i386.h revision 97911
121240Swosch/* Definitions of target machine for GNU compiler for IA-32.
221240Swosch   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
321240Swosch   2001, 2002 Free Software Foundation, Inc.
421240Swosch
521240SwoschThis file is part of GNU CC.
621240Swosch
721240SwoschGNU CC is free software; you can redistribute it and/or modify
821240Swoschit under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37
38/* $FreeBSD: head/contrib/gcc/config/i386/i386.h 97911 2002-06-06 03:36:32Z obrien $ */
39
40
41/* Stubs for half-pic support if not OSF/1 reference platform.  */
42
43#ifndef HALF_PIC_P
44#define HALF_PIC_P() 0
45#define HALF_PIC_NUMBER_PTRS 0
46#define HALF_PIC_NUMBER_REFS 0
47#define HALF_PIC_ENCODE(DECL)
48#define HALF_PIC_DECLARE(NAME)
49#define HALF_PIC_INIT()	error ("half-pic init called on systems that don't support it")
50#define HALF_PIC_ADDRESS_P(X) 0
51#define HALF_PIC_PTR(X) (X)
52#define HALF_PIC_FINISH(STREAM)
53#endif
54
55/* Define the specific costs for a given cpu */
56
57struct processor_costs {
58  const int add;		/* cost of an add instruction */
59  const int lea;		/* cost of a lea instruction */
60  const int shift_var;		/* variable shift costs */
61  const int shift_const;	/* constant shift costs */
62  const int mult_init;		/* cost of starting a multiply */
63  const int mult_bit;		/* cost of multiply per each bit set */
64  const int divide;		/* cost of a divide/mod */
65  int movsx;			/* The cost of movsx operation.  */
66  int movzx;			/* The cost of movzx operation.  */
67  const int large_insn;		/* insns larger than this cost more */
68  const int move_ratio;		/* The threshold of number of scalar
69				   memory-to-memory move insns.  */
70  const int movzbl_load;	/* cost of loading using movzbl */
71  const int int_load[3];	/* cost of loading integer registers
72				   in QImode, HImode and SImode relative
73				   to reg-reg move (2).  */
74  const int int_store[3];	/* cost of storing integer register
75				   in QImode, HImode and SImode */
76  const int fp_move;		/* cost of reg,reg fld/fst */
77  const int fp_load[3];		/* cost of loading FP register
78				   in SFmode, DFmode and XFmode */
79  const int fp_store[3];	/* cost of storing FP register
80				   in SFmode, DFmode and XFmode */
81  const int mmx_move;		/* cost of moving MMX register.  */
82  const int mmx_load[2];	/* cost of loading MMX register
83				   in SImode and DImode */
84  const int mmx_store[2];	/* cost of storing MMX register
85				   in SImode and DImode */
86  const int sse_move;		/* cost of moving SSE register.  */
87  const int sse_load[3];	/* cost of loading SSE register
88				   in SImode, DImode and TImode*/
89  const int sse_store[3];	/* cost of storing SSE register
90				   in SImode, DImode and TImode*/
91  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
92				   integer and vice versa.  */
93  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
94  const int simultaneous_prefetches; /* number of parallel prefetch
95				   operations.  */
96};
97
98extern const struct processor_costs *ix86_cost;
99
100/* Run-time compilation parameters selecting different hardware subsets.  */
101
102extern int target_flags;
103
104/* Macros used in the machine description to test the flags.  */
105
106/* configure can arrange to make this 2, to force a 486.  */
107
108#ifndef TARGET_CPU_DEFAULT
109#define TARGET_CPU_DEFAULT 0
110#endif
111
112/* Masks for the -m switches */
113#define MASK_80387		0x00000001	/* Hardware floating point */
114#define MASK_RTD		0x00000002	/* Use ret that pops args */
115#define MASK_ALIGN_DOUBLE	0x00000004	/* align doubles to 2 word boundary */
116#define MASK_SVR3_SHLIB		0x00000008	/* Uninit locals into bss */
117#define MASK_IEEE_FP		0x00000010	/* IEEE fp comparisons */
118#define MASK_FLOAT_RETURNS	0x00000020	/* Return float in st(0) */
119#define MASK_NO_FANCY_MATH_387	0x00000040	/* Disable sin, cos, sqrt */
120#define MASK_OMIT_LEAF_FRAME_POINTER 0x080      /* omit leaf frame pointers */
121#define MASK_STACK_PROBE	0x00000100	/* Enable stack probing */
122#define MASK_NO_ALIGN_STROPS	0x00000200	/* Enable aligning of string ops.  */
123#define MASK_INLINE_ALL_STROPS	0x00000400	/* Inline stringops in all cases */
124#define MASK_NO_PUSH_ARGS	0x00000800	/* Use push instructions */
125#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
126#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
127#define MASK_MMX		0x00004000	/* Support MMX regs/builtins */
128#define MASK_MMX_SET		0x00008000
129#define MASK_SSE		0x00010000	/* Support SSE regs/builtins */
130#define MASK_SSE_SET		0x00020000
131#define MASK_SSE2		0x00040000	/* Support SSE2 regs/builtins */
132#define MASK_SSE2_SET		0x00080000
133#define MASK_3DNOW		0x00100000	/* Support 3Dnow builtins */
134#define MASK_3DNOW_SET		0x00200000
135#define MASK_3DNOW_A		0x00400000	/* Support Athlon 3Dnow builtins */
136#define MASK_3DNOW_A_SET	0x00800000
137#define MASK_128BIT_LONG_DOUBLE 0x01000000	/* long double size is 128bit */
138#define MASK_64BIT		0x02000000	/* Produce 64bit code */
139/* ... overlap with subtarget options starts by 0x04000000.  */
140#define MASK_NO_RED_ZONE	0x04000000	/* Do not use red zone */
141#define MASK_NO_ALIGN_LONG_STRINGS 0x08000000	/* Do not align long strings specially */
142
143/* Use the floating point instructions */
144#define TARGET_80387 (target_flags & MASK_80387)
145
146/* Compile using ret insn that pops args.
147   This will not work unless you use prototypes at least
148   for all functions that can take varying numbers of args.  */
149#define TARGET_RTD (target_flags & MASK_RTD)
150
151/* Align doubles to a two word boundary.  This breaks compatibility with
152   the published ABI's for structures containing doubles, but produces
153   faster code on the pentium.  */
154#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
155
156/* Use push instructions to save outgoing args.  */
157#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
158
159/* Accumulate stack adjustments to prologue/epilogue.  */
160#define TARGET_ACCUMULATE_OUTGOING_ARGS \
161 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
162
163/* Put uninitialized locals into bss, not data.
164   Meaningful only on svr3.  */
165#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
166
167/* Use IEEE floating point comparisons.  These handle correctly the cases
168   where the result of a comparison is unordered.  Normally SIGFPE is
169   generated in such cases, in which case this isn't needed.  */
170#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
171
172/* Functions that return a floating point value may return that value
173   in the 387 FPU or in 386 integer registers.  If set, this flag causes
174   the 387 to be used, which is compatible with most calling conventions.  */
175#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
176
177/* Long double is 128bit instead of 96bit, even when only 80bits are used.
178   This mode wastes cache, but avoid misaligned data accesses and simplifies
179   address calculations.  */
180#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
181
182/* Disable generation of FP sin, cos and sqrt operations for 387.
183   This is because FreeBSD lacks these in the math-emulator-code */
184#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
185
186/* Don't create frame pointers for leaf functions */
187#define TARGET_OMIT_LEAF_FRAME_POINTER \
188  (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
189
190/* Debug GO_IF_LEGITIMATE_ADDRESS */
191#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
192
193/* Debug FUNCTION_ARG macros */
194#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
195
196/* 64bit Sledgehammer mode */
197#ifdef TARGET_BI_ARCH
198#define TARGET_64BIT (target_flags & MASK_64BIT)
199#else
200#ifdef TARGET_64BIT_DEFAULT
201#define TARGET_64BIT 1
202#else
203#define TARGET_64BIT 0
204#endif
205#endif
206
207#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
208#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
209#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
210#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
211#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
212#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
213#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
214
215#define CPUMASK (1 << ix86_cpu)
216extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
217extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
218extern const int x86_branch_hints, x86_unroll_strlen;
219extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
220extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
221extern const int x86_use_cltd, x86_read_modify_write;
222extern const int x86_read_modify, x86_split_long_moves;
223extern const int x86_promote_QImode, x86_single_stringop;
224extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
225extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
226extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
227extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
228extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
229extern const int x86_epilogue_using_move, x86_decompose_lea;
230extern const int x86_arch_always_fancy_math_387;
231extern int x86_prefetch_sse;
232
233#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
234#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
235#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
236#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
237#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
238/* For sane SSE instruction set generation we need fcomi instruction.  It is
239   safe to enable all CMOVE instructions.  */
240#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
241#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
242#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
243#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
244#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
245#define TARGET_MOVX (x86_movx & CPUMASK)
246#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
247#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
248#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
249#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
250#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
251#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
252#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
253#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
254#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
255#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
256#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
257#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
258#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
259#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
260#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
261#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
262#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
263#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
264#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
265#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
266#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
267#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
268#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
269#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
270#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
271
272#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
273
274#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
275#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
276
277#define ASSEMBLER_DIALECT (ix86_asm_dialect)
278
279#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
280#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
281#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
282#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
283			     && (ix86_fpmath & FPMATH_387))
284#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
285#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
286#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
287
288#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
289
290#define TARGET_NO_ALIGN_LONG_STRINGS (target_flags & MASK_NO_ALIGN_LONG_STRINGS)
291
292/* WARNING: Do not mark empty strings for translation, as calling
293            gettext on an empty string does NOT return an empty
294            string. */
295
296
297#define TARGET_SWITCHES							      \
298{ { "80387",			 MASK_80387, N_("Use hardware fp") },	      \
299  { "no-80387",			-MASK_80387, N_("Do not use hardware fp") },  \
300  { "hard-float",		 MASK_80387, N_("Use hardware fp") },	      \
301  { "soft-float",		-MASK_80387, N_("Do not use hardware fp") },  \
302  { "no-soft-float",		 MASK_80387, N_("Use hardware fp") },	      \
303  { "386",			 0, "" /*Deprecated.*/},		      \
304  { "486",			 0, "" /*Deprecated.*/},		      \
305  { "pentium",			 0, "" /*Deprecated.*/},		      \
306  { "pentiumpro",		 0, "" /*Deprecated.*/},		      \
307  { "intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
308  { "no-intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
309  { "rtd",			 MASK_RTD,				      \
310    N_("Alternate calling convention") },				      \
311  { "no-rtd",			-MASK_RTD,				      \
312    N_("Use normal calling convention") },				      \
313  { "align-double",		 MASK_ALIGN_DOUBLE,			      \
314    N_("Align some doubles on dword boundary") },			      \
315  { "no-align-double",		-MASK_ALIGN_DOUBLE,			      \
316    N_("Align doubles on word boundary") },				      \
317  { "svr3-shlib",		 MASK_SVR3_SHLIB,			      \
318    N_("Uninitialized locals in .bss")  },				      \
319  { "no-svr3-shlib",		-MASK_SVR3_SHLIB,			      \
320    N_("Uninitialized locals in .data") },				      \
321  { "ieee-fp",			 MASK_IEEE_FP,				      \
322    N_("Use IEEE math for fp comparisons") },				      \
323  { "no-ieee-fp",		-MASK_IEEE_FP,				      \
324    N_("Do not use IEEE math for fp comparisons") },			      \
325  { "fp-ret-in-387",		 MASK_FLOAT_RETURNS,			      \
326    N_("Return values of functions in FPU registers") },		      \
327  { "no-fp-ret-in-387",		-MASK_FLOAT_RETURNS ,			      \
328    N_("Do not return values of functions in FPU registers")},		      \
329  { "no-fancy-math-387",	 MASK_NO_FANCY_MATH_387,		      \
330    N_("Do not generate sin, cos, sqrt for FPU") },			      \
331  { "fancy-math-387",		-MASK_NO_FANCY_MATH_387,		      \
332     N_("Generate sin, cos, sqrt for FPU")},				      \
333  { "omit-leaf-frame-pointer",	 MASK_OMIT_LEAF_FRAME_POINTER,		      \
334    N_("Omit the frame pointer in leaf functions") },			      \
335  { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" },	      \
336  { "stack-arg-probe",		 MASK_STACK_PROBE,			      \
337    N_("Enable stack probing") },					      \
338  { "no-stack-arg-probe",	-MASK_STACK_PROBE, "" },		      \
339  { "windows",			0, 0 /* undocumented */ },		      \
340  { "dll",			0,  0 /* undocumented */ },		      \
341  { "align-stringops",		-MASK_NO_ALIGN_STROPS,			      \
342    N_("Align destination of the string operations") },			      \
343  { "no-align-stringops",	 MASK_NO_ALIGN_STROPS,			      \
344    N_("Do not align destination of the string operations") },		      \
345  { "inline-all-stringops",	 MASK_INLINE_ALL_STROPS,		      \
346    N_("Inline all known string operations") },				      \
347  { "no-inline-all-stringops",	-MASK_INLINE_ALL_STROPS,		      \
348    N_("Do not inline all known string operations") },			      \
349  { "push-args",		-MASK_NO_PUSH_ARGS,			      \
350    N_("Use push instructions to save outgoing arguments") },		      \
351  { "no-push-args",		MASK_NO_PUSH_ARGS,			      \
352    N_("Do not use push instructions to save outgoing arguments") },	      \
353  { "accumulate-outgoing-args",	(MASK_ACCUMULATE_OUTGOING_ARGS		      \
354				 | MASK_ACCUMULATE_OUTGOING_ARGS_SET),	      \
355    N_("Use push instructions to save outgoing arguments") },		      \
356  { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET,	      \
357    N_("Do not use push instructions to save outgoing arguments") },	      \
358  { "mmx",			 MASK_MMX | MASK_MMX_SET,		      \
359    N_("Support MMX built-in functions") },				      \
360  { "no-mmx",			 -MASK_MMX,				      \
361    N_("Do not support MMX built-in functions") },			      \
362  { "no-mmx",			 MASK_MMX_SET, "" },			      \
363  { "3dnow",                     MASK_3DNOW | MASK_3DNOW_SET,		      \
364    N_("Support 3DNow! built-in functions") },				      \
365  { "no-3dnow",                  -MASK_3DNOW, "" },			      \
366  { "no-3dnow",                  MASK_3DNOW_SET,			      \
367    N_("Do not support 3DNow! built-in functions") },			      \
368  { "sse",			 MASK_SSE | MASK_SSE_SET,		      \
369    N_("Support MMX and SSE built-in functions and code generation") },	      \
370  { "no-sse",			 -MASK_SSE, "" },	 		      \
371  { "no-sse",			 MASK_SSE_SET,				      \
372    N_("Do not support MMX and SSE built-in functions and code generation") },\
373  { "sse2",			 MASK_SSE2 | MASK_SSE2_SET,		      \
374    N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
375  { "no-sse2",			 -MASK_SSE2, "" },			      \
376  { "no-sse2",			 MASK_SSE2_SET,				      \
377    N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") },    \
378  { "128bit-long-double",	 MASK_128BIT_LONG_DOUBLE,		      \
379    N_("sizeof(long double) is 16") },					      \
380  { "96bit-long-double",	-MASK_128BIT_LONG_DOUBLE,		      \
381    N_("sizeof(long double) is 12") },					      \
382  { "64",			MASK_64BIT,				      \
383    N_("Generate 64bit x86-64 code") },					      \
384  { "32",			-MASK_64BIT,				      \
385    N_("Generate 32bit i386 code") },					      \
386  { "red-zone",			-MASK_NO_RED_ZONE,			      \
387    N_("Use red-zone in the x86-64 code") },				      \
388  { "no-red-zone",		MASK_NO_RED_ZONE,			      \
389    N_("Do not use red-zone in the x86-64 code") },			      \
390  { "no-align-long-strings",	 MASK_NO_ALIGN_LONG_STRINGS,		      \
391    N_("Do not align long strings specially") },			      \
392  { "align-long-strings",	-MASK_NO_ALIGN_LONG_STRINGS,		      \
393    N_("Align strings longer than 30 on a 32-byte boundary") },		      \
394  SUBTARGET_SWITCHES							      \
395  { "", TARGET_DEFAULT, 0 }}
396
397#ifdef TARGET_64BIT_DEFAULT
398#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
399#else
400#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
401#endif
402
403/* Which processor to schedule for. The cpu attribute defines a list that
404   mirrors this list, so changes to i386.md must be made at the same time.  */
405
406enum processor_type
407{
408  PROCESSOR_I386,			/* 80386 */
409  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
410  PROCESSOR_PENTIUM,
411  PROCESSOR_PENTIUMPRO,
412  PROCESSOR_K6,
413  PROCESSOR_ATHLON,
414  PROCESSOR_PENTIUM4,
415  PROCESSOR_max
416};
417enum fpmath_unit
418{
419  FPMATH_387 = 1,
420  FPMATH_SSE = 2
421};
422
423extern enum processor_type ix86_cpu;
424extern enum fpmath_unit ix86_fpmath;
425
426extern int ix86_arch;
427
428/* This macro is similar to `TARGET_SWITCHES' but defines names of
429   command options that have values.  Its definition is an
430   initializer with a subgrouping for each command option.
