#endif
541#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
542#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
543-D__tune_pentium2__ -D__tune_pentium3__"
544#endif
545#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
546#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
547#endif
548#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
549#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
550#endif
551#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
552#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
553#endif
554#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
555#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
556#endif
557#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
558#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
559#endif
560#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
561#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
562#endif
563#ifndef CPP_CPU_DEFAULT_SPEC
564#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
565#endif
566#endif /* CPP_CPU_DEFAULT_SPEC */
567
568#ifdef TARGET_BI_ARCH
569#define NO_BUILTIN_SIZE_TYPE
570#define NO_BUILTIN_PTRDIFF_TYPE
571#endif
572
573#ifdef NO_BUILTIN_SIZE_TYPE
574#define CPP_CPU32_SIZE_TYPE_SPEC \
575  " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
576#define CPP_CPU64_SIZE_TYPE_SPEC \
577  " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
578#else
579#define CPP_CPU32_SIZE_TYPE_SPEC ""
580#define CPP_CPU64_SIZE_TYPE_SPEC ""
581#endif
582
583#define CPP_CPU32_SPEC \
584  "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
585-D__i386__ %(cpp_cpu32sizet)"
586
587#define CPP_CPU64_SPEC \
588  "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
589
590#define CPP_CPUCOMMON_SPEC "\
591%{march=i386:%{!mcpu*:-D__tune_i386__ }}\
592%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
593%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
594  %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
595%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
596  -D__pentium__mmx__ \
597  %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
598%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
599  -D__pentiumpro -D__pentiumpro__ \
600  %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
601%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
602%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
603  %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
604%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
605  %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
606%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
607  %{!mcpu*:-D__tune_athlon__ }}\
608%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
609  -D__athlon_sse__ \
610  %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
611%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
612%{m386|mcpu=i386:-D__tune_i386__ }\
613%{m486|mcpu=i486:-D__tune_i486__ }\
614%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
615%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \
616-D__tune_pentiumpro__ }\
617%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
618%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
619-D__tune_athlon__ }\
620%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
621-D__tune_athlon_sse__ }\
622%{mcpu=pentium4:-D__tune_pentium4__ }\
623%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\
624-D__SSE__ }\
625%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
626|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
627|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\
628%{march=k6-2|march=k6-3\
629|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
630|march=athlon-mp: -D__3dNOW__ }\
631%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
632|march=athlon-mp: -D__3dNOW_A__ }\
633%{march=pentium4: -D__SSE2__ }\
634%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
635
636#ifndef CPP_CPU_SPEC
637#ifdef TARGET_BI_ARCH
638#ifdef TARGET_64BIT_DEFAULT
639#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
640#else
641#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
642#endif
643#else
644#ifdef TARGET_64BIT_DEFAULT
645#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
646#else
647#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
648#endif
649#endif
650#endif
651
652#ifndef CC1_SPEC
653#define CC1_SPEC "%(cc1_cpu) "
654#endif
655
656/* This macro defines names of additional specifications to put in the
657   specs that can be used in various specifications like CC1_SPEC.  Its
658   definition is an initializer with a subgrouping for each command option.
659
660   Each subgrouping contains a string constant, that defines the
661   specification name, and a string constant that used by the GNU CC driver
662   program.
663
664   Do not define this macro if it does not need to do anything.  */
665
666#ifndef SUBTARGET_EXTRA_SPECS
667#define SUBTARGET_EXTRA_SPECS
668#endif
669
670#define EXTRA_SPECS							\
671  { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },				\
672  { "cpp_cpu",	CPP_CPU_SPEC },						\
673  { "cpp_cpu32", CPP_CPU32_SPEC },					\
674  { "cpp_cpu64", CPP_CPU64_SPEC },					\
675  { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC },			\
676  { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC },			\
677  { "cpp_cpucommon", CPP_CPUCOMMON_SPEC },				\
678  { "cc1_cpu",  CC1_CPU_SPEC },						\
679  SUBTARGET_EXTRA_SPECS
680
681/* target machine storage layout */
682
683/* Define for XFmode or TFmode extended real floating point support.
684   This will automatically cause REAL_ARITHMETIC to be defined.
685
686   The XFmode is specified by i386 ABI, while TFmode may be faster
687   due to alignment and simplifications in the address calculations.
688 */
689#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
690#define MAX_LONG_DOUBLE_TYPE_SIZE 128
691#ifdef __x86_64__
692#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
693#else
694#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
695#endif
696/* Tell real.c that this is the 80-bit Intel extended float format
697   packaged in a 128-bit or 96bit entity.  */
698#define INTEL_EXTENDED_IEEE_FORMAT 1
699
700
701#define SHORT_TYPE_SIZE 16
702#define INT_TYPE_SIZE 32
703#define FLOAT_TYPE_SIZE 32
704#ifndef LONG_TYPE_SIZE
705#define LONG_TYPE_SIZE BITS_PER_WORD
706#endif
707#define MAX_WCHAR_TYPE_SIZE 32
708#define DOUBLE_TYPE_SIZE 64
709#define LONG_LONG_TYPE_SIZE 64
710
711#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
712#define MAX_BITS_PER_WORD 64
713#define MAX_LONG_TYPE_SIZE 64
714#else
715#define MAX_BITS_PER_WORD 32
716#define MAX_LONG_TYPE_SIZE 32
717#endif
718
719/* Define if you don't want extended real, but do want to use the
720   software floating point emulator for REAL_ARITHMETIC and
721   decimal <-> binary conversion.  */
722/* #define REAL_ARITHMETIC */
723
724/* Define this if most significant byte of a word is the lowest numbered.  */
725/* That is true on the 80386.  */
726
727#define BITS_BIG_ENDIAN 0
728
729/* Define this if most significant byte of a word is the lowest numbered.  */
730/* That is not true on the 80386.  */
731#define BYTES_BIG_ENDIAN 0
732
733/* Define this if most significant word of a multiword number is the lowest
734   numbered.  */
735/* Not true for 80386 */
736#define WORDS_BIG_ENDIAN 0
737
738/* number of bits in an addressable storage unit */
739#define BITS_PER_UNIT 8
740
741/* Width in bits of a "word", which is the contents of a machine register.
742   Note that this is not necessarily the width of data type `int';
743   if using 16-bit ints on a 80386, this would still be 32.
744   But on a machine with 16-bit registers, this would be 16.  */
745#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
746
747/* Width of a word, in units (bytes).  */
748#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
749#define MIN_UNITS_PER_WORD 4
750
751/* Width in bits of a pointer.
752   See also the macro `Pmode' defined below.  */
753#define POINTER_SIZE BITS_PER_WORD
754
755/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
756#define PARM_BOUNDARY BITS_PER_WORD
757
758/* Boundary (in *bits*) on which stack pointer should be aligned.  */
759#define STACK_BOUNDARY BITS_PER_WORD
760
761/* Boundary (in *bits*) on which the stack pointer preferrs to be
762   aligned; the compiler cannot rely on having this alignment.  */
763#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
764
765/* As of July 2001, many runtimes to not align the stack properly when
766   entering main.  This causes expand_main_function to forcably align
767   the stack, which results in aligned frames for functions called from
768   main, though it does nothing for the alignment of main itself.  */
769#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
770  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
771
772/* Allocation boundary for the code of a function.  */
773#define FUNCTION_BOUNDARY 16
774
775/* Alignment of field after `int : 0' in a structure.  */
776
777#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
778
779/* Minimum size in bits of the largest boundary to which any
780   and all fundamental data types supported by the hardware
781   might need to be aligned. No data type wants to be aligned
782   rounder than this.
783
784   Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
785   and Pentium Pro XFmode values at 128 bit boundaries.  */
786
787#define BIGGEST_ALIGNMENT 128
788
789/* Decide whether a variable of mode MODE must be 128 bit aligned.  */
790#define ALIGN_MODE_128(MODE) \
791 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
792  || (MODE) == V4SFmode	|| (MODE) == V4SImode)
793
794/* The published ABIs say that doubles should be aligned on word
795   boundaries, so lower the aligment for structure fields unless
796   -malign-double is set.  */
797/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
798   constant.  Use the smaller value in that context.  */
799#ifndef IN_TARGET_LIBS
800#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
801#else
802#define BIGGEST_FIELD_ALIGNMENT 32
803#endif
804
805/* If defined, a C expression to compute the alignment given to a
806   constant that is being placed in memory.  EXP is the constant
807   and ALIGN is the alignment that the object would ordinarily have.
808   The value of this macro is used instead of that alignment to align
809   the object.
810
811   If this macro is not defined, then ALIGN is used.
812
813   The typical use of this macro is to increase alignment for string
814   constants to be word aligned so that `strcpy' calls that copy
815   constants can be done inline.  */
816
817#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
818
819/* If defined, a C expression to compute the alignment for a static
820   variable.  TYPE is the data type, and ALIGN is the alignment that
821   the object would ordinarily have.  The value of this macro is used
822   instead of that alignment to align the object.
823
824   If this macro is not defined, then ALIGN is used.
825
826   One use of this macro is to increase alignment of medium-size
827   data to make it all fit in fewer cache lines.  Another is to
828   cause character arrays to be word-aligned so that `strcpy' calls
829   that copy constants to character arrays can be done inline.  */
830
831#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
832
833/* If defined, a C expression to compute the alignment for a local
834   variable.  TYPE is the data type, and ALIGN is the alignment that
835   the object would ordinarily have.  The value of this macro is used
836   instead of that alignment to align the object.
837
838   If this macro is not defined, then ALIGN is used.
839
840   One use of this macro is to increase alignment of medium-size
841   data to make it all fit in fewer cache lines.  */
842
843#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
844
845/* If defined, a C expression that gives the alignment boundary, in
846   bits, of an argument with the specified mode and type.  If it is
847   not defined, `PARM_BOUNDARY' is used for all arguments.  */
848
849#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
850  ix86_function_arg_boundary ((MODE), (TYPE))
851
852/* Set this non-zero if move instructions will actually fail to work
853   when given unaligned data.  */
854#define STRICT_ALIGNMENT 0
855
856/* If bit field type is int, don't let it cross an int,
857   and give entire struct the alignment of an int.  */
858/* Required on the 386 since it doesn't have bitfield insns.  */
859#define PCC_BITFIELD_TYPE_MATTERS 1
860
861/* Standard register usage.  */
862
863/* This processor has special stack-like registers.  See reg-stack.c
864   for details.  */
865
866#define STACK_REGS
867#define IS_STACK_MODE(MODE)					\
868  ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode	\
869   || (MODE) == TFmode)
870
871/* Number of actual hardware registers.
872   The hardware registers are assigned numbers for the compiler
873   from 0 to just below FIRST_PSEUDO_REGISTER.
874   All registers that the compiler knows about must be given numbers,
875   even those that are not normally considered general registers.
876
877   In the 80386 we give the 8 general purpose registers the numbers 0-7.
878   We number the floating point registers 8-15.
879   Note that registers 0-7 can be accessed as a  short or int,
880   while only 0-3 may be used with byte `mov' instructions.
881
882   Reg 16 does not correspond to any hardware register, but instead
883   appears in the RTL as an argument pointer prior to reload, and is
884   eliminated during reloading in favor of either the stack or frame
885   pointer.  */
886
887#define FIRST_PSEUDO_REGISTER 53
888
889/* Number of hardware registers that go into the DWARF-2 unwind info.
890   If not defined, equals FIRST_PSEUDO_REGISTER.  */
891
892#define DWARF_FRAME_REGISTERS 17
893
894/* 1 for registers that have pervasive standard uses
895   and are not available for the register allocator.
896   On the 80386, the stack pointer is such, as is the arg pointer.
897
898   The value is an mask - bit 1 is set for fixed registers
899   for 32bit target, while 2 is set for fixed registers for 64bit.
900   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
901 */
902#define FIXED_REGISTERS						\
903/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
904{  0, 0, 0, 0, 0, 0, 0, 3, 0,  0,  0,  0,  0,  0,  0,  0,	\
905/*arg,flags,fpsr,dir,frame*/					\
906    3,    3,   3,  3,    3,					\
907/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
908     0,   0,   0,   0,   0,   0,   0,   0,			\
909/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
910     0,   0,   0,   0,   0,   0,   0,   0,			\
911/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
912     1,   1,   1,   1,   1,   1,   1,   1,			\
913/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
914     1,   1,    1,    1,    1,    1,    1,    1}
915
916
917/* 1 for registers not available across function calls.
