1/* Definitions of target machine for GCC for IA-32.
2   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
40  const int add;		/* cost of an add instruction */
41  const int lea;		/* cost of a lea instruction */
42  const int shift_var;		/* variable shift costs */
43  const int shift_const;	/* constant shift costs */
44  const int mult_init[5];	/* cost of starting a multiply
45				   in QImode, HImode, SImode, DImode, TImode*/
46  const int mult_bit;		/* cost of multiply per each bit set */
47  const int divide[5];		/* cost of a divide/mod
48				   in QImode, HImode, SImode, DImode, TImode*/
49  int movsx;			/* The cost of movsx operation.  */
50  int movzx;			/* The cost of movzx operation.  */
51  const int large_insn;		/* insns larger than this cost more */
52  const int move_ratio;		/* The threshold of number of scalar
53				   memory-to-memory move insns.  */
54  const int movzbl_load;	/* cost of loading using movzbl */
55  const int int_load[3];	/* cost of loading integer registers
56				   in QImode, HImode and SImode relative
57				   to reg-reg move (2).  */
58  const int int_store[3];	/* cost of storing integer register
59				   in QImode, HImode and SImode */
60  const int fp_move;		/* cost of reg,reg fld/fst */
61  const int fp_load[3];		/* cost of loading FP register
62				   in SFmode, DFmode and XFmode */
63  const int fp_store[3];	/* cost of storing FP register
64				   in SFmode, DFmode and XFmode */
65  const int mmx_move;		/* cost of moving MMX register.  */
66  const int mmx_load[2];	/* cost of loading MMX register
67				   in SImode and DImode */
68  const int mmx_store[2];	/* cost of storing MMX register
69				   in SImode and DImode */
70  const int sse_move;		/* cost of moving SSE register.  */
71  const int sse_load[3];	/* cost of loading SSE register
72				   in SImode, DImode and TImode*/
73  const int sse_store[3];	/* cost of storing SSE register
74				   in SImode, DImode and TImode*/
75  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76				   integer and vice versa.  */
77  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78  const int simultaneous_prefetches; /* number of parallel prefetch
79				   operations.  */
80  const int branch_cost;	/* Default value for BRANCH_COST.  */
81  const int fadd;		/* cost of FADD and FSUB instructions.  */
82  const int fmul;		/* cost of FMUL instruction.  */
83  const int fdiv;		/* cost of FDIV instruction.  */
84  const int fabs;		/* cost of FABS instruction.  */
85  const int fchs;		/* cost of FCHS instruction.  */
86  const int fsqrt;		/* cost of FSQRT instruction.  */
87};
88
89extern const struct processor_costs *ix86_cost;
90
91/* Macros used in the machine description to test the flags.  */
92
93/* configure can arrange to make this 2, to force a 486.  */
94
95#ifndef TARGET_CPU_DEFAULT
96#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
97#endif
98
99#ifndef TARGET_FPMATH_DEFAULT
100#define TARGET_FPMATH_DEFAULT \
101  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102#endif
103
104#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
105
106/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
107   compile-time constant.  */
108#ifdef IN_LIBGCC2
109#undef TARGET_64BIT
110#ifdef __x86_64__
111#define TARGET_64BIT 1
112#else
113#define TARGET_64BIT 0
114#endif
115#else
116#ifndef TARGET_BI_ARCH
117#undef TARGET_64BIT
118#if TARGET_64BIT_DEFAULT
119#define TARGET_64BIT 1
120#else
121#define TARGET_64BIT 0
122#endif
123#endif
124#endif
125
126#define HAS_LONG_COND_BRANCH 1
127#define HAS_LONG_UNCOND_BRANCH 1
128
129#define TARGET_386 (ix86_tune == PROCESSOR_I386)
130#define TARGET_486 (ix86_tune == PROCESSOR_I486)
131#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
134#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
135#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
136#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
137#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
138#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
139#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
140#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
141#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
142#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
143#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
144#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
145
146#define TUNEMASK (1 << ix86_tune)
147extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
148extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
149extern const int x86_branch_hints, x86_unroll_strlen;
150extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
151extern const int x86_use_himode_fiop, x86_use_simode_fiop;
152extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
153extern const int x86_read_modify, x86_split_long_moves;
154extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
155extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
156extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
157extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
158extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
159extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
160extern const int x86_epilogue_using_move, x86_decompose_lea;
161extern const int x86_arch_always_fancy_math_387, x86_shift1;
162extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
163extern const int x86_sse_unaligned_move_optimal;
164extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
165extern const int x86_use_ffreep;
166extern const int x86_inter_unit_moves, x86_schedule;
167extern const int x86_use_bt;
168extern const int x86_cmpxchg, x86_cmpxchg8b, x86_xadd;
169extern const int x86_use_incdec;
170extern const int x86_pad_returns;
171extern const int x86_bswap;
172extern const int x86_partial_flag_reg_stall;
173extern int x86_prefetch_sse, x86_cmpxchg16b;
174
175#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
176#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
177#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
178#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
179#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
180/* For sane SSE instruction set generation we need fcomi instruction.  It is
181   safe to enable all CMOVE instructions.  */
182#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
183#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
184#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
185#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
186#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
187#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
188#define TARGET_MOVX (x86_movx & TUNEMASK)
189#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
190#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
191#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
192#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
193#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
194#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
195#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
196#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
197#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
198#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
199#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
200#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
201#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
202#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
203#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
204#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
205#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
206#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
207#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
208#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
209#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
210#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
211#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
212				      (x86_sse_partial_reg_dependency & TUNEMASK)
213#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
214				      (x86_sse_unaligned_move_optimal & TUNEMASK)
215#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
216#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
217#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
218#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
219#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
220#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
221#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
222#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
223#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
224#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
225#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
226#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
227#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
228#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
229#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
230#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
231
232#define ASSEMBLER_DIALECT (ix86_asm_dialect)
233
234#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
235#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
236			     && (ix86_fpmath & FPMATH_387))
237
238#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
239#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
240#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
241#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
242
243#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
244#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
245#define TARGET_CMPXCHG16B (x86_cmpxchg16b)
246#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
247#define TARGET_BSWAP (x86_bswap & (1 << ix86_arch))
248
249#ifndef TARGET_64BIT_DEFAULT
250#define TARGET_64BIT_DEFAULT 0
251#endif
252#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
253#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
254#endif
255
256/* Once GDB has been enhanced to deal with functions without frame
257   pointers, we can change this to allow for elimination of
258   the frame pointer in leaf functions.  */
259#define TARGET_DEFAULT 0
260
261/* This is not really a target flag, but is done this way so that
262   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
263   redefines this to 1.  */
264#define TARGET_MACHO 0
265
266/* Subtargets may reset this to 1 in order to enable 96-bit long double
267   with the rounding mode forced to 53 bits.  */
268#define TARGET_96_ROUND_53_LONG_DOUBLE 0
269
270/* Sometimes certain combinations of command options do not make
271   sense on a particular target machine.  You can define a macro
272   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
273   defined, is executed once just after all the command options have
274   been parsed.
275
276   Don't use this macro to turn on various extra optimizations for
277   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
278
279#define OVERRIDE_OPTIONS override_options ()
280
281/* Define this to change the optimizations performed by default.  */
282#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
283  optimization_options ((LEVEL), (SIZE))
284
285/* -march=native handling only makes sense with compiler running on
286   an x86 or x86_64 chip.  If changing this condition, also change
287   the condition in driver-i386.c.  */
288#if defined(__i386__) || defined(__x86_64__)
289/* In driver-i386.c.  */
290extern const char *host_detect_local_cpu (int argc, const char **argv);
291#define EXTRA_SPEC_FUNCTIONS \
292  { "local_cpu_detect", host_detect_local_cpu },
293#define HAVE_LOCAL_CPU_DETECT
294#endif
295
296/* Support for configure-time defaults of some command line options.