431
432   Each subgrouping contains a string constant, that defines the
433   fixed part of the option name, and the address of a variable.  The
434   variable, type `char *', is set to the variable part of the given
435   option if the fixed part matches.  The actual option name is made
436   by appending `-m' to the specified name.  */
437#define TARGET_OPTIONS						\
438{ { "cpu=",		&ix86_cpu_string,			\
439    N_("Schedule code for given CPU")},				\
440  { "fpmath=",		&ix86_fpmath_string,			\
441    N_("Generate floating point mathematics using given instruction set")},\
442  { "arch=",		&ix86_arch_string,			\
443    N_("Generate code for given CPU")},				\
444  { "regparm=",		&ix86_regparm_string,			\
445    N_("Number of registers used to pass integer arguments") },	\
446  { "align-loops=",	&ix86_align_loops_string,		\
447    N_("Loop code aligned to this power of 2") },		\
448  { "align-jumps=",	&ix86_align_jumps_string,		\
449    N_("Jump targets are aligned to this power of 2") },	\
450  { "align-functions=",	&ix86_align_funcs_string,		\
451    N_("Function starts are aligned to this power of 2") },	\
452  { "preferred-stack-boundary=",				\
453    &ix86_preferred_stack_boundary_string,			\
454    N_("Attempt to keep stack aligned to this power of 2") },	\
455  { "branch-cost=",	&ix86_branch_cost_string,		\
456    N_("Branches are this expensive (1-5, arbitrary units)") },	\
457  { "cmodel=", &ix86_cmodel_string,				\
458    N_("Use given x86-64 code model") },			\
459  { "debug-arg", &ix86_debug_arg_string,			\
460    "" /* Undocumented. */ },					\
461  { "debug-addr", &ix86_debug_addr_string,			\
462    "" /* Undocumented. */ },					\
463  { "asm=", &ix86_asm_string,					\
464    N_("Use given assembler dialect") },			\
465  SUBTARGET_OPTIONS						\
466}
467
468/* Sometimes certain combinations of command options do not make
469   sense on a particular target machine.  You can define a macro
470   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
471   defined, is executed once just after all the command options have
472   been parsed.
473
474   Don't use this macro to turn on various extra optimizations for
475   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
476
477#define OVERRIDE_OPTIONS override_options ()
478
479/* These are meant to be redefined in the host dependent files */
480#define SUBTARGET_SWITCHES
481#define SUBTARGET_OPTIONS
482
483/* Define this to change the optimizations performed by default.  */
484#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
485  optimization_options ((LEVEL), (SIZE))
486
487/* Specs for the compiler proper */
488
489#ifndef CC1_CPU_SPEC
490#define CC1_CPU_SPEC "\
491%{!mcpu*: \
492%{m386:-mcpu=i386 \
493%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
494%{m486:-mcpu=i486 \
495%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
496%{mpentium:-mcpu=pentium \
497%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
498%{mpentiumpro:-mcpu=pentiumpro \
499%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
500%{mintel-syntax:-masm=intel \
501%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
502%{mno-intel-syntax:-masm=att \
503%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
504#endif
505
506#define TARGET_CPU_DEFAULT_i386 0
507#define TARGET_CPU_DEFAULT_i486 1
508#define TARGET_CPU_DEFAULT_pentium 2
509#define TARGET_CPU_DEFAULT_pentium_mmx 3
510#define TARGET_CPU_DEFAULT_pentiumpro 4
511#define TARGET_CPU_DEFAULT_pentium2 5
512#define TARGET_CPU_DEFAULT_pentium3 6
513#define TARGET_CPU_DEFAULT_pentium4 7
514#define TARGET_CPU_DEFAULT_k6 8
515#define TARGET_CPU_DEFAULT_k6_2 9
516#define TARGET_CPU_DEFAULT_k6_3 10
517#define TARGET_CPU_DEFAULT_athlon 11
518#define TARGET_CPU_DEFAULT_athlon_sse 12
519
520#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
521				  "pentiumpro", "pentium2", "pentium3", \
522				  "pentium4", "k6", "k6-2", "k6-3",\
523				  "athlon", "athlon-4"}
524#ifndef CPP_CPU_DEFAULT_SPEC
525#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
526#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
527#endif
528#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
529#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
530#endif
531#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
532#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
533#endif
534#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
535#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
536#endif
537#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
538#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
539-D__tune_pentium2__"
540#endif
541#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
542#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
543-D__tune_pentium2__ -D__tune_pentium3__"
544#endif
545#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
546#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
547#endif
548#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
549#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
550#endif
551#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
552#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
553#endif
554#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
555#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
556#endif
557#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
558#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
559#endif
560#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
561#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
562#endif
563#ifndef CPP_CPU_DEFAULT_SPEC
564#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
565#endif
566#endif /* CPP_CPU_DEFAULT_SPEC */
567
568#ifdef TARGET_BI_ARCH
569#define NO_BUILTIN_SIZE_TYPE
570#define NO_BUILTIN_PTRDIFF_TYPE
571#endif
572
573#ifdef NO_BUILTIN_SIZE_TYPE
574#define CPP_CPU32_SIZE_TYPE_SPEC \
575  " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
576#define CPP_CPU64_SIZE_TYPE_SPEC \
577  " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
578#else
579#define CPP_CPU32_SIZE_TYPE_SPEC ""
580#define CPP_CPU64_SIZE_TYPE_SPEC ""
581#endif
582
583#define CPP_CPU32_SPEC \
584  "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
585-D__i386__ %(cpp_cpu32sizet)"
586
587#define CPP_CPU64_SPEC \
588  "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
589
590#define CPP_CPUCOMMON_SPEC "\
591%{march=i386:%{!mcpu*:-D__tune_i386__ }}\
592%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
593%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
594  %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
595%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
596  -D__pentium__mmx__ \
597  %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
598%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
599  -D__pentiumpro -D__pentiumpro__ \
600  %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
601%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
602%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
603  %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
604%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
605  %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
606%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
607  %{!mcpu*:-D__tune_athlon__ }}\
608%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
609  -D__athlon_sse__ \
610  %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
611%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
612%{m386|mcpu=i386:-D__tune_i386__ }\
613%{m486|mcpu=i486:-D__tune_i486__ }\
614%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
615%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \
616-D__tune_pentiumpro__ }\
617%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
618%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
619-D__tune_athlon__ }\
620%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
621-D__tune_athlon_sse__ }\
622%{mcpu=pentium4:-D__tune_pentium4__ }\
623%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\
624-D__SSE__ }\
625%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
626|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
627|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\
628%{march=k6-2|march=k6-3\
629|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
630|march=athlon-mp: -D__3dNOW__ }\
631%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
632|march=athlon-mp: -D__3dNOW_A__ }\
633%{march=pentium4: -D__SSE2__ }\
634%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
635
636#ifndef CPP_CPU_SPEC
637#ifdef TARGET_BI_ARCH
638#ifdef TARGET_64BIT_DEFAULT
639#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
640#else
641#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
642#endif
643#else
644#ifdef TARGET_64BIT_DEFAULT
645#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
646#else
647#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
648#endif
649#endif
650#endif
651
652#ifndef CC1_SPEC
653#define CC1_SPEC "%(cc1_cpu) "
654#endif
655
656/* This macro defines names of additional specifications to put in the
657   specs that can be used in various specifications like CC1_SPEC.  Its
658   definition is an initializer with a subgrouping for each command option.
659
660   Each subgrouping contains a string constant, that defines the
661   specification name, and a string constant that used by the GNU CC driver
662   program.
663
664   Do not define this macro if it does not need to do anything.  */
665
666#ifndef SUBTARGET_EXTRA_SPECS
667#define SUBTARGET_EXTRA_SPECS
668#endif
669
670#define EXTRA_SPECS							\
671  { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },				\
672  { "cpp_cpu",	CPP_CPU_SPEC },						\
673  { "cpp_cpu32", CPP_CPU32_SPEC },					\
674  { "cpp_cpu64", CPP_CPU64_SPEC },					\
675  { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC },			\
676  { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC },			\
677  { "cpp_cpucommon", CPP_CPUCOMMON_SPEC },				\
678  { "cc1_cpu",  CC1_CPU_SPEC },						\
679  SUBTARGET_EXTRA_SPECS
680
681/* target machine storage layout */
682
683/* Define for XFmode or TFmode extended real floating point support.
684   This will automatically cause REAL_ARITHMETIC to be defined.
685
686   The XFmode is specified by i386 ABI, while TFmode may be faster
687   due to alignment and simplifications in the address calculations.
688 */
689#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
690#define MAX_LONG_DOUBLE_TYPE_SIZE 128
691#ifdef __x86_64__
692#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
693#else
694#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
695#endif
696/* Tell real.c that this is the 80-bit Intel extended float format
697   packaged in a 128-bit or 96bit entity.  */
698#define INTEL_EXTENDED_IEEE_FORMAT 1
699
700
701#define SHORT_TYPE_SIZE 16
702#define INT_TYPE_SIZE 32
703#define FLOAT_TYPE_SIZE 32
704#define LONG_TYPE_SIZE BITS_PER_WORD
705#define MAX_WCHAR_TYPE_SIZE 32
706#define DOUBLE_TYPE_SIZE 64
707#define LONG_LONG_TYPE_SIZE 64
708
709#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
710#define MAX_BITS_PER_WORD 64
711#define MAX_LONG_TYPE_SIZE 64
712#else
713#define MAX_BITS_PER_WORD 32
714#define MAX_LONG_TYPE_SIZE 32
715#endif
716
717/* Define if you don't want extended real, but do want to use the
718   software floating point emulator for REAL_ARITHMETIC and
719   decimal <-> binary conversion.  */
720/* #define REAL_ARITHMETIC */
721
722/* Define this if most significant byte of a word is the lowest numbered.  */
723/* That is true on the 80386.  */
724
725#define BITS_BIG_ENDIAN 0
726
727/* Define this if most significant byte of a word is the lowest numbered.  */
728/* That is not true on the 80386.  */
729#define BYTES_BIG_ENDIAN 0
730
731/* Define this if most significant word of a multiword number is the lowest
732   numbered.  */
733/* Not true for 80386 */
734#define WORDS_BIG_ENDIAN 0
735
736/* number of bits in an addressable storage unit */
737#define BITS_PER_UNIT 8
738
739/* Width in bits of a "word", which is the contents of a machine register.
740   Note that this is not necessarily the width of data type `int';
741   if using 16-bit ints on a 80386, this would still be 32.
742   But on a machine with 16-bit registers, this would be 16.  */
743#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
744
745/* Width of a word, in units (bytes).  */
746#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
747#define MIN_UNITS_PER_WORD 4
748
749/* Width in bits of a pointer.
750   See also the macro `Pmode' defined below.  */
751#define POINTER_SIZE BITS_PER_WORD
752
753/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
754#define PARM_BOUNDARY BITS_PER_WORD
755
756/* Boundary (in *bits*) on which stack pointer should be aligned.  */
757#define STACK_BOUNDARY BITS_PER_WORD
758
759/* Boundary (in *bits*) on which the stack pointer preferrs to be
760   aligned; the compiler cannot rely on having this alignment.  */
761#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
762
763/* As of July 2001, many runtimes to not align the stack properly when
764   entering main.  This causes expand_main_function to forcably align
765   the stack, which results in aligned frames for functions called from
766   main, though it does nothing for the alignment of main itself.  */
767#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
768  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
769
770/* Allocation boundary for the code of a function.  */
771#define FUNCTION_BOUNDARY 16
772
773/* Alignment of field after `int : 0' in a structure.  */
774
775#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
776
777/* Minimum size in bits of the largest boundary to which any
778   and all fundamental data types supported by the hardware
779   might need to be aligned. No data type wants to be aligned
780   rounder than this.
781
782   Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
783   and Pentium Pro XFmode values at 128 bit boundaries.  */
784
785#define BIGGEST_ALIGNMENT 128
786
787/* Decide whether a variable of mode MODE must be 128 bit aligned.  */
788#define ALIGN_MODE_128(MODE) \
789 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
790  || (MODE) == V4SFmode	|| (MODE) == V4SImode)
791
792/* The published ABIs say that doubles should be aligned on word
793   boundaries, so lower the aligment for structure fields unless
794   -malign-double is set.  */
795/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
796   constant.  Use the smaller value in that context.  */
797#ifndef IN_TARGET_LIBS
798#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
799#else
800#define BIGGEST_FIELD_ALIGNMENT 32
801#endif
802
803/* If defined, a C expression to compute the alignment given to a
804   constant that is being placed in memory.  EXP is the constant
805   and ALIGN is the alignment that the object would ordinarily have.