918   These must include the FIXED_REGISTERS and also any
919   registers that can be used without being saved.
920   The latter must include the registers where values are returned
921   and the register where structure-value addresses are passed.
922   Aside from that, you can include as many other registers as you like.
923
924   The value is an mask - bit 1 is set for call used
925   for 32bit target, while 2 is set for call used for 64bit.
926   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
927*/
928#define CALL_USED_REGISTERS					\
929/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
930{  3, 3, 3, 0, 2, 2, 0, 3, 3,  3,  3,  3,  3,  3,  3,  3,	\
931/*arg,flags,fpsr,dir,frame*/					\
932     3,   3,   3,  3,    3,					\
933/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
934     3,   3,   3,   3,   3,  3,    3,   3,			\
935/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
936     3,   3,   3,   3,   3,   3,   3,   3,			\
937/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
938     3,   3,   3,   3,   1,   1,   1,   1,			\
939/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
940     3,   3,    3,    3,    3,    3,    3,    3}		\
941
942/* Order in which to allocate registers.  Each register must be
943   listed once, even those in FIXED_REGISTERS.  List frame pointer
944   late and fixed registers last.  Note that, in general, we prefer
945   registers listed in CALL_USED_REGISTERS, keeping the others
946   available for storage of persistent values.
947
948   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
949   so this is just empty initializer for array.  */
950
951#define REG_ALLOC_ORDER 					\
952{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
953   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
954   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
955   48, 49, 50, 51, 52 }
956
957/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
958   to be rearranged based on a particular function.  When using sse math,
959   we want to allocase SSE before x87 registers and vice vera.  */
960
961#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
962
963
964/* Macro to conditionally modify fixed_regs/call_used_regs.  */
965#define CONDITIONAL_REGISTER_USAGE					\
966do {									\
967    int i;								\
968    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
969      {									\
970        fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0;	\
971        call_used_regs[i] = (call_used_regs[i]				\
972			     & (TARGET_64BIT ? 2 : 1)) != 0;		\
973      }									\
974    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
975      {									\
976	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
977	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
978      }									\
979    if (! TARGET_MMX)							\
980      {									\
981	int i;								\
982        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
983          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
984	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
985      }									\
986    if (! TARGET_SSE)							\
987      {									\
988	int i;								\
989        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
990          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
991	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
992      }									\
993    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
994      {									\
995	int i;								\
996	HARD_REG_SET x;							\
997        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
998        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
999          if (TEST_HARD_REG_BIT (x, i)) 				\
1000	    fixed_regs[i] = call_used_regs[i] = 1;			\
1001      }									\
1002  } while (0)
1003
1004/* Return number of consecutive hard regs needed starting at reg REGNO
1005   to hold something of mode MODE.
1006   This is ordinarily the length in words of a value of mode MODE
1007   but can be less for certain modes in special long registers.
1008
1009   Actually there are no two word move instructions for consecutive
1010   registers.  And only registers 0-3 may have mov byte instructions
1011   applied to them.
1012   */
1013
1014#define HARD_REGNO_NREGS(REGNO, MODE)   \
1015  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
1016   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1017   : ((MODE) == TFmode							\
1018      ? (TARGET_64BIT ? 2 : 3)						\
1019      : (MODE) == TCmode						\
1020      ? (TARGET_64BIT ? 4 : 6)						\
1021      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1022
1023#define VALID_SSE_REG_MODE(MODE)					\
1024    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1025     || (MODE) == SFmode						\
1026     || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1027
1028#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1029    ((MODE) == V2SFmode || (MODE) == SFmode)
1030
1031#define VALID_MMX_REG_MODE(MODE)					\
1032    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
1033     || (MODE) == V2SImode || (MODE) == SImode)
1034
1035#define VECTOR_MODE_SUPPORTED_P(MODE)					\
1036    (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1			\
1037     : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1			\
1038     : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1039
1040#define VALID_FP_MODE_P(MODE)						\
1041    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode		\
1042     || (!TARGET_64BIT && (MODE) == XFmode)				\
1043     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode	\
1044     || (!TARGET_64BIT && (MODE) == XCmode))
1045
1046#define VALID_INT_MODE_P(MODE)						\
1047    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1048     || (MODE) == DImode						\
1049     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1050     || (MODE) == CDImode						\
1051     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1052
1053/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1054
1055#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1056   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1057
1058/* Value is 1 if it is a good idea to tie two pseudo registers
1059   when one has mode MODE1 and one has mode MODE2.
1060   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1061   for any hard reg, then this must be 0 for correct output.  */
1062
1063#define MODES_TIEABLE_P(MODE1, MODE2)				\
1064  ((MODE1) == (MODE2)						\
1065   || (((MODE1) == HImode || (MODE1) == SImode			\
1066	|| ((MODE1) == QImode					\
1067	    && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1068        || ((MODE1) == DImode && TARGET_64BIT))			\
1069       && ((MODE2) == HImode || (MODE2) == SImode		\
1070	   || ((MODE1) == QImode				\
1071	       && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1072	   || ((MODE2) == DImode && TARGET_64BIT))))
1073
1074
1075/* Specify the modes required to caller save a given hard regno.
1076   We do this on i386 to prevent flags from being saved at all.
1077
1078   Kill any attempts to combine saving of modes.  */
1079
1080#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1081  (CC_REGNO_P (REGNO) ? VOIDmode					\
1082   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1083   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS))	\
1084   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
1085   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
1086   : (MODE))
1087/* Specify the registers used for certain standard purposes.
1088   The values of these macros are register numbers.  */
1089
1090/* on the 386 the pc register is %eip, and is not usable as a general
1091   register.  The ordinary mov instructions won't work */
1092/* #define PC_REGNUM  */
1093
1094/* Register to use for pushing function arguments.  */
1095#define STACK_POINTER_REGNUM 7
1096
1097/* Base register for access to local variables of the function.  */
1098#define HARD_FRAME_POINTER_REGNUM 6
1099
1100/* Base register for access to local variables of the function.  */
1101#define FRAME_POINTER_REGNUM 20
1102
1103/* First floating point reg */
1104#define FIRST_FLOAT_REG 8
1105
1106/* First & last stack-like regs */
1107#define FIRST_STACK_REG FIRST_FLOAT_REG
1108#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1109
1110#define FLAGS_REG 17
1111#define FPSR_REG 18
1112#define DIRFLAG_REG 19
1113
1114#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1115#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1116
1117#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1118#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1119
1120#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1121#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1122
1123#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1124#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1125
1126/* Value should be nonzero if functions must have frame pointers.
1127   Zero means the frame pointer need not be set up (and parms
1128   may be accessed via the stack pointer) in functions that seem suitable.
1129   This is computed in `reload', in reload1.c.  */
1130#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1131
1132/* Override this in other tm.h files to cope with various OS losage
1133   requiring a frame pointer.  */
1134#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1135#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1136#endif
1137
1138/* Make sure we can access arbitrary call frames.  */
1139#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1140
1141/* Base register for access to arguments of the function.  */
1142#define ARG_POINTER_REGNUM 16
1143
1144/* Register in which static-chain is passed to a function.
1145   We do use ECX as static chain register for 32 bit ABI.  On the
1146   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1147#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1148
1149/* Register to hold the addressing base for position independent
1150   code access to data items.  We don't use PIC pointer for 64bit
1151   mode.  Define the regnum to dummy value to prevent gcc from
1152   pessimizing code dealing with EBX.  */
1153#define PIC_OFFSET_TABLE_REGNUM \
1154  (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
1155
1156/* Register in which address to store a structure value
1157   arrives in the function.  On the 386, the prologue
1158   copies this from the stack to register %eax.  */
1159#define STRUCT_VALUE_INCOMING 0
1160
1161/* Place in which caller passes the structure value address.
1162   0 means push the value on the stack like an argument.  */
1163#define STRUCT_VALUE 0
1164
1165/* A C expression which can inhibit the returning of certain function
1166   values in registers, based on the type of value.  A nonzero value
1167   says to return the function value in memory, just as large
1168   structures are always returned.  Here TYPE will be a C expression
1169   of type `tree', representing the data type of the value.
1170
1171   Note that values of mode `BLKmode' must be explicitly handled by
1172   this macro.  Also, the option `-fpcc-struct-return' takes effect
1173   regardless of this macro.  On most systems, it is possible to
1174   leave the macro undefined; this causes a default definition to be
1175   used, whose value is the constant 1 for `BLKmode' values, and 0
1176   otherwise.
1177
1178   Do not use this macro to indicate that structures and unions
1179   should always be returned in memory.  You should instead use
1180   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1181
1182#define RETURN_IN_MEMORY(TYPE) \
1183  ix86_return_in_memory (TYPE)
1184
1185
1186/* Define the classes of registers for register constraints in the
1187   machine description.  Also define ranges of constants.
1188
1189   One of the classes must always be named ALL_REGS and include all hard regs.
1190   If there is more than one class, another class must be named NO_REGS
1191   and contain no registers.
1192
1193   The name GENERAL_REGS must be the name of a class (or an alias for
1194   another name such as ALL_REGS).  This is the class of registers
1195   that is allowed by "g" or "r" in a register constraint.
1196   Also, registers outside this class are allocated only when
1197   instructions express preferences for them.
1198
1199   The classes must be numbered in nondecreasing order; that is,
1200   a larger-numbered class must never be contained completely
1201   in a smaller-numbered class.
1202
1203   For any two classes, it is very desirable that there be another
1204   class that represents their union.
1205
1206   It might seem that class BREG is unnecessary, since no useful 386
1207   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1208   and the "b" register constraint is useful in asms for syscalls.
1209
1210   The flags and fpsr registers are in no class.  */
1211
1212enum reg_class
1213{
1214  NO_REGS,
1215  AREG, DREG, CREG, BREG, SIREG, DIREG,
1216  AD_REGS,			/* %eax/%edx for DImode */
1217  Q_REGS,			/* %eax %ebx %ecx %edx */
1218  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1219  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1220  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1221  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1222  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1223  FLOAT_REGS,
1224  SSE_REGS,
1225  MMX_REGS,
1226  FP_TOP_SSE_REGS,
1227  FP_SECOND_SSE_REGS,
1228  FLOAT_SSE_REGS,
1229  FLOAT_INT_REGS,
1230  INT_SSE_REGS,
1231  FLOAT_INT_SSE_REGS,
1232  ALL_REGS, LIM_REG_CLASSES
1233};
1234
1235#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1236
1237#define INTEGER_CLASS_P(CLASS) \
1238  reg_class_subset_p ((CLASS), GENERAL_REGS)
1239#define FLOAT_CLASS_P(CLASS) \
1240  reg_class_subset_p ((CLASS), FLOAT_REGS)
1241#define SSE_CLASS_P(CLASS) \
1242  reg_class_subset_p ((CLASS), SSE_REGS)
1243#define MMX_CLASS_P(CLASS) \
1244  reg_class_subset_p ((CLASS), MMX_REGS)
1245#define MAYBE_INTEGER_CLASS_P(CLASS) \
1246  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1247#define MAYBE_FLOAT_CLASS_P(CLASS) \
1248  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1249#define MAYBE_SSE_CLASS_P(CLASS) \
1250  reg_classes_intersect_p (SSE_REGS, (CLASS))
1251#define MAYBE_MMX_CLASS_P(CLASS) \
1252  reg_classes_intersect_p (MMX_REGS, (CLASS))
1253
1254#define Q_CLASS_P(CLASS) \
1255  reg_class_subset_p ((CLASS), Q_REGS)
1256
1257/* Give names of register classes as strings for dump file.   */
1258
1259#define REG_CLASS_NAMES \
1260{  "NO_REGS",				\
1261   "AREG", "DREG", "CREG", "BREG",	\
1262   "SIREG", "DIREG",			\
1263   "AD_REGS",				\
1264   "Q_REGS", "NON_Q_REGS",		\
1265   "INDEX_REGS",			\
1266   "LEGACY_REGS",			\
1267   "GENERAL_REGS",			\
1268   "FP_TOP_REG", "FP_SECOND_REG",	\
1269   "FLOAT_REGS",			\
1270   "SSE_REGS",				\
1271   "MMX_REGS",				\
1272   "FP_TOP_SSE_REGS",			\
1273   "FP_SECOND_SSE_REGS",		\
1274   "FLOAT_SSE_REGS",			\
1275   "FLOAT_INT_REGS",			\
1276   "INT_SSE_REGS",			\
1277   "FLOAT_INT_SSE_REGS",		\
1278   "ALL_REGS" }
1279
1280/* Define which registers fit in which classes.