297   The order here is important so that -march doesn't squash the
298   tune or cpu values.  */
299#define OPTION_DEFAULT_SPECS \
300  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
301  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
302  {"arch", "%{!march=*:-march=%(VALUE)}"}
303
304/* Specs for the compiler proper */
305
306#ifndef CC1_CPU_SPEC
307#define CC1_CPU_SPEC_1 "\
308%{!mtune*: \
309%{m386:mtune=i386 \
310%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
311%{m486:-mtune=i486 \
312%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
313%{mpentium:-mtune=pentium \
314%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
315%{mpentiumpro:-mtune=pentiumpro \
316%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
317%{mcpu=*:-mtune=%* \
318%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
319%<mcpu=* \
320%{mintel-syntax:-masm=intel \
321%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
322%{mno-intel-syntax:-masm=att \
323%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
324
325#ifndef HAVE_LOCAL_CPU_DETECT
326#define CC1_CPU_SPEC CC1_CPU_SPEC_1
327#else
328#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
329"%{march=native:%<march=native %:local_cpu_detect(arch) \
330  %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
331%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
332#endif
333#endif
334
335/* Target CPU builtins.  */
336#define TARGET_CPU_CPP_BUILTINS()				\
337  do								\
338    {								\
339      size_t arch_len = strlen (ix86_arch_string);		\
340      size_t tune_len = strlen (ix86_tune_string);		\
341      int last_arch_char = ix86_arch_string[arch_len - 1];	\
342      int last_tune_char = ix86_tune_string[tune_len - 1];		\
343								\
344      if (TARGET_64BIT)						\
345	{							\
346	  builtin_assert ("cpu=x86_64");			\
347	  builtin_assert ("machine=x86_64");			\
348	  builtin_define ("__amd64");				\
349	  builtin_define ("__amd64__");				\
350	  builtin_define ("__x86_64");				\
351	  builtin_define ("__x86_64__");			\
352	}							\
353      else							\
354	{							\
355	  builtin_assert ("cpu=i386");				\
356	  builtin_assert ("machine=i386");			\
357	  builtin_define_std ("i386");				\
358	}							\
359								\
360      /* Built-ins based on -mtune= (or -march= if no		\
361	 -mtune= given).  */					\
362      if (TARGET_386)						\
363	builtin_define ("__tune_i386__");			\
364      else if (TARGET_486)					\
365	builtin_define ("__tune_i486__");			\
366      else if (TARGET_PENTIUM)					\
367	{							\
368	  builtin_define ("__tune_i586__");			\
369	  builtin_define ("__tune_pentium__");			\
370	  if (last_tune_char == 'x')				\
371	    builtin_define ("__tune_pentium_mmx__");		\
372	}							\
373      else if (TARGET_PENTIUMPRO)				\
374	{							\
375	  builtin_define ("__tune_i686__");			\
376	  builtin_define ("__tune_pentiumpro__");		\
377	  switch (last_tune_char)				\
378	    {							\
379	    case '3':						\
380	      builtin_define ("__tune_pentium3__");		\
381	      /* FALLTHRU */					\
382	    case '2':						\
383	      builtin_define ("__tune_pentium2__");		\
384	      break;						\
385	    }							\
386	}							\
387      else if (TARGET_GEODE)					\
388	{							\
389	  builtin_define ("__tune_geode__");			\
390	}							\
391      else if (TARGET_K6)					\
392	{							\
393	  builtin_define ("__tune_k6__");			\
394	  if (last_tune_char == '2')				\
395	    builtin_define ("__tune_k6_2__");			\
396	  else if (last_tune_char == '3')			\
397	    builtin_define ("__tune_k6_3__");			\
398	}							\
399      else if (TARGET_ATHLON)					\
400	{							\
401	  builtin_define ("__tune_athlon__");			\
402	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
403	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
404	    builtin_define ("__tune_athlon_sse__");		\
405	}							\
406      else if (TARGET_K8)					\
407	builtin_define ("__tune_k8__");				\
408      else if (TARGET_AMDFAM10)					\
409	builtin_define ("__tune_amdfam10__");			\
410      else if (TARGET_PENTIUM4)					\
411	builtin_define ("__tune_pentium4__");			\
412      else if (TARGET_NOCONA)					\
413	builtin_define ("__tune_nocona__");			\
414      else if (TARGET_CORE2)					\
415	builtin_define ("__tune_core2__");			\
416								\
417      if (TARGET_MMX)						\
418	builtin_define ("__MMX__");				\
419      if (TARGET_3DNOW)						\
420	builtin_define ("__3dNOW__");				\
421      if (TARGET_3DNOW_A)					\
422	builtin_define ("__3dNOW_A__");				\
423      if (TARGET_SSE)						\
424	builtin_define ("__SSE__");				\
425      if (TARGET_SSE2)						\
426	builtin_define ("__SSE2__");				\
427      if (TARGET_SSE3)						\
428	builtin_define ("__SSE3__");				\
429      if (TARGET_SSSE3)						\
430	builtin_define ("__SSSE3__");				\
431      if (TARGET_SSE4A)					\
432 	builtin_define ("__SSE4A__");		                \
433      if (TARGET_AES)						\
434	builtin_define ("__AES__");				\
435      if (TARGET_SSE_MATH && TARGET_SSE)			\
436	builtin_define ("__SSE_MATH__");			\
437      if (TARGET_SSE_MATH && TARGET_SSE2)			\
438	builtin_define ("__SSE2_MATH__");			\
439								\
440      /* Built-ins based on -march=.  */			\
441      if (ix86_arch == PROCESSOR_I486)				\
442	{							\
443	  builtin_define ("__i486");				\
444	  builtin_define ("__i486__");				\
445	}							\
446      else if (ix86_arch == PROCESSOR_PENTIUM)			\
447	{							\
448	  builtin_define ("__i586");				\
449	  builtin_define ("__i586__");				\
450	  builtin_define ("__pentium");				\
451	  builtin_define ("__pentium__");			\
452	  if (last_arch_char == 'x')				\
453	    builtin_define ("__pentium_mmx__");			\
454	}							\
455      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
456	{							\
457	  builtin_define ("__i686");				\
458	  builtin_define ("__i686__");				\
459	  builtin_define ("__pentiumpro");			\
460	  builtin_define ("__pentiumpro__");			\
461	}							\
462      else if (ix86_arch == PROCESSOR_GEODE)			\
463	{							\
464	  builtin_define ("__geode");				\
465	  builtin_define ("__geode__");				\
466	}							\
467      else if (ix86_arch == PROCESSOR_K6)			\
468	{							\
469								\
470	  builtin_define ("__k6");				\
471	  builtin_define ("__k6__");				\
472	  if (last_arch_char == '2')				\
473	    builtin_define ("__k6_2__");			\
474	  else if (last_arch_char == '3')			\
475	    builtin_define ("__k6_3__");			\
476	}							\
477      else if (ix86_arch == PROCESSOR_ATHLON)			\
478	{							\
479	  builtin_define ("__athlon");				\
480	  builtin_define ("__athlon__");			\
481	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
482	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
483	    builtin_define ("__athlon_sse__");			\
484	}							\
485      else if (ix86_arch == PROCESSOR_K8)			\
486	{							\
487	  builtin_define ("__k8");				\
488	  builtin_define ("__k8__");				\
489	}							\
490      else if (ix86_arch == PROCESSOR_AMDFAM10)			\
491	{							\
492	  builtin_define ("__amdfam10");			\
493	  builtin_define ("__amdfam10__");			\
494	}							\
495      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
496	{							\
497	  builtin_define ("__pentium4");			\
498	  builtin_define ("__pentium4__");			\
499	}							\
500      else if (ix86_arch == PROCESSOR_NOCONA)			\
501	{							\
502	  builtin_define ("__nocona");				\
503	  builtin_define ("__nocona__");			\
504	}							\
505      else if (ix86_arch == PROCESSOR_CORE2)			\
506	{							\
507	  builtin_define ("__core2");				\
508	  builtin_define ("__core2__");				\
509	}							\
510    }								\
511  while (0)
512
513#define TARGET_CPU_DEFAULT_i386 0
514#define TARGET_CPU_DEFAULT_i486 1
515#define TARGET_CPU_DEFAULT_pentium 2
516#define TARGET_CPU_DEFAULT_pentium_mmx 3
517#define TARGET_CPU_DEFAULT_pentiumpro 4
518#define TARGET_CPU_DEFAULT_pentium2 5
519#define TARGET_CPU_DEFAULT_pentium3 6
520#define TARGET_CPU_DEFAULT_pentium4 7
521#define TARGET_CPU_DEFAULT_geode 8
522#define TARGET_CPU_DEFAULT_k6 9
523#define TARGET_CPU_DEFAULT_k6_2 10
524#define TARGET_CPU_DEFAULT_k6_3 11
525#define TARGET_CPU_DEFAULT_athlon 12
526#define TARGET_CPU_DEFAULT_athlon_sse 13
527#define TARGET_CPU_DEFAULT_k8 14
528#define TARGET_CPU_DEFAULT_pentium_m 15
529#define TARGET_CPU_DEFAULT_prescott 16
530#define TARGET_CPU_DEFAULT_nocona 17
531#define TARGET_CPU_DEFAULT_core2 18
532#define TARGET_CPU_DEFAULT_generic 19
533#define TARGET_CPU_DEFAULT_amdfam10 20
534
535#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
536				  "pentiumpro", "pentium2", "pentium3", \
537                                  "pentium4", "geode", "k6", "k6-2", "k6-3", \
538				  "athlon", "athlon-4", "k8", \
539				  "pentium-m", "prescott", "nocona", \
540				  "core2", "generic", "amdfam10"}
541
542#ifndef CC1_SPEC
543#define CC1_SPEC "%(cc1_cpu) "
544#endif
545
546/* This macro defines names of additional specifications to put in the
547   specs that can be used in various specifications like CC1_SPEC.  Its
548   definition is an initializer with a subgrouping for each command option.
549
550   Each subgrouping contains a string constant, that defines the
551   specification name, and a string constant that used by the GCC driver
552   program.