806   The value of this macro is used instead of that alignment to align
807   the object.
808
809   If this macro is not defined, then ALIGN is used.
810
811   The typical use of this macro is to increase alignment for string
812   constants to be word aligned so that `strcpy' calls that copy
813   constants can be done inline.  */
814
815#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
816
817/* If defined, a C expression to compute the alignment for a static
818   variable.  TYPE is the data type, and ALIGN is the alignment that
819   the object would ordinarily have.  The value of this macro is used
820   instead of that alignment to align the object.
821
822   If this macro is not defined, then ALIGN is used.
823
824   One use of this macro is to increase alignment of medium-size
825   data to make it all fit in fewer cache lines.  Another is to
826   cause character arrays to be word-aligned so that `strcpy' calls
827   that copy constants to character arrays can be done inline.  */
828
829#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
830
831/* If defined, a C expression to compute the alignment for a local
832   variable.  TYPE is the data type, and ALIGN is the alignment that
833   the object would ordinarily have.  The value of this macro is used
834   instead of that alignment to align the object.
835
836   If this macro is not defined, then ALIGN is used.
837
838   One use of this macro is to increase alignment of medium-size
839   data to make it all fit in fewer cache lines.  */
840
841#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
842
843/* If defined, a C expression that gives the alignment boundary, in
844   bits, of an argument with the specified mode and type.  If it is
845   not defined, `PARM_BOUNDARY' is used for all arguments.  */
846
847#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
848  ix86_function_arg_boundary ((MODE), (TYPE))
849
850/* Set this non-zero if move instructions will actually fail to work
851   when given unaligned data.  */
852#define STRICT_ALIGNMENT 0
853
854/* If bit field type is int, don't let it cross an int,
855   and give entire struct the alignment of an int.  */
856/* Required on the 386 since it doesn't have bitfield insns.  */
857#define PCC_BITFIELD_TYPE_MATTERS 1
858
859/* Standard register usage.  */
860
861/* This processor has special stack-like registers.  See reg-stack.c
862   for details.  */
863
864#define STACK_REGS
865#define IS_STACK_MODE(MODE)					\
866  ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode	\
867   || (MODE) == TFmode)
868
869/* Number of actual hardware registers.
870   The hardware registers are assigned numbers for the compiler
871   from 0 to just below FIRST_PSEUDO_REGISTER.
872   All registers that the compiler knows about must be given numbers,
873   even those that are not normally considered general registers.
874
875   In the 80386 we give the 8 general purpose registers the numbers 0-7.
876   We number the floating point registers 8-15.
877   Note that registers 0-7 can be accessed as a  short or int,
878   while only 0-3 may be used with byte `mov' instructions.
879
880   Reg 16 does not correspond to any hardware register, but instead
881   appears in the RTL as an argument pointer prior to reload, and is
882   eliminated during reloading in favor of either the stack or frame
883   pointer.  */
884
885#define FIRST_PSEUDO_REGISTER 53
886
887/* Number of hardware registers that go into the DWARF-2 unwind info.
888   If not defined, equals FIRST_PSEUDO_REGISTER.  */
889
890#define DWARF_FRAME_REGISTERS 17
891
892/* 1 for registers that have pervasive standard uses
893   and are not available for the register allocator.
894   On the 80386, the stack pointer is such, as is the arg pointer.
895
896   The value is an mask - bit 1 is set for fixed registers
897   for 32bit target, while 2 is set for fixed registers for 64bit.
898   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
899 */
900#define FIXED_REGISTERS						\
901/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
902{  0, 0, 0, 0, 0, 0, 0, 3, 0,  0,  0,  0,  0,  0,  0,  0,	\
903/*arg,flags,fpsr,dir,frame*/					\
904    3,    3,   3,  3,    3,					\
905/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
906     0,   0,   0,   0,   0,   0,   0,   0,			\
907/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
908     0,   0,   0,   0,   0,   0,   0,   0,			\
909/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
910     1,   1,   1,   1,   1,   1,   1,   1,			\
911/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
912     1,   1,    1,    1,    1,    1,    1,    1}
913
914
915/* 1 for registers not available across function calls.
916   These must include the FIXED_REGISTERS and also any
917   registers that can be used without being saved.
918   The latter must include the registers where values are returned
919   and the register where structure-value addresses are passed.
920   Aside from that, you can include as many other registers as you like.
921
922   The value is an mask - bit 1 is set for call used
923   for 32bit target, while 2 is set for call used for 64bit.
924   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
925*/
926#define CALL_USED_REGISTERS					\
927/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
928{  3, 3, 3, 0, 2, 2, 0, 3, 3,  3,  3,  3,  3,  3,  3,  3,	\
929/*arg,flags,fpsr,dir,frame*/					\
930     3,   3,   3,  3,    3,					\
931/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
932     3,   3,   3,   3,   3,  3,    3,   3,			\
933/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
934     3,   3,   3,   3,   3,   3,   3,   3,			\
935/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
936     3,   3,   3,   3,   1,   1,   1,   1,			\
937/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
938     3,   3,    3,    3,    3,    3,    3,    3}		\
939
940/* Order in which to allocate registers.  Each register must be
941   listed once, even those in FIXED_REGISTERS.  List frame pointer
942   late and fixed registers last.  Note that, in general, we prefer
943   registers listed in CALL_USED_REGISTERS, keeping the others
944   available for storage of persistent values.
945
946   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
947   so this is just empty initializer for array.  */
948
949#define REG_ALLOC_ORDER 					\
950{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
951   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
952   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
953   48, 49, 50, 51, 52 }
954
955/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
956   to be rearranged based on a particular function.  When using sse math,
957   we want to allocase SSE before x87 registers and vice vera.  */
958
959#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
960
961
962/* Macro to conditionally modify fixed_regs/call_used_regs.  */
963#define CONDITIONAL_REGISTER_USAGE					\
964do {									\
965    int i;								\
966    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
967      {									\
968        fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0;	\
969        call_used_regs[i] = (call_used_regs[i]				\
970			     & (TARGET_64BIT ? 2 : 1)) != 0;		\
971      }									\
972    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
973      {									\
974	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
975	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
976      }									\
977    if (! TARGET_MMX)							\
978      {									\
979	int i;								\
980        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
981          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
982	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
983      }									\
984    if (! TARGET_SSE)							\
985      {									\
986	int i;								\
987        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
988          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
989	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
990      }									\
991    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
992      {									\
993	int i;								\
994	HARD_REG_SET x;							\
995        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
996        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
997          if (TEST_HARD_REG_BIT (x, i)) 				\
998	    fixed_regs[i] = call_used_regs[i] = 1;			\
999      }									\
1000  } while (0)
1001
1002/* Return number of consecutive hard regs needed starting at reg REGNO
1003   to hold something of mode MODE.
1004   This is ordinarily the length in words of a value of mode MODE
1005   but can be less for certain modes in special long registers.
1006
1007   Actually there are no two word move instructions for consecutive
1008   registers.  And only registers 0-3 may have mov byte instructions
1009   applied to them.
1010   */
1011
1012#define HARD_REGNO_NREGS(REGNO, MODE)   \
1013  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
1014   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1015   : ((MODE) == TFmode							\
1016      ? (TARGET_64BIT ? 2 : 3)						\
1017      : (MODE) == TCmode						\
1018      ? (TARGET_64BIT ? 4 : 6)						\
1019      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1020
1021#define VALID_SSE_REG_MODE(MODE)					\
1022    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1023     || (MODE) == SFmode						\
1024     || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1025
1026#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1027    ((MODE) == V2SFmode || (MODE) == SFmode)
1028
1029#define VALID_MMX_REG_MODE(MODE)					\
1030    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
1031     || (MODE) == V2SImode || (MODE) == SImode)
1032
1033#define VECTOR_MODE_SUPPORTED_P(MODE)					\
1034    (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1			\
1035     : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1			\
1036     : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1037
1038#define VALID_FP_MODE_P(MODE)						\
1039    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode		\
1040     || (!TARGET_64BIT && (MODE) == XFmode)				\
1041     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode	\
1042     || (!TARGET_64BIT && (MODE) == XCmode))
1043
1044#define VALID_INT_MODE_P(MODE)						\
1045    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1046     || (MODE) == DImode						\
1047     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1048     || (MODE) == CDImode						\
1049     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1050
1051/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1052
1053#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1054   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1055
1056/* Value is 1 if it is a good idea to tie two pseudo registers
1057   when one has mode MODE1 and one has mode MODE2.
1058   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1059   for any hard reg, then this must be 0 for correct output.  */
1060
1061#define MODES_TIEABLE_P(MODE1, MODE2)				\
1062  ((MODE1) == (MODE2)						\
1063   || (((MODE1) == HImode || (MODE1) == SImode			\
1064	|| ((MODE1) == QImode					\
1065	    && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1066        || ((MODE1) == DImode && TARGET_64BIT))			\
1067       && ((MODE2) == HImode || (MODE2) == SImode		\
1068	   || ((MODE1) == QImode				\
1069	       && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1070	   || ((MODE2) == DImode && TARGET_64BIT))))
1071
1072
1073/* Specify the modes required to caller save a given hard regno.
1074   We do this on i386 to prevent flags from being saved at all.
1075
1076   Kill any attempts to combine saving of modes.  */
1077
1078#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1079  (CC_REGNO_P (REGNO) ? VOIDmode					\
1080   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1081   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS))	\
1082   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
1083   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
1084   : (MODE))
1085/* Specify the registers used for certain standard purposes.
1086   The values of these macros are register numbers.  */
1087
1088/* on the 386 the pc register is %eip, and is not usable as a general
1089   register.  The ordinary mov instructions won't work */
1090/* #define PC_REGNUM  */
1091
1092/* Register to use for pushing function arguments.  */
1093#define STACK_POINTER_REGNUM 7
1094
1095/* Base register for access to local variables of the function.  */
1096#define HARD_FRAME_POINTER_REGNUM 6
1097
1098/* Base register for access to local variables of the function.  */
1099#define FRAME_POINTER_REGNUM 20
1100
1101/* First floating point reg */
1102#define FIRST_FLOAT_REG 8
1103
1104/* First & last stack-like regs */
1105#define FIRST_STACK_REG FIRST_FLOAT_REG
1106#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1107
1108#define FLAGS_REG 17
1109#define FPSR_REG 18
1110#define DIRFLAG_REG 19
1111
1112#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1113#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1114
1115#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1116#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1117
1118#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1119#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1120
1121#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1122#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1123
1124/* Value should be nonzero if functions must have frame pointers.
1125   Zero means the frame pointer need not be set up (and parms
1126   may be accessed via the stack pointer) in functions that seem suitable.
1127   This is computed in `reload', in reload1.c.  */
1128#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1129
1130/* Override this in other tm.h files to cope with various OS losage
1131   requiring a frame pointer.  */
1132#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1133#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1134#endif
1135
1136/* Make sure we can access arbitrary call frames.  */
1137#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1138
1139/* Base register for access to arguments of the function.  */
1140#define ARG_POINTER_REGNUM 16
1141
1142/* Register in which static-chain is passed to a function.
1143   We do use ECX as static chain register for 32 bit ABI.  On the
1144   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1145#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1146
1147/* Register to hold the addressing base for position independent
1148   code access to data items.  We don't use PIC pointer for 64bit
1149   mode.  Define the regnum to dummy value to prevent gcc from
1150   pessimizing code dealing with EBX.  */
1151#define PIC_OFFSET_TABLE_REGNUM \
1152  (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
1153
1154/* Register in which address to store a structure value
1155   arrives in the function.  On the 386, the prologue
1156   copies this from the stack to register %eax.  */
1157#define STRUCT_VALUE_INCOMING 0
1158
1159/* Place in which caller passes the structure value address.
1160   0 means push the value on the stack like an argument.  */
1161#define STRUCT_VALUE 0
1162
1163/* A C expression which can inhibit the returning of certain function
1164   values in registers, based on the type of value.  A nonzero value
1165   says to return the function value in memory, just as large
1166   structures are always returned.  Here TYPE will be a C expression
1167   of type `tree', representing the data type of the value.
1168
1169   Note that values of mode `BLKmode' must be explicitly handled by
1170   this macro.  Also, the option `-fpcc-struct-return' takes effect
1171   regardless of this macro.  On most systems, it is possible to
1172   leave the macro undefined; this causes a default definition to be
1173   used, whose value is the constant 1 for `BLKmode' values, and 0
1174   otherwise.
1175
1176   Do not use this macro to indicate that structures and unions
1177   should always be returned in memory.  You should instead use
1178   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1179
1180#define RETURN_IN_MEMORY(TYPE) \
1181  ix86_return_in_memory (TYPE)
1182
1183
1184/* Define the classes of registers for register constraints in the
1185   machine description.  Also define ranges of constants.
1186
1187   One of the classes must always be named ALL_REGS and include all hard regs.
1188   If there is more than one class, another class must be named NO_REGS
1189   and contain no registers.
1190
1191   The name GENERAL_REGS must be the name of a class (or an alias for
1192   another name such as ALL_REGS).  This is the class of registers
1193   that is allowed by "g" or "r" in a register constraint.
1194   Also, registers outside this class are allocated only when
1195   instructions express preferences for them.
1196
1197   The classes must be numbered in nondecreasing order; that is,
1198   a larger-numbered class must never be contained completely
1199   in a smaller-numbered class.
1200
1201   For any two classes, it is very desirable that there be another
1202   class that represents their union.
1203
1204   It might seem that class BREG is unnecessary, since no useful 386
1205   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1206   and the "b" register constraint is useful in asms for syscalls.