1281   This is an initializer for a vector of HARD_REG_SET
1282   of length N_REG_CLASSES.  */
1283
1284#define REG_CLASS_CONTENTS						\
1285{     { 0x00,     0x0 },						\
1286      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1287      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1288      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1289      { 0x03,     0x0 },		/* AD_REGS */			\
1290      { 0x0f,     0x0 },		/* Q_REGS */			\
1291  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1292      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1293  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1294  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1295     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1296    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1297{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1298{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1299{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1300{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1301{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1302   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1303{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1304{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1305{ 0xffffffff,0x1fffff }							\
1306}
1307
1308/* The same information, inverted:
1309   Return the class number of the smallest class containing
1310   reg number REGNO.  This could be a conditional expression
1311   or could index an array.  */
1312
1313#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1314
1315/* When defined, the compiler allows registers explicitly used in the
1316   rtl to be used as spill registers but prevents the compiler from
1317   extending the lifetime of these registers.  */
1318
1319#define SMALL_REGISTER_CLASSES 1
1320
1321#define QI_REG_P(X) \
1322  (REG_P (X) && REGNO (X) < 4)
1323
1324#define GENERAL_REGNO_P(N) \
1325  ((N) < 8 || REX_INT_REGNO_P (N))
1326
1327#define GENERAL_REG_P(X) \
1328  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1329
1330#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1331
1332#define NON_QI_REG_P(X) \
1333  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1334
1335#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1336#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1337
1338#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1339#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1340#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1341#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1342
1343#define SSE_REGNO_P(N) \
1344  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1345   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1346
1347#define SSE_REGNO(N) \
1348  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1349#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1350
1351#define SSE_FLOAT_MODE_P(MODE) \
1352  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1353
1354#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1355#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1356
1357#define STACK_REG_P(XOP)		\
1358  (REG_P (XOP) &&		       	\
1359   REGNO (XOP) >= FIRST_STACK_REG &&	\
1360   REGNO (XOP) <= LAST_STACK_REG)
1361
1362#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1363
1364#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1365
1366#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1367#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1368
1369/* Indicate whether hard register numbered REG_NO should be converted
1370   to SSA form.  */
1371#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1372  ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1373
1374/* The class value for index registers, and the one for base regs.  */
1375
1376#define INDEX_REG_CLASS INDEX_REGS
1377#define BASE_REG_CLASS GENERAL_REGS
1378
1379/* Get reg_class from a letter such as appears in the machine description.  */
1380
1381#define REG_CLASS_FROM_LETTER(C)	\
1382  ((C) == 'r' ? GENERAL_REGS :					\
1383   (C) == 'R' ? LEGACY_REGS :					\
1384   (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :		\
1385   (C) == 'Q' ? Q_REGS :					\
1386   (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1387		 ? FLOAT_REGS					\
1388		 : NO_REGS) :					\
1389   (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1390		 ? FP_TOP_REG					\
1391		 : NO_REGS) :					\
1392   (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1393		 ? FP_SECOND_REG				\
1394		 : NO_REGS) :					\
1395   (C) == 'a' ? AREG :						\
1396   (C) == 'b' ? BREG :						\
1397   (C) == 'c' ? CREG :						\
1398   (C) == 'd' ? DREG :						\
1399   (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :		\
1400   (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :		\
1401   (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :		\
1402   (C) == 'A' ? AD_REGS :					\
1403   (C) == 'D' ? DIREG :						\
1404   (C) == 'S' ? SIREG : NO_REGS)
1405
1406/* The letters I, J, K, L and M in a register constraint string
1407   can be used to stand for particular ranges of immediate operands.
1408   This macro defines what the ranges are.
1409   C is the letter, and VALUE is a constant value.
1410   Return 1 if VALUE is in the range specified by C.
1411
1412   I is for non-DImode shifts.
1413   J is for DImode shifts.
1414   K is for signed imm8 operands.
1415   L is for andsi as zero-extending move.
1416   M is for shifts that can be executed by the "lea" opcode.
1417   N is for immedaite operands for out/in instructions (0-255)
1418   */
1419
1420#define CONST_OK_FOR_LETTER_P(VALUE, C)				\
1421  ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31			\
1422   : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63			\
1423   : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127		\
1424   : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff		\
1425   : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3			\
1426   : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255		\
1427   : 0)
1428
1429/* Similar, but for floating constants, and defining letters G and H.
1430   Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1431   TARGET_387 isn't set, because the stack register converter may need to
1432   load 0.0 into the function value register.  */
1433
1434#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1435  ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1436   : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
1437
1438/* A C expression that defines the optional machine-dependent
1439   constraint letters that can be used to segregate specific types of
1440   operands, usually memory references, for the target machine.  Any
1441   letter that is not elsewhere defined and not matched by
1442   `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1443   be defined.
1444
1445   If it is required for a particular target machine, it should
1446   return 1 if VALUE corresponds to the operand type represented by
1447   the constraint letter C.  If C is not defined as an extra
1448   constraint, the value returned should be 0 regardless of VALUE.  */
1449
1450#define EXTRA_CONSTRAINT(VALUE, C)				\
1451  ((C) == 'e' ? x86_64_sign_extended_value (VALUE)		\
1452   : (C) == 'Z' ? x86_64_zero_extended_value (VALUE)		\
1453   : 0)
1454
1455/* Place additional restrictions on the register class to use when it
1456   is necessary to be able to hold a value of mode MODE in a reload
1457   register for which class CLASS would ordinarily be used.  */
1458
1459#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1460  ((MODE) == QImode && !TARGET_64BIT				\
1461   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1462       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1463   ? Q_REGS : (CLASS))
1464
1465/* Given an rtx X being reloaded into a reg required to be
1466   in class CLASS, return the class of reg to actually use.
1467   In general this is just CLASS; but on some machines
1468   in some cases it is preferable to use a more restrictive class.
1469   On the 80386 series, we prevent floating constants from being
1470   reloaded into floating registers (since no move-insn can do that)
1471   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1472
1473/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1474   QImode must go into class Q_REGS.
1475   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1476   movdf to do mem-to-mem moves through integer regs.  */
1477
1478#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1479   ix86_preferred_reload_class ((X), (CLASS))
1480
1481/* If we are copying between general and FP registers, we need a memory
1482   location. The same is true for SSE and MMX registers.  */
1483#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1484  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1485
1486/* QImode spills from non-QI registers need a scratch.  This does not
1487   happen often -- the only example so far requires an uninitialized
1488   pseudo.  */
1489
1490#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1491  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1492    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1493   ? Q_REGS : NO_REGS)
1494
1495/* Return the maximum number of consecutive registers
1496   needed to represent mode MODE in a register of class CLASS.  */
1497/* On the 80386, this is the size of MODE in words,
1498   except in the FP regs, where a single reg is always enough.
1499   The TFmodes are really just 80bit values, so we use only 3 registers
1500   to hold them, instead of 4, as the size would suggest.
1501 */
1502#define CLASS_MAX_NREGS(CLASS, MODE)					\
1503 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1504  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1505  : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE))		\
1506     + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1507
1508/* A C expression whose value is nonzero if pseudos that have been
1509   assigned to registers of class CLASS would likely be spilled
1510   because registers of CLASS are needed for spill registers.
1511
1512   The default value of this macro returns 1 if CLASS has exactly one
1513   register and zero otherwise.  On most machines, this default
1514   should be used.  Only define this macro to some other expression
1515   if pseudo allocated by `local-alloc.c' end up in memory because
1516   their hard registers were needed for spill registers.  If this
1517   macro returns nonzero for those classes, those pseudos will only
1518   be allocated by `global.c', which knows how to reallocate the
1519   pseudo to another register.  If there would not be another
1520   register available for reallocation, you should not change the
1521   definition of this macro since the only effect of such a
1522   definition would be to slow down register allocation.  */
1523
1524#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1525  (((CLASS) == AREG)							\
1526   || ((CLASS) == DREG)							\
1527   || ((CLASS) == CREG)							\
1528   || ((CLASS) == BREG)							\
1529   || ((CLASS) == AD_REGS)						\
1530   || ((CLASS) == SIREG)						\
1531   || ((CLASS) == DIREG))
1532
1533/* A C statement that adds to CLOBBERS any hard regs the port wishes
1534   to automatically clobber for all asms.
1535
1536   We do this in the new i386 backend to maintain source compatibility
1537   with the old cc0-based compiler.  */
1538
1539#define MD_ASM_CLOBBERS(CLOBBERS)					\
1540  do {									\
1541    (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"),	\
1542			    (CLOBBERS));				\
1543    (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"),	\
1544			    (CLOBBERS));				\
1545    (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"),	\
1546			    (CLOBBERS));				\
1547  } while (0)
1548
1549/* Stack layout; function entry, exit and calling.  */
1550
1551/* Define this if pushing a word on the stack
1552   makes the stack pointer a smaller address.  */
1553#define STACK_GROWS_DOWNWARD
1554
1555/* Define this if the nominal address of the stack frame
1556   is at the high-address end of the local variables;
1557   that is, each additional local variable allocated
1558   goes at a more negative offset in the frame.  */
1559#define FRAME_GROWS_DOWNWARD
1560
1561/* Offset within stack frame to start allocating local variables at.
1562   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1563   first local allocated.  Otherwise, it is the offset to the BEGINNING
1564   of the first local allocated.  */
1565#define STARTING_FRAME_OFFSET 0
1566
1567/* If we generate an insn to push BYTES bytes,
1568   this says how many the stack pointer really advances by.
1569   On 386 pushw decrements by exactly 2 no matter what the position was.
1570   On the 386 there is no pushb; we use pushw instead, and this
1571   has the effect of rounding up to 2.
1572
1573   For 64bit ABI we round up to 8 bytes.
1574 */
1575
1576#define PUSH_ROUNDING(BYTES) \
1577  (TARGET_64BIT		     \
1578   ? (((BYTES) + 7) & (-8))  \
1579   : (((BYTES) + 1) & (-2)))
1580
1581/* If defined, the maximum amount of space required for outgoing arguments will
1582   be computed and placed into the variable
1583   `current_function_outgoing_args_size'.  No space will be pushed onto the
1584   stack for each call; instead, the function prologue should increase the stack
1585   frame size by this amount.  */
1586
1587#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1588
1589/* If defined, a C expression whose value is nonzero when we want to use PUSH
1590   instructions to pass outgoing arguments.  */
1591
1592#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1593
1594/* Offset of first parameter from the argument pointer register value.  */
1595#define FIRST_PARM_OFFSET(FNDECL) 0
1596
1597/* Define this macro if functions should assume that stack space has been
1598   allocated for arguments even when their values are passed in registers.
1599
1600   The value of this macro is the size, in bytes, of the area reserved for
1601   arguments passed in registers for the function represented by FNDECL.
1602
1603   This space can be allocated by the caller, or be a part of the
1604   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1605   which.  */
1606#define REG_PARM_STACK_SPACE(FNDECL) 0
1607
1608/* Define as a C expression that evaluates to nonzero if we do not know how
1609   to pass TYPE solely in registers.  The file expr.h defines a
1610   definition that is usually appropriate, refer to expr.h for additional
1611   documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1612   computed in the stack and then loaded into a register.  */
1613#define MUST_PASS_IN_STACK(MODE, TYPE)				\
1614  ((TYPE) != 0							\
1615   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST		\
1616       || TREE_ADDRESSABLE (TYPE)				\
1617       || ((MODE) == TImode)					\
1618       || ((MODE) == BLKmode 					\
1619	   && ! ((TYPE) != 0					\
1620		 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1621		 && 0 == (int_size_in_bytes (TYPE)		\
1622			  % (PARM_BOUNDARY / BITS_PER_UNIT)))	\
1623	   && (FUNCTION_ARG_PADDING (MODE, TYPE)		\
1624	       == (BYTES_BIG_ENDIAN ? upward : downward)))))
1625
1626/* Value is the number of bytes of arguments automatically
1627   popped when returning from a subroutine call.