553
554   Do not define this macro if it does not need to do anything.  */
555
556#ifndef SUBTARGET_EXTRA_SPECS
557#define SUBTARGET_EXTRA_SPECS
558#endif
559
560#define EXTRA_SPECS							\
561  { "cc1_cpu",  CC1_CPU_SPEC },						\
562  SUBTARGET_EXTRA_SPECS
563
564/* target machine storage layout */
565
566#define LONG_DOUBLE_TYPE_SIZE 80
567
568/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
569   FPU, assume that the fpcw is set to extended precision; when using
570   only SSE, rounding is correct; when using both SSE and the FPU,
571   the rounding precision is indeterminate, since either may be chosen
572   apparently at random.  */
573#define TARGET_FLT_EVAL_METHOD \
574  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
575
576#define SHORT_TYPE_SIZE 16
577#define INT_TYPE_SIZE 32
578#define FLOAT_TYPE_SIZE 32
579#ifndef LONG_TYPE_SIZE
580#define LONG_TYPE_SIZE BITS_PER_WORD
581#endif
582#define DOUBLE_TYPE_SIZE 64
583#define LONG_LONG_TYPE_SIZE 64
584
585#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
586#define MAX_BITS_PER_WORD 64
587#else
588#define MAX_BITS_PER_WORD 32
589#endif
590
591/* Define this if most significant byte of a word is the lowest numbered.  */
592/* That is true on the 80386.  */
593
594#define BITS_BIG_ENDIAN 0
595
596/* Define this if most significant byte of a word is the lowest numbered.  */
597/* That is not true on the 80386.  */
598#define BYTES_BIG_ENDIAN 0
599
600/* Define this if most significant word of a multiword number is the lowest
601   numbered.  */
602/* Not true for 80386 */
603#define WORDS_BIG_ENDIAN 0
604
605/* Width of a word, in units (bytes).  */
606#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
607#ifdef IN_LIBGCC2
608#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
609#else
610#define MIN_UNITS_PER_WORD	4
611#endif
612
613/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
614#define PARM_BOUNDARY BITS_PER_WORD
615
616/* Boundary (in *bits*) on which stack pointer should be aligned.  */
617#define STACK_BOUNDARY BITS_PER_WORD
618
619/* Boundary (in *bits*) on which the stack pointer prefers to be
620   aligned; the compiler cannot rely on having this alignment.  */
621#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
622
623/* As of July 2001, many runtimes do not align the stack properly when
624   entering main.  This causes expand_main_function to forcibly align
625   the stack, which results in aligned frames for functions called from
626   main, though it does nothing for the alignment of main itself.  */
627#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
628  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
629
630/* Minimum allocation boundary for the code of a function.  */
631#define FUNCTION_BOUNDARY 8
632
633/* C++ stores the virtual bit in the lowest bit of function pointers.  */
634#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
635
636/* Alignment of field after `int : 0' in a structure.  */
637
638#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
639
640/* Minimum size in bits of the largest boundary to which any
641   and all fundamental data types supported by the hardware
642   might need to be aligned. No data type wants to be aligned
643   rounder than this.
644
645   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
646   and Pentium Pro XFmode values at 128 bit boundaries.  */
647
648#define BIGGEST_ALIGNMENT 128
649
650/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
651#define ALIGN_MODE_128(MODE) \
652 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
653
654/* The published ABIs say that doubles should be aligned on word
655   boundaries, so lower the alignment for structure fields unless
656   -malign-double is set.  */
657
658/* ??? Blah -- this macro is used directly by libobjc.  Since it
659   supports no vector modes, cut out the complexity and fall back
660   on BIGGEST_FIELD_ALIGNMENT.  */
661#ifdef IN_TARGET_LIBS
662#ifdef __x86_64__
663#define BIGGEST_FIELD_ALIGNMENT 128
664#else
665#define BIGGEST_FIELD_ALIGNMENT 32
666#endif
667#else
668#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
669   x86_field_alignment (FIELD, COMPUTED)
670#endif
671
672/* If defined, a C expression to compute the alignment given to a
673   constant that is being placed in memory.  EXP is the constant
674   and ALIGN is the alignment that the object would ordinarily have.
675   The value of this macro is used instead of that alignment to align
676   the object.
677
678   If this macro is not defined, then ALIGN is used.
679
680   The typical use of this macro is to increase alignment for string
681   constants to be word aligned so that `strcpy' calls that copy
682   constants can be done inline.  */
683
684#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
685
686/* If defined, a C expression to compute the alignment for a static
687   variable.  TYPE is the data type, and ALIGN is the alignment that
688   the object would ordinarily have.  The value of this macro is used
689   instead of that alignment to align the object.
690
691   If this macro is not defined, then ALIGN is used.
692
693   One use of this macro is to increase alignment of medium-size
694   data to make it all fit in fewer cache lines.  Another is to
695   cause character arrays to be word-aligned so that `strcpy' calls
696   that copy constants to character arrays can be done inline.  */
697
698#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
699
700/* If defined, a C expression to compute the alignment for a local
701   variable.  TYPE is the data type, and ALIGN is the alignment that
702   the object would ordinarily have.  The value of this macro is used
703   instead of that alignment to align the object.
704
705   If this macro is not defined, then ALIGN is used.
706
707   One use of this macro is to increase alignment of medium-size
708   data to make it all fit in fewer cache lines.  */
709
710#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
711
712/* If defined, a C expression that gives the alignment boundary, in
713   bits, of an argument with the specified mode and type.  If it is
714   not defined, `PARM_BOUNDARY' is used for all arguments.  */
715
716#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
717  ix86_function_arg_boundary ((MODE), (TYPE))
718
719/* Set this nonzero if move instructions will actually fail to work
720   when given unaligned data.  */
721#define STRICT_ALIGNMENT 0
722
723/* If bit field type is int, don't let it cross an int,
724   and give entire struct the alignment of an int.  */
725/* Required on the 386 since it doesn't have bit-field insns.  */
726#define PCC_BITFIELD_TYPE_MATTERS 1
727
728/* Standard register usage.  */
729
730/* This processor has special stack-like registers.  See reg-stack.c
731   for details.  */
732
733#define STACK_REGS
734#define IS_STACK_MODE(MODE)					\
735  (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH))	\
736   || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH))  \
737   || (MODE) == XFmode)
738
739/* Number of actual hardware registers.
740   The hardware registers are assigned numbers for the compiler
741   from 0 to just below FIRST_PSEUDO_REGISTER.
742   All registers that the compiler knows about must be given numbers,
743   even those that are not normally considered general registers.
744
745   In the 80386 we give the 8 general purpose registers the numbers 0-7.
746   We number the floating point registers 8-15.
747   Note that registers 0-7 can be accessed as a  short or int,
748   while only 0-3 may be used with byte `mov' instructions.
749
750   Reg 16 does not correspond to any hardware register, but instead
751   appears in the RTL as an argument pointer prior to reload, and is
752   eliminated during reloading in favor of either the stack or frame
753   pointer.  */
754
755#define FIRST_PSEUDO_REGISTER 53
756
757/* Number of hardware registers that go into the DWARF-2 unwind info.
758   If not defined, equals FIRST_PSEUDO_REGISTER.  */
759
760#define DWARF_FRAME_REGISTERS 17
761
762/* 1 for registers that have pervasive standard uses
763   and are not available for the register allocator.
764   On the 80386, the stack pointer is such, as is the arg pointer.
765
766   The value is zero if the register is not fixed on either 32 or
767   64 bit targets, one if the register if fixed on both 32 and 64
768   bit targets, two if it is only fixed on 32bit targets and three
769   if its only fixed on 64bit targets.
770   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
771 */
772#define FIXED_REGISTERS						\
773/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
774{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
775/*arg,flags,fpsr,dir,frame*/					\
776    1,    1,   1,  1,    1,					\
777/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
778     0,   0,   0,   0,   0,   0,   0,   0,			\
779/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
780     0,   0,   0,   0,   0,   0,   0,   0,			\
781/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
782     2,   2,   2,   2,   2,   2,   2,   2,			\
783/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
784     2,   2,    2,    2,    2,    2,    2,    2}
785
786
787/* 1 for registers not available across function calls.
788   These must include the FIXED_REGISTERS and also any
789   registers that can be used without being saved.
790   The latter must include the registers where values are returned
791   and the register where structure-value addresses are passed.
792   Aside from that, you can include as many other registers as you like.
793
794   The value is zero if the register is not call used on either 32 or
795   64 bit targets, one if the register if call used on both 32 and 64
796   bit targets, two if it is only call used on 32bit targets and three
797   if its only call used on 64bit targets.
798   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
799*/
800#define CALL_USED_REGISTERS					\
801/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
802{  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
803/*arg,flags,fpsr,dir,frame*/					\
804     1,   1,   1,  1,    1,					\
805/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
806     1,   1,   1,   1,   1,  1,    1,   1,			\
807/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
808     1,   1,   1,   1,   1,   1,   1,   1,			\
809/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
810     1,   1,   1,   1,   2,   2,   2,   2,			\
811/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
812     1,   1,    1,    1,    1,    1,    1,    1}		\
813
814/* Order in which to allocate registers.  Each register must be
815   listed once, even those in FIXED_REGISTERS.  List frame pointer
816   late and fixed registers last.  Note that, in general, we prefer
817   registers listed in CALL_USED_REGISTERS, keeping the others
818   available for storage of persistent values.
819
820   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
821   so this is just empty initializer for array.  */
822
823#define REG_ALLOC_ORDER 					\
824{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
825   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
826   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
827   48, 49, 50, 51, 52 }
828
829/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
830   to be rearranged based on a particular function.  When using sse math,
831   we want to allocate SSE before x87 registers and vice vera.  */
832
833#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
834
835
836/* Macro to conditionally modify fixed_regs/call_used_regs.  */
837#define CONDITIONAL_REGISTER_USAGE					\
838do {									\
839    int i;								\
840    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
841      {									\
842	if (fixed_regs[i] > 1)						\
843	  fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2));	\
844	if (call_used_regs[i] > 1)					\
845	  call_used_regs[i] = (call_used_regs[i]			\
846			       == (TARGET_64BIT ? 3 : 2));		\
847      }									\
848    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
849      {									\
850	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
851	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
852      }									\
853    if (! TARGET_MMX)							\
854      {									\
855	int i;								\
856        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
857          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
858	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
859      }									\
860    if (! TARGET_SSE)							\
861      {									\
862	int i;								\
863        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
864          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
865	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
866      }									\
867    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
868      {									\
869	int i;								\
870	HARD_REG_SET x;							\
871        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
872        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
873          if (TEST_HARD_REG_BIT (x, i)) 				\
874	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
875      }									\
876    if (! TARGET_64BIT)							\
877      {									\
878	int i;								\
879	for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)		\
880	  reg_names[i] = "";						\
881	for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)		\
882	  reg_names[i] = "";						\
883      }									\
884  } while (0)
885
886/* Return number of consecutive hard regs needed starting at reg REGNO
887   to hold something of mode MODE.