1207
1208   The flags and fpsr registers are in no class.  */
1209
1210enum reg_class
1211{
1212  NO_REGS,
1213  AREG, DREG, CREG, BREG, SIREG, DIREG,
1214  AD_REGS,			/* %eax/%edx for DImode */
1215  Q_REGS,			/* %eax %ebx %ecx %edx */
1216  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1217  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1218  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1219  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1220  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1221  FLOAT_REGS,
1222  SSE_REGS,
1223  MMX_REGS,
1224  FP_TOP_SSE_REGS,
1225  FP_SECOND_SSE_REGS,
1226  FLOAT_SSE_REGS,
1227  FLOAT_INT_REGS,
1228  INT_SSE_REGS,
1229  FLOAT_INT_SSE_REGS,
1230  ALL_REGS, LIM_REG_CLASSES
1231};
1232
1233#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1234
1235#define INTEGER_CLASS_P(CLASS) \
1236  reg_class_subset_p ((CLASS), GENERAL_REGS)
1237#define FLOAT_CLASS_P(CLASS) \
1238  reg_class_subset_p ((CLASS), FLOAT_REGS)
1239#define SSE_CLASS_P(CLASS) \
1240  reg_class_subset_p ((CLASS), SSE_REGS)
1241#define MMX_CLASS_P(CLASS) \
1242  reg_class_subset_p ((CLASS), MMX_REGS)
1243#define MAYBE_INTEGER_CLASS_P(CLASS) \
1244  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1245#define MAYBE_FLOAT_CLASS_P(CLASS) \
1246  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1247#define MAYBE_SSE_CLASS_P(CLASS) \
1248  reg_classes_intersect_p (SSE_REGS, (CLASS))
1249#define MAYBE_MMX_CLASS_P(CLASS) \
1250  reg_classes_intersect_p (MMX_REGS, (CLASS))
1251
1252#define Q_CLASS_P(CLASS) \
1253  reg_class_subset_p ((CLASS), Q_REGS)
1254
1255/* Give names of register classes as strings for dump file.   */
1256
1257#define REG_CLASS_NAMES \
1258{  "NO_REGS",				\
1259   "AREG", "DREG", "CREG", "BREG",	\
1260   "SIREG", "DIREG",			\
1261   "AD_REGS",				\
1262   "Q_REGS", "NON_Q_REGS",		\
1263   "INDEX_REGS",			\
1264   "LEGACY_REGS",			\
1265   "GENERAL_REGS",			\
1266   "FP_TOP_REG", "FP_SECOND_REG",	\
1267   "FLOAT_REGS",			\
1268   "SSE_REGS",				\
1269   "MMX_REGS",				\
1270   "FP_TOP_SSE_REGS",			\
1271   "FP_SECOND_SSE_REGS",		\
1272   "FLOAT_SSE_REGS",			\
1273   "FLOAT_INT_REGS",			\
1274   "INT_SSE_REGS",			\
1275   "FLOAT_INT_SSE_REGS",		\
1276   "ALL_REGS" }
1277
1278/* Define which registers fit in which classes.
1279   This is an initializer for a vector of HARD_REG_SET
1280   of length N_REG_CLASSES.  */
1281
1282#define REG_CLASS_CONTENTS						\
1283{     { 0x00,     0x0 },						\
1284      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1285      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1286      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1287      { 0x03,     0x0 },		/* AD_REGS */			\
1288      { 0x0f,     0x0 },		/* Q_REGS */			\
1289  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1290      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1291  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1292  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1293     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1294    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1295{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1296{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1297{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1298{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1299{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1300   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1301{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1302{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1303{ 0xffffffff,0x1fffff }							\
1304}
1305
1306/* The same information, inverted:
1307   Return the class number of the smallest class containing
1308   reg number REGNO.  This could be a conditional expression
1309   or could index an array.  */
1310
1311#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1312
1313/* When defined, the compiler allows registers explicitly used in the
1314   rtl to be used as spill registers but prevents the compiler from
1315   extending the lifetime of these registers.  */
1316
1317#define SMALL_REGISTER_CLASSES 1
1318
1319#define QI_REG_P(X) \
1320  (REG_P (X) && REGNO (X) < 4)
1321
1322#define GENERAL_REGNO_P(N) \
1323  ((N) < 8 || REX_INT_REGNO_P (N))
1324
1325#define GENERAL_REG_P(X) \
1326  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1327
1328#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1329
1330#define NON_QI_REG_P(X) \
1331  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1332
1333#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1334#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1335
1336#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1337#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1338#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1339#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1340
1341#define SSE_REGNO_P(N) \
1342  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1343   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1344
1345#define SSE_REGNO(N) \
1346  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1347#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1348
1349#define SSE_FLOAT_MODE_P(MODE) \
1350  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1351
1352#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1353#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1354
1355#define STACK_REG_P(XOP)		\
1356  (REG_P (XOP) &&		       	\
1357   REGNO (XOP) >= FIRST_STACK_REG &&	\
1358   REGNO (XOP) <= LAST_STACK_REG)
1359
1360#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1361
1362#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1363
1364#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1365#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1366
1367/* Indicate whether hard register numbered REG_NO should be converted
1368   to SSA form.  */
1369#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1370  ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1371
1372/* The class value for index registers, and the one for base regs.  */
1373
1374#define INDEX_REG_CLASS INDEX_REGS
1375#define BASE_REG_CLASS GENERAL_REGS
1376
1377/* Get reg_class from a letter such as appears in the machine description.  */
1378
1379#define REG_CLASS_FROM_LETTER(C)	\
1380  ((C) == 'r' ? GENERAL_REGS :					\
1381   (C) == 'R' ? LEGACY_REGS :					\
1382   (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :		\
1383   (C) == 'Q' ? Q_REGS :					\
1384   (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1385		 ? FLOAT_REGS					\
1386		 : NO_REGS) :					\
1387   (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1388		 ? FP_TOP_REG					\
1389		 : NO_REGS) :					\
1390   (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1391		 ? FP_SECOND_REG				\
1392		 : NO_REGS) :					\
1393   (C) == 'a' ? AREG :						\
1394   (C) == 'b' ? BREG :						\
1395   (C) == 'c' ? CREG :						\
1396   (C) == 'd' ? DREG :						\
1397   (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :		\
1398   (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :		\
1399   (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :		\
1400   (C) == 'A' ? AD_REGS :					\
1401   (C) == 'D' ? DIREG :						\
1402   (C) == 'S' ? SIREG : NO_REGS)
1403
1404/* The letters I, J, K, L and M in a register constraint string
1405   can be used to stand for particular ranges of immediate operands.
1406   This macro defines what the ranges are.
1407   C is the letter, and VALUE is a constant value.
1408   Return 1 if VALUE is in the range specified by C.
1409
1410   I is for non-DImode shifts.
1411   J is for DImode shifts.
1412   K is for signed imm8 operands.
1413   L is for andsi as zero-extending move.
1414   M is for shifts that can be executed by the "lea" opcode.
1415   N is for immedaite operands for out/in instructions (0-255)
1416   */
1417
1418#define CONST_OK_FOR_LETTER_P(VALUE, C)				\
1419  ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31			\
1420   : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63			\
1421   : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127		\
1422   : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff		\
1423   : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3			\
1424   : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255		\
1425   : 0)
1426
1427/* Similar, but for floating constants, and defining letters G and H.
1428   Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1429   TARGET_387 isn't set, because the stack register converter may need to
1430   load 0.0 into the function value register.  */
1431
1432#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1433  ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1434   : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
1435
1436/* A C expression that defines the optional machine-dependent
1437   constraint letters that can be used to segregate specific types of
1438   operands, usually memory references, for the target machine.  Any
1439   letter that is not elsewhere defined and not matched by
1440   `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1441   be defined.
1442
1443   If it is required for a particular target machine, it should
1444   return 1 if VALUE corresponds to the operand type represented by
1445   the constraint letter C.  If C is not defined as an extra
1446   constraint, the value returned should be 0 regardless of VALUE.  */
1447
1448#define EXTRA_CONSTRAINT(VALUE, C)				\
1449  ((C) == 'e' ? x86_64_sign_extended_value (VALUE)		\
1450   : (C) == 'Z' ? x86_64_zero_extended_value (VALUE)		\
1451   : 0)
1452
1453/* Place additional restrictions on the register class to use when it
1454   is necessary to be able to hold a value of mode MODE in a reload
1455   register for which class CLASS would ordinarily be used.  */
1456
1457#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1458  ((MODE) == QImode && !TARGET_64BIT				\
1459   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1460       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1461   ? Q_REGS : (CLASS))
1462
1463/* Given an rtx X being reloaded into a reg required to be
1464   in class CLASS, return the class of reg to actually use.
1465   In general this is just CLASS; but on some machines
1466   in some cases it is preferable to use a more restrictive class.
1467   On the 80386 series, we prevent floating constants from being
1468   reloaded into floating registers (since no move-insn can do that)
1469   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1470
1471/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1472   QImode must go into class Q_REGS.
1473   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1474   movdf to do mem-to-mem moves through integer regs.  */
1475
1476#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1477   ix86_preferred_reload_class ((X), (CLASS))
1478
1479/* If we are copying between general and FP registers, we need a memory
1480   location. The same is true for SSE and MMX registers.  */
1481#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1482  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1483
1484/* QImode spills from non-QI registers need a scratch.  This does not
1485   happen often -- the only example so far requires an uninitialized
1486   pseudo.  */
1487
1488#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1489  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1490    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1491   ? Q_REGS : NO_REGS)
1492
1493/* Return the maximum number of consecutive registers
1494   needed to represent mode MODE in a register of class CLASS.  */
1495/* On the 80386, this is the size of MODE in words,
1496   except in the FP regs, where a single reg is always enough.
1497   The TFmodes are really just 80bit values, so we use only 3 registers
1498   to hold them, instead of 4, as the size would suggest.
1499 */
1500#define CLASS_MAX_NREGS(CLASS, MODE)					\
1501 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1502  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1503  : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE))		\
1504     + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1505
1506/* A C expression whose value is nonzero if pseudos that have been
1507   assigned to registers of class CLASS would likely be spilled
1508   because registers of CLASS are needed for spill registers.
1509
1510   The default value of this macro returns 1 if CLASS has exactly one
1511   register and zero otherwise.  On most machines, this default
1512   should be used.  Only define this macro to some other expression
1513   if pseudo allocated by `local-alloc.c' end up in memory because
1514   their hard registers were needed for spill registers.  If this
1515   macro returns nonzero for those classes, those pseudos will only
1516   be allocated by `global.c', which knows how to reallocate the
1517   pseudo to another register.  If there would not be another
1518   register available for reallocation, you should not change the
1519   definition of this macro since the only effect of such a
1520   definition would be to slow down register allocation.  */
1521
1522#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1523  (((CLASS) == AREG)							\
1524   || ((CLASS) == DREG)							\
1525   || ((CLASS) == CREG)							\
1526   || ((CLASS) == BREG)							\
1527   || ((CLASS) == AD_REGS)						\
1528   || ((CLASS) == SIREG)						\
1529   || ((CLASS) == DIREG))
1530
1531/* A C statement that adds to CLOBBERS any hard regs the port wishes
1532   to automatically clobber for all asms.
1533
1534   We do this in the new i386 backend to maintain source compatibility
1535   with the old cc0-based compiler.  */
1536
1537#define MD_ASM_CLOBBERS(CLOBBERS)					\
1538  do {									\
1539    (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"),	\
1540			    (CLOBBERS));				\
1541    (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"),	\
1542			    (CLOBBERS));				\
1543    (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"),	\
1544			    (CLOBBERS));				\
1545  } while (0)
1546
1547/* Stack layout; function entry, exit and calling.  */
1548
1549/* Define this if pushing a word on the stack
1550   makes the stack pointer a smaller address.  */
1551#define STACK_GROWS_DOWNWARD
1552
1553/* Define this if the nominal address of the stack frame
1554   is at the high-address end of the local variables;
1555   that is, each additional local variable allocated
1556   goes at a more negative offset in the frame.  */
1557#define FRAME_GROWS_DOWNWARD
1558
1559/* Offset within stack frame to start allocating local variables at.
1560   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1561   first local allocated.  Otherwise, it is the offset to the BEGINNING
1562   of the first local allocated.  */
1563#define STARTING_FRAME_OFFSET 0
1564
1565/* If we generate an insn to push BYTES bytes,
1566   this says how many the stack pointer really advances by.
1567   On 386 pushw decrements by exactly 2 no matter what the position was.
1568   On the 386 there is no pushb; we use pushw instead, and this
1569   has the effect of rounding up to 2.
1570
1571   For 64bit ABI we round up to 8 bytes.
1572 */
1573
1574#define PUSH_ROUNDING(BYTES) \
1575  (TARGET_64BIT		     \
1576   ? (((BYTES) + 7) & (-8))  \
1577   : (((BYTES) + 1) & (-2)))
1578
1579/* If defined, the maximum amount of space required for outgoing arguments will
1580   be computed and placed into the variable
1581   `current_function_outgoing_args_size'.  No space will be pushed onto the
1582   stack for each call; instead, the function prologue should increase the stack
1583   frame size by this amount.  */
1584
1585#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1586
1587/* If defined, a C expression whose value is nonzero when we want to use PUSH
1588   instructions to pass outgoing arguments.  */
1589
1590#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1591
1592/* Offset of first parameter from the argument pointer register value.  */
1593#define FIRST_PARM_OFFSET(FNDECL) 0
1594
1595/* Define this macro if functions should assume that stack space has been
1596   allocated for arguments even when their values are passed in registers.
1597
1598   The value of this macro is the size, in bytes, of the area reserved for
1599   arguments passed in registers for the function represented by FNDECL.
1600
1601   This space can be allocated by the caller, or be a part of the
1602   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1603   which.  */
1604#define REG_PARM_STACK_SPACE(FNDECL) 0
1605
1606/* Define as a C expression that evaluates to nonzero if we do not know how
1607   to pass TYPE solely in registers.  The file expr.h defines a
1608   definition that is usually appropriate, refer to expr.h for additional
1609   documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1610   computed in the stack and then loaded into a register.  */
1611#define MUST_PASS_IN_STACK(MODE, TYPE)				\
1612  ((TYPE) != 0							\
1613   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST		\
1614       || TREE_ADDRESSABLE (TYPE)				\
1615       || ((MODE) == TImode)					\
1616       || ((MODE) == BLKmode 					\
1617	   && ! ((TYPE) != 0					\
1618		 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1619		 && 0 == (int_size_in_bytes (TYPE)		\
1620			  % (PARM_BOUNDARY / BITS_PER_UNIT)))	\
1621	   && (FUNCTION_ARG_PADDING (MODE, TYPE)		\
1622	       == (BYTES_BIG_ENDIAN ? upward : downward)))))
1623
1624/* Value is the number of bytes of arguments automatically
1625   popped when returning from a subroutine call.
1626   FUNDECL is the declaration node of the function (as a tree),
1627   FUNTYPE is the data type of the function (as a tree),
1628   or for a library call it is an identifier node for the subroutine name.
1629   SIZE is the number of bytes of arguments passed on the stack.
1630
1631   On the 80386, the RTD insn may be used to pop them if the number
1632     of args is fixed, but if the number is variable then the caller
1633     must pop them all.  RTD can't be used for library calls now
1634     because the library is compiled with the Unix compiler.
1635   Use of RTD is a selectable option, since it is incompatible with
1636   standard Unix calling sequences.  If the option is not selected,
1637   the caller must always pop the args.
1638
1639   The attribute stdcall is equivalent to RTD on a per module basis.  */
1640
1641#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1642  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1643
1644/* Define how to find the value returned by a function.