1628   FUNDECL is the declaration node of the function (as a tree),
1629   FUNTYPE is the data type of the function (as a tree),
1630   or for a library call it is an identifier node for the subroutine name.
1631   SIZE is the number of bytes of arguments passed on the stack.
1632
1633   On the 80386, the RTD insn may be used to pop them if the number
1634     of args is fixed, but if the number is variable then the caller
1635     must pop them all.  RTD can't be used for library calls now
1636     because the library is compiled with the Unix compiler.
1637   Use of RTD is a selectable option, since it is incompatible with
1638   standard Unix calling sequences.  If the option is not selected,
1639   the caller must always pop the args.
1640
1641   The attribute stdcall is equivalent to RTD on a per module basis.  */
1642
1643#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1644  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1645
1646/* Define how to find the value returned by a function.
1647   VALTYPE is the data type of the value (as a tree).
1648   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1649   otherwise, FUNC is 0.  */
1650#define FUNCTION_VALUE(VALTYPE, FUNC)  \
1651   ix86_function_value (VALTYPE)
1652
1653#define FUNCTION_VALUE_REGNO_P(N) \
1654  ix86_function_value_regno_p (N)
1655
1656/* Define how to find the value returned by a library function
1657   assuming the value has mode MODE.  */
1658
1659#define LIBCALL_VALUE(MODE) \
1660  ix86_libcall_value (MODE)
1661
1662/* Define the size of the result block used for communication between
1663   untyped_call and untyped_return.  The block contains a DImode value
1664   followed by the block used by fnsave and frstor.  */
1665
1666#define APPLY_RESULT_SIZE (8+108)
1667
1668/* 1 if N is a possible register number for function argument passing.  */
1669#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1670
1671/* Define a data type for recording info about an argument list
1672   during the scan of that argument list.  This data type should
1673   hold all necessary information about the function itself
1674   and about the args processed so far, enough to enable macros
1675   such as FUNCTION_ARG to determine where the next arg should go.  */
1676
1677typedef struct ix86_args {
1678  int words;			/* # words passed so far */
1679  int nregs;			/* # registers available for passing */
1680  int regno;			/* next available register number */
1681  int sse_words;		/* # sse words passed so far */
1682  int sse_nregs;		/* # sse registers available for passing */
1683  int sse_regno;		/* next available sse register number */
1684  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1685} CUMULATIVE_ARGS;
1686
1687/* Initialize a variable CUM of type CUMULATIVE_ARGS
1688   for a call to a function whose data type is FNTYPE.
1689   For a library call, FNTYPE is 0.  */
1690
1691#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1692  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1693
1694/* Update the data in CUM to advance over an argument
1695   of mode MODE and data type TYPE.
1696   (TYPE is null for libcalls where that information may not be available.)  */
1697
1698#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1699  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1700
1701/* Define where to put the arguments to a function.
1702   Value is zero to push the argument on the stack,
1703   or a hard register in which to store the argument.
1704
1705   MODE is the argument's machine mode.
1706   TYPE is the data type of the argument (as a tree).
1707    This is null for libcalls where that information may
1708    not be available.
1709   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1710    the preceding args and about the function being called.
1711   NAMED is nonzero if this argument is a named parameter
1712    (otherwise it is an extra parameter matching an ellipsis).  */
1713
1714#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1715  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1716
1717/* For an arg passed partly in registers and partly in memory,
1718   this is the number of registers used.
1719   For args passed entirely in registers or entirely in memory, zero.  */
1720
1721#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1722
1723/* If PIC, we cannot make sibling calls to global functions
1724   because the PLT requires %ebx live.
1725   If we are returning floats on the register stack, we cannot make
1726   sibling calls to functions that return floats.  (The stack adjust
1727   instruction will wind up after the sibcall jump, and not be executed.) */
1728#define FUNCTION_OK_FOR_SIBCALL(DECL)					\
1729  ((DECL)								\
1730   && (! flag_pic || ! TREE_PUBLIC (DECL))				\
1731   && (! TARGET_FLOAT_RETURNS_IN_80387					\
1732       || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL))))	\
1733       || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
1734
1735/* Perform any needed actions needed for a function that is receiving a
1736   variable number of arguments.
1737
1738   CUM is as above.
1739
1740   MODE and TYPE are the mode and type of the current parameter.
1741
1742   PRETEND_SIZE is a variable that should be set to the amount of stack
1743   that must be pushed by the prolog to pretend that our caller pushed
1744   it.
1745
1746   Normally, this macro will push all remaining incoming registers on the
1747   stack and set PRETEND_SIZE to the length of the registers pushed.  */
1748
1749#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL)	\
1750  ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1751			       (NO_RTL))
1752
1753/* Define the `__builtin_va_list' type for the ABI.  */
1754#define BUILD_VA_LIST_TYPE(VALIST) \
1755  ((VALIST) = ix86_build_va_list ())
1756
1757/* Implement `va_start' for varargs and stdarg.  */
1758#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
1759  ix86_va_start ((STDARG), (VALIST), (NEXTARG))
1760
1761/* Implement `va_arg'.  */
1762#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1763  ix86_va_arg ((VALIST), (TYPE))
1764
1765/* This macro is invoked at the end of compilation.  It is used here to
1766   output code for -fpic that will load the return address into %ebx.  */
1767
1768#undef ASM_FILE_END
1769#define ASM_FILE_END(FILE)  ix86_asm_file_end (FILE)
1770
1771/* Output assembler code to FILE to increment profiler label # LABELNO
1772   for profiling a function entry.  */
1773
1774#define FUNCTION_PROFILER(FILE, LABELNO)				\
1775do {									\
1776  if (flag_pic)								\
1777    {									\
1778      fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n",		\
1779	       LPREFIX, (LABELNO));					\
1780      fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n");		\
1781    }									\
1782  else									\
1783    {									\
1784      fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO));	\
1785      fprintf ((FILE), "\tcall\t_mcount\n");				\
1786    }									\
1787} while (0)
1788
1789/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1790   the stack pointer does not matter.  The value is tested only in
1791   functions that have frame pointers.
1792   No definition is equivalent to always zero.  */
1793/* Note on the 386 it might be more efficient not to define this since
1794   we have to restore it ourselves from the frame pointer, in order to
1795   use pop */
1796
1797#define EXIT_IGNORE_STACK 1
1798
1799/* Output assembler code for a block containing the constant parts
1800   of a trampoline, leaving space for the variable parts.  */
1801
1802/* On the 386, the trampoline contains two instructions:
1803     mov #STATIC,ecx
1804     jmp FUNCTION
1805   The trampoline is generated entirely at runtime.  The operand of JMP
1806   is the address of FUNCTION relative to the instruction following the
1807   JMP (which is 5 bytes long).  */
1808
1809/* Length in units of the trampoline for entering a nested function.  */
1810
1811#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1812
1813/* Emit RTL insns to initialize the variable parts of a trampoline.
1814   FNADDR is an RTX for the address of the function's pure code.
1815   CXT is an RTX for the static chain value for the function.  */
1816
1817#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1818  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1819
1820/* Definitions for register eliminations.
1821
1822   This is an array of structures.  Each structure initializes one pair
1823   of eliminable registers.  The "from" register number is given first,
1824   followed by "to".  Eliminations of the same "from" register are listed
1825   in order of preference.
1826
1827   There are two registers that can always be eliminated on the i386.
1828   The frame pointer and the arg pointer can be replaced by either the
1829   hard frame pointer or to the stack pointer, depending upon the
1830   circumstances.  The hard frame pointer is not used before reload and
1831   so it is not eligible for elimination.  */
1832
1833#define ELIMINABLE_REGS					\
1834{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1835 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1836 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1837 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1838
1839/* Given FROM and TO register numbers, say whether this elimination is
1840   allowed.  Frame pointer elimination is automatically handled.
1841
1842   All other eliminations are valid.  */
1843
1844#define CAN_ELIMINATE(FROM, TO) \
1845  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1846
1847/* Define the offset between two registers, one to be eliminated, and the other
1848   its replacement, at the start of a routine.  */
1849
1850#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1851  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1852
1853/* Addressing modes, and classification of registers for them.  */
1854
1855/* #define HAVE_POST_INCREMENT 0 */
1856/* #define HAVE_POST_DECREMENT 0 */
1857
1858/* #define HAVE_PRE_DECREMENT 0 */
1859/* #define HAVE_PRE_INCREMENT 0 */
1860
1861/* Macros to check register numbers against specific register classes.  */
1862
1863/* These assume that REGNO is a hard or pseudo reg number.
1864   They give nonzero only if REGNO is a hard reg of the suitable class
1865   or a pseudo reg currently allocated to a suitable hard reg.
1866   Since they use reg_renumber, they are safe only once reg_renumber
1867   has been allocated, which happens in local-alloc.c.  */
1868
1869#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1870  ((REGNO) < STACK_POINTER_REGNUM 					\
1871   || (REGNO >= FIRST_REX_INT_REG					\
1872       && (REGNO) <= LAST_REX_INT_REG)					\
1873   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1874       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1875   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1876
1877#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1878  ((REGNO) <= STACK_POINTER_REGNUM 					\
1879   || (REGNO) == ARG_POINTER_REGNUM 					\
1880   || (REGNO) == FRAME_POINTER_REGNUM 					\
1881   || (REGNO >= FIRST_REX_INT_REG					\
1882       && (REGNO) <= LAST_REX_INT_REG)					\
1883   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1884       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1885   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1886
1887#define REGNO_OK_FOR_SIREG_P(REGNO) \
1888  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1889#define REGNO_OK_FOR_DIREG_P(REGNO) \
1890  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1891
1892/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1893   and check its validity for a certain class.
1894   We have two alternate definitions for each of them.
1895   The usual definition accepts all pseudo regs; the other rejects
1896   them unless they have been allocated suitable hard regs.
1897   The symbol REG_OK_STRICT causes the latter definition to be used.
1898
1899   Most source files want to accept pseudo regs in the hope that
1900   they will get allocated to the class that the insn wants them to be in.
1901   Source files for reload pass need to be strict.
1902   After reload, it makes no difference, since pseudo regs have
1903   been eliminated by then.  */
1904
1905
1906/* Non strict versions, pseudos are ok */
1907#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1908  (REGNO (X) < STACK_POINTER_REGNUM					\
1909   || (REGNO (X) >= FIRST_REX_INT_REG					\
1910       && REGNO (X) <= LAST_REX_INT_REG)				\
1911   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1912
1913#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1914  (REGNO (X) <= STACK_POINTER_REGNUM					\
1915   || REGNO (X) == ARG_POINTER_REGNUM					\
1916   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1917   || (REGNO (X) >= FIRST_REX_INT_REG					\
1918       && REGNO (X) <= LAST_REX_INT_REG)				\
1919   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1920
1921/* Strict versions, hard registers only */
1922#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1923#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1924
1925#ifndef REG_OK_STRICT
1926#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1927#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1928
1929#else
1930#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1931#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1932#endif
1933
1934/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1935   that is a valid memory address for an instruction.
1936   The MODE argument is the machine mode for the MEM expression
1937   that wants to use this address.
1938
1939   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1940   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1941
1942   See legitimize_pic_address in i386.c for details as to what
1943   constitutes a legitimate address when -fpic is used.  */
1944
1945#define MAX_REGS_PER_ADDRESS 2
1946
1947#define CONSTANT_ADDRESS_P(X)					\
1948  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
1949   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST	\
1950   || GET_CODE (X) == CONST_DOUBLE)
1951
1952/* Nonzero if the constant value X is a legitimate general operand.
1953   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1954
1955#define LEGITIMATE_CONSTANT_P(X) 1
1956
1957#ifdef REG_OK_STRICT
1958#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1959do {									\
1960  if (legitimate_address_p ((MODE), (X), 1))				\
1961    goto ADDR;								\
1962} while (0)
1963
1964#else
1965#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1966do {									\
1967  if (legitimate_address_p ((MODE), (X), 0))				\
1968    goto ADDR;								\
1969} while (0)
1970
1971#endif
1972
1973/* If defined, a C expression to determine the base term of address X.