888   This is ordinarily the length in words of a value of mode MODE
889   but can be less for certain modes in special long registers.
890
891   Actually there are no two word move instructions for consecutive
892   registers.  And only registers 0-3 may have mov byte instructions
893   applied to them.
894   */
895
896#define HARD_REGNO_NREGS(REGNO, MODE)   \
897  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
898   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
899   : ((MODE) == XFmode							\
900      ? (TARGET_64BIT ? 2 : 3)						\
901      : (MODE) == XCmode						\
902      ? (TARGET_64BIT ? 4 : 6)						\
903      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
904
905#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
906  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
907   ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
908      ? 0								\
909      : ((MODE) == XFmode || (MODE) == XCmode))				\
910   : 0)
911
912#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
913
914#define VALID_SSE2_REG_MODE(MODE) \
915    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
916     || (MODE) == V2DImode || (MODE) == DFmode)
917
918#define VALID_SSE_REG_MODE(MODE)					\
919    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
920     || (MODE) == SFmode || (MODE) == TFmode)
921
922#define VALID_MMX_REG_MODE_3DNOW(MODE) \
923    ((MODE) == V2SFmode || (MODE) == SFmode)
924
925#define VALID_MMX_REG_MODE(MODE)					\
926    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
927     || (MODE) == V2SImode || (MODE) == SImode)
928
929/* ??? No autovectorization into MMX or 3DNOW until we can reliably
930   place emms and femms instructions.  */
931#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
932
933#define VALID_FP_MODE_P(MODE)						\
934    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
935     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
936
937#define VALID_INT_MODE_P(MODE)						\
938    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
939     || (MODE) == DImode						\
940     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
941     || (MODE) == CDImode						\
942     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
943         || (MODE) == TFmode || (MODE) == TCmode)))
944
945/* Return true for modes passed in SSE registers.  */
946#define SSE_REG_MODE_P(MODE) \
947 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
948   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
949   || (MODE) == V4SFmode || (MODE) == V4SImode)
950
951/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
952
953#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
954   ix86_hard_regno_mode_ok ((REGNO), (MODE))
955
956/* Value is 1 if it is a good idea to tie two pseudo registers
957   when one has mode MODE1 and one has mode MODE2.
958   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
959   for any hard reg, then this must be 0 for correct output.  */
960
961#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
962
963/* It is possible to write patterns to move flags; but until someone
964   does it,  */
965#define AVOID_CCMODE_COPIES
966
967/* Specify the modes required to caller save a given hard regno.
968   We do this on i386 to prevent flags from being saved at all.
969
970   Kill any attempts to combine saving of modes.  */
971
972#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
973  (CC_REGNO_P (REGNO) ? VOIDmode					\
974   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
975   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
976   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
977   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
978   : (MODE))
979/* Specify the registers used for certain standard purposes.
980   The values of these macros are register numbers.  */
981
982/* on the 386 the pc register is %eip, and is not usable as a general
983   register.  The ordinary mov instructions won't work */
984/* #define PC_REGNUM  */
985
986/* Register to use for pushing function arguments.  */
987#define STACK_POINTER_REGNUM 7
988
989/* Base register for access to local variables of the function.  */
990#define HARD_FRAME_POINTER_REGNUM 6
991
992/* Base register for access to local variables of the function.  */
993#define FRAME_POINTER_REGNUM 20
994
995/* First floating point reg */
996#define FIRST_FLOAT_REG 8
997
998/* First & last stack-like regs */
999#define FIRST_STACK_REG FIRST_FLOAT_REG
1000#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1001
1002#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1003#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1004
1005#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1006#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1007
1008#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1009#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1010
1011#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1012#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1013
1014/* Value should be nonzero if functions must have frame pointers.
1015   Zero means the frame pointer need not be set up (and parms
1016   may be accessed via the stack pointer) in functions that seem suitable.
1017   This is computed in `reload', in reload1.c.  */
1018#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1019
1020/* Override this in other tm.h files to cope with various OS lossage
1021   requiring a frame pointer.  */
1022#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1023#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1024#endif
1025
1026/* Make sure we can access arbitrary call frames.  */
1027#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1028
1029/* Base register for access to arguments of the function.  */
1030#define ARG_POINTER_REGNUM 16
1031
1032/* Register in which static-chain is passed to a function.
1033   We do use ECX as static chain register for 32 bit ABI.  On the
1034   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1035#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1036
1037/* Register to hold the addressing base for position independent
1038   code access to data items.  We don't use PIC pointer for 64bit
1039   mode.  Define the regnum to dummy value to prevent gcc from
1040   pessimizing code dealing with EBX.
1041
1042   To avoid clobbering a call-saved register unnecessarily, we renumber
1043   the pic register when possible.  The change is visible after the
1044   prologue has been emitted.  */
1045
1046#define REAL_PIC_OFFSET_TABLE_REGNUM  3
1047
1048#define PIC_OFFSET_TABLE_REGNUM				\
1049  ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)	\
1050   || !flag_pic ? INVALID_REGNUM			\
1051   : reload_completed ? REGNO (pic_offset_table_rtx)	\
1052   : REAL_PIC_OFFSET_TABLE_REGNUM)
1053
1054#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1055
1056/* A C expression which can inhibit the returning of certain function
1057   values in registers, based on the type of value.  A nonzero value
1058   says to return the function value in memory, just as large
1059   structures are always returned.  Here TYPE will be a C expression
1060   of type `tree', representing the data type of the value.
1061
1062   Note that values of mode `BLKmode' must be explicitly handled by
1063   this macro.  Also, the option `-fpcc-struct-return' takes effect
1064   regardless of this macro.  On most systems, it is possible to
1065   leave the macro undefined; this causes a default definition to be
1066   used, whose value is the constant 1 for `BLKmode' values, and 0
1067   otherwise.
1068
1069   Do not use this macro to indicate that structures and unions
1070   should always be returned in memory.  You should instead use
1071   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1072
1073#define RETURN_IN_MEMORY(TYPE) \
1074  ix86_return_in_memory (TYPE)
1075
1076/* This is overridden by <cygwin.h>.  */
1077#define MS_AGGREGATE_RETURN 0
1078
1079/* This is overridden by <netware.h>.  */
1080#define KEEP_AGGREGATE_RETURN_POINTER 0
1081
1082/* Define the classes of registers for register constraints in the
1083   machine description.  Also define ranges of constants.
1084
1085   One of the classes must always be named ALL_REGS and include all hard regs.
1086   If there is more than one class, another class must be named NO_REGS
1087   and contain no registers.
1088
1089   The name GENERAL_REGS must be the name of a class (or an alias for
1090   another name such as ALL_REGS).  This is the class of registers
1091   that is allowed by "g" or "r" in a register constraint.
1092   Also, registers outside this class are allocated only when
1093   instructions express preferences for them.
1094
1095   The classes must be numbered in nondecreasing order; that is,
1096   a larger-numbered class must never be contained completely
1097   in a smaller-numbered class.
1098
1099   For any two classes, it is very desirable that there be another
1100   class that represents their union.
1101
1102   It might seem that class BREG is unnecessary, since no useful 386
1103   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1104   and the "b" register constraint is useful in asms for syscalls.
1105
1106   The flags and fpsr registers are in no class.  */
1107
1108enum reg_class
1109{
1110  NO_REGS,
1111  AREG, DREG, CREG, BREG, SIREG, DIREG,
1112  AD_REGS,			/* %eax/%edx for DImode */
1113  Q_REGS,			/* %eax %ebx %ecx %edx */
1114  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1115  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1116  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1117  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1118  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1119  FLOAT_REGS,
1120  SSE_REGS,
1121  MMX_REGS,
1122  FP_TOP_SSE_REGS,
1123  FP_SECOND_SSE_REGS,
1124  FLOAT_SSE_REGS,
1125  FLOAT_INT_REGS,
1126  INT_SSE_REGS,
1127  FLOAT_INT_SSE_REGS,
1128  ALL_REGS, LIM_REG_CLASSES
1129};
1130
1131#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1132
1133#define INTEGER_CLASS_P(CLASS) \
1134  reg_class_subset_p ((CLASS), GENERAL_REGS)
1135#define FLOAT_CLASS_P(CLASS) \
1136  reg_class_subset_p ((CLASS), FLOAT_REGS)
1137#define SSE_CLASS_P(CLASS) \
1138  ((CLASS) == SSE_REGS)
1139#define MMX_CLASS_P(CLASS) \
1140  ((CLASS) == MMX_REGS)
1141#define MAYBE_INTEGER_CLASS_P(CLASS) \
1142  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1143#define MAYBE_FLOAT_CLASS_P(CLASS) \
1144  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1145#define MAYBE_SSE_CLASS_P(CLASS) \
1146  reg_classes_intersect_p (SSE_REGS, (CLASS))
1147#define MAYBE_MMX_CLASS_P(CLASS) \
1148  reg_classes_intersect_p (MMX_REGS, (CLASS))
1149
1150#define Q_CLASS_P(CLASS) \
1151  reg_class_subset_p ((CLASS), Q_REGS)
1152
1153/* Give names of register classes as strings for dump file.  */
1154
1155#define REG_CLASS_NAMES \
1156{  "NO_REGS",				\
1157   "AREG", "DREG", "CREG", "BREG",	\
1158   "SIREG", "DIREG",			\
1159   "AD_REGS",				\
1160   "Q_REGS", "NON_Q_REGS",		\
1161   "INDEX_REGS",			\
1162   "LEGACY_REGS",			\
1163   "GENERAL_REGS",			\
1164   "FP_TOP_REG", "FP_SECOND_REG",	\
1165   "FLOAT_REGS",			\
1166   "SSE_REGS",				\
1167   "MMX_REGS",				\
1168   "FP_TOP_SSE_REGS",			\
1169   "FP_SECOND_SSE_REGS",		\
1170   "FLOAT_SSE_REGS",			\
1171   "FLOAT_INT_REGS",			\
1172   "INT_SSE_REGS",			\
1173   "FLOAT_INT_SSE_REGS",		\
1174   "ALL_REGS" }
1175
1176/* Define which registers fit in which classes.