1645   VALTYPE is the data type of the value (as a tree).
1646   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1647   otherwise, FUNC is 0.  */
1648#define FUNCTION_VALUE(VALTYPE, FUNC)  \
1649   ix86_function_value (VALTYPE)
1650
1651#define FUNCTION_VALUE_REGNO_P(N) \
1652  ix86_function_value_regno_p (N)
1653
1654/* Define how to find the value returned by a library function
1655   assuming the value has mode MODE.  */
1656
1657#define LIBCALL_VALUE(MODE) \
1658  ix86_libcall_value (MODE)
1659
1660/* Define the size of the result block used for communication between
1661   untyped_call and untyped_return.  The block contains a DImode value
1662   followed by the block used by fnsave and frstor.  */
1663
1664#define APPLY_RESULT_SIZE (8+108)
1665
1666/* 1 if N is a possible register number for function argument passing.  */
1667#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1668
1669/* Define a data type for recording info about an argument list
1670   during the scan of that argument list.  This data type should
1671   hold all necessary information about the function itself
1672   and about the args processed so far, enough to enable macros
1673   such as FUNCTION_ARG to determine where the next arg should go.  */
1674
1675typedef struct ix86_args {
1676  int words;			/* # words passed so far */
1677  int nregs;			/* # registers available for passing */
1678  int regno;			/* next available register number */
1679  int sse_words;		/* # sse words passed so far */
1680  int sse_nregs;		/* # sse registers available for passing */
1681  int sse_regno;		/* next available sse register number */
1682  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1683} CUMULATIVE_ARGS;
1684
1685/* Initialize a variable CUM of type CUMULATIVE_ARGS
1686   for a call to a function whose data type is FNTYPE.
1687   For a library call, FNTYPE is 0.  */
1688
1689#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1690  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1691
1692/* Update the data in CUM to advance over an argument
1693   of mode MODE and data type TYPE.
1694   (TYPE is null for libcalls where that information may not be available.)  */
1695
1696#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1697  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1698
1699/* Define where to put the arguments to a function.
1700   Value is zero to push the argument on the stack,
1701   or a hard register in which to store the argument.
1702
1703   MODE is the argument's machine mode.
1704   TYPE is the data type of the argument (as a tree).
1705    This is null for libcalls where that information may
1706    not be available.
1707   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1708    the preceding args and about the function being called.
1709   NAMED is nonzero if this argument is a named parameter
1710    (otherwise it is an extra parameter matching an ellipsis).  */
1711
1712#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1713  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1714
1715/* For an arg passed partly in registers and partly in memory,
1716   this is the number of registers used.
1717   For args passed entirely in registers or entirely in memory, zero.  */
1718
1719#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1720
1721/* If PIC, we cannot make sibling calls to global functions
1722   because the PLT requires %ebx live.
1723   If we are returning floats on the register stack, we cannot make
1724   sibling calls to functions that return floats.  (The stack adjust
1725   instruction will wind up after the sibcall jump, and not be executed.) */
1726#define FUNCTION_OK_FOR_SIBCALL(DECL)					\
1727  ((DECL)								\
1728   && (! flag_pic || ! TREE_PUBLIC (DECL))				\
1729   && (! TARGET_FLOAT_RETURNS_IN_80387					\
1730       || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL))))	\
1731       || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
1732
1733/* Perform any needed actions needed for a function that is receiving a
1734   variable number of arguments.
1735
1736   CUM is as above.
1737
1738   MODE and TYPE are the mode and type of the current parameter.
1739
1740   PRETEND_SIZE is a variable that should be set to the amount of stack
1741   that must be pushed by the prolog to pretend that our caller pushed
1742   it.
1743
1744   Normally, this macro will push all remaining incoming registers on the
1745   stack and set PRETEND_SIZE to the length of the registers pushed.  */
1746
1747#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL)	\
1748  ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1749			       (NO_RTL))
1750
1751/* Define the `__builtin_va_list' type for the ABI.  */
1752#define BUILD_VA_LIST_TYPE(VALIST) \
1753  ((VALIST) = ix86_build_va_list ())
1754
1755/* Implement `va_start' for varargs and stdarg.  */
1756#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
1757  ix86_va_start ((STDARG), (VALIST), (NEXTARG))
1758
1759/* Implement `va_arg'.  */
1760#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1761  ix86_va_arg ((VALIST), (TYPE))
1762
1763/* This macro is invoked at the end of compilation.  It is used here to
1764   output code for -fpic that will load the return address into %ebx.  */
1765
1766#undef ASM_FILE_END
1767#define ASM_FILE_END(FILE)  ix86_asm_file_end (FILE)
1768
1769/* Output assembler code to FILE to increment profiler label # LABELNO
1770   for profiling a function entry.  */
1771
1772#define FUNCTION_PROFILER(FILE, LABELNO)				\
1773do {									\
1774  if (flag_pic)								\
1775    {									\
1776      fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n",		\
1777	       LPREFIX, (LABELNO));					\
1778      fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n");		\
1779    }									\
1780  else									\
1781    {									\
1782      fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO));	\
1783      fprintf ((FILE), "\tcall\t_mcount\n");				\
1784    }									\
1785} while (0)
1786
1787/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1788   the stack pointer does not matter.  The value is tested only in
1789   functions that have frame pointers.
1790   No definition is equivalent to always zero.  */
1791/* Note on the 386 it might be more efficient not to define this since
1792   we have to restore it ourselves from the frame pointer, in order to
1793   use pop */
1794
1795#define EXIT_IGNORE_STACK 1
1796
1797/* Output assembler code for a block containing the constant parts
1798   of a trampoline, leaving space for the variable parts.  */
1799
1800/* On the 386, the trampoline contains two instructions:
1801     mov #STATIC,ecx
1802     jmp FUNCTION
1803   The trampoline is generated entirely at runtime.  The operand of JMP
1804   is the address of FUNCTION relative to the instruction following the
1805   JMP (which is 5 bytes long).  */
1806
1807/* Length in units of the trampoline for entering a nested function.  */
1808
1809#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1810
1811/* Emit RTL insns to initialize the variable parts of a trampoline.
1812   FNADDR is an RTX for the address of the function's pure code.
1813   CXT is an RTX for the static chain value for the function.  */
1814
1815#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1816  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1817
1818/* Definitions for register eliminations.
1819
1820   This is an array of structures.  Each structure initializes one pair
1821   of eliminable registers.  The "from" register number is given first,
1822   followed by "to".  Eliminations of the same "from" register are listed
1823   in order of preference.
1824
1825   There are two registers that can always be eliminated on the i386.
1826   The frame pointer and the arg pointer can be replaced by either the
1827   hard frame pointer or to the stack pointer, depending upon the
1828   circumstances.  The hard frame pointer is not used before reload and
1829   so it is not eligible for elimination.  */
1830
1831#define ELIMINABLE_REGS					\
1832{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1833 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1834 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1835 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1836
1837/* Given FROM and TO register numbers, say whether this elimination is
1838   allowed.  Frame pointer elimination is automatically handled.
1839
1840   All other eliminations are valid.  */
1841
1842#define CAN_ELIMINATE(FROM, TO) \
1843  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1844
1845/* Define the offset between two registers, one to be eliminated, and the other
1846   its replacement, at the start of a routine.  */
1847
1848#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1849  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1850
1851/* Addressing modes, and classification of registers for them.  */
1852
1853/* #define HAVE_POST_INCREMENT 0 */
1854/* #define HAVE_POST_DECREMENT 0 */
1855
1856/* #define HAVE_PRE_DECREMENT 0 */
1857/* #define HAVE_PRE_INCREMENT 0 */
1858
1859/* Macros to check register numbers against specific register classes.  */
1860
1861/* These assume that REGNO is a hard or pseudo reg number.
1862   They give nonzero only if REGNO is a hard reg of the suitable class
1863   or a pseudo reg currently allocated to a suitable hard reg.
1864   Since they use reg_renumber, they are safe only once reg_renumber
1865   has been allocated, which happens in local-alloc.c.  */
1866
1867#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1868  ((REGNO) < STACK_POINTER_REGNUM 					\
1869   || (REGNO >= FIRST_REX_INT_REG					\
1870       && (REGNO) <= LAST_REX_INT_REG)					\
1871   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1872       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1873   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1874
1875#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1876  ((REGNO) <= STACK_POINTER_REGNUM 					\
1877   || (REGNO) == ARG_POINTER_REGNUM 					\
1878   || (REGNO) == FRAME_POINTER_REGNUM 					\
1879   || (REGNO >= FIRST_REX_INT_REG					\
1880       && (REGNO) <= LAST_REX_INT_REG)					\
1881   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1882       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1883   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1884
1885#define REGNO_OK_FOR_SIREG_P(REGNO) \
1886  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1887#define REGNO_OK_FOR_DIREG_P(REGNO) \
1888  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1889
1890/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1891   and check its validity for a certain class.
1892   We have two alternate definitions for each of them.
1893   The usual definition accepts all pseudo regs; the other rejects
1894   them unless they have been allocated suitable hard regs.
1895   The symbol REG_OK_STRICT causes the latter definition to be used.
1896
1897   Most source files want to accept pseudo regs in the hope that
1898   they will get allocated to the class that the insn wants them to be in.
1899   Source files for reload pass need to be strict.
1900   After reload, it makes no difference, since pseudo regs have
1901   been eliminated by then.  */
1902
1903
1904/* Non strict versions, pseudos are ok */
1905#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1906  (REGNO (X) < STACK_POINTER_REGNUM					\
1907   || (REGNO (X) >= FIRST_REX_INT_REG					\
1908       && REGNO (X) <= LAST_REX_INT_REG)				\
1909   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1910
1911#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1912  (REGNO (X) <= STACK_POINTER_REGNUM					\
1913   || REGNO (X) == ARG_POINTER_REGNUM					\
1914   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1915   || (REGNO (X) >= FIRST_REX_INT_REG					\
1916       && REGNO (X) <= LAST_REX_INT_REG)				\
1917   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1918
1919/* Strict versions, hard registers only */
1920#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1921#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1922
1923#ifndef REG_OK_STRICT
1924#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1925#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1926
1927#else
1928#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1929#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1930#endif
1931
1932/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1933   that is a valid memory address for an instruction.
1934   The MODE argument is the machine mode for the MEM expression
1935   that wants to use this address.
1936
1937   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1938   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1939
1940   See legitimize_pic_address in i386.c for details as to what
1941   constitutes a legitimate address when -fpic is used.  */
1942
1943#define MAX_REGS_PER_ADDRESS 2
1944
1945#define CONSTANT_ADDRESS_P(X)					\
1946  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
1947   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST	\
1948   || GET_CODE (X) == CONST_DOUBLE)
1949
1950/* Nonzero if the constant value X is a legitimate general operand.
1951   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1952
1953#define LEGITIMATE_CONSTANT_P(X) 1
1954
1955#ifdef REG_OK_STRICT
1956#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1957do {									\
1958  if (legitimate_address_p ((MODE), (X), 1))				\
1959    goto ADDR;								\
1960} while (0)
1961
1962#else
1963#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1964do {									\
1965  if (legitimate_address_p ((MODE), (X), 0))				\
1966    goto ADDR;								\
1967} while (0)
1968
1969#endif
1970
1971/* If defined, a C expression to determine the base term of address X.
1972   This macro is used in only one place: `find_base_term' in alias.c.
1973
1974   It is always safe for this macro to not be defined.  It exists so
1975   that alias analysis can understand machine-dependent addresses.
1976
1977   The typical use of this macro is to handle addresses containing
1978   a label_ref or symbol_ref within an UNSPEC.  */
1979
1980#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1981
1982/* Try machine-dependent ways of modifying an illegitimate address
1983   to be legitimate.  If we find one, return the new, valid address.
1984   This macro is used in only one place: `memory_address' in explow.c.
1985
1986   OLDX is the address as it was before break_out_memory_refs was called.
1987   In some cases it is useful to look at this to decide what needs to be done.
1988
1989   MODE and WIN are passed so that this macro can use
1990   GO_IF_LEGITIMATE_ADDRESS.
1991
1992   It is always safe for this macro to do nothing.  It exists to recognize
1993   opportunities to optimize the output.
1994
1995   For the 80386, we handle X+REG by loading X into a register R and
1996   using R+REG.  R will go in a general reg and indexing will be used.
1997   However, if REG is a broken-out memory address or multiplication,
1998   nothing needs to be done because REG can certainly go in a general reg.
1999
2000   When -fpic is used, special handling is needed for symbolic references.
2001   See comments by legitimize_pic_address in i386.c for details.  */
2002
2003#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
2004do {									\
2005  (X) = legitimize_address ((X), (OLDX), (MODE));			\
2006  if (memory_address_p ((MODE), (X)))					\
2007    goto WIN;								\
2008} while (0)
2009
2010#define REWRITE_ADDRESS(X) rewrite_address (X)
2011
2012/* Nonzero if the constant value X is a legitimate general operand
2013   when generating PIC code.  It is given that flag_pic is on and
2014   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2015
2016#define LEGITIMATE_PIC_OPERAND_P(X)		\
2017  (! SYMBOLIC_CONST (X)				\
2018   || legitimate_pic_address_disp_p (X))
2019
2020#define SYMBOLIC_CONST(X)	\
2021  (GET_CODE (X) == SYMBOL_REF						\
2022   || GET_CODE (X) == LABEL_REF						\
2023   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2024
2025/* Go to LABEL if ADDR (a legitimate address expression)
2026   has an effect that depends on the machine mode it is used for.