1974   This macro is used in only one place: `find_base_term' in alias.c.
1975
1976   It is always safe for this macro to not be defined.  It exists so
1977   that alias analysis can understand machine-dependent addresses.
1978
1979   The typical use of this macro is to handle addresses containing
1980   a label_ref or symbol_ref within an UNSPEC.  */
1981
1982#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1983
1984/* Try machine-dependent ways of modifying an illegitimate address
1985   to be legitimate.  If we find one, return the new, valid address.
1986   This macro is used in only one place: `memory_address' in explow.c.
1987
1988   OLDX is the address as it was before break_out_memory_refs was called.
1989   In some cases it is useful to look at this to decide what needs to be done.
1990
1991   MODE and WIN are passed so that this macro can use
1992   GO_IF_LEGITIMATE_ADDRESS.
1993
1994   It is always safe for this macro to do nothing.  It exists to recognize
1995   opportunities to optimize the output.
1996
1997   For the 80386, we handle X+REG by loading X into a register R and
1998   using R+REG.  R will go in a general reg and indexing will be used.
1999   However, if REG is a broken-out memory address or multiplication,
2000   nothing needs to be done because REG can certainly go in a general reg.
2001
2002   When -fpic is used, special handling is needed for symbolic references.
2003   See comments by legitimize_pic_address in i386.c for details.  */
2004
2005#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
2006do {									\
2007  (X) = legitimize_address ((X), (OLDX), (MODE));			\
2008  if (memory_address_p ((MODE), (X)))					\
2009    goto WIN;								\
2010} while (0)
2011
2012#define REWRITE_ADDRESS(X) rewrite_address (X)
2013
2014/* Nonzero if the constant value X is a legitimate general operand
2015   when generating PIC code.  It is given that flag_pic is on and
2016   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2017
2018#define LEGITIMATE_PIC_OPERAND_P(X)		\
2019  (! SYMBOLIC_CONST (X)				\
2020   || legitimate_pic_address_disp_p (X))
2021
2022#define SYMBOLIC_CONST(X)	\
2023  (GET_CODE (X) == SYMBOL_REF						\
2024   || GET_CODE (X) == LABEL_REF						\
2025   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2026
2027/* Go to LABEL if ADDR (a legitimate address expression)
2028   has an effect that depends on the machine mode it is used for.
2029   On the 80386, only postdecrement and postincrement address depend thus
2030   (the amount of decrement or increment being the length of the operand).  */
2031#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2032do {							\
2033 if (GET_CODE (ADDR) == POST_INC			\
2034     || GET_CODE (ADDR) == POST_DEC)			\
2035   goto LABEL;						\
2036} while (0)
2037
2038/* Codes for all the SSE/MMX builtins.  */
2039enum ix86_builtins
2040{
2041  IX86_BUILTIN_ADDPS,
2042  IX86_BUILTIN_ADDSS,
2043  IX86_BUILTIN_DIVPS,
2044  IX86_BUILTIN_DIVSS,
2045  IX86_BUILTIN_MULPS,
2046  IX86_BUILTIN_MULSS,
2047  IX86_BUILTIN_SUBPS,
2048  IX86_BUILTIN_SUBSS,
2049
2050  IX86_BUILTIN_CMPEQPS,
2051  IX86_BUILTIN_CMPLTPS,
2052  IX86_BUILTIN_CMPLEPS,
2053  IX86_BUILTIN_CMPGTPS,
2054  IX86_BUILTIN_CMPGEPS,
2055  IX86_BUILTIN_CMPNEQPS,
2056  IX86_BUILTIN_CMPNLTPS,
2057  IX86_BUILTIN_CMPNLEPS,
2058  IX86_BUILTIN_CMPNGTPS,
2059  IX86_BUILTIN_CMPNGEPS,
2060  IX86_BUILTIN_CMPORDPS,
2061  IX86_BUILTIN_CMPUNORDPS,
2062  IX86_BUILTIN_CMPNEPS,
2063  IX86_BUILTIN_CMPEQSS,
2064  IX86_BUILTIN_CMPLTSS,
2065  IX86_BUILTIN_CMPLESS,
2066  IX86_BUILTIN_CMPGTSS,
2067  IX86_BUILTIN_CMPGESS,
2068  IX86_BUILTIN_CMPNEQSS,
2069  IX86_BUILTIN_CMPNLTSS,
2070  IX86_BUILTIN_CMPNLESS,
2071  IX86_BUILTIN_CMPNGTSS,
2072  IX86_BUILTIN_CMPNGESS,
2073  IX86_BUILTIN_CMPORDSS,
2074  IX86_BUILTIN_CMPUNORDSS,
2075  IX86_BUILTIN_CMPNESS,
2076
2077  IX86_BUILTIN_COMIEQSS,
2078  IX86_BUILTIN_COMILTSS,
2079  IX86_BUILTIN_COMILESS,
2080  IX86_BUILTIN_COMIGTSS,
2081  IX86_BUILTIN_COMIGESS,
2082  IX86_BUILTIN_COMINEQSS,
2083  IX86_BUILTIN_UCOMIEQSS,
2084  IX86_BUILTIN_UCOMILTSS,
2085  IX86_BUILTIN_UCOMILESS,
2086  IX86_BUILTIN_UCOMIGTSS,
2087  IX86_BUILTIN_UCOMIGESS,
2088  IX86_BUILTIN_UCOMINEQSS,
2089
2090  IX86_BUILTIN_CVTPI2PS,
2091  IX86_BUILTIN_CVTPS2PI,
2092  IX86_BUILTIN_CVTSI2SS,
2093  IX86_BUILTIN_CVTSS2SI,
2094  IX86_BUILTIN_CVTTPS2PI,
2095  IX86_BUILTIN_CVTTSS2SI,
2096
2097  IX86_BUILTIN_MAXPS,
2098  IX86_BUILTIN_MAXSS,
2099  IX86_BUILTIN_MINPS,
2100  IX86_BUILTIN_MINSS,
2101
2102  IX86_BUILTIN_LOADAPS,
2103  IX86_BUILTIN_LOADUPS,
2104  IX86_BUILTIN_STOREAPS,
2105  IX86_BUILTIN_STOREUPS,
2106  IX86_BUILTIN_LOADSS,
2107  IX86_BUILTIN_STORESS,
2108  IX86_BUILTIN_MOVSS,
2109
2110  IX86_BUILTIN_MOVHLPS,
2111  IX86_BUILTIN_MOVLHPS,
2112  IX86_BUILTIN_LOADHPS,
2113  IX86_BUILTIN_LOADLPS,
2114  IX86_BUILTIN_STOREHPS,
2115  IX86_BUILTIN_STORELPS,
2116
2117  IX86_BUILTIN_MASKMOVQ,
2118  IX86_BUILTIN_MOVMSKPS,
2119  IX86_BUILTIN_PMOVMSKB,
2120
2121  IX86_BUILTIN_MOVNTPS,
2122  IX86_BUILTIN_MOVNTQ,
2123
2124  IX86_BUILTIN_PACKSSWB,
2125  IX86_BUILTIN_PACKSSDW,
2126  IX86_BUILTIN_PACKUSWB,
2127
2128  IX86_BUILTIN_PADDB,
2129  IX86_BUILTIN_PADDW,
2130  IX86_BUILTIN_PADDD,
2131  IX86_BUILTIN_PADDSB,
2132  IX86_BUILTIN_PADDSW,
2133  IX86_BUILTIN_PADDUSB,
2134  IX86_BUILTIN_PADDUSW,
2135  IX86_BUILTIN_PSUBB,
2136  IX86_BUILTIN_PSUBW,
2137  IX86_BUILTIN_PSUBD,
2138  IX86_BUILTIN_PSUBSB,
2139  IX86_BUILTIN_PSUBSW,
2140  IX86_BUILTIN_PSUBUSB,
2141  IX86_BUILTIN_PSUBUSW,
2142
2143  IX86_BUILTIN_PAND,
2144  IX86_BUILTIN_PANDN,
2145  IX86_BUILTIN_POR,
2146  IX86_BUILTIN_PXOR,
2147
2148  IX86_BUILTIN_PAVGB,
2149  IX86_BUILTIN_PAVGW,
2150
2151  IX86_BUILTIN_PCMPEQB,
2152  IX86_BUILTIN_PCMPEQW,
2153  IX86_BUILTIN_PCMPEQD,
2154  IX86_BUILTIN_PCMPGTB,
2155  IX86_BUILTIN_PCMPGTW,
2156  IX86_BUILTIN_PCMPGTD,
2157
2158  IX86_BUILTIN_PEXTRW,
2159  IX86_BUILTIN_PINSRW,
2160
2161  IX86_BUILTIN_PMADDWD,
2162
2163  IX86_BUILTIN_PMAXSW,
2164  IX86_BUILTIN_PMAXUB,
2165  IX86_BUILTIN_PMINSW,
2166  IX86_BUILTIN_PMINUB,
2167
2168  IX86_BUILTIN_PMULHUW,
2169  IX86_BUILTIN_PMULHW,
2170  IX86_BUILTIN_PMULLW,
2171
2172  IX86_BUILTIN_PSADBW,
2173  IX86_BUILTIN_PSHUFW,
2174
2175  IX86_BUILTIN_PSLLW,
2176  IX86_BUILTIN_PSLLD,
2177  IX86_BUILTIN_PSLLQ,
2178  IX86_BUILTIN_PSRAW,
2179  IX86_BUILTIN_PSRAD,
2180  IX86_BUILTIN_PSRLW,
2181  IX86_BUILTIN_PSRLD,
2182  IX86_BUILTIN_PSRLQ,
2183  IX86_BUILTIN_PSLLWI,
2184  IX86_BUILTIN_PSLLDI,
2185  IX86_BUILTIN_PSLLQI,
2186  IX86_BUILTIN_PSRAWI,
2187  IX86_BUILTIN_PSRADI,
2188  IX86_BUILTIN_PSRLWI,
2189  IX86_BUILTIN_PSRLDI,
2190  IX86_BUILTIN_PSRLQI,
2191
2192  IX86_BUILTIN_PUNPCKHBW,
2193  IX86_BUILTIN_PUNPCKHWD,
2194  IX86_BUILTIN_PUNPCKHDQ,
2195  IX86_BUILTIN_PUNPCKLBW,
2196  IX86_BUILTIN_PUNPCKLWD,
2197  IX86_BUILTIN_PUNPCKLDQ,
2198
2199  IX86_BUILTIN_SHUFPS,
2200
2201  IX86_BUILTIN_RCPPS,
2202  IX86_BUILTIN_RCPSS,
2203  IX86_BUILTIN_RSQRTPS,
2204  IX86_BUILTIN_RSQRTSS,
2205  IX86_BUILTIN_SQRTPS,
2206  IX86_BUILTIN_SQRTSS,
2207
2208  IX86_BUILTIN_UNPCKHPS,
2209  IX86_BUILTIN_UNPCKLPS,
2210
2211  IX86_BUILTIN_ANDPS,
2212  IX86_BUILTIN_ANDNPS,
2213  IX86_BUILTIN_ORPS,
2214  IX86_BUILTIN_XORPS,
2215
2216  IX86_BUILTIN_EMMS,
2217  IX86_BUILTIN_LDMXCSR,
2218  IX86_BUILTIN_STMXCSR,
2219  IX86_BUILTIN_SFENCE,
2220
2221  /* 3DNow! Original */
2222  IX86_BUILTIN_FEMMS,
2223  IX86_BUILTIN_PAVGUSB,
2224  IX86_BUILTIN_PF2ID,
2225  IX86_BUILTIN_PFACC,
2226  IX86_BUILTIN_PFADD,
2227  IX86_BUILTIN_PFCMPEQ,
2228  IX86_BUILTIN_PFCMPGE,
2229  IX86_BUILTIN_PFCMPGT,
2230  IX86_BUILTIN_PFMAX,
2231  IX86_BUILTIN_PFMIN,
2232  IX86_BUILTIN_PFMUL,
2233  IX86_BUILTIN_PFRCP,
2234  IX86_BUILTIN_PFRCPIT1,
2235  IX86_BUILTIN_PFRCPIT2,
2236  IX86_BUILTIN_PFRSQIT1,
2237  IX86_BUILTIN_PFRSQRT,
2238  IX86_BUILTIN_PFSUB,
2239  IX86_BUILTIN_PFSUBR,
2240  IX86_BUILTIN_PI2FD,
2241  IX86_BUILTIN_PMULHRW,
2242
2243  /* 3DNow! Athlon Extensions */
2244  IX86_BUILTIN_PF2IW,
2245  IX86_BUILTIN_PFNACC,
2246  IX86_BUILTIN_PFPNACC,
2247  IX86_BUILTIN_PI2FW,
2248  IX86_BUILTIN_PSWAPDSI,
2249  IX86_BUILTIN_PSWAPDSF,
2250
2251  IX86_BUILTIN_SSE_ZERO,
2252  IX86_BUILTIN_MMX_ZERO,
2253
2254  IX86_BUILTIN_MAX
2255};
2256
2257/* Define this macro if references to a symbol must be treated
2258   differently depending on something about the variable or
2259   function named by the symbol (such as what section it is in).