1177   This is an initializer for a vector of HARD_REG_SET
1178   of length N_REG_CLASSES.  */
1179
1180#define REG_CLASS_CONTENTS						\
1181{     { 0x00,     0x0 },						\
1182      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1183      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1184      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1185      { 0x03,     0x0 },		/* AD_REGS */			\
1186      { 0x0f,     0x0 },		/* Q_REGS */			\
1187  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1188      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1189  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1190  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1191     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1192    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1193{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1194{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1195{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1196{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1197{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1198   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1199{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1200{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1201{ 0xffffffff,0x1fffff }							\
1202}
1203
1204/* The same information, inverted:
1205   Return the class number of the smallest class containing
1206   reg number REGNO.  This could be a conditional expression
1207   or could index an array.  */
1208
1209#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1210
1211/* When defined, the compiler allows registers explicitly used in the
1212   rtl to be used as spill registers but prevents the compiler from
1213   extending the lifetime of these registers.  */
1214
1215#define SMALL_REGISTER_CLASSES 1
1216
1217#define QI_REG_P(X) \
1218  (REG_P (X) && REGNO (X) < 4)
1219
1220#define GENERAL_REGNO_P(N) \
1221  ((N) < 8 || REX_INT_REGNO_P (N))
1222
1223#define GENERAL_REG_P(X) \
1224  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1225
1226#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1227
1228#define NON_QI_REG_P(X) \
1229  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1230
1231#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1232#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1233
1234#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1235#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1236#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1237#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1238
1239#define SSE_REGNO_P(N) \
1240  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1241   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1242
1243#define REX_SSE_REGNO_P(N) \
1244   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1245
1246#define SSE_REGNO(N) \
1247  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1248#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1249
1250#define SSE_FLOAT_MODE_P(MODE) \
1251  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1252
1253#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1254#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1255
1256#define STACK_REG_P(XOP)		\
1257  (REG_P (XOP) &&		       	\
1258   REGNO (XOP) >= FIRST_STACK_REG &&	\
1259   REGNO (XOP) <= LAST_STACK_REG)
1260
1261#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1262
1263#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1264
1265#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1266#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1267
1268/* The class value for index registers, and the one for base regs.  */
1269
1270#define INDEX_REG_CLASS INDEX_REGS
1271#define BASE_REG_CLASS GENERAL_REGS
1272
1273/* Place additional restrictions on the register class to use when it
1274   is necessary to be able to hold a value of mode MODE in a reload
1275   register for which class CLASS would ordinarily be used.  */
1276
1277#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1278  ((MODE) == QImode && !TARGET_64BIT				\
1279   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1280       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1281   ? Q_REGS : (CLASS))
1282
1283/* Given an rtx X being reloaded into a reg required to be
1284   in class CLASS, return the class of reg to actually use.
1285   In general this is just CLASS; but on some machines
1286   in some cases it is preferable to use a more restrictive class.
1287   On the 80386 series, we prevent floating constants from being
1288   reloaded into floating registers (since no move-insn can do that)
1289   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1290
1291/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1292   QImode must go into class Q_REGS.
1293   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1294   movdf to do mem-to-mem moves through integer regs.  */
1295
1296#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1297   ix86_preferred_reload_class ((X), (CLASS))
1298
1299/* Discourage putting floating-point values in SSE registers unless
1300   SSE math is being used, and likewise for the 387 registers.  */
1301
1302#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1303   ix86_preferred_output_reload_class ((X), (CLASS))
1304
1305/* If we are copying between general and FP registers, we need a memory
1306   location. The same is true for SSE and MMX registers.  */
1307#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1308  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1309
1310/* QImode spills from non-QI registers need a scratch.  This does not
1311   happen often -- the only example so far requires an uninitialized
1312   pseudo.  */
1313
1314#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1315  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1316    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1317   ? Q_REGS : NO_REGS)
1318
1319/* Return the maximum number of consecutive registers
1320   needed to represent mode MODE in a register of class CLASS.  */
1321/* On the 80386, this is the size of MODE in words,
1322   except in the FP regs, where a single reg is always enough.  */
1323#define CLASS_MAX_NREGS(CLASS, MODE)					\
1324 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1325  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1326  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1327      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1328
1329/* A C expression whose value is nonzero if pseudos that have been
1330   assigned to registers of class CLASS would likely be spilled
1331   because registers of CLASS are needed for spill registers.
1332
1333   The default value of this macro returns 1 if CLASS has exactly one
1334   register and zero otherwise.  On most machines, this default
1335   should be used.  Only define this macro to some other expression
1336   if pseudo allocated by `local-alloc.c' end up in memory because
1337   their hard registers were needed for spill registers.  If this
1338   macro returns nonzero for those classes, those pseudos will only
1339   be allocated by `global.c', which knows how to reallocate the
1340   pseudo to another register.  If there would not be another
1341   register available for reallocation, you should not change the
1342   definition of this macro since the only effect of such a
1343   definition would be to slow down register allocation.  */
1344
1345#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1346  (((CLASS) == AREG)							\
1347   || ((CLASS) == DREG)							\
1348   || ((CLASS) == CREG)							\
1349   || ((CLASS) == BREG)							\
1350   || ((CLASS) == AD_REGS)						\
1351   || ((CLASS) == SIREG)						\
1352   || ((CLASS) == DIREG)						\
1353   || ((CLASS) == FP_TOP_REG)						\
1354   || ((CLASS) == FP_SECOND_REG))
1355
1356/* Return a class of registers that cannot change FROM mode to TO mode.  */
1357
1358#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1359  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1360
1361/* Stack layout; function entry, exit and calling.  */
1362
1363/* Define this if pushing a word on the stack
1364   makes the stack pointer a smaller address.  */
1365#define STACK_GROWS_DOWNWARD
1366
1367/* Define this to nonzero if the nominal address of the stack frame
1368   is at the high-address end of the local variables;
1369   that is, each additional local variable allocated
1370   goes at a more negative offset in the frame.  */
1371#define FRAME_GROWS_DOWNWARD 1
1372
1373/* Offset within stack frame to start allocating local variables at.
1374   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1375   first local allocated.  Otherwise, it is the offset to the BEGINNING
1376   of the first local allocated.  */
1377#define STARTING_FRAME_OFFSET 0
1378
1379/* If we generate an insn to push BYTES bytes,
1380   this says how many the stack pointer really advances by.
1381   On 386, we have pushw instruction that decrements by exactly 2 no
1382   matter what the position was, there is no pushb.
1383   But as CIE data alignment factor on this arch is -4, we need to make
1384   sure all stack pointer adjustments are in multiple of 4.
1385
1386   For 64bit ABI we round up to 8 bytes.
1387 */
1388
1389#define PUSH_ROUNDING(BYTES) \
1390  (TARGET_64BIT		     \
1391   ? (((BYTES) + 7) & (-8))  \
1392   : (((BYTES) + 3) & (-4)))
1393
1394/* If defined, the maximum amount of space required for outgoing arguments will
1395   be computed and placed into the variable
1396   `current_function_outgoing_args_size'.  No space will be pushed onto the
1397   stack for each call; instead, the function prologue should increase the stack
1398   frame size by this amount.  */
1399
1400#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1401
1402/* If defined, a C expression whose value is nonzero when we want to use PUSH
1403   instructions to pass outgoing arguments.  */
1404
1405#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1406
1407/* We want the stack and args grow in opposite directions, even if
1408   PUSH_ARGS is 0.  */
1409#define PUSH_ARGS_REVERSED 1
1410
1411/* Offset of first parameter from the argument pointer register value.  */
1412#define FIRST_PARM_OFFSET(FNDECL) 0
1413
1414/* Define this macro if functions should assume that stack space has been
1415   allocated for arguments even when their values are passed in registers.
1416
1417   The value of this macro is the size, in bytes, of the area reserved for
1418   arguments passed in registers for the function represented by FNDECL.
1419
1420   This space can be allocated by the caller, or be a part of the
1421   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1422   which.  */
1423#define REG_PARM_STACK_SPACE(FNDECL) 0
1424
1425/* Value is the number of bytes of arguments automatically
1426   popped when returning from a subroutine call.
1427   FUNDECL is the declaration node of the function (as a tree),
1428   FUNTYPE is the data type of the function (as a tree),
1429   or for a library call it is an identifier node for the subroutine name.
1430   SIZE is the number of bytes of arguments passed on the stack.
1431
1432   On the 80386, the RTD insn may be used to pop them if the number
1433     of args is fixed, but if the number is variable then the caller
1434     must pop them all.  RTD can't be used for library calls now
1435     because the library is compiled with the Unix compiler.
1436   Use of RTD is a selectable option, since it is incompatible with
1437   standard Unix calling sequences.  If the option is not selected,
1438   the caller must always pop the args.