2027   On the 80386, only postdecrement and postincrement address depend thus
2028   (the amount of decrement or increment being the length of the operand).  */
2029#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2030do {							\
2031 if (GET_CODE (ADDR) == POST_INC			\
2032     || GET_CODE (ADDR) == POST_DEC)			\
2033   goto LABEL;						\
2034} while (0)
2035
2036/* Codes for all the SSE/MMX builtins.  */
2037enum ix86_builtins
2038{
2039  IX86_BUILTIN_ADDPS,
2040  IX86_BUILTIN_ADDSS,
2041  IX86_BUILTIN_DIVPS,
2042  IX86_BUILTIN_DIVSS,
2043  IX86_BUILTIN_MULPS,
2044  IX86_BUILTIN_MULSS,
2045  IX86_BUILTIN_SUBPS,
2046  IX86_BUILTIN_SUBSS,
2047
2048  IX86_BUILTIN_CMPEQPS,
2049  IX86_BUILTIN_CMPLTPS,
2050  IX86_BUILTIN_CMPLEPS,
2051  IX86_BUILTIN_CMPGTPS,
2052  IX86_BUILTIN_CMPGEPS,
2053  IX86_BUILTIN_CMPNEQPS,
2054  IX86_BUILTIN_CMPNLTPS,
2055  IX86_BUILTIN_CMPNLEPS,
2056  IX86_BUILTIN_CMPNGTPS,
2057  IX86_BUILTIN_CMPNGEPS,
2058  IX86_BUILTIN_CMPORDPS,
2059  IX86_BUILTIN_CMPUNORDPS,
2060  IX86_BUILTIN_CMPNEPS,
2061  IX86_BUILTIN_CMPEQSS,
2062  IX86_BUILTIN_CMPLTSS,
2063  IX86_BUILTIN_CMPLESS,
2064  IX86_BUILTIN_CMPGTSS,
2065  IX86_BUILTIN_CMPGESS,
2066  IX86_BUILTIN_CMPNEQSS,
2067  IX86_BUILTIN_CMPNLTSS,
2068  IX86_BUILTIN_CMPNLESS,
2069  IX86_BUILTIN_CMPNGTSS,
2070  IX86_BUILTIN_CMPNGESS,
2071  IX86_BUILTIN_CMPORDSS,
2072  IX86_BUILTIN_CMPUNORDSS,
2073  IX86_BUILTIN_CMPNESS,
2074
2075  IX86_BUILTIN_COMIEQSS,
2076  IX86_BUILTIN_COMILTSS,
2077  IX86_BUILTIN_COMILESS,
2078  IX86_BUILTIN_COMIGTSS,
2079  IX86_BUILTIN_COMIGESS,
2080  IX86_BUILTIN_COMINEQSS,
2081  IX86_BUILTIN_UCOMIEQSS,
2082  IX86_BUILTIN_UCOMILTSS,
2083  IX86_BUILTIN_UCOMILESS,
2084  IX86_BUILTIN_UCOMIGTSS,
2085  IX86_BUILTIN_UCOMIGESS,
2086  IX86_BUILTIN_UCOMINEQSS,
2087
2088  IX86_BUILTIN_CVTPI2PS,
2089  IX86_BUILTIN_CVTPS2PI,
2090  IX86_BUILTIN_CVTSI2SS,
2091  IX86_BUILTIN_CVTSS2SI,
2092  IX86_BUILTIN_CVTTPS2PI,
2093  IX86_BUILTIN_CVTTSS2SI,
2094
2095  IX86_BUILTIN_MAXPS,
2096  IX86_BUILTIN_MAXSS,
2097  IX86_BUILTIN_MINPS,
2098  IX86_BUILTIN_MINSS,
2099
2100  IX86_BUILTIN_LOADAPS,
2101  IX86_BUILTIN_LOADUPS,
2102  IX86_BUILTIN_STOREAPS,
2103  IX86_BUILTIN_STOREUPS,
2104  IX86_BUILTIN_LOADSS,
2105  IX86_BUILTIN_STORESS,
2106  IX86_BUILTIN_MOVSS,
2107
2108  IX86_BUILTIN_MOVHLPS,
2109  IX86_BUILTIN_MOVLHPS,
2110  IX86_BUILTIN_LOADHPS,
2111  IX86_BUILTIN_LOADLPS,
2112  IX86_BUILTIN_STOREHPS,
2113  IX86_BUILTIN_STORELPS,
2114
2115  IX86_BUILTIN_MASKMOVQ,
2116  IX86_BUILTIN_MOVMSKPS,
2117  IX86_BUILTIN_PMOVMSKB,
2118
2119  IX86_BUILTIN_MOVNTPS,
2120  IX86_BUILTIN_MOVNTQ,
2121
2122  IX86_BUILTIN_PACKSSWB,
2123  IX86_BUILTIN_PACKSSDW,
2124  IX86_BUILTIN_PACKUSWB,
2125
2126  IX86_BUILTIN_PADDB,
2127  IX86_BUILTIN_PADDW,
2128  IX86_BUILTIN_PADDD,
2129  IX86_BUILTIN_PADDSB,
2130  IX86_BUILTIN_PADDSW,
2131  IX86_BUILTIN_PADDUSB,
2132  IX86_BUILTIN_PADDUSW,
2133  IX86_BUILTIN_PSUBB,
2134  IX86_BUILTIN_PSUBW,
2135  IX86_BUILTIN_PSUBD,
2136  IX86_BUILTIN_PSUBSB,
2137  IX86_BUILTIN_PSUBSW,
2138  IX86_BUILTIN_PSUBUSB,
2139  IX86_BUILTIN_PSUBUSW,
2140
2141  IX86_BUILTIN_PAND,
2142  IX86_BUILTIN_PANDN,
2143  IX86_BUILTIN_POR,
2144  IX86_BUILTIN_PXOR,
2145
2146  IX86_BUILTIN_PAVGB,
2147  IX86_BUILTIN_PAVGW,
2148
2149  IX86_BUILTIN_PCMPEQB,
2150  IX86_BUILTIN_PCMPEQW,
2151  IX86_BUILTIN_PCMPEQD,
2152  IX86_BUILTIN_PCMPGTB,
2153  IX86_BUILTIN_PCMPGTW,
2154  IX86_BUILTIN_PCMPGTD,
2155
2156  IX86_BUILTIN_PEXTRW,
2157  IX86_BUILTIN_PINSRW,
2158
2159  IX86_BUILTIN_PMADDWD,
2160
2161  IX86_BUILTIN_PMAXSW,
2162  IX86_BUILTIN_PMAXUB,
2163  IX86_BUILTIN_PMINSW,
2164  IX86_BUILTIN_PMINUB,
2165
2166  IX86_BUILTIN_PMULHUW,
2167  IX86_BUILTIN_PMULHW,
2168  IX86_BUILTIN_PMULLW,
2169
2170  IX86_BUILTIN_PSADBW,
2171  IX86_BUILTIN_PSHUFW,
2172
2173  IX86_BUILTIN_PSLLW,
2174  IX86_BUILTIN_PSLLD,
2175  IX86_BUILTIN_PSLLQ,
2176  IX86_BUILTIN_PSRAW,
2177  IX86_BUILTIN_PSRAD,
2178  IX86_BUILTIN_PSRLW,
2179  IX86_BUILTIN_PSRLD,
2180  IX86_BUILTIN_PSRLQ,
2181  IX86_BUILTIN_PSLLWI,
2182  IX86_BUILTIN_PSLLDI,
2183  IX86_BUILTIN_PSLLQI,
2184  IX86_BUILTIN_PSRAWI,
2185  IX86_BUILTIN_PSRADI,
2186  IX86_BUILTIN_PSRLWI,
2187  IX86_BUILTIN_PSRLDI,
2188  IX86_BUILTIN_PSRLQI,
2189
2190  IX86_BUILTIN_PUNPCKHBW,
2191  IX86_BUILTIN_PUNPCKHWD,
2192  IX86_BUILTIN_PUNPCKHDQ,
2193  IX86_BUILTIN_PUNPCKLBW,
2194  IX86_BUILTIN_PUNPCKLWD,
2195  IX86_BUILTIN_PUNPCKLDQ,
2196
2197  IX86_BUILTIN_SHUFPS,
2198
2199  IX86_BUILTIN_RCPPS,
2200  IX86_BUILTIN_RCPSS,
2201  IX86_BUILTIN_RSQRTPS,
2202  IX86_BUILTIN_RSQRTSS,
2203  IX86_BUILTIN_SQRTPS,
2204  IX86_BUILTIN_SQRTSS,
2205
2206  IX86_BUILTIN_UNPCKHPS,
2207  IX86_BUILTIN_UNPCKLPS,
2208
2209  IX86_BUILTIN_ANDPS,
2210  IX86_BUILTIN_ANDNPS,
2211  IX86_BUILTIN_ORPS,
2212  IX86_BUILTIN_XORPS,
2213
2214  IX86_BUILTIN_EMMS,
2215  IX86_BUILTIN_LDMXCSR,
2216  IX86_BUILTIN_STMXCSR,
2217  IX86_BUILTIN_SFENCE,
2218
2219  /* 3DNow! Original */
2220  IX86_BUILTIN_FEMMS,
2221  IX86_BUILTIN_PAVGUSB,
2222  IX86_BUILTIN_PF2ID,
2223  IX86_BUILTIN_PFACC,
2224  IX86_BUILTIN_PFADD,
2225  IX86_BUILTIN_PFCMPEQ,
2226  IX86_BUILTIN_PFCMPGE,
2227  IX86_BUILTIN_PFCMPGT,
2228  IX86_BUILTIN_PFMAX,
2229  IX86_BUILTIN_PFMIN,
2230  IX86_BUILTIN_PFMUL,
2231  IX86_BUILTIN_PFRCP,
2232  IX86_BUILTIN_PFRCPIT1,
2233  IX86_BUILTIN_PFRCPIT2,
2234  IX86_BUILTIN_PFRSQIT1,
2235  IX86_BUILTIN_PFRSQRT,
2236  IX86_BUILTIN_PFSUB,
2237  IX86_BUILTIN_PFSUBR,
2238  IX86_BUILTIN_PI2FD,
2239  IX86_BUILTIN_PMULHRW,
2240
2241  /* 3DNow! Athlon Extensions */
2242  IX86_BUILTIN_PF2IW,
2243  IX86_BUILTIN_PFNACC,
2244  IX86_BUILTIN_PFPNACC,
2245  IX86_BUILTIN_PI2FW,
2246  IX86_BUILTIN_PSWAPDSI,
2247  IX86_BUILTIN_PSWAPDSF,
2248
2249  IX86_BUILTIN_SSE_ZERO,
2250  IX86_BUILTIN_MMX_ZERO,
2251
2252  IX86_BUILTIN_MAX
2253};
2254
2255/* Define this macro if references to a symbol must be treated
2256   differently depending on something about the variable or
2257   function named by the symbol (such as what section it is in).
2258
2259   On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
2260   so that we may access it directly in the GOT.  */
2261
2262#define ENCODE_SECTION_INFO(DECL)				\
2263do {								\
2264    if (flag_pic)						\
2265      {								\
2266	rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'	\
2267		   ? TREE_CST_RTL (DECL) : DECL_RTL (DECL));	\
2268								\
2269	if (GET_CODE (rtl) == MEM)				\
2270	  {							\
2271	    if (TARGET_DEBUG_ADDR				\
2272		&& TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd')	\
2273	      {							\
2274		fprintf (stderr, "Encode %s, public = %d\n",	\
2275			 IDENTIFIER_POINTER (DECL_NAME (DECL)),	\
2276			 TREE_PUBLIC (DECL));			\
2277	      }							\
2278	    							\
2279	    SYMBOL_REF_FLAG (XEXP (rtl, 0))			\
2280	      = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'	\
2281		 || ! TREE_PUBLIC (DECL));			\
2282	  }							\
2283      }								\
2284} while (0)
2285
2286/* The `FINALIZE_PIC' macro serves as a hook to emit these special
2287   codes once the function is being compiled into assembly code, but
2288   not before.  (It is not done before, because in the case of
2289   compiling an inline function, it would lead to multiple PIC
2290   prologues being included in functions which used inline functions
2291   and were compiled to assembly language.)  */
2292
2293#define FINALIZE_PIC \
2294  (current_function_uses_pic_offset_table |= current_function_profile)
2295
2296
2297/* Max number of args passed in registers.  If this is more than 3, we will
2298   have problems with ebx (register #4), since it is a caller save register and
2299   is also used as the pic register in ELF.  So for now, don't allow more than
2300   3 registers to be passed in registers.  */
2301
2302#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2303
2304#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2305
2306
2307/* Specify the machine mode that this machine uses
2308   for the index in the tablejump instruction.  */
2309#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2310
2311/* Define as C expression which evaluates to nonzero if the tablejump
2312   instruction expects the table to contain offsets from the address of the
2313   table.
2314   Do not define this if the table should contain absolute addresses.  */
2315/* #define CASE_VECTOR_PC_RELATIVE 1 */
2316
2317/* Define this as 1 if `char' should by default be signed; else as 0.  */
2318#define DEFAULT_SIGNED_CHAR 1
2319
2320/* Number of bytes moved into a data cache for a single prefetch operation.  */
2321#define PREFETCH_BLOCK ix86_cost->prefetch_block
2322
2323/* Number of prefetch operations that can be done in parallel.  */
2324#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2325
2326/* Max number of bytes we can move from memory to memory
2327   in one reasonably fast instruction.  */
2328#define MOVE_MAX 16
2329
2330/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2331   move efficiently, as opposed to  MOVE_MAX which is the maximum
2332   number of bytes we can move with a single instruction.  */
2333#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2334
2335/* If a memory-to-memory move would take MOVE_RATIO or more simple
2336   move-instruction pairs, we will do a movstr or libcall instead.
2337   Increasing the value will always make code faster, but eventually
2338   incurs high cost in increased code size.
2339
2340   If you don't define this, a reasonable default is used.  */
2341
2342#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2343
2344/* Define if shifts truncate the shift count
2345   which implies one can omit a sign-extension or zero-extension
2346   of a shift count.  */
2347/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
2348
2349/* #define SHIFT_COUNT_TRUNCATED */
2350
2351/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2352   is done just by pretending it is already truncated.  */
2353#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2354
2355/* We assume that the store-condition-codes instructions store 0 for false
2356   and some other value for true.  This is the value stored for true.  */
2357
2358#define STORE_FLAG_VALUE 1
2359
2360/* When a prototype says `char' or `short', really pass an `int'.
2361   (The 386 can't easily push less than an int.)  */
2362
2363#define PROMOTE_PROTOTYPES (!TARGET_64BIT)
2364
2365/* A macro to update M and UNSIGNEDP when an object whose type is
2366   TYPE and which has the specified mode and signedness is to be
2367   stored in a register.  This macro is only called when TYPE is a
2368   scalar type.
2369
2370   On i386 it is sometimes useful to promote HImode and QImode
2371   quantities to SImode.  The choice depends on target type.  */
2372
2373#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
2374do {							\
2375  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
2376      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
2377    (MODE) = SImode;					\
2378} while (0)
2379
2380/* Specify the machine mode that pointers have.
2381   After generation of rtl, the compiler makes no further distinction
2382   between pointers and any other objects of this machine mode.  */
2383#define Pmode (TARGET_64BIT ? DImode : SImode)
2384
2385/* A function address in a call instruction
2386   is a byte address (for indexing purposes)
2387   so give the MEM rtx a byte's mode.  */
2388#define FUNCTION_MODE QImode
2389
2390/* A part of a C `switch' statement that describes the relative costs
2391   of constant RTL expressions.  It must contain `case' labels for
2392   expression codes `const_int', `const', `symbol_ref', `label_ref'
2393   and `const_double'.  Each case must ultimately reach a `return'
2394   statement to return the relative cost of the use of that kind of
2395   constant value in an expression.  The cost may depend on the
2396   precise value of the constant, which is available for examination
2397   in X, and the rtx code of the expression in which it is contained,
2398   found in OUTER_CODE.