2260
2261   On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
2262   so that we may access it directly in the GOT.  */
2263
2264#define ENCODE_SECTION_INFO(DECL)				\
2265do {								\
2266    if (flag_pic)						\
2267      {								\
2268	rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'	\
2269		   ? TREE_CST_RTL (DECL) : DECL_RTL (DECL));	\
2270								\
2271	if (GET_CODE (rtl) == MEM)				\
2272	  {							\
2273	    if (TARGET_DEBUG_ADDR				\
2274		&& TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd')	\
2275	      {							\
2276		fprintf (stderr, "Encode %s, public = %d\n",	\
2277			 IDENTIFIER_POINTER (DECL_NAME (DECL)),	\
2278			 TREE_PUBLIC (DECL));			\
2279	      }							\
2280	    							\
2281	    SYMBOL_REF_FLAG (XEXP (rtl, 0))			\
2282	      = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'	\
2283		 || ! TREE_PUBLIC (DECL));			\
2284	  }							\
2285      }								\
2286} while (0)
2287
2288/* The `FINALIZE_PIC' macro serves as a hook to emit these special
2289   codes once the function is being compiled into assembly code, but
2290   not before.  (It is not done before, because in the case of
2291   compiling an inline function, it would lead to multiple PIC
2292   prologues being included in functions which used inline functions
2293   and were compiled to assembly language.)  */
2294
2295#define FINALIZE_PIC \
2296  (current_function_uses_pic_offset_table |= current_function_profile)
2297
2298
2299/* Max number of args passed in registers.  If this is more than 3, we will
2300   have problems with ebx (register #4), since it is a caller save register and
2301   is also used as the pic register in ELF.  So for now, don't allow more than
2302   3 registers to be passed in registers.  */
2303
2304#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2305
2306#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2307
2308
2309/* Specify the machine mode that this machine uses
2310   for the index in the tablejump instruction.  */
2311#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2312
2313/* Define as C expression which evaluates to nonzero if the tablejump
2314   instruction expects the table to contain offsets from the address of the
2315   table.
2316   Do not define this if the table should contain absolute addresses.  */
2317/* #define CASE_VECTOR_PC_RELATIVE 1 */
2318
2319/* Define this as 1 if `char' should by default be signed; else as 0.  */
2320#define DEFAULT_SIGNED_CHAR 1
2321
2322/* Number of bytes moved into a data cache for a single prefetch operation.  */
2323#define PREFETCH_BLOCK ix86_cost->prefetch_block
2324
2325/* Number of prefetch operations that can be done in parallel.  */
2326#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2327
2328/* Max number of bytes we can move from memory to memory
2329   in one reasonably fast instruction.  */
2330#define MOVE_MAX 16
2331
2332/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2333   move efficiently, as opposed to  MOVE_MAX which is the maximum
2334   number of bytes we can move with a single instruction.  */
2335#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2336
2337/* If a memory-to-memory move would take MOVE_RATIO or more simple
2338   move-instruction pairs, we will do a movstr or libcall instead.
2339   Increasing the value will always make code faster, but eventually
2340   incurs high cost in increased code size.
2341
2342   If you don't define this, a reasonable default is used.  */
2343
2344#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2345
2346/* Define if shifts truncate the shift count
2347   which implies one can omit a sign-extension or zero-extension
2348   of a shift count.  */
2349/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
2350
2351/* #define SHIFT_COUNT_TRUNCATED */
2352
2353/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2354   is done just by pretending it is already truncated.  */
2355#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2356
2357/* We assume that the store-condition-codes instructions store 0 for false
2358   and some other value for true.  This is the value stored for true.  */
2359
2360#define STORE_FLAG_VALUE 1
2361
2362/* When a prototype says `char' or `short', really pass an `int'.
2363   (The 386 can't easily push less than an int.)  */
2364
2365#define PROMOTE_PROTOTYPES (!TARGET_64BIT)
2366
2367/* A macro to update M and UNSIGNEDP when an object whose type is
2368   TYPE and which has the specified mode and signedness is to be
2369   stored in a register.  This macro is only called when TYPE is a
2370   scalar type.
2371
2372   On i386 it is sometimes useful to promote HImode and QImode
2373   quantities to SImode.  The choice depends on target type.  */
2374
2375#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
2376do {							\
2377  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
2378      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
2379    (MODE) = SImode;					\
2380} while (0)
2381
2382/* Specify the machine mode that pointers have.
2383   After generation of rtl, the compiler makes no further distinction
2384   between pointers and any other objects of this machine mode.  */
2385#define Pmode (TARGET_64BIT ? DImode : SImode)
2386
2387/* A function address in a call instruction
2388   is a byte address (for indexing purposes)
2389   so give the MEM rtx a byte's mode.  */
2390#define FUNCTION_MODE QImode
2391
2392/* A part of a C `switch' statement that describes the relative costs
2393   of constant RTL expressions.  It must contain `case' labels for
2394   expression codes `const_int', `const', `symbol_ref', `label_ref'
2395   and `const_double'.  Each case must ultimately reach a `return'
2396   statement to return the relative cost of the use of that kind of
2397   constant value in an expression.  The cost may depend on the
2398   precise value of the constant, which is available for examination
2399   in X, and the rtx code of the expression in which it is contained,
2400   found in OUTER_CODE.
2401
2402   CODE is the expression code--redundant, since it can be obtained
2403   with `GET_CODE (X)'.  */
2404
2405#define CONST_COSTS(RTX, CODE, OUTER_CODE)			\
2406  case CONST_INT:						\
2407  case CONST:							\
2408  case LABEL_REF:						\
2409  case SYMBOL_REF:						\
2410    if (TARGET_64BIT && !x86_64_sign_extended_value (RTX))	\
2411      return 3;							\
2412    if (TARGET_64BIT && !x86_64_zero_extended_value (RTX))	\
2413      return 2;							\
2414    return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0;		\
2415								\
2416  case CONST_DOUBLE:						\
2417    {								\
2418      int code;							\
2419      if (GET_MODE (RTX) == VOIDmode)				\
2420	return 0;						\
2421								\
2422      code = standard_80387_constant_p (RTX);			\
2423      return code == 1 ? 1 :					\
2424	     code == 2 ? 2 :					\
2425			 3;					\
2426    }
2427
2428/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2429#define TOPLEVEL_COSTS_N_INSNS(N) \
2430  do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2431
2432/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2433   This can be used, for example, to indicate how costly a multiply
2434   instruction is.  In writing this macro, you can use the construct
2435   `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2436   instructions.  OUTER_CODE is the code of the expression in which X
2437   is contained.
2438
2439   This macro is optional; do not define it if the default cost
2440   assumptions are adequate for the target machine.  */
2441
2442#define RTX_COSTS(X, CODE, OUTER_CODE)					\
2443  case ZERO_EXTEND:							\
2444    /* The zero extensions is often completely free on x86_64, so make	\
2445       it as cheap as possible.  */					\
2446    if (TARGET_64BIT && GET_MODE (X) == DImode				\
2447	&& GET_MODE (XEXP (X, 0)) == SImode)				\
2448      {									\
2449	total = 1; goto egress_rtx_costs;				\
2450      } 								\
2451    else								\
2452      TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ?		\
2453			      ix86_cost->add : ix86_cost->movzx);	\
2454    break;								\
2455  case SIGN_EXTEND:							\
2456    TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx);				\
2457    break;								\
2458  case ASHIFT:								\
2459    if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
2460	&& (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT))		\
2461      {									\
2462	HOST_WIDE_INT value = INTVAL (XEXP (X, 1));			\
2463	if (value == 1)							\
2464	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);			\
2465	if ((value == 2 || value == 3)					\
2466	    && !TARGET_DECOMPOSE_LEA					\
2467	    && ix86_cost->lea <= ix86_cost->shift_const)		\
2468	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea);			\
2469      }									\
2470    /* fall through */							\
2471		  							\
2472  case ROTATE:								\
2473  case ASHIFTRT:							\
2474  case LSHIFTRT:							\
2475  case ROTATERT:							\
2476    if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode)		\
2477      {									\
2478	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2479	  {								\
2480	    if (INTVAL (XEXP (X, 1)) > 32)				\
2481	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2);	\
2482	    else							\
2483	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2);	\
2484	  }								\
2485	else								\
2486	  {								\
2487	    if (GET_CODE (XEXP (X, 1)) == AND)				\
2488	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2);		\
2489	    else							\
2490	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2);	\
2491	  }								\
2492      }									\
2493    else								\
2494      {									\
2495	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2496	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const);		\
2497	else								\
2498	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var);		\
2499      }									\
2500    break;								\
2501									\
2502  case MULT:								\
2503    if (GET_CODE (XEXP (X, 1)) == CONST_INT)				\
2504      {									\
2505	unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1));		\
2506	int nbits = 0;							\
2507									\
2508	while (value != 0)						\
2509	  {								\
2510	    nbits++;							\
2511	    value >>= 1;						\
2512	  } 								\
2513									\
2514	TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2515			        + nbits * ix86_cost->mult_bit);		\
2516      }									\
2517    else			/* This is arbitrary */			\
2518      TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2519			      + 7 * ix86_cost->mult_bit);		\
2520									\
2521  case DIV:								\
2522  case UDIV:								\
2523  case MOD:								\
2524  case UMOD:								\
2525    TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide);				\
2526									\
2527  case PLUS:								\
2528    if (!TARGET_DECOMPOSE_LEA						\
2529	&& INTEGRAL_MODE_P (GET_MODE (X))				\
2530	&& GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode))	\
2531      {									\
2532        if (GET_CODE (XEXP (X, 0)) == PLUS				\
2533	    && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT			\
2534	    && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT	\
2535	    && CONSTANT_P (XEXP (X, 1)))				\
2536	  {								\
2537	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2538	    if (val == 2 || val == 4 || val == 8)			\
2539	      {								\
2540		return (COSTS_N_INSNS (ix86_cost->lea)			\
2541			+ rtx_cost (XEXP (XEXP (X, 0), 1),		\
2542				    (OUTER_CODE))			\
2543			+ rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0),	\
2544				    (OUTER_CODE))			\
2545			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2546	      }								\
2547	  }								\
2548	else if (GET_CODE (XEXP (X, 0)) == MULT				\
2549		 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)	\
2550	  {								\
2551	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1));		\
2552	    if (val == 2 || val == 4 || val == 8)			\
2553	      {								\
2554		return (COSTS_N_INSNS (ix86_cost->lea)			\
2555			+ rtx_cost (XEXP (XEXP (X, 0), 0),		\
2556				    (OUTER_CODE))			\
2557			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2558	      }								\
2559	  }								\
2560	else if (GET_CODE (XEXP (X, 0)) == PLUS)			\
2561	  {								\
2562	    return (COSTS_N_INSNS (ix86_cost->lea)			\
2563		    + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE))	\
2564		    + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE))	\
2565		    + rtx_cost (XEXP (X, 1), (OUTER_CODE)));		\
2566	  }								\
2567      }									\
2568									\
2569    /* fall through */							\
2570  case AND:								\
2571  case IOR:								\
2572  case XOR:								\
2573  case MINUS:								\
2574    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2575      return (COSTS_N_INSNS (ix86_cost->add) * 2			\
2576	      + (rtx_cost (XEXP (X, 0), (OUTER_CODE))			\
2577	         << (GET_MODE (XEXP (X, 0)) != DImode))			\
2578	      + (rtx_cost (XEXP (X, 1), (OUTER_CODE))			\
2579 	         << (GET_MODE (XEXP (X, 1)) != DImode)));		\
2580									\
2581    /* fall through */							\
2582  case NEG:								\
2583  case NOT:								\
2584    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2585      TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2);			\
2586    TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);				\
2587									\
2588  egress_rtx_costs:							\
2589    break;
2590
2591
2592/* An expression giving the cost of an addressing mode that contains
2593   ADDRESS.  If not defined, the cost is computed from the ADDRESS
2594   expression and the `CONST_COSTS' values.