1439
1440   The attribute stdcall is equivalent to RTD on a per module basis.  */
1441
1442#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1443  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1444
1445#define FUNCTION_VALUE_REGNO_P(N) \
1446  ix86_function_value_regno_p (N)
1447
1448/* Define how to find the value returned by a library function
1449   assuming the value has mode MODE.  */
1450
1451#define LIBCALL_VALUE(MODE) \
1452  ix86_libcall_value (MODE)
1453
1454/* Define the size of the result block used for communication between
1455   untyped_call and untyped_return.  The block contains a DImode value
1456   followed by the block used by fnsave and frstor.  */
1457
1458#define APPLY_RESULT_SIZE (8+108)
1459
1460/* 1 if N is a possible register number for function argument passing.  */
1461#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1462
1463/* Define a data type for recording info about an argument list
1464   during the scan of that argument list.  This data type should
1465   hold all necessary information about the function itself
1466   and about the args processed so far, enough to enable macros
1467   such as FUNCTION_ARG to determine where the next arg should go.  */
1468
1469typedef struct ix86_args {
1470  int words;			/* # words passed so far */
1471  int nregs;			/* # registers available for passing */
1472  int regno;			/* next available register number */
1473  int fastcall;			/* fastcall calling convention is used */
1474  int sse_words;		/* # sse words passed so far */
1475  int sse_nregs;		/* # sse registers available for passing */
1476  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1477  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1478  int sse_regno;		/* next available sse register number */
1479  int mmx_words;		/* # mmx words passed so far */
1480  int mmx_nregs;		/* # mmx registers available for passing */
1481  int mmx_regno;		/* next available mmx register number */
1482  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1483  int float_in_sse;		/* 1 if in 32-bit mode SFmode (2 for DFmode) should
1484				   be passed in SSE registers.  Otherwise 0.  */
1485} CUMULATIVE_ARGS;
1486
1487/* Initialize a variable CUM of type CUMULATIVE_ARGS
1488   for a call to a function whose data type is FNTYPE.
1489   For a library call, FNTYPE is 0.  */
1490
1491#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1492  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1493
1494/* Update the data in CUM to advance over an argument
1495   of mode MODE and data type TYPE.
1496   (TYPE is null for libcalls where that information may not be available.)  */
1497
1498#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1499  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1500
1501/* Define where to put the arguments to a function.
1502   Value is zero to push the argument on the stack,
1503   or a hard register in which to store the argument.
1504
1505   MODE is the argument's machine mode.
1506   TYPE is the data type of the argument (as a tree).
1507    This is null for libcalls where that information may
1508    not be available.
1509   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1510    the preceding args and about the function being called.
1511   NAMED is nonzero if this argument is a named parameter
1512    (otherwise it is an extra parameter matching an ellipsis).  */
1513
1514#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1515  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1516
1517/* Implement `va_start' for varargs and stdarg.  */
1518#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1519  ix86_va_start (VALIST, NEXTARG)
1520
1521#define TARGET_ASM_FILE_END ix86_file_end
1522#define NEED_INDICATE_EXEC_STACK 0
1523
1524/* Output assembler code to FILE to increment profiler label # LABELNO
1525   for profiling a function entry.  */
1526
1527#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1528
1529#define MCOUNT_NAME "_mcount"
1530
1531#define PROFILE_COUNT_REGISTER "edx"
1532
1533/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1534   the stack pointer does not matter.  The value is tested only in
1535   functions that have frame pointers.
1536   No definition is equivalent to always zero.  */
1537/* Note on the 386 it might be more efficient not to define this since
1538   we have to restore it ourselves from the frame pointer, in order to
1539   use pop */
1540
1541#define EXIT_IGNORE_STACK 1
1542
1543/* Output assembler code for a block containing the constant parts
1544   of a trampoline, leaving space for the variable parts.  */
1545
1546/* On the 386, the trampoline contains two instructions:
1547     mov #STATIC,ecx
1548     jmp FUNCTION
1549   The trampoline is generated entirely at runtime.  The operand of JMP
1550   is the address of FUNCTION relative to the instruction following the
1551   JMP (which is 5 bytes long).  */
1552
1553/* Length in units of the trampoline for entering a nested function.  */
1554
1555#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1556
1557/* Emit RTL insns to initialize the variable parts of a trampoline.
1558   FNADDR is an RTX for the address of the function's pure code.
1559   CXT is an RTX for the static chain value for the function.  */
1560
1561#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1562  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1563
1564/* Definitions for register eliminations.
1565
1566   This is an array of structures.  Each structure initializes one pair
1567   of eliminable registers.  The "from" register number is given first,
1568   followed by "to".  Eliminations of the same "from" register are listed
1569   in order of preference.
1570
1571   There are two registers that can always be eliminated on the i386.
1572   The frame pointer and the arg pointer can be replaced by either the
1573   hard frame pointer or to the stack pointer, depending upon the
1574   circumstances.  The hard frame pointer is not used before reload and
1575   so it is not eligible for elimination.  */
1576
1577#define ELIMINABLE_REGS					\
1578{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1579 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1580 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1581 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1582
1583/* Given FROM and TO register numbers, say whether this elimination is
1584   allowed.  Frame pointer elimination is automatically handled.
1585
1586   All other eliminations are valid.  */
1587
1588#define CAN_ELIMINATE(FROM, TO) \
1589  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1590
1591/* Define the offset between two registers, one to be eliminated, and the other
1592   its replacement, at the start of a routine.  */
1593
1594#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1595  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1596
1597/* Addressing modes, and classification of registers for them.  */
1598
1599/* Macros to check register numbers against specific register classes.  */
1600
1601/* These assume that REGNO is a hard or pseudo reg number.
1602   They give nonzero only if REGNO is a hard reg of the suitable class
1603   or a pseudo reg currently allocated to a suitable hard reg.
1604   Since they use reg_renumber, they are safe only once reg_renumber
1605   has been allocated, which happens in local-alloc.c.  */
1606
1607#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1608  ((REGNO) < STACK_POINTER_REGNUM 					\
1609   || (REGNO >= FIRST_REX_INT_REG					\
1610       && (REGNO) <= LAST_REX_INT_REG)					\
1611   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1612       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1613   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1614
1615#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1616  ((REGNO) <= STACK_POINTER_REGNUM 					\
1617   || (REGNO) == ARG_POINTER_REGNUM 					\
1618   || (REGNO) == FRAME_POINTER_REGNUM 					\
1619   || (REGNO >= FIRST_REX_INT_REG					\
1620       && (REGNO) <= LAST_REX_INT_REG)					\
1621   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1622       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1623   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1624
1625#define REGNO_OK_FOR_SIREG_P(REGNO) \
1626  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1627#define REGNO_OK_FOR_DIREG_P(REGNO) \
1628  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1629
1630/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1631   and check its validity for a certain class.
1632   We have two alternate definitions for each of them.
1633   The usual definition accepts all pseudo regs; the other rejects
1634   them unless they have been allocated suitable hard regs.
1635   The symbol REG_OK_STRICT causes the latter definition to be used.
1636
1637   Most source files want to accept pseudo regs in the hope that
1638   they will get allocated to the class that the insn wants them to be in.
1639   Source files for reload pass need to be strict.
1640   After reload, it makes no difference, since pseudo regs have
1641   been eliminated by then.  */
1642
1643
1644/* Non strict versions, pseudos are ok.  */
1645#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1646  (REGNO (X) < STACK_POINTER_REGNUM					\
1647   || (REGNO (X) >= FIRST_REX_INT_REG					\
1648       && REGNO (X) <= LAST_REX_INT_REG)				\
1649   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1650
1651#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1652  (REGNO (X) <= STACK_POINTER_REGNUM					\
1653   || REGNO (X) == ARG_POINTER_REGNUM					\
1654   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1655   || (REGNO (X) >= FIRST_REX_INT_REG					\
1656       && REGNO (X) <= LAST_REX_INT_REG)				\
1657   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1658
1659/* Strict versions, hard registers only */
1660#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1661#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1662
1663#ifndef REG_OK_STRICT
1664#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1665#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1666
1667#else
1668#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1669#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1670#endif
1671
1672/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1673   that is a valid memory address for an instruction.
1674   The MODE argument is the machine mode for the MEM expression
1675   that wants to use this address.
1676
1677   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1678   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1679
1680   See legitimize_pic_address in i386.c for details as to what
1681   constitutes a legitimate address when -fpic is used.  */
1682
1683#define MAX_REGS_PER_ADDRESS 2
1684
1685#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1686
1687/* Nonzero if the constant value X is a legitimate general operand.
1688   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1689
1690#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1691
1692#ifdef REG_OK_STRICT
1693#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1694do {									\
1695  if (legitimate_address_p ((MODE), (X), 1))				\
1696    goto ADDR;								\
1697} while (0)
1698
1699#else
1700#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1701do {									\
1702  if (legitimate_address_p ((MODE), (X), 0))				\
1703    goto ADDR;								\
1704} while (0)
1705
1706#endif
1707
1708/* If defined, a C expression to determine the base term of address X.
1709   This macro is used in only one place: `find_base_term' in alias.c.
1710
1711   It is always safe for this macro to not be defined.  It exists so
1712   that alias analysis can understand machine-dependent addresses.
1713
1714   The typical use of this macro is to handle addresses containing
1715   a label_ref or symbol_ref within an UNSPEC.  */
1716
1717#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1718
1719/* Try machine-dependent ways of modifying an illegitimate address
1720   to be legitimate.  If we find one, return the new, valid address.
1721   This macro is used in only one place: `memory_address' in explow.c.
1722
1723   OLDX is the address as it was before break_out_memory_refs was called.
1724   In some cases it is useful to look at this to decide what needs to be done.
1725
1726   MODE and WIN are passed so that this macro can use
1727   GO_IF_LEGITIMATE_ADDRESS.
1728
1729   It is always safe for this macro to do nothing.  It exists to recognize
1730   opportunities to optimize the output.
1731
1732   For the 80386, we handle X+REG by loading X into a register R and
1733   using R+REG.  R will go in a general reg and indexing will be used.