2399
2400   CODE is the expression code--redundant, since it can be obtained
2401   with `GET_CODE (X)'.  */
2402
2403#define CONST_COSTS(RTX, CODE, OUTER_CODE)			\
2404  case CONST_INT:						\
2405  case CONST:							\
2406  case LABEL_REF:						\
2407  case SYMBOL_REF:						\
2408    if (TARGET_64BIT && !x86_64_sign_extended_value (RTX))	\
2409      return 3;							\
2410    if (TARGET_64BIT && !x86_64_zero_extended_value (RTX))	\
2411      return 2;							\
2412    return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0;		\
2413								\
2414  case CONST_DOUBLE:						\
2415    {								\
2416      int code;							\
2417      if (GET_MODE (RTX) == VOIDmode)				\
2418	return 0;						\
2419								\
2420      code = standard_80387_constant_p (RTX);			\
2421      return code == 1 ? 1 :					\
2422	     code == 2 ? 2 :					\
2423			 3;					\
2424    }
2425
2426/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2427#define TOPLEVEL_COSTS_N_INSNS(N) \
2428  do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2429
2430/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2431   This can be used, for example, to indicate how costly a multiply
2432   instruction is.  In writing this macro, you can use the construct
2433   `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2434   instructions.  OUTER_CODE is the code of the expression in which X
2435   is contained.
2436
2437   This macro is optional; do not define it if the default cost
2438   assumptions are adequate for the target machine.  */
2439
2440#define RTX_COSTS(X, CODE, OUTER_CODE)					\
2441  case ZERO_EXTEND:							\
2442    /* The zero extensions is often completely free on x86_64, so make	\
2443       it as cheap as possible.  */					\
2444    if (TARGET_64BIT && GET_MODE (X) == DImode				\
2445	&& GET_MODE (XEXP (X, 0)) == SImode)				\
2446      {									\
2447	total = 1; goto egress_rtx_costs;				\
2448      } 								\
2449    else								\
2450      TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ?		\
2451			      ix86_cost->add : ix86_cost->movzx);	\
2452    break;								\
2453  case SIGN_EXTEND:							\
2454    TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx);				\
2455    break;								\
2456  case ASHIFT:								\
2457    if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
2458	&& (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT))		\
2459      {									\
2460	HOST_WIDE_INT value = INTVAL (XEXP (X, 1));			\
2461	if (value == 1)							\
2462	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);			\
2463	if ((value == 2 || value == 3)					\
2464	    && !TARGET_DECOMPOSE_LEA					\
2465	    && ix86_cost->lea <= ix86_cost->shift_const)		\
2466	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea);			\
2467      }									\
2468    /* fall through */							\
2469		  							\
2470  case ROTATE:								\
2471  case ASHIFTRT:							\
2472  case LSHIFTRT:							\
2473  case ROTATERT:							\
2474    if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode)		\
2475      {									\
2476	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2477	  {								\
2478	    if (INTVAL (XEXP (X, 1)) > 32)				\
2479	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2);	\
2480	    else							\
2481	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2);	\
2482	  }								\
2483	else								\
2484	  {								\
2485	    if (GET_CODE (XEXP (X, 1)) == AND)				\
2486	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2);		\
2487	    else							\
2488	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2);	\
2489	  }								\
2490      }									\
2491    else								\
2492      {									\
2493	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2494	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const);		\
2495	else								\
2496	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var);		\
2497      }									\
2498    break;								\
2499									\
2500  case MULT:								\
2501    if (GET_CODE (XEXP (X, 1)) == CONST_INT)				\
2502      {									\
2503	unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1));		\
2504	int nbits = 0;							\
2505									\
2506	while (value != 0)						\
2507	  {								\
2508	    nbits++;							\
2509	    value >>= 1;						\
2510	  } 								\
2511									\
2512	TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2513			        + nbits * ix86_cost->mult_bit);		\
2514      }									\
2515    else			/* This is arbitrary */			\
2516      TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2517			      + 7 * ix86_cost->mult_bit);		\
2518									\
2519  case DIV:								\
2520  case UDIV:								\
2521  case MOD:								\
2522  case UMOD:								\
2523    TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide);				\
2524									\
2525  case PLUS:								\
2526    if (!TARGET_DECOMPOSE_LEA						\
2527	&& INTEGRAL_MODE_P (GET_MODE (X))				\
2528	&& GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode))	\
2529      {									\
2530        if (GET_CODE (XEXP (X, 0)) == PLUS				\
2531	    && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT			\
2532	    && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT	\
2533	    && CONSTANT_P (XEXP (X, 1)))				\
2534	  {								\
2535	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2536	    if (val == 2 || val == 4 || val == 8)			\
2537	      {								\
2538		return (COSTS_N_INSNS (ix86_cost->lea)			\
2539			+ rtx_cost (XEXP (XEXP (X, 0), 1),		\
2540				    (OUTER_CODE))			\
2541			+ rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0),	\
2542				    (OUTER_CODE))			\
2543			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2544	      }								\
2545	  }								\
2546	else if (GET_CODE (XEXP (X, 0)) == MULT				\
2547		 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)	\
2548	  {								\
2549	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1));		\
2550	    if (val == 2 || val == 4 || val == 8)			\
2551	      {								\
2552		return (COSTS_N_INSNS (ix86_cost->lea)			\
2553			+ rtx_cost (XEXP (XEXP (X, 0), 0),		\
2554				    (OUTER_CODE))			\
2555			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2556	      }								\
2557	  }								\
2558	else if (GET_CODE (XEXP (X, 0)) == PLUS)			\
2559	  {								\
2560	    return (COSTS_N_INSNS (ix86_cost->lea)			\
2561		    + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE))	\
2562		    + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE))	\
2563		    + rtx_cost (XEXP (X, 1), (OUTER_CODE)));		\
2564	  }								\
2565      }									\
2566									\
2567    /* fall through */							\
2568  case AND:								\
2569  case IOR:								\
2570  case XOR:								\
2571  case MINUS:								\
2572    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2573      return (COSTS_N_INSNS (ix86_cost->add) * 2			\
2574	      + (rtx_cost (XEXP (X, 0), (OUTER_CODE))			\
2575	         << (GET_MODE (XEXP (X, 0)) != DImode))			\
2576	      + (rtx_cost (XEXP (X, 1), (OUTER_CODE))			\
2577 	         << (GET_MODE (XEXP (X, 1)) != DImode)));		\
2578									\
2579    /* fall through */							\
2580  case NEG:								\
2581  case NOT:								\
2582    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2583      TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2);			\
2584    TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);				\
2585									\
2586  egress_rtx_costs:							\
2587    break;
2588
2589
2590/* An expression giving the cost of an addressing mode that contains
2591   ADDRESS.  If not defined, the cost is computed from the ADDRESS
2592   expression and the `CONST_COSTS' values.
2593
2594   For most CISC machines, the default cost is a good approximation
2595   of the true cost of the addressing mode.  However, on RISC
2596   machines, all instructions normally have the same length and
2597   execution time.  Hence all addresses will have equal costs.
2598
2599   In cases where more than one form of an address is known, the form
2600   with the lowest cost will be used.  If multiple forms have the
2601   same, lowest, cost, the one that is the most complex will be used.
2602
2603   For example, suppose an address that is equal to the sum of a
2604   register and a constant is used twice in the same basic block.
2605   When this macro is not defined, the address will be computed in a
2606   register and memory references will be indirect through that
2607   register.  On machines where the cost of the addressing mode
2608   containing the sum is no higher than that of a simple indirect
2609   reference, this will produce an additional instruction and
2610   possibly require an additional register.  Proper specification of
2611   this macro eliminates this overhead for such machines.
2612
2613   Similar use of this macro is made in strength reduction of loops.
2614
2615   ADDRESS need not be valid as an address.  In such a case, the cost
2616   is not relevant and can be any value; invalid addresses need not be
2617   assigned a different cost.
2618
2619   On machines where an address involving more than one register is as
2620   cheap as an address computation involving only one register,
2621   defining `ADDRESS_COST' to reflect this can cause two registers to
2622   be live over a region of code where only one would have been if
2623   `ADDRESS_COST' were not defined in that manner.  This effect should
2624   be considered in the definition of this macro.  Equivalent costs
2625   should probably only be given to addresses with different numbers
2626   of registers on machines with lots of registers.
2627
2628   This macro will normally either not be defined or be defined as a
2629   constant.
2630
2631   For i386, it is better to use a complex address than let gcc copy
2632   the address into a reg and make a new pseudo.  But not if the address
2633   requires to two regs - that would mean more pseudos with longer
2634   lifetimes.  */
2635
2636#define ADDRESS_COST(RTX) \
2637  ix86_address_cost (RTX)
2638
2639/* A C expression for the cost of moving data from a register in class FROM to
2640   one in class TO.  The classes are expressed using the enumeration values
2641   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
2642   interpreted relative to that.
2643
2644   It is not required that the cost always equal 2 when FROM is the same as TO;
2645   on some machines it is expensive to move between registers if they are not
2646   general registers.  */
2647
2648#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2649   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2650
2651/* A C expression for the cost of moving data of mode M between a
2652   register and memory.  A value of 2 is the default; this cost is
2653   relative to those in `REGISTER_MOVE_COST'.
2654
2655   If moving between registers and memory is more expensive than
2656   between two registers, you should define this macro to express the
2657   relative cost.  */
2658
2659#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
2660  ix86_memory_move_cost ((MODE), (CLASS), (IN))
2661
2662/* A C expression for the cost of a branch instruction.  A value of 1
2663   is the default; other values are interpreted relative to that.  */
2664
2665#define BRANCH_COST ix86_branch_cost
2666
2667/* Define this macro as a C expression which is nonzero if accessing
2668   less than a word of memory (i.e. a `char' or a `short') is no
2669   faster than accessing a word of memory, i.e., if such access
2670   require more than one instruction or if there is no difference in
2671   cost between byte and (aligned) word loads.
2672
2673   When this macro is not defined, the compiler will access a field by
2674   finding the smallest containing object; when it is defined, a
2675   fullword load will be used if alignment permits.  Unless bytes
2676   accesses are faster than word accesses, using word accesses is
2677   preferable since it may eliminate subsequent memory access if
2678   subsequent accesses occur to other fields in the same word of the
2679   structure, but to different bytes.  */
2680
2681#define SLOW_BYTE_ACCESS 0
2682
2683/* Nonzero if access to memory by shorts is slow and undesirable.  */
2684#define SLOW_SHORT_ACCESS 0
2685
2686/* Define this macro to be the value 1 if unaligned accesses have a
2687   cost many times greater than aligned accesses, for example if they
2688   are emulated in a trap handler.
2689
2690   When this macro is non-zero, the compiler will act as if
2691   `STRICT_ALIGNMENT' were non-zero when generating code for block
2692   moves.  This can cause significantly more instructions to be
2693   produced.  Therefore, do not set this macro non-zero if unaligned
2694   accesses only add a cycle or two to the time for a memory access.
2695
2696   If the value of this macro is always zero, it need not be defined.  */
2697
2698/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2699
2700/* Define this macro to inhibit strength reduction of memory
2701   addresses.  (On some machines, such strength reduction seems to do
2702   harm rather than good.)  */
2703
2704/* #define DONT_REDUCE_ADDR */
2705
2706/* Define this macro if it is as good or better to call a constant
2707   function address than to call an address kept in a register.
2708
2709   Desirable on the 386 because a CALL with a constant address is
2710   faster than one with a register address.  */
2711
2712#define NO_FUNCTION_CSE
2713
2714/* Define this macro if it is as good or better for a function to call
2715   itself with an explicit address than to call an address kept in a
2716   register.  */
2717
2718#define NO_RECURSIVE_FUNCTION_CSE
2719
2720/* Add any extra modes needed to represent the condition code.
2721
2722   For the i386, we need separate modes when floating-point
2723   equality comparisons are being done.
2724
2725   Add CCNO to indicate comparisons against zero that requires
2726   Overflow flag to be unset.  Sign bit test is used instead and
2727   thus can be used to form "a&b>0" type of tests.
2728
2729   Add CCGC to indicate comparisons agains zero that allows
2730   unspecified garbage in the Carry flag.  This mode is used
2731   by inc/dec instructions.
2732
2733   Add CCGOC to indicate comparisons agains zero that allows
2734   unspecified garbage in the Carry and Overflow flag. This
2735   mode is used to simulate comparisons of (a-b) and (a+b)
2736   against zero using sub/cmp/add operations.
2737
2738   Add CCZ to indicate that only the Zero flag is valid.  */
2739
2740#define EXTRA_CC_MODES		\
2741	CC (CCGCmode, "CCGC")	\
2742	CC (CCGOCmode, "CCGOC")	\
2743	CC (CCNOmode, "CCNO")	\
2744	CC (CCZmode, "CCZ")	\
2745	CC (CCFPmode, "CCFP")	\
2746	CC (CCFPUmode, "CCFPU")
2747
2748/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2749   return the mode to be used for the comparison.
2750
2751   For floating-point equality comparisons, CCFPEQmode should be used.
2752   VOIDmode should be used in all other cases.
2753
2754   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2755   possible, to allow for more combinations.  */
2756
2757#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2758
2759/* Return non-zero if MODE implies a floating point inequality can be
2760   reversed.  */
2761
2762#define REVERSIBLE_CC_MODE(MODE) 1
2763
2764/* A C expression whose value is reversed condition code of the CODE for
2765   comparison done in CC_MODE mode.  */
2766#define REVERSE_CONDITION(CODE, MODE) \
2767  ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2768   : reverse_condition_maybe_unordered (CODE))
2769
2770
2771/* Control the assembler format that we output, to the extent
2772   this does not vary between assemblers.  */
2773
2774/* How to refer to registers in assembler output.
2775   This sequence is indexed by compiler's hard-register-number (see above).  */
2776
2777/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2778   For non floating point regs, the following are the HImode names.
2779
2780   For float regs, the stack top is sometimes referred to as "%st(0)"
2781   instead of just "%st".  PRINT_REG handles this with the "y" code.  */
2782
2783#undef  HI_REGISTER_NAMES
2784#define HI_REGISTER_NAMES						\
2785{"ax","dx","cx","bx","si","di","bp","sp",				\
2786 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","",	\
2787 "flags","fpsr", "dirflag", "frame",					\
2788 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2789 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
2790 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2791 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2792
2793#define REGISTER_NAMES HI_REGISTER_NAMES
2794
2795/* Table of additional register names to use in user input.  */
2796
2797#define ADDITIONAL_REGISTER_NAMES \
2798{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
2799  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
2800  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
2801  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
2802  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
2803  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },		\
2804  { "mm0", 8},  { "mm1", 9},  { "mm2", 10}, { "mm3", 11},	\
2805  { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2806
2807/* Note we are omitting these since currently I don't know how
2808to get gcc to use these, since they want the same but different
2809number as al, and ax.