2595
2596   For most CISC machines, the default cost is a good approximation
2597   of the true cost of the addressing mode.  However, on RISC
2598   machines, all instructions normally have the same length and
2599   execution time.  Hence all addresses will have equal costs.
2600
2601   In cases where more than one form of an address is known, the form
2602   with the lowest cost will be used.  If multiple forms have the
2603   same, lowest, cost, the one that is the most complex will be used.
2604
2605   For example, suppose an address that is equal to the sum of a
2606   register and a constant is used twice in the same basic block.
2607   When this macro is not defined, the address will be computed in a
2608   register and memory references will be indirect through that
2609   register.  On machines where the cost of the addressing mode
2610   containing the sum is no higher than that of a simple indirect
2611   reference, this will produce an additional instruction and
2612   possibly require an additional register.  Proper specification of
2613   this macro eliminates this overhead for such machines.
2614
2615   Similar use of this macro is made in strength reduction of loops.
2616
2617   ADDRESS need not be valid as an address.  In such a case, the cost
2618   is not relevant and can be any value; invalid addresses need not be
2619   assigned a different cost.
2620
2621   On machines where an address involving more than one register is as
2622   cheap as an address computation involving only one register,
2623   defining `ADDRESS_COST' to reflect this can cause two registers to
2624   be live over a region of code where only one would have been if
2625   `ADDRESS_COST' were not defined in that manner.  This effect should
2626   be considered in the definition of this macro.  Equivalent costs
2627   should probably only be given to addresses with different numbers
2628   of registers on machines with lots of registers.
2629
2630   This macro will normally either not be defined or be defined as a
2631   constant.
2632
2633   For i386, it is better to use a complex address than let gcc copy
2634   the address into a reg and make a new pseudo.  But not if the address
2635   requires to two regs - that would mean more pseudos with longer
2636   lifetimes.  */
2637
2638#define ADDRESS_COST(RTX) \
2639  ix86_address_cost (RTX)
2640
2641/* A C expression for the cost of moving data from a register in class FROM to
2642   one in class TO.  The classes are expressed using the enumeration values
2643   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
2644   interpreted relative to that.
2645
2646   It is not required that the cost always equal 2 when FROM is the same as TO;
2647   on some machines it is expensive to move between registers if they are not
2648   general registers.  */
2649
2650#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2651   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2652
2653/* A C expression for the cost of moving data of mode M between a
2654   register and memory.  A value of 2 is the default; this cost is
2655   relative to those in `REGISTER_MOVE_COST'.
2656
2657   If moving between registers and memory is more expensive than
2658   between two registers, you should define this macro to express the
2659   relative cost.  */
2660
2661#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
2662  ix86_memory_move_cost ((MODE), (CLASS), (IN))
2663
2664/* A C expression for the cost of a branch instruction.  A value of 1
2665   is the default; other values are interpreted relative to that.  */
2666
2667#define BRANCH_COST ix86_branch_cost
2668
2669/* Define this macro as a C expression which is nonzero if accessing
2670   less than a word of memory (i.e. a `char' or a `short') is no
2671   faster than accessing a word of memory, i.e., if such access
2672   require more than one instruction or if there is no difference in
2673   cost between byte and (aligned) word loads.
2674
2675   When this macro is not defined, the compiler will access a field by
2676   finding the smallest containing object; when it is defined, a
2677   fullword load will be used if alignment permits.  Unless bytes
2678   accesses are faster than word accesses, using word accesses is
2679   preferable since it may eliminate subsequent memory access if
2680   subsequent accesses occur to other fields in the same word of the
2681   structure, but to different bytes.  */
2682
2683#define SLOW_BYTE_ACCESS 0
2684
2685/* Nonzero if access to memory by shorts is slow and undesirable.  */
2686#define SLOW_SHORT_ACCESS 0
2687
2688/* Define this macro to be the value 1 if unaligned accesses have a
2689   cost many times greater than aligned accesses, for example if they
2690   are emulated in a trap handler.
2691
2692   When this macro is non-zero, the compiler will act as if
2693   `STRICT_ALIGNMENT' were non-zero when generating code for block
2694   moves.  This can cause significantly more instructions to be
2695   produced.  Therefore, do not set this macro non-zero if unaligned
2696   accesses only add a cycle or two to the time for a memory access.
2697
2698   If the value of this macro is always zero, it need not be defined.  */
2699
2700/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2701
2702/* Define this macro to inhibit strength reduction of memory
2703   addresses.  (On some machines, such strength reduction seems to do
2704   harm rather than good.)  */
2705
2706/* #define DONT_REDUCE_ADDR */
2707
2708/* Define this macro if it is as good or better to call a constant
2709   function address than to call an address kept in a register.
2710
2711   Desirable on the 386 because a CALL with a constant address is
2712   faster than one with a register address.  */
2713
2714#define NO_FUNCTION_CSE
2715
2716/* Define this macro if it is as good or better for a function to call
2717   itself with an explicit address than to call an address kept in a
2718   register.  */
2719
2720#define NO_RECURSIVE_FUNCTION_CSE
2721
2722/* Add any extra modes needed to represent the condition code.
2723
2724   For the i386, we need separate modes when floating-point
2725   equality comparisons are being done.
2726
2727   Add CCNO to indicate comparisons against zero that requires
2728   Overflow flag to be unset.  Sign bit test is used instead and
2729   thus can be used to form "a&b>0" type of tests.
2730
2731   Add CCGC to indicate comparisons agains zero that allows
2732   unspecified garbage in the Carry flag.  This mode is used
2733   by inc/dec instructions.
2734
2735   Add CCGOC to indicate comparisons agains zero that allows
2736   unspecified garbage in the Carry and Overflow flag. This
2737   mode is used to simulate comparisons of (a-b) and (a+b)
2738   against zero using sub/cmp/add operations.
2739
2740   Add CCZ to indicate that only the Zero flag is valid.  */
2741
2742#define EXTRA_CC_MODES		\
2743	CC (CCGCmode, "CCGC")	\
2744	CC (CCGOCmode, "CCGOC")	\
2745	CC (CCNOmode, "CCNO")	\
2746	CC (CCZmode, "CCZ")	\
2747	CC (CCFPmode, "CCFP")	\
2748	CC (CCFPUmode, "CCFPU")
2749
2750/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2751   return the mode to be used for the comparison.
2752
2753   For floating-point equality comparisons, CCFPEQmode should be used.
2754   VOIDmode should be used in all other cases.
2755
2756   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2757   possible, to allow for more combinations.  */
2758
2759#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2760
2761/* Return non-zero if MODE implies a floating point inequality can be
2762   reversed.  */
2763
2764#define REVERSIBLE_CC_MODE(MODE) 1
2765
2766/* A C expression whose value is reversed condition code of the CODE for
2767   comparison done in CC_MODE mode.  */
2768#define REVERSE_CONDITION(CODE, MODE) \
2769  ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2770   : reverse_condition_maybe_unordered (CODE))
2771
2772
2773/* Control the assembler format that we output, to the extent
2774   this does not vary between assemblers.  */
2775
2776/* How to refer to registers in assembler output.
2777   This sequence is indexed by compiler's hard-register-number (see above).  */
2778
2779/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2780   For non floating point regs, the following are the HImode names.
2781
2782   For float regs, the stack top is sometimes referred to as "%st(0)"
2783   instead of just "%st".  PRINT_REG handles this with the "y" code.  */
2784
2785#undef  HI_REGISTER_NAMES
2786#define HI_REGISTER_NAMES						\
2787{"ax","dx","cx","bx","si","di","bp","sp",				\
2788 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","",	\
2789 "flags","fpsr", "dirflag", "frame",					\
2790 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2791 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
2792 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2793 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2794
2795#define REGISTER_NAMES HI_REGISTER_NAMES
2796
2797/* Table of additional register names to use in user input.  */
2798
2799#define ADDITIONAL_REGISTER_NAMES \
2800{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
2801  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
2802  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
2803  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
2804  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
2805  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },		\
2806  { "mm0", 8},  { "mm1", 9},  { "mm2", 10}, { "mm3", 11},	\
2807  { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2808
2809/* Note we are omitting these since currently I don't know how
2810to get gcc to use these, since they want the same but different
2811number as al, and ax.
2812*/
2813
2814#define QI_REGISTER_NAMES \
2815{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2816
2817/* These parallel the array above, and can be used to access bits 8:15
2818   of regs 0 through 3.  */
2819
2820#define QI_HIGH_REGISTER_NAMES \
2821{"ah", "dh", "ch", "bh", }
2822
2823/* How to renumber registers for dbx and gdb.  */
2824
2825#define DBX_REGISTER_NUMBER(N) \
2826  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2827
2828extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2829extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2830extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2831
2832/* Before the prologue, RA is at 0(%esp).  */
2833#define INCOMING_RETURN_ADDR_RTX \
2834  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2835
2836/* After the prologue, RA is at -4(AP) in the current frame.  */
2837#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2838  ((COUNT) == 0								   \
2839   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2840   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2841
2842/* PC is dbx register 8; let's use that column for RA.  */
2843#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2844
2845/* Before the prologue, the top of the frame is at 4(%esp).  */
2846#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2847
2848/* Describe how we implement __builtin_eh_return.  */
2849#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2850#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2851
2852
2853/* Select a format to encode pointers in exception handling data.  CODE
2854   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2855   true if the symbol may be affected by dynamic relocations.
2856
2857   ??? All x86 object file formats are capable of representing this.
2858   After all, the relocation needed is the same as for the call insn.
2859   Whether or not a particular assembler allows us to enter such, I
2860   guess we'll have to see.  */
2861#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2862  (flag_pic								\
2863    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2864   : DW_EH_PE_absptr)
2865
2866/* This is how to output the definition of a user-level label named NAME,
2867   such as the label on a static function or variable NAME.  */
2868
2869#define ASM_OUTPUT_LABEL(FILE, NAME)	\
2870  (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
2871
2872/* Store in OUTPUT a string (made with alloca) containing
2873   an assembler-name for a local static variable named NAME.
2874   LABELNO is an integer which is different for each call.  */
2875
2876#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2877( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2878  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2879
2880/* This is how to output an insn to push a register on the stack.
2881   It need not be very fast code.  */
2882
2883#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2884  asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
2885
2886/* This is how to output an insn to pop a register from the stack.
2887   It need not be very fast code.  */
2888
2889#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2890  asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
2891
2892/* This is how to output an element of a case-vector that is absolute.  */
2893
2894#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2895  ix86_output_addr_vec_elt ((FILE), (VALUE))
2896
2897/* This is how to output an element of a case-vector that is relative.  */
2898
2899#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2900  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2901
2902/* Under some conditions we need jump tables in the text section, because
2903   the assembler cannot handle label differences between sections.  */
2904
2905#define JUMP_TABLES_IN_TEXT_SECTION \
2906  (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2907
2908/* A C statement that outputs an address constant appropriate to
2909   for DWARF debugging.  */
2910
2911#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2912  i386_dwarf_output_addr_const ((FILE), (X))
2913
2914/* Either simplify a location expression, or return the original.  */
2915
2916#define ASM_SIMPLIFY_DWARF_ADDR(X) \
2917  i386_simplify_dwarf_addr (X)
2918
2919/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2920   and switch back.  For x86 we do this only to save a few bytes that
2921   would otherwise be unused in the text section.  */
2922#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2923   asm (SECTION_OP "\n\t"				\
2924	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2925	TEXT_SECTION_ASM_OP);
2926
2927/* Print operand X (an rtx) in assembler syntax to file FILE.