1734   However, if REG is a broken-out memory address or multiplication,
1735   nothing needs to be done because REG can certainly go in a general reg.
1736
1737   When -fpic is used, special handling is needed for symbolic references.
1738   See comments by legitimize_pic_address in i386.c for details.  */
1739
1740#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
1741do {									\
1742  (X) = legitimize_address ((X), (OLDX), (MODE));			\
1743  if (memory_address_p ((MODE), (X)))					\
1744    goto WIN;								\
1745} while (0)
1746
1747#define REWRITE_ADDRESS(X) rewrite_address (X)
1748
1749/* Nonzero if the constant value X is a legitimate general operand
1750   when generating PIC code.  It is given that flag_pic is on and
1751   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1752
1753#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1754
1755#define SYMBOLIC_CONST(X)	\
1756  (GET_CODE (X) == SYMBOL_REF						\
1757   || GET_CODE (X) == LABEL_REF						\
1758   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1759
1760/* Go to LABEL if ADDR (a legitimate address expression)
1761   has an effect that depends on the machine mode it is used for.
1762   On the 80386, only postdecrement and postincrement address depend thus
1763   (the amount of decrement or increment being the length of the operand).  */
1764#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
1765do {							\
1766 if (GET_CODE (ADDR) == POST_INC			\
1767     || GET_CODE (ADDR) == POST_DEC)			\
1768   goto LABEL;						\
1769} while (0)
1770
1771/* Max number of args passed in registers.  If this is more than 3, we will
1772   have problems with ebx (register #4), since it is a caller save register and
1773   is also used as the pic register in ELF.  So for now, don't allow more than
1774   3 registers to be passed in registers.  */
1775
1776#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1777
1778#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1779
1780#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1781
1782
1783/* Specify the machine mode that this machine uses
1784   for the index in the tablejump instruction.  */
1785#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1786
1787/* Define this as 1 if `char' should by default be signed; else as 0.  */
1788#define DEFAULT_SIGNED_CHAR 1
1789
1790/* Number of bytes moved into a data cache for a single prefetch operation.  */
1791#define PREFETCH_BLOCK ix86_cost->prefetch_block
1792
1793/* Number of prefetch operations that can be done in parallel.  */
1794#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1795
1796/* Max number of bytes we can move from memory to memory
1797   in one reasonably fast instruction.  */
1798#define MOVE_MAX 16
1799
1800/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1801   move efficiently, as opposed to  MOVE_MAX which is the maximum
1802   number of bytes we can move with a single instruction.  */
1803#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1804
1805/* If a memory-to-memory move would take MOVE_RATIO or more simple
1806   move-instruction pairs, we will do a movmem or libcall instead.
1807   Increasing the value will always make code faster, but eventually
1808   incurs high cost in increased code size.
1809
1810   If you don't define this, a reasonable default is used.  */
1811
1812#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1813
1814/* If a clear memory operation would take CLEAR_RATIO or more simple
1815   move-instruction sequences, we will do a clrmem or libcall instead.  */
1816
1817#define CLEAR_RATIO (optimize_size ? 2 \
1818		     : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1819
1820/* Define if shifts truncate the shift count
1821   which implies one can omit a sign-extension or zero-extension
1822   of a shift count.  */
1823/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
1824
1825/* #define SHIFT_COUNT_TRUNCATED */
1826
1827/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1828   is done just by pretending it is already truncated.  */
1829#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1830
1831/* A macro to update M and UNSIGNEDP when an object whose type is
1832   TYPE and which has the specified mode and signedness is to be
1833   stored in a register.  This macro is only called when TYPE is a
1834   scalar type.
1835
1836   On i386 it is sometimes useful to promote HImode and QImode
1837   quantities to SImode.  The choice depends on target type.  */
1838
1839#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1840do {							\
1841  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1842      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1843    (MODE) = SImode;					\
1844} while (0)
1845
1846/* Specify the machine mode that pointers have.
1847   After generation of rtl, the compiler makes no further distinction
1848   between pointers and any other objects of this machine mode.  */
1849#define Pmode (TARGET_64BIT ? DImode : SImode)
1850
1851/* A function address in a call instruction
1852   is a byte address (for indexing purposes)
1853   so give the MEM rtx a byte's mode.  */
1854#define FUNCTION_MODE QImode
1855
1856/* A C expression for the cost of moving data from a register in class FROM to
1857   one in class TO.  The classes are expressed using the enumeration values
1858   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1859   interpreted relative to that.
1860
1861   It is not required that the cost always equal 2 when FROM is the same as TO;
1862   on some machines it is expensive to move between registers if they are not
1863   general registers.  */
1864
1865#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1866   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1867
1868/* A C expression for the cost of moving data of mode M between a
1869   register and memory.  A value of 2 is the default; this cost is
1870   relative to those in `REGISTER_MOVE_COST'.
1871
1872   If moving between registers and memory is more expensive than
1873   between two registers, you should define this macro to express the
1874   relative cost.  */
1875
1876#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
1877  ix86_memory_move_cost ((MODE), (CLASS), (IN))
1878
1879/* A C expression for the cost of a branch instruction.  A value of 1
1880   is the default; other values are interpreted relative to that.  */
1881
1882#define BRANCH_COST ix86_branch_cost
1883
1884/* Define this macro as a C expression which is nonzero if accessing
1885   less than a word of memory (i.e. a `char' or a `short') is no
1886   faster than accessing a word of memory, i.e., if such access
1887   require more than one instruction or if there is no difference in
1888   cost between byte and (aligned) word loads.
1889
1890   When this macro is not defined, the compiler will access a field by
1891   finding the smallest containing object; when it is defined, a
1892   fullword load will be used if alignment permits.  Unless bytes
1893   accesses are faster than word accesses, using word accesses is
1894   preferable since it may eliminate subsequent memory access if
1895   subsequent accesses occur to other fields in the same word of the
1896   structure, but to different bytes.  */
1897
1898#define SLOW_BYTE_ACCESS 0
1899
1900/* Nonzero if access to memory by shorts is slow and undesirable.  */
1901#define SLOW_SHORT_ACCESS 0
1902
1903/* Define this macro to be the value 1 if unaligned accesses have a
1904   cost many times greater than aligned accesses, for example if they
1905   are emulated in a trap handler.
1906
1907   When this macro is nonzero, the compiler will act as if
1908   `STRICT_ALIGNMENT' were nonzero when generating code for block
1909   moves.  This can cause significantly more instructions to be
1910   produced.  Therefore, do not set this macro nonzero if unaligned
1911   accesses only add a cycle or two to the time for a memory access.
1912
1913   If the value of this macro is always zero, it need not be defined.  */
1914
1915/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1916
1917/* Define this macro if it is as good or better to call a constant
1918   function address than to call an address kept in a register.
1919
1920   Desirable on the 386 because a CALL with a constant address is
1921   faster than one with a register address.  */
1922
1923#define NO_FUNCTION_CSE
1924
1925/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1926   return the mode to be used for the comparison.
1927
1928   For floating-point equality comparisons, CCFPEQmode should be used.
1929   VOIDmode should be used in all other cases.
1930
1931   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1932   possible, to allow for more combinations.  */
1933
1934#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1935
1936/* Return nonzero if MODE implies a floating point inequality can be
1937   reversed.  */
1938
1939#define REVERSIBLE_CC_MODE(MODE) 1
1940
1941/* A C expression whose value is reversed condition code of the CODE for
1942   comparison done in CC_MODE mode.  */
1943#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1944
1945
1946/* Control the assembler format that we output, to the extent
1947   this does not vary between assemblers.  */
1948
1949/* How to refer to registers in assembler output.
1950   This sequence is indexed by compiler's hard-register-number (see above).  */
1951
1952/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1953   For non floating point regs, the following are the HImode names.
1954
1955   For float regs, the stack top is sometimes referred to as "%st(0)"
1956   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
1957
1958#define HI_REGISTER_NAMES						\
1959{"ax","dx","cx","bx","si","di","bp","sp",				\
1960 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
1961 "argp", "flags", "fpsr", "dirflag", "frame",				\
1962 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
1963 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
1964 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
1965 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1966
1967#define REGISTER_NAMES HI_REGISTER_NAMES
1968
1969/* Table of additional register names to use in user input.  */
1970
1971#define ADDITIONAL_REGISTER_NAMES \
1972{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
1973  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
1974  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
1975  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
1976  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
1977  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1978
1979/* Note we are omitting these since currently I don't know how
1980to get gcc to use these, since they want the same but different
1981number as al, and ax.
1982*/
1983
1984#define QI_REGISTER_NAMES \
1985{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1986
1987/* These parallel the array above, and can be used to access bits 8:15
1988   of regs 0 through 3.  */
1989
1990#define QI_HIGH_REGISTER_NAMES \
1991{"ah", "dh", "ch", "bh", }
1992
1993/* How to renumber registers for dbx and gdb.  */
1994
1995#define DBX_REGISTER_NUMBER(N) \
1996  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1997
1998extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1999extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2000extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2001
2002/* Before the prologue, RA is at 0(%esp).  */
2003#define INCOMING_RETURN_ADDR_RTX \
2004  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2005
2006/* After the prologue, RA is at -4(AP) in the current frame.  */
2007#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2008  ((COUNT) == 0								   \
2009   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2010   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2011
2012/* PC is dbx register 8; let's use that column for RA.  */
2013#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2014
2015/* Before the prologue, the top of the frame is at 4(%esp).  */
2016#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2017
2018/* Describe how we implement __builtin_eh_return.  */
2019#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2020#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2021
2022
2023/* Select a format to encode pointers in exception handling data.  CODE
2024   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2025   true if the symbol may be affected by dynamic relocations.