2810*/
2811
2812#define QI_REGISTER_NAMES \
2813{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2814
2815/* These parallel the array above, and can be used to access bits 8:15
2816   of regs 0 through 3.  */
2817
2818#define QI_HIGH_REGISTER_NAMES \
2819{"ah", "dh", "ch", "bh", }
2820
2821/* How to renumber registers for dbx and gdb.  */
2822
2823#define DBX_REGISTER_NUMBER(N) \
2824  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2825
2826extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2827extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2828extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2829
2830/* Before the prologue, RA is at 0(%esp).  */
2831#define INCOMING_RETURN_ADDR_RTX \
2832  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2833
2834/* After the prologue, RA is at -4(AP) in the current frame.  */
2835#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2836  ((COUNT) == 0								   \
2837   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2838   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2839
2840/* PC is dbx register 8; let's use that column for RA.  */
2841#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2842
2843/* Before the prologue, the top of the frame is at 4(%esp).  */
2844#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2845
2846/* Describe how we implement __builtin_eh_return.  */
2847#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2848#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2849
2850
2851/* Select a format to encode pointers in exception handling data.  CODE
2852   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2853   true if the symbol may be affected by dynamic relocations.
2854
2855   ??? All x86 object file formats are capable of representing this.
2856   After all, the relocation needed is the same as for the call insn.
2857   Whether or not a particular assembler allows us to enter such, I
2858   guess we'll have to see.  */
2859#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2860  (flag_pic								\
2861    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2862   : DW_EH_PE_absptr)
2863
2864/* This is how to output the definition of a user-level label named NAME,
2865   such as the label on a static function or variable NAME.  */
2866
2867#define ASM_OUTPUT_LABEL(FILE, NAME)	\
2868  (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
2869
2870/* Store in OUTPUT a string (made with alloca) containing
2871   an assembler-name for a local static variable named NAME.
2872   LABELNO is an integer which is different for each call.  */
2873
2874#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2875( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2876  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2877
2878/* This is how to output an insn to push a register on the stack.
2879   It need not be very fast code.  */
2880
2881#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2882  asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
2883
2884/* This is how to output an insn to pop a register from the stack.
2885   It need not be very fast code.  */
2886
2887#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2888  asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
2889
2890/* This is how to output an element of a case-vector that is absolute.  */
2891
2892#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2893  ix86_output_addr_vec_elt ((FILE), (VALUE))
2894
2895/* This is how to output an element of a case-vector that is relative.  */
2896
2897#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2898  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2899
2900/* Under some conditions we need jump tables in the text section, because
2901   the assembler cannot handle label differences between sections.  */
2902
2903#define JUMP_TABLES_IN_TEXT_SECTION \
2904  (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2905
2906/* A C statement that outputs an address constant appropriate to
2907   for DWARF debugging.  */
2908
2909#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2910  i386_dwarf_output_addr_const ((FILE), (X))
2911
2912/* Either simplify a location expression, or return the original.  */
2913
2914#define ASM_SIMPLIFY_DWARF_ADDR(X) \
2915  i386_simplify_dwarf_addr (X)
2916
2917/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2918   and switch back.  For x86 we do this only to save a few bytes that
2919   would otherwise be unused in the text section.  */
2920#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2921   asm (SECTION_OP "\n\t"				\
2922	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2923	TEXT_SECTION_ASM_OP);
2924
2925/* Print operand X (an rtx) in assembler syntax to file FILE.
2926   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2927   Effect of various CODE letters is described in i386.c near
2928   print_operand function.  */
2929
2930#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2931  ((CODE) == '*' || (CODE) == '+')
2932
2933/* Print the name of a register based on its machine mode and number.
2934   If CODE is 'w', pretend the mode is HImode.
2935   If CODE is 'b', pretend the mode is QImode.
2936   If CODE is 'k', pretend the mode is SImode.
2937   If CODE is 'q', pretend the mode is DImode.
2938   If CODE is 'h', pretend the reg is the `high' byte register.
2939   If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.  */
2940
2941#define PRINT_REG(X, CODE, FILE)  \
2942  print_reg ((X), (CODE), (FILE))
2943
2944#define PRINT_OPERAND(FILE, X, CODE)  \
2945  print_operand ((FILE), (X), (CODE))
2946
2947#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2948  print_operand_address ((FILE), (ADDR))
2949
2950/* Print the name of a register for based on its machine mode and number.
2951   This macro is used to print debugging output.
2952   This macro is different from PRINT_REG in that it may be used in
2953   programs that are not linked with aux-output.o.  */
2954
2955#define DEBUG_PRINT_REG(X, CODE, FILE)			\
2956  do { static const char * const hi_name[] = HI_REGISTER_NAMES;	\
2957       static const char * const qi_name[] = QI_REGISTER_NAMES;	\
2958       fprintf ((FILE), "%d ", REGNO (X));		\
2959       if (REGNO (X) == FLAGS_REG)			\
2960	 { fputs ("flags", (FILE)); break; }		\
2961       if (REGNO (X) == DIRFLAG_REG)			\
2962	 { fputs ("dirflag", (FILE)); break; }		\
2963       if (REGNO (X) == FPSR_REG)			\
2964	 { fputs ("fpsr", (FILE)); break; }		\
2965       if (REGNO (X) == ARG_POINTER_REGNUM)		\
2966	 { fputs ("argp", (FILE)); break; }		\
2967       if (REGNO (X) == FRAME_POINTER_REGNUM)		\
2968	 { fputs ("frame", (FILE)); break; }		\
2969       if (STACK_TOP_P (X))				\
2970	 { fputs ("st(0)", (FILE)); break; }		\
2971       if (FP_REG_P (X))				\
2972	 { fputs (hi_name[REGNO(X)], (FILE)); break; }	\
2973       if (REX_INT_REG_P (X))				\
2974	 {						\
2975	   switch (GET_MODE_SIZE (GET_MODE (X)))	\
2976	     {						\
2977	     default:					\
2978	     case 8:					\
2979	       fprintf ((FILE), "r%i", REGNO (X)	\
2980			- FIRST_REX_INT_REG + 8);	\
2981	       break;					\
2982	     case 4:					\
2983	       fprintf ((FILE), "r%id", REGNO (X)	\
2984			- FIRST_REX_INT_REG + 8);	\
2985	       break;					\
2986	     case 2:					\
2987	       fprintf ((FILE), "r%iw", REGNO (X)	\
2988			- FIRST_REX_INT_REG + 8);	\
2989	       break;					\
2990	     case 1:					\
2991	       fprintf ((FILE), "r%ib", REGNO (X)	\
2992			- FIRST_REX_INT_REG + 8);	\
2993	       break;					\
2994	     }						\
2995	   break;					\
2996	 }						\
2997       switch (GET_MODE_SIZE (GET_MODE (X)))		\
2998	 {						\
2999	 case 8:					\
3000	   fputs ("r", (FILE));				\
3001	   fputs (hi_name[REGNO (X)], (FILE));		\
3002	   break;					\
3003	 default:					\
3004	   fputs ("e", (FILE));				\
3005	 case 2:					\
3006	   fputs (hi_name[REGNO (X)], (FILE));		\
3007	   break;					\
3008	 case 1:					\
3009	   fputs (qi_name[REGNO (X)], (FILE));		\
3010	   break;					\
3011	 }						\
3012     } while (0)
3013
3014/* a letter which is not needed by the normal asm syntax, which
3015   we can use for operand syntax in the extended asm */
3016
3017#define ASM_OPERAND_LETTER '#'
3018#define RET return ""
3019#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3020
3021/* Define the codes that are matched by predicates in i386.c.  */
3022
3023#define PREDICATE_CODES							\
3024  {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG,			\
3025				SYMBOL_REF, LABEL_REF, CONST}},		\
3026  {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG,			\
3027				SYMBOL_REF, LABEL_REF, CONST}},		\
3028  {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG,			\
3029				SYMBOL_REF, LABEL_REF, CONST}},		\
3030  {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG,		\
3031				     SYMBOL_REF, LABEL_REF, CONST}},	\
3032  {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM,		\
3033			      SYMBOL_REF, LABEL_REF, CONST}},		\
3034  {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM,	\
3035				   SYMBOL_REF, LABEL_REF, CONST}},	\
3036  {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST,	\
3037				       SYMBOL_REF, LABEL_REF}},		\
3038  {"shiftdi_operand", {SUBREG, REG, MEM}},				\
3039  {"const_int_1_operand", {CONST_INT}},					\
3040  {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
3041  {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3042		       LABEL_REF, SUBREG, REG, MEM}},			\
3043  {"pic_symbolic_operand", {CONST}},					\
3044  {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}},		\
3045  {"constant_call_address_operand", {SYMBOL_REF, CONST}},		\
3046  {"const0_operand", {CONST_INT, CONST_DOUBLE}},			\
3047  {"const1_operand", {CONST_INT}},					\
3048  {"const248_operand", {CONST_INT}},					\
3049  {"incdec_operand", {CONST_INT}},					\
3050  {"mmx_reg_operand", {REG}},						\
3051  {"reg_no_sp_operand", {SUBREG, REG}},					\
3052  {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST,		\
3053			SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}},	\
3054  {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}},		\
3055  {"q_regs_operand", {SUBREG, REG}},					\
3056  {"non_q_regs_operand", {SUBREG, REG}},				\
3057  {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3058				 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE,	\
3059				 GE, UNGE, LTGT, UNEQ}},		\
3060  {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT,	\
3061			       ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT	\
3062			       }},					\
3063  {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU,	\
3064			       GTU, UNORDERED, ORDERED, UNLE, UNLT,	\
3065			       UNGE, UNGT, LTGT, UNEQ }},		\
3066  {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}},	\
3067  {"ext_register_operand", {SUBREG, REG}},				\
3068  {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}},			\
3069  {"mult_operator", {MULT}},						\
3070  {"div_operator", {DIV}},						\
3071  {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3072				 UMIN, UMAX, COMPARE, MINUS, DIV, MOD,	\
3073				 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT,	\
3074				 LSHIFTRT, ROTATERT}},			\
3075  {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}},	\
3076  {"memory_displacement_operand", {MEM}},				\
3077  {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3078		     LABEL_REF, SUBREG, REG, MEM, AND}},		\
3079  {"long_memory_operand", {MEM}},
3080
3081/* A list of predicates that do special things with modes, and so
3082   should not elicit warnings for VOIDmode match_operand.  */
3083
3084#define SPECIAL_MODE_PREDICATES \
3085  "ext_register_operand",
3086
3087/* CM_32 is used by 32bit ABI
3088   CM_SMALL is small model assuming that all code and data fits in the first
3089   31bits of address space.
3090   CM_KERNEL is model assuming that all code and data fits in the negative
3091   31bits of address space.
3092   CM_MEDIUM is model assuming that code fits in the first 31bits of address
3093   space.  Size of data is unlimited.
3094   CM_LARGE is model making no assumptions about size of particular sections.
3095
3096   CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
3097   tables first in 31bits of address space.
3098 */
3099enum cmodel {
3100  CM_32,
3101  CM_SMALL,
3102  CM_KERNEL,
3103  CM_MEDIUM,
3104  CM_LARGE,
3105  CM_SMALL_PIC
3106};
3107
3108/* Size of the RED_ZONE area.  */
3109#define RED_ZONE_SIZE 128
3110/* Reserved area of the red zone for temporaries.  */
3111#define RED_ZONE_RESERVE 8
3112extern const char *ix86_debug_arg_string, *ix86_debug_addr_string;
3113
3114enum asm_dialect {
3115  ASM_ATT,
3116  ASM_INTEL
3117};
3118extern const char *ix86_asm_string;
3119extern enum asm_dialect ix86_asm_dialect;
3120/* Value of -mcmodel specified by user.  */
3121extern const char *ix86_cmodel_string;
3122extern enum cmodel ix86_cmodel;
3123
3124/* Variables in i386.c */
3125extern const char *ix86_cpu_string;		/* for -mcpu=<xxx> */
3126extern const char *ix86_arch_string;		/* for -march=<xxx> */
3127extern const char *ix86_fpmath_string;		/* for -mfpmath=<xxx> */
3128extern const char *ix86_regparm_string;		/* # registers to use to pass args */
3129extern const char *ix86_align_loops_string;	/* power of two alignment for loops */
3130extern const char *ix86_align_jumps_string;	/* power of two alignment for non-loop jumps */
3131extern const char *ix86_align_funcs_string;	/* power of two alignment for functions */
3132extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
3133extern const char *ix86_branch_cost_string;	/* values 1-5: see jump.c */
3134extern int ix86_regparm;			/* ix86_regparm_string as a number */
3135extern int ix86_preferred_stack_boundary;	/* preferred stack boundary alignment in bits */
3136extern int ix86_branch_cost;			/* values 1-5: see jump.c */
3137extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
3138extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
3139extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
3140
3141/* To properly truncate FP values into integers, we need to set i387 control
3142   word.  We can't emit proper mode switching code before reload, as spills
3143   generated by reload may truncate values incorrectly, but we still can avoid
3144   redundant computation of new control word by the mode switching pass.
3145   The fldcw instructions are still emitted redundantly, but this is probably
3146   not going to be noticeable problem, as most CPUs do have fast path for
3147   the sequence.
3148
3149   The machinery is to emit simple truncation instructions and split them
3150   before reload to instructions having USEs of two memory locations that
3151   are filled by this code to old and new control word.
3152
3153   Post-reload pass may be later used to eliminate the redundant fildcw if
3154   needed.  */
3155
3156enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3157
3158/* Define this macro if the port needs extra instructions inserted
3159   for mode switching in an optimizing compilation.  */
3160
3161#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3162
3163/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3164   initializer for an array of integers.  Each initializer element N
3165   refers to an entity that needs mode switching, and specifies the
3166   number of different modes that might need to be set for this
3167   entity.  The position of the initializer in the initializer -
3168   starting counting at zero - determines the integer that is used to
3169   refer to the mode-switched entity in question.  */
3170
3171#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3172
3173/* ENTITY is an integer specifying a mode-switched entity.  If
3174   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3175   return an integer value not larger than the corresponding element
3176   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3177   must be switched into prior to the execution of INSN.  */
3178
3179#define MODE_NEEDED(ENTITY, I)						\
3180  (GET_CODE (I) == CALL_INSN						\
3181   || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 	\
3182				|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
3183   ? FP_CW_UNINITIALIZED						\
3184   : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP		\
3185   ? FP_CW_ANY								\
3186   : FP_CW_STORED)
3187
3188/* This macro specifies the order in which modes for ENTITY are
3189   processed.  0 is the highest priority.  */
3190
3191#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3192
3193/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
3194   is the set of hard registers live at the point where the insn(s)
3195   are to be inserted.  */
3196
3197#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
3198  ((MODE) == FP_CW_STORED						\
3199   ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1),	\
3200				  assign_386_stack_local (HImode, 2)), 0\
3201   : 0)
3202
3203/* Avoid renaming of stack registers, as doing so in combination with
3204   scheduling just increases amount of live registers at time and in
3205   the turn amount of fxch instructions needed.
3206
3207   ??? Maybe Pentium chips benefits from renaming, someone can try...  */
3208
3209#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
3210   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3211
3212
3213/*
3214Local variables:
3215version-control: t
3216End:
3217*/
3218