2928   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2929   Effect of various CODE letters is described in i386.c near
2930   print_operand function.  */
2931
2932#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2933  ((CODE) == '*' || (CODE) == '+')
2934
2935/* Print the name of a register based on its machine mode and number.
2936   If CODE is 'w', pretend the mode is HImode.
2937   If CODE is 'b', pretend the mode is QImode.
2938   If CODE is 'k', pretend the mode is SImode.
2939   If CODE is 'q', pretend the mode is DImode.
2940   If CODE is 'h', pretend the reg is the `high' byte register.
2941   If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.  */
2942
2943#define PRINT_REG(X, CODE, FILE)  \
2944  print_reg ((X), (CODE), (FILE))
2945
2946#define PRINT_OPERAND(FILE, X, CODE)  \
2947  print_operand ((FILE), (X), (CODE))
2948
2949#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2950  print_operand_address ((FILE), (ADDR))
2951
2952/* Print the name of a register for based on its machine mode and number.
2953   This macro is used to print debugging output.
2954   This macro is different from PRINT_REG in that it may be used in
2955   programs that are not linked with aux-output.o.  */
2956
2957#define DEBUG_PRINT_REG(X, CODE, FILE)			\
2958  do { static const char * const hi_name[] = HI_REGISTER_NAMES;	\
2959       static const char * const qi_name[] = QI_REGISTER_NAMES;	\
2960       fprintf ((FILE), "%d ", REGNO (X));		\
2961       if (REGNO (X) == FLAGS_REG)			\
2962	 { fputs ("flags", (FILE)); break; }		\
2963       if (REGNO (X) == DIRFLAG_REG)			\
2964	 { fputs ("dirflag", (FILE)); break; }		\
2965       if (REGNO (X) == FPSR_REG)			\
2966	 { fputs ("fpsr", (FILE)); break; }		\
2967       if (REGNO (X) == ARG_POINTER_REGNUM)		\
2968	 { fputs ("argp", (FILE)); break; }		\
2969       if (REGNO (X) == FRAME_POINTER_REGNUM)		\
2970	 { fputs ("frame", (FILE)); break; }		\
2971       if (STACK_TOP_P (X))				\
2972	 { fputs ("st(0)", (FILE)); break; }		\
2973       if (FP_REG_P (X))				\
2974	 { fputs (hi_name[REGNO(X)], (FILE)); break; }	\
2975       if (REX_INT_REG_P (X))				\
2976	 {						\
2977	   switch (GET_MODE_SIZE (GET_MODE (X)))	\
2978	     {						\
2979	     default:					\
2980	     case 8:					\
2981	       fprintf ((FILE), "r%i", REGNO (X)	\
2982			- FIRST_REX_INT_REG + 8);	\
2983	       break;					\
2984	     case 4:					\
2985	       fprintf ((FILE), "r%id", REGNO (X)	\
2986			- FIRST_REX_INT_REG + 8);	\
2987	       break;					\
2988	     case 2:					\
2989	       fprintf ((FILE), "r%iw", REGNO (X)	\
2990			- FIRST_REX_INT_REG + 8);	\
2991	       break;					\
2992	     case 1:					\
2993	       fprintf ((FILE), "r%ib", REGNO (X)	\
2994			- FIRST_REX_INT_REG + 8);	\
2995	       break;					\
2996	     }						\
2997	   break;					\
2998	 }						\
2999       switch (GET_MODE_SIZE (GET_MODE (X)))		\
3000	 {						\
3001	 case 8:					\
3002	   fputs ("r", (FILE));				\
3003	   fputs (hi_name[REGNO (X)], (FILE));		\
3004	   break;					\
3005	 default:					\
3006	   fputs ("e", (FILE));				\
3007	 case 2:					\
3008	   fputs (hi_name[REGNO (X)], (FILE));		\
3009	   break;					\
3010	 case 1:					\
3011	   fputs (qi_name[REGNO (X)], (FILE));		\
3012	   break;					\
3013	 }						\
3014     } while (0)
3015
3016/* a letter which is not needed by the normal asm syntax, which
3017   we can use for operand syntax in the extended asm */
3018
3019#define ASM_OPERAND_LETTER '#'
3020#define RET return ""
3021#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3022
3023/* Define the codes that are matched by predicates in i386.c.  */
3024
3025#define PREDICATE_CODES							\
3026  {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG,			\
3027				SYMBOL_REF, LABEL_REF, CONST}},		\
3028  {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG,			\
3029				SYMBOL_REF, LABEL_REF, CONST}},		\
3030  {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG,			\
3031				SYMBOL_REF, LABEL_REF, CONST}},		\
3032  {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG,		\
3033				     SYMBOL_REF, LABEL_REF, CONST}},	\
3034  {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM,		\
3035			      SYMBOL_REF, LABEL_REF, CONST}},		\
3036  {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM,	\
3037				   SYMBOL_REF, LABEL_REF, CONST}},	\
3038  {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST,	\
3039				       SYMBOL_REF, LABEL_REF}},		\
3040  {"shiftdi_operand", {SUBREG, REG, MEM}},				\
3041  {"const_int_1_operand", {CONST_INT}},					\
3042  {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
3043  {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3044		       LABEL_REF, SUBREG, REG, MEM}},			\
3045  {"pic_symbolic_operand", {CONST}},					\
3046  {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}},		\
3047  {"constant_call_address_operand", {SYMBOL_REF, CONST}},		\
3048  {"const0_operand", {CONST_INT, CONST_DOUBLE}},			\
3049  {"const1_operand", {CONST_INT}},					\
3050  {"const248_operand", {CONST_INT}},					\
3051  {"incdec_operand", {CONST_INT}},					\
3052  {"mmx_reg_operand", {REG}},						\
3053  {"reg_no_sp_operand", {SUBREG, REG}},					\
3054  {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST,		\
3055			SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}},	\
3056  {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}},		\
3057  {"q_regs_operand", {SUBREG, REG}},					\
3058  {"non_q_regs_operand", {SUBREG, REG}},				\
3059  {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3060				 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE,	\
3061				 GE, UNGE, LTGT, UNEQ}},		\
3062  {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT,	\
3063			       ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT	\
3064			       }},					\
3065  {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU,	\
3066			       GTU, UNORDERED, ORDERED, UNLE, UNLT,	\
3067			       UNGE, UNGT, LTGT, UNEQ }},		\
3068  {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}},	\
3069  {"ext_register_operand", {SUBREG, REG}},				\
3070  {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}},			\
3071  {"mult_operator", {MULT}},						\
3072  {"div_operator", {DIV}},						\
3073  {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3074				 UMIN, UMAX, COMPARE, MINUS, DIV, MOD,	\
3075				 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT,	\
3076				 LSHIFTRT, ROTATERT}},			\
3077  {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}},	\
3078  {"memory_displacement_operand", {MEM}},				\
3079  {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3080		     LABEL_REF, SUBREG, REG, MEM, AND}},		\
3081  {"long_memory_operand", {MEM}},
3082
3083/* A list of predicates that do special things with modes, and so
3084   should not elicit warnings for VOIDmode match_operand.  */
3085
3086#define SPECIAL_MODE_PREDICATES \
3087  "ext_register_operand",
3088
3089/* CM_32 is used by 32bit ABI
3090   CM_SMALL is small model assuming that all code and data fits in the first
3091   31bits of address space.
3092   CM_KERNEL is model assuming that all code and data fits in the negative
3093   31bits of address space.
3094   CM_MEDIUM is model assuming that code fits in the first 31bits of address
3095   space.  Size of data is unlimited.
3096   CM_LARGE is model making no assumptions about size of particular sections.
3097
3098   CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
3099   tables first in 31bits of address space.
3100 */
3101enum cmodel {
3102  CM_32,
3103  CM_SMALL,
3104  CM_KERNEL,
3105  CM_MEDIUM,
3106  CM_LARGE,
3107  CM_SMALL_PIC
3108};
3109
3110/* Size of the RED_ZONE area.  */
3111#define RED_ZONE_SIZE 128
3112/* Reserved area of the red zone for temporaries.  */
3113#define RED_ZONE_RESERVE 8
3114extern const char *ix86_debug_arg_string, *ix86_debug_addr_string;
3115
3116enum asm_dialect {
3117  ASM_ATT,
3118  ASM_INTEL
3119};
3120extern const char *ix86_asm_string;
3121extern enum asm_dialect ix86_asm_dialect;
3122/* Value of -mcmodel specified by user.  */
3123extern const char *ix86_cmodel_string;
3124extern enum cmodel ix86_cmodel;
3125
3126/* Variables in i386.c */
3127extern const char *ix86_cpu_string;		/* for -mcpu=<xxx> */
3128extern const char *ix86_arch_string;		/* for -march=<xxx> */
3129extern const char *ix86_fpmath_string;		/* for -mfpmath=<xxx> */
3130extern const char *ix86_regparm_string;		/* # registers to use to pass args */
3131extern const char *ix86_align_loops_string;	/* power of two alignment for loops */
3132extern const char *ix86_align_jumps_string;	/* power of two alignment for non-loop jumps */
3133extern const char *ix86_align_funcs_string;	/* power of two alignment for functions */
3134extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
3135extern const char *ix86_branch_cost_string;	/* values 1-5: see jump.c */
3136extern int ix86_regparm;			/* ix86_regparm_string as a number */
3137extern int ix86_preferred_stack_boundary;	/* preferred stack boundary alignment in bits */
3138extern int ix86_branch_cost;			/* values 1-5: see jump.c */
3139extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
3140extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
3141extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
3142
3143/* To properly truncate FP values into integers, we need to set i387 control
3144   word.  We can't emit proper mode switching code before reload, as spills
3145   generated by reload may truncate values incorrectly, but we still can avoid
3146   redundant computation of new control word by the mode switching pass.
3147   The fldcw instructions are still emitted redundantly, but this is probably
3148   not going to be noticeable problem, as most CPUs do have fast path for
3149   the sequence.
3150
3151   The machinery is to emit simple truncation instructions and split them
3152   before reload to instructions having USEs of two memory locations that
3153   are filled by this code to old and new control word.
3154
3155   Post-reload pass may be later used to eliminate the redundant fildcw if
3156   needed.  */
3157
3158enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3159
3160/* Define this macro if the port needs extra instructions inserted
3161   for mode switching in an optimizing compilation.  */
3162
3163#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3164
3165/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3166   initializer for an array of integers.  Each initializer element N
3167   refers to an entity that needs mode switching, and specifies the
3168   number of different modes that might need to be set for this
3169   entity.  The position of the initializer in the initializer -
3170   starting counting at zero - determines the integer that is used to
3171   refer to the mode-switched entity in question.  */
3172
3173#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3174
3175/* ENTITY is an integer specifying a mode-switched entity.  If
3176   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3177   return an integer value not larger than the corresponding element
3178   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3179   must be switched into prior to the execution of INSN.  */
3180
3181#define MODE_NEEDED(ENTITY, I)						\
3182  (GET_CODE (I) == CALL_INSN						\
3183   || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 	\
3184				|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
3185   ? FP_CW_UNINITIALIZED						\
3186   : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP		\
3187   ? FP_CW_ANY								\
3188   : FP_CW_STORED)
3189
3190/* This macro specifies the order in which modes for ENTITY are
3191   processed.  0 is the highest priority.  */
3192
3193#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3194
3195/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
3196   is the set of hard registers live at the point where the insn(s)
3197   are to be inserted.  */
3198
3199#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
3200  ((MODE) == FP_CW_STORED						\
3201   ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1),	\
3202				  assign_386_stack_local (HImode, 2)), 0\
3203   : 0)
3204
3205/* Avoid renaming of stack registers, as doing so in combination with
3206   scheduling just increases amount of live registers at time and in
3207   the turn amount of fxch instructions needed.
3208
3209   ??? Maybe Pentium chips benefits from renaming, someone can try...  */
3210
3211#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
3212   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3213
3214
3215/*
3216Local variables:
3217version-control: t
3218End:
3219*/
3220