2026
2027   ??? All x86 object file formats are capable of representing this.
2028   After all, the relocation needed is the same as for the call insn.
2029   Whether or not a particular assembler allows us to enter such, I
2030   guess we'll have to see.  */
2031#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2032  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2033
2034/* This is how to output an insn to push a register on the stack.
2035   It need not be very fast code.  */
2036
2037#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2038do {									\
2039  if (TARGET_64BIT)							\
2040    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2041		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2042  else									\
2043    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2044} while (0)
2045
2046/* This is how to output an insn to pop a register from the stack.
2047   It need not be very fast code.  */
2048
2049#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2050do {									\
2051  if (TARGET_64BIT)							\
2052    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2053		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2054  else									\
2055    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2056} while (0)
2057
2058/* This is how to output an element of a case-vector that is absolute.  */
2059
2060#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2061  ix86_output_addr_vec_elt ((FILE), (VALUE))
2062
2063/* This is how to output an element of a case-vector that is relative.  */
2064
2065#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2066  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2067
2068/* Under some conditions we need jump tables in the text section,
2069   because the assembler cannot handle label differences between
2070   sections.  This is the case for x86_64 on Mach-O for example.  */
2071
2072#define JUMP_TABLES_IN_TEXT_SECTION \
2073  (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2074   || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2075
2076/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2077   and switch back.  For x86 we do this only to save a few bytes that
2078   would otherwise be unused in the text section.  */
2079#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2080   asm (SECTION_OP "\n\t"				\
2081	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2082	TEXT_SECTION_ASM_OP);
2083
2084/* Print operand X (an rtx) in assembler syntax to file FILE.
2085   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2086   Effect of various CODE letters is described in i386.c near
2087   print_operand function.  */
2088
2089#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2090  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2091
2092#define PRINT_OPERAND(FILE, X, CODE)  \
2093  print_operand ((FILE), (X), (CODE))
2094
2095#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2096  print_operand_address ((FILE), (ADDR))
2097
2098#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2099do {						\
2100  if (! output_addr_const_extra (FILE, (X)))	\
2101    goto FAIL;					\
2102} while (0);
2103
2104/* a letter which is not needed by the normal asm syntax, which
2105   we can use for operand syntax in the extended asm */
2106
2107#define ASM_OPERAND_LETTER '#'
2108#define RET return ""
2109#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2110
2111/* Which processor to schedule for. The cpu attribute defines a list that
2112   mirrors this list, so changes to i386.md must be made at the same time.  */
2113
2114enum processor_type
2115{
2116  PROCESSOR_I386,			/* 80386 */
2117  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2118  PROCESSOR_PENTIUM,
2119  PROCESSOR_PENTIUMPRO,
2120  PROCESSOR_GEODE,
2121  PROCESSOR_K6,
2122  PROCESSOR_ATHLON,
2123  PROCESSOR_PENTIUM4,
2124  PROCESSOR_K8,
2125  PROCESSOR_NOCONA,
2126  PROCESSOR_CORE2,
2127  PROCESSOR_GENERIC32,
2128  PROCESSOR_GENERIC64,
2129  PROCESSOR_AMDFAM10,
2130  PROCESSOR_max
2131};
2132
2133extern enum processor_type ix86_tune;
2134extern enum processor_type ix86_arch;
2135
2136enum fpmath_unit
2137{
2138  FPMATH_387 = 1,
2139  FPMATH_SSE = 2
2140};
2141
2142extern enum fpmath_unit ix86_fpmath;
2143
2144enum tls_dialect
2145{
2146  TLS_DIALECT_GNU,
2147  TLS_DIALECT_GNU2,
2148  TLS_DIALECT_SUN
2149};
2150
2151extern enum tls_dialect ix86_tls_dialect;
2152
2153enum cmodel {
2154  CM_32,	/* The traditional 32-bit ABI.  */
2155  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
2156  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
2157  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
2158  CM_LARGE,	/* No assumptions.  */
2159  CM_SMALL_PIC,	/* Assumes code+data+got/plt fits in a 31 bit region.  */
2160  CM_MEDIUM_PIC	/* Assumes code+got/plt fits in a 31 bit region.  */
2161};
2162
2163extern enum cmodel ix86_cmodel;
2164
2165/* Size of the RED_ZONE area.  */
2166#define RED_ZONE_SIZE 128
2167/* Reserved area of the red zone for temporaries.  */
2168#define RED_ZONE_RESERVE 8
2169
2170enum asm_dialect {
2171  ASM_ATT,
2172  ASM_INTEL
2173};
2174
2175extern enum asm_dialect ix86_asm_dialect;
2176extern unsigned int ix86_preferred_stack_boundary;
2177extern int ix86_branch_cost, ix86_section_threshold;
2178
2179/* Smallest class containing REGNO.  */
2180extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2181
2182extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
2183extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
2184extern rtx ix86_compare_emitted;
2185
2186/* To properly truncate FP values into integers, we need to set i387 control
2187   word.  We can't emit proper mode switching code before reload, as spills
2188   generated by reload may truncate values incorrectly, but we still can avoid
2189   redundant computation of new control word by the mode switching pass.
2190   The fldcw instructions are still emitted redundantly, but this is probably
2191   not going to be noticeable problem, as most CPUs do have fast path for
2192   the sequence.
2193
2194   The machinery is to emit simple truncation instructions and split them
2195   before reload to instructions having USEs of two memory locations that
2196   are filled by this code to old and new control word.
2197
2198   Post-reload pass may be later used to eliminate the redundant fildcw if
2199   needed.  */
2200
2201enum ix86_entity
2202{
2203  I387_TRUNC = 0,
2204  I387_FLOOR,
2205  I387_CEIL,
2206  I387_MASK_PM,
2207  MAX_386_ENTITIES
2208};
2209
2210enum ix86_stack_slot
2211{
2212  SLOT_VIRTUAL = 0,
2213  SLOT_TEMP,
2214  SLOT_CW_STORED,
2215  SLOT_CW_TRUNC,
2216  SLOT_CW_FLOOR,
2217  SLOT_CW_CEIL,
2218  SLOT_CW_MASK_PM,
2219  MAX_386_STACK_LOCALS
2220};
2221
2222/* Define this macro if the port needs extra instructions inserted
2223   for mode switching in an optimizing compilation.  */
2224
2225#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2226   ix86_optimize_mode_switching[(ENTITY)]
2227
2228/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2229   initializer for an array of integers.  Each initializer element N
2230   refers to an entity that needs mode switching, and specifies the
2231   number of different modes that might need to be set for this
2232   entity.  The position of the initializer in the initializer -
2233   starting counting at zero - determines the integer that is used to
2234   refer to the mode-switched entity in question.  */
2235
2236#define NUM_MODES_FOR_MODE_SWITCHING \
2237   { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2238
2239/* ENTITY is an integer specifying a mode-switched entity.  If
2240   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2241   return an integer value not larger than the corresponding element
2242   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2243   must be switched into prior to the execution of INSN. */
2244
2245#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2246
2247/* This macro specifies the order in which modes for ENTITY are
2248   processed.  0 is the highest priority.  */
2249
2250#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2251
2252/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2253   is the set of hard registers live at the point where the insn(s)
2254   are to be inserted.  */
2255
2256#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
2257  ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED		\
2258   ? emit_i387_cw_initialization (MODE), 0				\
2259   : 0)
2260
2261
2262/* Avoid renaming of stack registers, as doing so in combination with
2263   scheduling just increases amount of live registers at time and in
2264   the turn amount of fxch instructions needed.
2265
2266   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2267
2268#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2269   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2270
2271
2272#define DLL_IMPORT_EXPORT_PREFIX '#'
2273
2274#define FASTCALL_PREFIX '@'
2275
2276struct machine_function GTY(())
2277{
2278  struct stack_local_entry *stack_locals;
2279  const char *some_ld_name;
2280  rtx force_align_arg_pointer;
2281  int save_varrargs_registers;
2282  int accesses_prev_frame;
2283  int optimize_mode_switching[MAX_386_ENTITIES];
2284  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2285     determine the style used.  */
2286  int use_fast_prologue_epilogue;
2287  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2288     for.  */
2289  int use_fast_prologue_epilogue_nregs;
2290  /* If true, the current function needs the default PIC register, not
2291     an alternate register (on x86) and must not use the red zone (on
2292     x86_64), even if it's a leaf function.  We don't want the
2293     function to be regarded as non-leaf because TLS calls need not
2294     affect register allocation.  This flag is set when a TLS call
2295     instruction is expanded within a function, and never reset, even
2296     if all such instructions are optimized away.  Use the
2297     ix86_current_function_calls_tls_descriptor macro for a better
2298     approximation.  */
2299  int tls_descriptor_call_expanded_p;
2300};
2301
2302#define ix86_stack_locals (cfun->machine->stack_locals)
2303#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2304#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2305#define ix86_tls_descriptor_calls_expanded_in_cfun \
2306  (cfun->machine->tls_descriptor_call_expanded_p)
2307/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2308   calls are optimized away, we try to detect cases in which it was
2309   optimized away.  Since such instructions (use (reg REG_SP)), we can
2310   verify whether there's any such instruction live by testing that
2311   REG_SP is live.  */
2312#define ix86_current_function_calls_tls_descriptor \
2313  (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
2314
2315/* Control behavior of x86_file_start.  */
2316#define X86_FILE_START_VERSION_DIRECTIVE false
2317#define X86_FILE_START_FLTUSED false
2318
2319/* Flag to mark data that is in the large address area.  */
2320#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2321#define SYMBOL_REF_FAR_ADDR_P(X)	\
2322	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2323/*
2324Local variables:
2325version-control: t
2326End:
2327*/
2328